1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
|
//
// Copyright 2020 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/cal/database.hpp>
#include <uhd/exception.hpp>
#include <uhd/property_tree.hpp>
#include <uhd/property_tree.ipp>
#include <uhd/rfnoc/register_iface.hpp>
#include <uhd/transport/chdr.hpp>
#include <uhd/types/direction.hpp>
#include <uhd/types/eeprom.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/utils/log.hpp>
#include <uhdlib/experts/expert_container.hpp>
#include <uhdlib/experts/expert_factory.hpp>
#include <uhdlib/rfnoc/reg_iface_adapter.hpp>
#include <uhdlib/usrp/dboard/zbx/zbx_constants.hpp>
#include <uhdlib/usrp/dboard/zbx/zbx_dboard.hpp>
#include <uhdlib/usrp/dboard/zbx/zbx_expert.hpp>
#include <boost/algorithm/string.hpp>
#include <sstream>
#include <vector>
using namespace uhd;
using namespace uhd::experts;
using namespace uhd::rfnoc;
// ostream << operator overloads for our enum classes, so that property nodes of that type
// can be added to our expert graph
namespace uhd { namespace experts {
std::ostream& operator<<(
std::ostream& os, const ::uhd::usrp::zbx::zbx_lo_source_t& lo_source)
{
switch (lo_source) {
case ::uhd::usrp::zbx::zbx_lo_source_t::internal:
os << "internal";
return os;
case ::uhd::usrp::zbx::zbx_lo_source_t::external:
os << "external";
return os;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
std::ostream& operator<<(
std::ostream& os, const ::uhd::usrp::zbx::zbx_cpld_ctrl::atr_mode& atr)
{
switch (atr) {
case ::uhd::usrp::zbx::zbx_cpld_ctrl::atr_mode::SW_DEFINED:
os << "SW_DEFINED";
return os;
case ::uhd::usrp::zbx::zbx_cpld_ctrl::atr_mode::CLASSIC_ATR:
os << "CLASSIC ATR";
return os;
case ::uhd::usrp::zbx::zbx_cpld_ctrl::atr_mode::FPGA_STATE:
os << "FPGA_STATE";
return os;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
}} // namespace uhd::experts
namespace uhd { namespace usrp { namespace zbx {
void zbx_dboard_impl::_init_cpld()
{
// CPLD
RFNOC_LOG_TRACE("Initializing CPLD...");
_cpld = std::make_shared<zbx_cpld_ctrl>(
[this](
const uint32_t addr, const uint32_t data, const zbx_cpld_ctrl::chan_t chan) {
const auto time_spec = (chan == zbx_cpld_ctrl::NO_CHAN)
? time_spec_t::ASAP
: (chan == zbx_cpld_ctrl::CHAN1)
? _time_accessor(1)
: _time_accessor(0);
_regs.poke32(_reg_base_address + addr, data, time_spec);
},
[this](const uint32_t addr) {
// We don't do timed peeks, so no chan parameter here.
return _regs.peek32(_reg_base_address + addr);
},
[this](const uhd::time_spec_t& sleep_time) { _regs.sleep(sleep_time); },
get_unique_id() + "::CPLD");
UHD_ASSERT_THROW(_cpld);
// We don't have access to the scratch register, so we use the config
// registers to test communication. This also does some basic sanity check
// of the CPLDs logic.
RFNOC_LOG_TRACE("Testing CPLD communication...");
const uint32_t random_value = static_cast<uint32_t>(time(NULL));
_cpld->set_scratch(random_value);
UHD_ASSERT_THROW(_cpld->get_scratch() == random_value);
// Now go to classic ATR mode
RFNOC_LOG_TRACE("CPLD communication good. Switching to classic ATR mode.");
for (size_t i = 0; i < ZBX_NUM_CHANS; ++i) {
_cpld->set_atr_mode(
i, zbx_cpld_ctrl::atr_mode_target::DSA, zbx_cpld_ctrl::atr_mode::CLASSIC_ATR);
_cpld->set_atr_mode(i,
zbx_cpld_ctrl::atr_mode_target::PATH_LED,
zbx_cpld_ctrl::atr_mode::CLASSIC_ATR);
}
}
void zbx_dboard_impl::_init_peripherals()
{
RFNOC_LOG_TRACE("Initializing peripherals...");
// Load DSA cal data (rx and tx)
constexpr char dsa_step_filename_tx[] = "zbx_dsa_tx";
constexpr char dsa_step_filename_rx[] = "zbx_dsa_rx";
uhd::eeprom_map_t eeprom_map = get_db_eeprom();
const std::string db_serial(eeprom_map["serial"].begin(), eeprom_map["serial"].end());
if (uhd::usrp::cal::database::has_cal_data(
dsa_step_filename_tx, db_serial, uhd::usrp::cal::source::ANY)) {
RFNOC_LOG_TRACE("load binary TX DSA steps from database...");
const auto tx_dsa_data = uhd::usrp::cal::database::read_cal_data(
dsa_step_filename_tx, db_serial, uhd::usrp::cal::source::ANY);
RFNOC_LOG_TRACE("create TX DSA object...");
_tx_dsa_cal = uhd::usrp::cal::zbx_tx_dsa_cal::make();
RFNOC_LOG_TRACE("store deserialized TX DSA data into object...");
_tx_dsa_cal->deserialize(tx_dsa_data);
} else {
RFNOC_LOG_ERROR("Could not find TX DSA cal data!");
throw uhd::runtime_error("Could not find TX DSA cal data!");
}
if (uhd::usrp::cal::database::has_cal_data(
dsa_step_filename_rx, db_serial, uhd::usrp::cal::source::ANY)) {
// read binary blob without knowledge about content
RFNOC_LOG_TRACE("load binary RX DSA steps from database...");
const auto rx_dsa_data = uhd::usrp::cal::database::read_cal_data(
dsa_step_filename_rx, db_serial, uhd::usrp::cal::source::ANY);
RFNOC_LOG_TRACE("create RX DSA object...");
_rx_dsa_cal = uhd::usrp::cal::zbx_rx_dsa_cal::make();
RFNOC_LOG_TRACE("store deserialized RX DSA data into object...");
_rx_dsa_cal->deserialize(rx_dsa_data);
} else {
RFNOC_LOG_ERROR("Could not find RX DSA cal data!");
throw uhd::runtime_error("Could not find RX DSA cal data!");
}
}
void zbx_dboard_impl::_init_prop_tree()
{
auto subtree = get_tree()->subtree(fs_path("dboard"));
// Construct RX frontend
for (size_t chan_idx = 0; chan_idx < ZBX_NUM_CHANS; chan_idx++) {
const fs_path fe_path = fs_path("rx_frontends") / chan_idx;
// Command time needs to be shadowed into the property tree so we can use
// it in the expert graph. TX and RX share the command time, so we could
// put it onto its own sub-tree, or copy the property between TX and RX.
// With respect to TwinRX and trying to keep the tree lean and browsable,
// we compromise and put the command time onto the RX frontend path, even
// though it's also valid for TX.
// This data node will be used for scheduling the other experts:
expert_factory::add_data_node<time_spec_t>(
_expert_container, fe_path / "time/fe", time_spec_t(0.0));
// This prop node will be used to import the command time into the
// graph:
expert_factory::add_prop_node<time_spec_t>(
_expert_container, subtree, fe_path / "time/cmd", time_spec_t(0.0));
_init_frontend_subtree(subtree, RX_DIRECTION, chan_idx, fe_path);
// The time nodes get connected with one scheduling expert per channel:
expert_factory::add_worker_node<zbx_scheduling_expert>(
_expert_container, _expert_container->node_retriever(), fe_path);
}
// Construct TX frontend
// Note: the TX frontend uses the RX property tree, this must
// be constructed after the RX frontend
for (size_t chan_idx = 0; chan_idx < ZBX_NUM_CHANS; chan_idx++) {
const fs_path fe_path = fs_path("tx_frontends") / chan_idx;
_init_frontend_subtree(subtree, TX_DIRECTION, chan_idx, fe_path);
}
// Now add the sync worker:
expert_factory::add_worker_node<zbx_sync_expert>(_expert_container,
_expert_container->node_retriever(),
fs_path("tx_frontends"),
fs_path("rx_frontends"),
_rfdcc,
_cpld);
subtree->create<eeprom_map_t>("eeprom")
.add_coerced_subscriber([this](const eeprom_map_t&) {
throw uhd::runtime_error("Attempting to update daughterboard eeprom!");
})
.set_publisher([this]() { return get_db_eeprom(); });
}
void zbx_dboard_impl::_init_frontend_subtree(uhd::property_tree::sptr subtree,
const uhd::direction_t trx,
const size_t chan_idx,
const fs_path fe_path)
{
static constexpr char ZBX_FE_NAME[] = "ZBX";
RFNOC_LOG_TRACE("Adding non-RFNoC block properties for channel "
<< chan_idx << " to prop tree path " << fe_path);
// Standard attributes
subtree->create<std::string>(fe_path / "name").set(ZBX_FE_NAME);
subtree->create<std::string>(fe_path / "connection").set("IQ");
_init_frequency_prop_tree(subtree, _expert_container, fe_path);
_init_gain_prop_tree(subtree, _expert_container, trx, chan_idx, fe_path);
_init_antenna_prop_tree(subtree, _expert_container, trx, chan_idx, fe_path);
_init_lo_prop_tree(subtree, _expert_container, trx, chan_idx, fe_path);
_init_programming_prop_tree(subtree, _expert_container, fe_path);
_init_experts(subtree, _expert_container, trx, chan_idx, fe_path);
}
uhd::usrp::pwr_cal_mgr::sptr zbx_dboard_impl::_init_power_cal(
uhd::property_tree::sptr subtree,
const uhd::direction_t trx,
const size_t chan_idx,
const fs_path fe_path)
{
const std::string DIR = (trx == TX_DIRECTION) ? "TX" : "RX";
uhd::eeprom_map_t eeprom_map = get_db_eeprom();
/* The cal serial is the DB serial plus the FE name */
const std::string db_serial(eeprom_map["serial"].begin(), eeprom_map["serial"].end());
const std::string cal_serial =
db_serial + "#" + subtree->access<std::string>(fe_path / "name").get();
/* Now create a gain group for this. */
/* _?x_gain_groups won't work, because it doesn't group the */
/* gains the way we want them to be grouped. */
auto ggroup = uhd::gain_group::make();
ggroup->register_fcns(HW_GAIN_STAGE,
{[this, trx, chan_idx]() {
return trx == TX_DIRECTION ? get_tx_gain_range(chan_idx)
: get_rx_gain_range(chan_idx);
},
[this, trx, chan_idx]() {
return trx == TX_DIRECTION ? get_tx_gain(ZBX_GAIN_STAGE_ALL, chan_idx)
: get_rx_gain(ZBX_GAIN_STAGE_ALL, chan_idx);
},
[this, trx, chan_idx](const double gain) {
trx == TX_DIRECTION ? set_tx_gain(gain, chan_idx)
: set_rx_gain(gain, chan_idx);
}},
10 /* High priority */);
/* If we had a digital (baseband) gain, we would register it here,*/
/* so that the power manager would know to use it as a */
/* backup gain stage. */
/* Note that such a baseband gain might not be available */
/* on the LV version. */
return uhd::usrp::pwr_cal_mgr::make(
cal_serial,
"X400-CAL-" + DIR,
[this, trx, chan_idx]() {
return trx == TX_DIRECTION ? get_tx_frequency(chan_idx)
: get_rx_frequency(chan_idx);
},
[this,
trx_str = (trx == TX_DIRECTION ? "tx" : "rx"),
fe_path,
subtree,
chan_str = std::to_string(chan_idx)]() -> std::string {
const std::string antenna = pwr_cal_mgr::sanitize_antenna_name(
subtree->access<std::string>(fe_path / "antenna/value").get());
// The lookup key for X410 + ZBX shall start with x4xx_pwr_zbx.
// Should we rev the ZBX in a way that would make generic cal data
// unsuitable between revs, then we need to check the rev (or PID)
// here and generate a different key prefix (e.g. x4xx_pwr_zbxD_ or
// something like that).
return std::string("x4xx_pwr_zbx_") + trx_str + "_" + chan_str + "_"
+ antenna;
},
ggroup);
}
void zbx_dboard_impl::_init_experts(uhd::property_tree::sptr subtree,
expert_container::sptr expert,
const uhd::direction_t trx,
const size_t chan_idx,
const fs_path fe_path)
{
RFNOC_LOG_TRACE(fe_path + ", Creating experts...");
get_pwr_mgr(trx).insert(get_pwr_mgr(trx).begin() + chan_idx,
_init_power_cal(subtree, trx, chan_idx, fe_path));
// NOTE: THE ORDER OF EXPERT INITIALIZATION MATTERS
// After construction, all nodes (properties and experts) are marked dirty. Any
// subsequent calls to the container will trigger a resolve_all(), in which case
// the nodes are all resolved in REVERSE ORDER of construction, like a stack. With
// that in mind, we have to initialize the experts in line with that reverse order,
// because some experts rely on each other's construction/resolution to avoid
// errors (e.g., gain expert's dsa_cal is dependant on frequency be's coerced
// frequency, which is nan on dual_prop_node construction) After construction and
// subsequent resolution, the nodes will follow simple topological ruling as long
// as we only change one property at a time.
// The current order should be:
// Frequency FE Expert -> LO Expert(s) -> MPM Expert -> Frequency BE Expert -> Gain
// Expert -> Programming Expert
if (trx == TX_DIRECTION) {
expert_factory::add_worker_node<zbx_tx_programming_expert>(expert,
expert->node_retriever(),
fe_path,
fs_path("rx_frontends") / chan_idx,
chan_idx,
_tx_dsa_cal,
_cpld);
expert_factory::add_worker_node<zbx_tx_gain_expert>(expert,
expert->node_retriever(),
fe_path,
chan_idx,
get_pwr_mgr(trx).at(chan_idx),
_tx_dsa_cal);
} else {
expert_factory::add_worker_node<zbx_rx_programming_expert>(
expert, expert->node_retriever(), fe_path, chan_idx, _rx_dsa_cal, _cpld);
expert_factory::add_worker_node<zbx_rx_gain_expert>(expert,
expert->node_retriever(),
fe_path,
chan_idx,
get_pwr_mgr(trx).at(chan_idx),
_rx_dsa_cal);
}
expert_factory::add_worker_node<zbx_freq_be_expert>(
expert, expert->node_retriever(), fe_path, trx, chan_idx);
expert_factory::add_worker_node<zbx_band_inversion_expert>(
expert, expert->node_retriever(), fe_path, trx, chan_idx, _db_idx, _rpcc);
// Initialize our LO Control Experts
for (auto lo_select : ZBX_LOS) {
if (lo_select == RFDC_NCO) {
expert_factory::add_worker_node<zbx_rfdc_freq_expert>(expert,
expert->node_retriever(),
fe_path,
trx,
chan_idx,
_rpc_prefix,
_db_idx,
_mb_rpcc);
} else {
const zbx_lo_t lo = zbx_lo_ctrl::lo_string_to_enum(trx, chan_idx, lo_select);
std::shared_ptr<zbx_lo_ctrl> lo_ctrl = std::make_shared<zbx_lo_ctrl>(
lo,
[this, lo](const uint32_t addr, const uint16_t data) {
_cpld->lo_poke16(lo, addr, data);
},
[this, lo](const uint32_t addr) { return _cpld->lo_peek16(lo, addr); },
[this](const uhd::time_spec_t& sleep_time) { _regs.sleep(sleep_time); },
LMX2572_DEFAULT_FREQ,
_prc_rate,
false);
expert_factory::add_worker_node<zbx_lo_expert>(expert,
expert->node_retriever(),
fe_path,
trx,
chan_idx,
lo_select,
lo_ctrl);
_lo_ctrl_map.insert({lo, lo_ctrl});
}
}
const double lo_step_size = _prc_rate / ZBX_RELATIVE_LO_STEP_SIZE;
RFNOC_LOG_DEBUG("LO step size: " << (lo_step_size / 1e6) << " MHz.")
expert_factory::add_worker_node<zbx_freq_fe_expert>(expert,
expert->node_retriever(),
fe_path,
trx,
chan_idx,
_rfdc_rate,
lo_step_size);
RFNOC_LOG_TRACE(fe_path + ", Experts created");
}
void zbx_dboard_impl::_init_frequency_prop_tree(uhd::property_tree::sptr subtree,
expert_container::sptr expert,
const fs_path fe_path)
{
expert_factory::add_dual_prop_node<double>(
expert, subtree, fe_path / "freq", ZBX_DEFAULT_FREQ, AUTO_RESOLVE_ON_WRITE);
expert_factory::add_dual_prop_node<double>(
expert, subtree, fe_path / "if_freq", 0.0, AUTO_RESOLVE_ON_WRITE);
expert_factory::add_data_node<bool>(expert, fe_path / "is_highband", false);
expert_factory::add_data_node<int>(
expert, fe_path / "mixer1_m", 0, AUTO_RESOLVE_ON_WRITE);
expert_factory::add_data_node<int>(
expert, fe_path / "mixer1_n", 0, AUTO_RESOLVE_ON_WRITE);
expert_factory::add_data_node<int>(
expert, fe_path / "mixer2_m", 0, AUTO_RESOLVE_ON_WRITE);
expert_factory::add_data_node<int>(
expert, fe_path / "mixer2_n", 0, AUTO_RESOLVE_ON_WRITE);
expert_factory::add_data_node<bool>(
expert, fe_path / "band_inverted", false, AUTO_RESOLVE_ON_WRITE);
subtree->create<double>(fe_path / "bandwidth" / "value")
.set(ZBX_DEFAULT_BANDWIDTH)
.set_coercer([](const double) { return ZBX_DEFAULT_BANDWIDTH; });
subtree->create<meta_range_t>(fe_path / "bandwidth" / "range")
.set({ZBX_DEFAULT_BANDWIDTH, ZBX_DEFAULT_BANDWIDTH})
.set_coercer([](const meta_range_t&) {
return meta_range_t(ZBX_DEFAULT_BANDWIDTH, ZBX_DEFAULT_BANDWIDTH);
});
subtree->create<meta_range_t>(fe_path / "freq" / "range")
.set(ZBX_FREQ_RANGE)
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update freq range!");
});
}
void zbx_dboard_impl::_init_gain_prop_tree(uhd::property_tree::sptr subtree,
expert_container::sptr expert,
const uhd::direction_t trx,
const size_t chan_idx,
const fs_path fe_path)
{
// First, overall gain nodes
const auto gain_base_path = fe_path / "gains";
expert_factory::add_dual_prop_node<double>(expert,
subtree,
gain_base_path / ZBX_GAIN_STAGE_ALL / "value",
trx == TX_DIRECTION ? TX_MIN_GAIN : RX_MIN_GAIN,
AUTO_RESOLVE_ON_WRITE);
subtree->create<meta_range_t>(fe_path / "gains" / "all" / "range")
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update gain range!");
})
.set_publisher([this, trx, chan_idx]() {
return (trx == TX_DIRECTION) ? this->get_tx_gain_range(chan_idx)
: this->get_rx_gain_range(chan_idx);
});
// Then, individual DSA/amp gain nodes
if (trx == TX_DIRECTION) {
// DSAs
for (const auto dsa : {ZBX_GAIN_STAGE_DSA1, ZBX_GAIN_STAGE_DSA2}) {
const auto gain_path = gain_base_path / dsa;
expert_factory::add_dual_prop_node<double>(
expert, subtree, gain_path / "value", 0, AUTO_RESOLVE_ON_WRITE);
subtree->create<meta_range_t>(gain_path / "range")
.set(uhd::meta_range_t(0, ZBX_TX_DSA_MAX_ATT, 1.0));
expert_factory::add_worker_node<zbx_gain_coercer_expert>(_expert_container,
_expert_container->node_retriever(),
gain_path / "value",
uhd::meta_range_t(0, ZBX_TX_DSA_MAX_ATT, 1.0));
}
// Amp
const auto amp_path = gain_base_path / ZBX_GAIN_STAGE_AMP;
expert_factory::add_dual_prop_node<double>(expert,
subtree,
amp_path / "value",
ZBX_TX_LOWBAND_GAIN,
AUTO_RESOLVE_ON_WRITE);
uhd::meta_range_t amp_gain_range;
for (const auto tx_gain_pair : ZBX_TX_GAIN_AMP_MAP) {
amp_gain_range.push_back(uhd::range_t(tx_gain_pair.first));
}
subtree->create<meta_range_t>(amp_path / "range").set(amp_gain_range);
expert_factory::add_worker_node<zbx_gain_coercer_expert>(_expert_container,
_expert_container->node_retriever(),
amp_path / "value",
amp_gain_range);
} else {
// RX only has DSAs
for (const auto dsa : {ZBX_GAIN_STAGE_DSA1,
ZBX_GAIN_STAGE_DSA2,
ZBX_GAIN_STAGE_DSA3A,
ZBX_GAIN_STAGE_DSA3B}) {
const auto gain_path = gain_base_path / dsa;
expert_factory::add_dual_prop_node<double>(
expert, subtree, gain_path / "value", 0, AUTO_RESOLVE_ON_WRITE);
subtree->create<meta_range_t>(gain_path / "range")
.set(uhd::meta_range_t(0, ZBX_RX_DSA_MAX_ATT, 1.0));
expert_factory::add_worker_node<zbx_gain_coercer_expert>(_expert_container,
_expert_container->node_retriever(),
gain_path / "value",
uhd::meta_range_t(0, ZBX_RX_DSA_MAX_ATT, 1.0));
}
}
const uhd::fs_path gain_profile_path = gain_base_path / "all" / "profile";
expert_factory::add_prop_node<std::string>(expert,
subtree,
gain_profile_path,
ZBX_GAIN_PROFILE_DEFAULT,
AUTO_RESOLVE_ON_WRITE);
auto& gain_profile = (trx == TX_DIRECTION) ? _tx_gain_profile_api
: _rx_gain_profile_api;
auto& other_dir_gp = (trx == TX_DIRECTION) ? _rx_gain_profile_api
: _tx_gain_profile_api;
auto gain_profile_subscriber = [this, other_dir_gp, trx](
const std::string& profile, const size_t chan) {
// Upon changing the gain profile, we need to import the new value into
// the property tree.
const auto path = fs_path("dboard")
/ (trx == TX_DIRECTION ? "tx_frontends" : "rx_frontends") / chan
/ "gains" / "all" / "profile";
get_tree()->access<std::string>(path).set(profile);
// The CPLD does not have the option to have different ATR modes for RX
// and TX (it does have different modes for channel 0 and 1 though).
// This means we have to match up the gain profiles between RX and TX.
// The ZBX_GAIN_PROFILE_CPLD_NOATR profile uses the SW_DEFINED mode,
// and all the others use CLASSIC_ATR. So either both match
// ZBX_GAIN_PROFILE_CPLD_NOATR, or none do.
// This will not cause a loop, because the other_dir_gp will already
// match this one by the time we call it.
if ((profile == ZBX_GAIN_PROFILE_CPLD_NOATR
&& other_dir_gp->get_gain_profile(chan) != ZBX_GAIN_PROFILE_CPLD_NOATR)
|| (profile != ZBX_GAIN_PROFILE_CPLD_NOATR
&& other_dir_gp->get_gain_profile(chan) == ZBX_GAIN_PROFILE_CPLD_NOATR)) {
RFNOC_LOG_DEBUG("Channel " << chan << ": Setting gain profile to `" << profile
<< "' for both TX and RX.");
other_dir_gp->set_gain_profile(profile, chan);
}
};
gain_profile->add_subscriber(std::move(gain_profile_subscriber));
}
void zbx_dboard_impl::_init_antenna_prop_tree(uhd::property_tree::sptr subtree,
expert_container::sptr expert,
const uhd::direction_t trx,
const size_t chan_idx,
const fs_path fe_path)
{
const std::string default_ant = trx == TX_DIRECTION ? DEFAULT_TX_ANTENNA
: DEFAULT_RX_ANTENNA;
expert_factory::add_prop_node<std::string>(expert,
subtree,
fe_path / "antenna" / "value",
default_ant,
AUTO_RESOLVE_ON_WRITE);
subtree->access<std::string>(fe_path / "antenna" / "value")
.set_coercer([trx](const std::string& ant_name) {
const auto ant_map = trx == TX_DIRECTION ? TX_ANTENNA_NAME_COMPAT_MAP
: RX_ANTENNA_NAME_COMPAT_MAP;
return ant_map.count(ant_name) ? ant_map.at(ant_name) : ant_name;
});
subtree->create<std::vector<std::string>>(fe_path / "antenna" / "options")
.set(trx == TX_DIRECTION ? get_tx_antennas(chan_idx) : get_rx_antennas(chan_idx))
.add_coerced_subscriber([](const std::vector<std::string>&) {
throw uhd::runtime_error("Attempting to update antenna options!");
});
}
void zbx_dboard_impl::_init_programming_prop_tree(uhd::property_tree::sptr subtree,
expert_container::sptr expert,
const fs_path fe_path)
{
expert_factory::add_prop_node<int>(
expert, subtree, fe_path / "rf" / "filter", 1, AUTO_RESOLVE_ON_WRITE);
expert_factory::add_prop_node<int>(
expert, subtree, fe_path / "if1" / "filter", 1, AUTO_RESOLVE_ON_WRITE);
expert_factory::add_prop_node<int>(
expert, subtree, fe_path / "if2" / "filter", 1, AUTO_RESOLVE_ON_WRITE);
expert_factory::add_prop_node<zbx_cpld_ctrl::atr_mode>(expert,
subtree,
fe_path / "atr_mode",
zbx_cpld_ctrl::atr_mode::CLASSIC_ATR,
AUTO_RESOLVE_ON_WRITE);
}
void zbx_dboard_impl::_init_lo_prop_tree(uhd::property_tree::sptr subtree,
expert_container::sptr expert,
const uhd::direction_t trx,
const size_t chan_idx,
const fs_path fe_path)
{
// Analog LO Specific
for (const std::string lo : {ZBX_LO1, ZBX_LO2}) {
expert_factory::add_prop_node<zbx_lo_source_t>(expert,
subtree,
fe_path / "ch" / lo / "source",
ZBX_DEFAULT_LO_SOURCE,
AUTO_RESOLVE_ON_WRITE);
expert_factory::add_prop_node<bool>(
expert, subtree, fe_path / lo / "enabled", false, AUTO_RESOLVE_ON_WRITE);
expert_factory::add_prop_node<bool>(
expert, subtree, fe_path / lo / "test_mode", false, AUTO_RESOLVE_ON_WRITE);
expert_factory::add_dual_prop_node<double>(expert,
subtree,
fe_path / "los" / lo / "freq" / "value",
LMX2572_DEFAULT_FREQ,
AUTO_RESOLVE_ON_WRITE);
subtree->create<meta_range_t>(fe_path / "los" / lo / "freq/range")
.set_publisher(
[this, lo, chan_idx]() { return this->_get_lo_freq_range(lo, chan_idx); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update freq range!");
});
subtree->create<std::vector<std::string>>(fe_path / "los" / lo / "source/options")
.set_publisher([this, lo, trx, chan_idx]() {
return trx == TX_DIRECTION ? this->get_tx_lo_sources(lo, chan_idx)
: this->get_rx_lo_sources(lo, chan_idx);
})
.add_coerced_subscriber([](const std::vector<std::string>&) {
throw uhd::runtime_error("Attempting to update LO source options!");
});
subtree
->create<sensor_value_t>(
fe_path / "sensors" / boost::algorithm::to_lower_copy(lo) + "_locked")
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this, lo, trx, chan_idx]() {
return sensor_value_t(lo,
this->_lo_ctrl_map
.at(zbx_lo_ctrl::lo_string_to_enum(trx, chan_idx, lo))
->get_lock_status(),
"locked",
"unlocked");
});
}
// The NCO gets a sub-node called 'reset'. It is read/write: Write will
// perform a reset, and read will return the reset status. The latter is
// also returned in the 'locked' sensor for the NCO, but the 'nco_locked'
// sensor node is read-only, and returns a sensor_value_t (not a bool).
// This node is primarily used for debugging, but can also serve as a manual
// reset line for the NCOs.
const auto nco = (trx == TX_DIRECTION)
? (chan_idx == 0 ? rfdc_control::rfdc_type::TX0
: rfdc_control::rfdc_type::TX1)
: (chan_idx == 0 ? rfdc_control::rfdc_type::RX0
: rfdc_control::rfdc_type::RX1);
subtree->create<bool>(fe_path / "los" / RFDC_NCO / "reset")
.set_publisher([this]() { return this->_rfdcc->get_nco_reset_done(); })
.add_coerced_subscriber([this, nco, chan_idx](const bool&) {
RFNOC_LOG_TRACE("Resetting NCO " << size_t(nco) << ", chan " << chan_idx);
this->_rfdcc->reset_ncos({nco}, this->_time_accessor(chan_idx));
});
expert_factory::add_dual_prop_node<double>(expert,
subtree,
fe_path / "los" / RFDC_NCO / "freq" / "value",
// Initialize with current value
_mb_rpcc->rfdc_get_nco_freq(trx == TX_DIRECTION ? "tx" : "rx", _db_idx, chan_idx),
AUTO_RESOLVE_ON_WRITE);
expert_factory::add_prop_node<zbx_lo_source_t>(expert,
subtree,
fe_path / "ch" / RFDC_NCO / "source",
ZBX_DEFAULT_LO_SOURCE,
AUTO_RESOLVE_ON_WRITE);
// LO lock sensor
// We can't make this its own property value because it has to have access to two
// containers (two instances of zbx lo expert)
subtree->create<sensor_value_t>(fe_path / "sensors" / "lo_locked")
.set(sensor_value_t("all_los", false, "locked", "unlocked"))
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this, trx, chan_idx]() {
return sensor_value_t("all_los",
this->_get_all_los_locked(trx, chan_idx),
"locked",
"unlocked");
});
subtree->create<sensor_value_t>(fe_path / "sensors" / "nco_locked")
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this]() {
return sensor_value_t(
RFDC_NCO, this->_rfdcc->get_nco_reset_done(), "locked", "unlocked");
});
}
}}} // namespace uhd::usrp::zbx
|