diff options
author | Lars Amsel <lars.amsel@ni.com> | 2021-06-04 08:27:50 +0200 |
---|---|---|
committer | Aaron Rossetto <aaron.rossetto@ni.com> | 2021-06-10 12:01:53 -0500 |
commit | 2a575bf9b5a4942f60e979161764b9e942699e1e (patch) | |
tree | 2f0535625c30025559ebd7494a4b9e7122550a73 /host/lib/usrp/dboard/zbx/zbx_dboard_init.cpp | |
parent | e17916220cc955fa219ae37f607626ba88c4afe3 (diff) | |
download | uhd-2a575bf9b5a4942f60e979161764b9e942699e1e.tar.gz uhd-2a575bf9b5a4942f60e979161764b9e942699e1e.tar.bz2 uhd-2a575bf9b5a4942f60e979161764b9e942699e1e.zip |
uhd: Add support for the USRP X410
Co-authored-by: Lars Amsel <lars.amsel@ni.com>
Co-authored-by: Michael Auchter <michael.auchter@ni.com>
Co-authored-by: Martin Braun <martin.braun@ettus.com>
Co-authored-by: Paul Butler <paul.butler@ni.com>
Co-authored-by: Cristina Fuentes <cristina.fuentes-curiel@ni.com>
Co-authored-by: Humberto Jimenez <humberto.jimenez@ni.com>
Co-authored-by: Virendra Kakade <virendra.kakade@ni.com>
Co-authored-by: Lane Kolbly <lane.kolbly@ni.com>
Co-authored-by: Max Köhler <max.koehler@ni.com>
Co-authored-by: Andrew Lynch <andrew.lynch@ni.com>
Co-authored-by: Grant Meyerhoff <grant.meyerhoff@ni.com>
Co-authored-by: Ciro Nishiguchi <ciro.nishiguchi@ni.com>
Co-authored-by: Thomas Vogel <thomas.vogel@ni.com>
Diffstat (limited to 'host/lib/usrp/dboard/zbx/zbx_dboard_init.cpp')
-rw-r--r-- | host/lib/usrp/dboard/zbx/zbx_dboard_init.cpp | 685 |
1 files changed, 685 insertions, 0 deletions
diff --git a/host/lib/usrp/dboard/zbx/zbx_dboard_init.cpp b/host/lib/usrp/dboard/zbx/zbx_dboard_init.cpp new file mode 100644 index 000000000..e6bbf2798 --- /dev/null +++ b/host/lib/usrp/dboard/zbx/zbx_dboard_init.cpp @@ -0,0 +1,685 @@ +// +// Copyright 2020 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#include <uhd/cal/database.hpp> +#include <uhd/exception.hpp> +#include <uhd/property_tree.hpp> +#include <uhd/property_tree.ipp> +#include <uhd/rfnoc/register_iface.hpp> +#include <uhd/transport/chdr.hpp> +#include <uhd/types/direction.hpp> +#include <uhd/types/eeprom.hpp> +#include <uhd/types/ranges.hpp> +#include <uhd/types/sensors.hpp> +#include <uhd/utils/log.hpp> +#include <uhdlib/experts/expert_container.hpp> +#include <uhdlib/experts/expert_factory.hpp> +#include <uhdlib/rfnoc/reg_iface_adapter.hpp> +#include <uhdlib/usrp/dboard/zbx/zbx_constants.hpp> +#include <uhdlib/usrp/dboard/zbx/zbx_dboard.hpp> +#include <uhdlib/usrp/dboard/zbx/zbx_expert.hpp> +#include <boost/algorithm/string.hpp> +#include <sstream> +#include <vector> + +using namespace uhd; +using namespace uhd::experts; +using namespace uhd::rfnoc; + +// ostream << operator overloads for our enum classes, so that property nodes of that type +// can be added to our expert graph +namespace uhd { namespace experts { + +std::ostream& operator<<( + std::ostream& os, const ::uhd::usrp::zbx::zbx_lo_source_t& lo_source) +{ + switch (lo_source) { + case ::uhd::usrp::zbx::zbx_lo_source_t::internal: + os << "internal"; + return os; + case ::uhd::usrp::zbx::zbx_lo_source_t::external: + os << "external"; + return os; + default: + UHD_THROW_INVALID_CODE_PATH(); + } +} + +std::ostream& operator<<( + std::ostream& os, const ::uhd::usrp::zbx::zbx_cpld_ctrl::atr_mode& atr) +{ + switch (atr) { + case ::uhd::usrp::zbx::zbx_cpld_ctrl::atr_mode::SW_DEFINED: + os << "SW_DEFINED"; + return os; + case ::uhd::usrp::zbx::zbx_cpld_ctrl::atr_mode::CLASSIC_ATR: + os << "CLASSIC ATR"; + return os; + case ::uhd::usrp::zbx::zbx_cpld_ctrl::atr_mode::FPGA_STATE: + os << "FPGA_STATE"; + return os; + default: + UHD_THROW_INVALID_CODE_PATH(); + } +} +}} // namespace uhd::experts + +namespace uhd { namespace usrp { namespace zbx { + +void zbx_dboard_impl::_init_cpld() +{ + // CPLD + RFNOC_LOG_TRACE("Initializing CPLD..."); + _cpld = std::make_shared<zbx_cpld_ctrl>( + [this]( + const uint32_t addr, const uint32_t data, const zbx_cpld_ctrl::chan_t chan) { + const auto time_spec = (chan == zbx_cpld_ctrl::NO_CHAN) + ? time_spec_t::ASAP + : (chan == zbx_cpld_ctrl::CHAN1) + ? _time_accessor(1) + : _time_accessor(0); + _regs.poke32(_reg_base_address + addr, data, time_spec); + }, + [this](const uint32_t addr) { + // We don't do timed peeks, so no chan parameter here. + return _regs.peek32(_reg_base_address + addr); + }, + [this](const uhd::time_spec_t& sleep_time) { _regs.sleep(sleep_time); }, + get_unique_id() + "::CPLD"); + UHD_ASSERT_THROW(_cpld); + // We don't have access to the scratch register, so we use the config + // registers to test communication. This also does some basic sanity check + // of the CPLDs logic. + RFNOC_LOG_TRACE("Testing CPLD communication..."); + const uint32_t random_value = static_cast<uint32_t>(time(NULL)); + _cpld->set_scratch(random_value); + UHD_ASSERT_THROW(_cpld->get_scratch() == random_value); + // Now go to classic ATR mode + RFNOC_LOG_TRACE("CPLD communication good. Switching to classic ATR mode."); + for (size_t i = 0; i < ZBX_NUM_CHANS; ++i) { + _cpld->set_atr_mode( + i, zbx_cpld_ctrl::atr_mode_target::DSA, zbx_cpld_ctrl::atr_mode::CLASSIC_ATR); + _cpld->set_atr_mode(i, + zbx_cpld_ctrl::atr_mode_target::PATH_LED, + zbx_cpld_ctrl::atr_mode::CLASSIC_ATR); + } +} + +void zbx_dboard_impl::_init_peripherals() +{ + RFNOC_LOG_TRACE("Initializing peripherals..."); + // Load DSA cal data (rx and tx) + constexpr char dsa_step_filename_tx[] = "zbx_dsa_tx"; + constexpr char dsa_step_filename_rx[] = "zbx_dsa_rx"; + uhd::eeprom_map_t eeprom_map = get_db_eeprom(); + const std::string db_serial(eeprom_map["serial"].begin(), eeprom_map["serial"].end()); + if (uhd::usrp::cal::database::has_cal_data( + dsa_step_filename_tx, db_serial, uhd::usrp::cal::source::ANY)) { + RFNOC_LOG_TRACE("load binary TX DSA steps from database..."); + const auto tx_dsa_data = uhd::usrp::cal::database::read_cal_data( + dsa_step_filename_tx, db_serial, uhd::usrp::cal::source::ANY); + RFNOC_LOG_TRACE("create TX DSA object..."); + _tx_dsa_cal = uhd::usrp::cal::zbx_tx_dsa_cal::make(); + RFNOC_LOG_TRACE("store deserialized TX DSA data into object..."); + _tx_dsa_cal->deserialize(tx_dsa_data); + } else { + RFNOC_LOG_ERROR("Could not find TX DSA cal data!"); + throw uhd::runtime_error("Could not find TX DSA cal data!"); + } + if (uhd::usrp::cal::database::has_cal_data( + dsa_step_filename_rx, db_serial, uhd::usrp::cal::source::ANY)) { + // read binary blob without knowledge about content + RFNOC_LOG_TRACE("load binary RX DSA steps from database..."); + const auto rx_dsa_data = uhd::usrp::cal::database::read_cal_data( + dsa_step_filename_rx, db_serial, uhd::usrp::cal::source::ANY); + + RFNOC_LOG_TRACE("create RX DSA object..."); + _rx_dsa_cal = uhd::usrp::cal::zbx_rx_dsa_cal::make(); + + RFNOC_LOG_TRACE("store deserialized RX DSA data into object..."); + _rx_dsa_cal->deserialize(rx_dsa_data); + } else { + RFNOC_LOG_ERROR("Could not find RX DSA cal data!"); + throw uhd::runtime_error("Could not find RX DSA cal data!"); + } +} + +void zbx_dboard_impl::_init_prop_tree() +{ + auto subtree = get_tree()->subtree(fs_path("dboard")); + + // Construct RX frontend + for (size_t chan_idx = 0; chan_idx < ZBX_NUM_CHANS; chan_idx++) { + const fs_path fe_path = fs_path("rx_frontends") / chan_idx; + + // Command time needs to be shadowed into the property tree so we can use + // it in the expert graph. TX and RX share the command time, so we could + // put it onto its own sub-tree, or copy the property between TX and RX. + // With respect to TwinRX and trying to keep the tree lean and browsable, + // we compromise and put the command time onto the RX frontend path, even + // though it's also valid for TX. + // This data node will be used for scheduling the other experts: + expert_factory::add_data_node<time_spec_t>( + _expert_container, fe_path / "time/fe", time_spec_t(0.0)); + // This prop node will be used to import the command time into the + // graph: + expert_factory::add_prop_node<time_spec_t>( + _expert_container, subtree, fe_path / "time/cmd", time_spec_t(0.0)); + + _init_frontend_subtree(subtree, RX_DIRECTION, chan_idx, fe_path); + + // The time nodes get connected with one scheduling expert per channel: + expert_factory::add_worker_node<zbx_scheduling_expert>( + _expert_container, _expert_container->node_retriever(), fe_path); + } + + // Construct TX frontend + // Note: the TX frontend uses the RX property tree, this must + // be constructed after the RX frontend + for (size_t chan_idx = 0; chan_idx < ZBX_NUM_CHANS; chan_idx++) { + const fs_path fe_path = fs_path("tx_frontends") / chan_idx; + _init_frontend_subtree(subtree, TX_DIRECTION, chan_idx, fe_path); + } + + // Now add the sync worker: + expert_factory::add_worker_node<zbx_sync_expert>(_expert_container, + _expert_container->node_retriever(), + fs_path("tx_frontends"), + fs_path("rx_frontends"), + _rfdcc, + _cpld); + + subtree->create<eeprom_map_t>("eeprom") + .add_coerced_subscriber([this](const eeprom_map_t&) { + throw uhd::runtime_error("Attempting to update daughterboard eeprom!"); + }) + .set_publisher([this]() { return get_db_eeprom(); }); +} + +void zbx_dboard_impl::_init_frontend_subtree(uhd::property_tree::sptr subtree, + const uhd::direction_t trx, + const size_t chan_idx, + const fs_path fe_path) +{ + static constexpr char ZBX_FE_NAME[] = "ZBX"; + + RFNOC_LOG_TRACE("Adding non-RFNoC block properties for channel " + << chan_idx << " to prop tree path " << fe_path); + // Standard attributes + subtree->create<std::string>(fe_path / "name").set(ZBX_FE_NAME); + subtree->create<std::string>(fe_path / "connection").set("IQ"); + + _init_frequency_prop_tree(subtree, _expert_container, fe_path); + _init_gain_prop_tree(subtree, _expert_container, trx, chan_idx, fe_path); + _init_antenna_prop_tree(subtree, _expert_container, trx, chan_idx, fe_path); + _init_lo_prop_tree(subtree, _expert_container, trx, chan_idx, fe_path); + _init_programming_prop_tree(subtree, _expert_container, fe_path); + _init_experts(subtree, _expert_container, trx, chan_idx, fe_path); +} + + +uhd::usrp::pwr_cal_mgr::sptr zbx_dboard_impl::_init_power_cal( + uhd::property_tree::sptr subtree, + const uhd::direction_t trx, + const size_t chan_idx, + const fs_path fe_path) +{ + const std::string DIR = (trx == TX_DIRECTION) ? "TX" : "RX"; + + uhd::eeprom_map_t eeprom_map = get_db_eeprom(); + /* The cal serial is the DB serial plus the FE name */ + const std::string db_serial(eeprom_map["serial"].begin(), eeprom_map["serial"].end()); + const std::string cal_serial = + db_serial + "#" + subtree->access<std::string>(fe_path / "name").get(); + /* Now create a gain group for this. */ + /* _?x_gain_groups won't work, because it doesn't group the */ + /* gains the way we want them to be grouped. */ + auto ggroup = uhd::gain_group::make(); + ggroup->register_fcns(HW_GAIN_STAGE, + {[this, trx, chan_idx]() { + return trx == TX_DIRECTION ? get_tx_gain_range(chan_idx) + : get_rx_gain_range(chan_idx); + }, + [this, trx, chan_idx]() { + return trx == TX_DIRECTION ? get_tx_gain(ZBX_GAIN_STAGE_ALL, chan_idx) + : get_rx_gain(ZBX_GAIN_STAGE_ALL, chan_idx); + }, + [this, trx, chan_idx](const double gain) { + trx == TX_DIRECTION ? set_tx_gain(gain, chan_idx) + : set_rx_gain(gain, chan_idx); + }}, + 10 /* High priority */); + /* If we had a digital (baseband) gain, we would register it here,*/ + /* so that the power manager would know to use it as a */ + /* backup gain stage. */ + /* Note that such a baseband gain might not be available */ + /* on the LV version. */ + return uhd::usrp::pwr_cal_mgr::make( + cal_serial, + "X400-CAL-" + DIR, + [this, trx, chan_idx]() { + return trx == TX_DIRECTION ? get_tx_frequency(chan_idx) + : get_rx_frequency(chan_idx); + }, + [this, + trx_str = (trx == TX_DIRECTION ? "tx" : "rx"), + fe_path, + subtree, + chan_str = std::to_string(chan_idx)]() -> std::string { + const std::string antenna = pwr_cal_mgr::sanitize_antenna_name( + subtree->access<std::string>(fe_path / "antenna/value").get()); + // The lookup key for X410 + ZBX shall start with x4xx_pwr_zbx. + // Should we rev the ZBX in a way that would make generic cal data + // unsuitable between revs, then we need to check the rev (or PID) + // here and generate a different key prefix (e.g. x4xx_pwr_zbxD_ or + // something like that). + return std::string("x4xx_pwr_zbx_") + trx_str + "_" + chan_str + "_" + + antenna; + }, + ggroup); +} + +void zbx_dboard_impl::_init_experts(uhd::property_tree::sptr subtree, + expert_container::sptr expert, + const uhd::direction_t trx, + const size_t chan_idx, + const fs_path fe_path) +{ + RFNOC_LOG_TRACE(fe_path + ", Creating experts..."); + + get_pwr_mgr(trx).insert(get_pwr_mgr(trx).begin() + chan_idx, + _init_power_cal(subtree, trx, chan_idx, fe_path)); + + // NOTE: THE ORDER OF EXPERT INITIALIZATION MATTERS + // After construction, all nodes (properties and experts) are marked dirty. Any + // subsequent calls to the container will trigger a resolve_all(), in which case + // the nodes are all resolved in REVERSE ORDER of construction, like a stack. With + // that in mind, we have to initialize the experts in line with that reverse order, + // because some experts rely on each other's construction/resolution to avoid + // errors (e.g., gain expert's dsa_cal is dependant on frequency be's coerced + // frequency, which is nan on dual_prop_node construction) After construction and + // subsequent resolution, the nodes will follow simple topological ruling as long + // as we only change one property at a time. + + // The current order should be: + // Frequency FE Expert -> LO Expert(s) -> MPM Expert -> Frequency BE Expert -> Gain + // Expert -> Programming Expert + + if (trx == TX_DIRECTION) { + expert_factory::add_worker_node<zbx_tx_programming_expert>(expert, + expert->node_retriever(), + fe_path, + fs_path("rx_frontends") / chan_idx, + chan_idx, + _tx_dsa_cal, + _cpld); + + expert_factory::add_worker_node<zbx_tx_gain_expert>(expert, + expert->node_retriever(), + fe_path, + chan_idx, + get_pwr_mgr(trx).at(chan_idx), + _tx_dsa_cal); + } else { + expert_factory::add_worker_node<zbx_rx_programming_expert>( + expert, expert->node_retriever(), fe_path, chan_idx, _rx_dsa_cal, _cpld); + + expert_factory::add_worker_node<zbx_rx_gain_expert>(expert, + expert->node_retriever(), + fe_path, + chan_idx, + get_pwr_mgr(trx).at(chan_idx), + _rx_dsa_cal); + } + + expert_factory::add_worker_node<zbx_freq_be_expert>( + expert, expert->node_retriever(), fe_path, trx, chan_idx); + + expert_factory::add_worker_node<zbx_band_inversion_expert>( + expert, expert->node_retriever(), fe_path, trx, chan_idx, _db_idx, _rpcc); + + + // Initialize our LO Control Experts + for (auto lo_select : ZBX_LOS) { + if (lo_select == RFDC_NCO) { + expert_factory::add_worker_node<zbx_rfdc_freq_expert>(expert, + expert->node_retriever(), + fe_path, + trx, + chan_idx, + _rpc_prefix, + _db_idx, + _mb_rpcc); + } else { + const zbx_lo_t lo = zbx_lo_ctrl::lo_string_to_enum(trx, chan_idx, lo_select); + std::shared_ptr<zbx_lo_ctrl> lo_ctrl = std::make_shared<zbx_lo_ctrl>( + lo, + [this, lo](const uint32_t addr, const uint16_t data) { + _cpld->lo_poke16(lo, addr, data); + }, + [this, lo](const uint32_t addr) { return _cpld->lo_peek16(lo, addr); }, + [this](const uhd::time_spec_t& sleep_time) { _regs.sleep(sleep_time); }, + LMX2572_DEFAULT_FREQ, + _prc_rate, + false); + expert_factory::add_worker_node<zbx_lo_expert>(expert, + expert->node_retriever(), + fe_path, + trx, + chan_idx, + lo_select, + lo_ctrl); + _lo_ctrl_map.insert({lo, lo_ctrl}); + } + } + + const double lo_step_size = _prc_rate / ZBX_RELATIVE_LO_STEP_SIZE; + RFNOC_LOG_DEBUG("LO step size: " << (lo_step_size / 1e6) << " MHz.") + expert_factory::add_worker_node<zbx_freq_fe_expert>(expert, + expert->node_retriever(), + fe_path, + trx, + chan_idx, + _rfdc_rate, + lo_step_size); + RFNOC_LOG_TRACE(fe_path + ", Experts created"); +} + +void zbx_dboard_impl::_init_frequency_prop_tree(uhd::property_tree::sptr subtree, + expert_container::sptr expert, + const fs_path fe_path) +{ + expert_factory::add_dual_prop_node<double>( + expert, subtree, fe_path / "freq", ZBX_DEFAULT_FREQ, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_dual_prop_node<double>( + expert, subtree, fe_path / "if_freq", 0.0, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_data_node<bool>(expert, fe_path / "is_highband", false); + expert_factory::add_data_node<int>( + expert, fe_path / "mixer1_m", 0, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_data_node<int>( + expert, fe_path / "mixer1_n", 0, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_data_node<int>( + expert, fe_path / "mixer2_m", 0, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_data_node<int>( + expert, fe_path / "mixer2_n", 0, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_data_node<bool>( + expert, fe_path / "band_inverted", false, AUTO_RESOLVE_ON_WRITE); + + subtree->create<double>(fe_path / "bandwidth" / "value") + .set(ZBX_DEFAULT_BANDWIDTH) + .set_coercer([](const double) { return ZBX_DEFAULT_BANDWIDTH; }); + subtree->create<meta_range_t>(fe_path / "bandwidth" / "range") + .set({ZBX_DEFAULT_BANDWIDTH, ZBX_DEFAULT_BANDWIDTH}) + .set_coercer([](const meta_range_t&) { + return meta_range_t(ZBX_DEFAULT_BANDWIDTH, ZBX_DEFAULT_BANDWIDTH); + }); + subtree->create<meta_range_t>(fe_path / "freq" / "range") + .set(ZBX_FREQ_RANGE) + .add_coerced_subscriber([](const meta_range_t&) { + throw uhd::runtime_error("Attempting to update freq range!"); + }); +} + +void zbx_dboard_impl::_init_gain_prop_tree(uhd::property_tree::sptr subtree, + expert_container::sptr expert, + const uhd::direction_t trx, + const size_t chan_idx, + const fs_path fe_path) +{ + // First, overall gain nodes + const auto gain_base_path = fe_path / "gains"; + expert_factory::add_dual_prop_node<double>(expert, + subtree, + gain_base_path / ZBX_GAIN_STAGE_ALL / "value", + trx == TX_DIRECTION ? TX_MIN_GAIN : RX_MIN_GAIN, + AUTO_RESOLVE_ON_WRITE); + subtree->create<meta_range_t>(fe_path / "gains" / "all" / "range") + .add_coerced_subscriber([](const meta_range_t&) { + throw uhd::runtime_error("Attempting to update gain range!"); + }) + .set_publisher([this, trx, chan_idx]() { + return (trx == TX_DIRECTION) ? this->get_tx_gain_range(chan_idx) + : this->get_rx_gain_range(chan_idx); + }); + // Then, individual DSA/amp gain nodes + if (trx == TX_DIRECTION) { + // DSAs + for (const auto dsa : {ZBX_GAIN_STAGE_DSA1, ZBX_GAIN_STAGE_DSA2}) { + const auto gain_path = gain_base_path / dsa; + expert_factory::add_dual_prop_node<double>( + expert, subtree, gain_path / "value", 0, AUTO_RESOLVE_ON_WRITE); + subtree->create<meta_range_t>(gain_path / "range") + .set(uhd::meta_range_t(0, ZBX_TX_DSA_MAX_ATT, 1.0)); + expert_factory::add_worker_node<zbx_gain_coercer_expert>(_expert_container, + _expert_container->node_retriever(), + gain_path / "value", + uhd::meta_range_t(0, ZBX_TX_DSA_MAX_ATT, 1.0)); + } + // Amp + const auto amp_path = gain_base_path / ZBX_GAIN_STAGE_AMP; + expert_factory::add_dual_prop_node<double>(expert, + subtree, + amp_path / "value", + ZBX_TX_LOWBAND_GAIN, + AUTO_RESOLVE_ON_WRITE); + uhd::meta_range_t amp_gain_range; + for (const auto tx_gain_pair : ZBX_TX_GAIN_AMP_MAP) { + amp_gain_range.push_back(uhd::range_t(tx_gain_pair.first)); + } + subtree->create<meta_range_t>(amp_path / "range").set(amp_gain_range); + expert_factory::add_worker_node<zbx_gain_coercer_expert>(_expert_container, + _expert_container->node_retriever(), + amp_path / "value", + amp_gain_range); + } else { + // RX only has DSAs + for (const auto dsa : {ZBX_GAIN_STAGE_DSA1, + ZBX_GAIN_STAGE_DSA2, + ZBX_GAIN_STAGE_DSA3A, + ZBX_GAIN_STAGE_DSA3B}) { + const auto gain_path = gain_base_path / dsa; + expert_factory::add_dual_prop_node<double>( + expert, subtree, gain_path / "value", 0, AUTO_RESOLVE_ON_WRITE); + subtree->create<meta_range_t>(gain_path / "range") + .set(uhd::meta_range_t(0, ZBX_RX_DSA_MAX_ATT, 1.0)); + expert_factory::add_worker_node<zbx_gain_coercer_expert>(_expert_container, + _expert_container->node_retriever(), + gain_path / "value", + uhd::meta_range_t(0, ZBX_RX_DSA_MAX_ATT, 1.0)); + } + } + + const uhd::fs_path gain_profile_path = gain_base_path / "all" / "profile"; + expert_factory::add_prop_node<std::string>(expert, + subtree, + gain_profile_path, + ZBX_GAIN_PROFILE_DEFAULT, + AUTO_RESOLVE_ON_WRITE); + auto& gain_profile = (trx == TX_DIRECTION) ? _tx_gain_profile_api + : _rx_gain_profile_api; + auto& other_dir_gp = (trx == TX_DIRECTION) ? _rx_gain_profile_api + : _tx_gain_profile_api; + auto gain_profile_subscriber = [this, other_dir_gp, trx]( + const std::string& profile, const size_t chan) { + // Upon changing the gain profile, we need to import the new value into + // the property tree. + const auto path = fs_path("dboard") + / (trx == TX_DIRECTION ? "tx_frontends" : "rx_frontends") / chan + / "gains" / "all" / "profile"; + get_tree()->access<std::string>(path).set(profile); + // The CPLD does not have the option to have different ATR modes for RX + // and TX (it does have different modes for channel 0 and 1 though). + // This means we have to match up the gain profiles between RX and TX. + // The ZBX_GAIN_PROFILE_CPLD_NOATR profile uses the SW_DEFINED mode, + // and all the others use CLASSIC_ATR. So either both match + // ZBX_GAIN_PROFILE_CPLD_NOATR, or none do. + // This will not cause a loop, because the other_dir_gp will already + // match this one by the time we call it. + if ((profile == ZBX_GAIN_PROFILE_CPLD_NOATR + && other_dir_gp->get_gain_profile(chan) != ZBX_GAIN_PROFILE_CPLD_NOATR) + || (profile != ZBX_GAIN_PROFILE_CPLD_NOATR + && other_dir_gp->get_gain_profile(chan) == ZBX_GAIN_PROFILE_CPLD_NOATR)) { + RFNOC_LOG_DEBUG("Channel " << chan << ": Setting gain profile to `" << profile + << "' for both TX and RX."); + other_dir_gp->set_gain_profile(profile, chan); + } + }; + + gain_profile->add_subscriber(std::move(gain_profile_subscriber)); +} + +void zbx_dboard_impl::_init_antenna_prop_tree(uhd::property_tree::sptr subtree, + expert_container::sptr expert, + const uhd::direction_t trx, + const size_t chan_idx, + const fs_path fe_path) +{ + const std::string default_ant = trx == TX_DIRECTION ? DEFAULT_TX_ANTENNA + : DEFAULT_RX_ANTENNA; + expert_factory::add_prop_node<std::string>(expert, + subtree, + fe_path / "antenna" / "value", + default_ant, + AUTO_RESOLVE_ON_WRITE); + subtree->access<std::string>(fe_path / "antenna" / "value") + .set_coercer([trx](const std::string& ant_name) { + const auto ant_map = trx == TX_DIRECTION ? TX_ANTENNA_NAME_COMPAT_MAP + : RX_ANTENNA_NAME_COMPAT_MAP; + return ant_map.count(ant_name) ? ant_map.at(ant_name) : ant_name; + }); + subtree->create<std::vector<std::string>>(fe_path / "antenna" / "options") + .set(trx == TX_DIRECTION ? get_tx_antennas(chan_idx) : get_rx_antennas(chan_idx)) + .add_coerced_subscriber([](const std::vector<std::string>&) { + throw uhd::runtime_error("Attempting to update antenna options!"); + }); +} + +void zbx_dboard_impl::_init_programming_prop_tree(uhd::property_tree::sptr subtree, + expert_container::sptr expert, + const fs_path fe_path) +{ + expert_factory::add_prop_node<int>( + expert, subtree, fe_path / "rf" / "filter", 1, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_prop_node<int>( + expert, subtree, fe_path / "if1" / "filter", 1, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_prop_node<int>( + expert, subtree, fe_path / "if2" / "filter", 1, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_prop_node<zbx_cpld_ctrl::atr_mode>(expert, + subtree, + fe_path / "atr_mode", + zbx_cpld_ctrl::atr_mode::CLASSIC_ATR, + AUTO_RESOLVE_ON_WRITE); +} + +void zbx_dboard_impl::_init_lo_prop_tree(uhd::property_tree::sptr subtree, + expert_container::sptr expert, + const uhd::direction_t trx, + const size_t chan_idx, + const fs_path fe_path) +{ + // Analog LO Specific + for (const std::string lo : {ZBX_LO1, ZBX_LO2}) { + expert_factory::add_prop_node<zbx_lo_source_t>(expert, + subtree, + fe_path / "ch" / lo / "source", + ZBX_DEFAULT_LO_SOURCE, + AUTO_RESOLVE_ON_WRITE); + expert_factory::add_prop_node<bool>( + expert, subtree, fe_path / lo / "enabled", false, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_prop_node<bool>( + expert, subtree, fe_path / lo / "test_mode", false, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_dual_prop_node<double>(expert, + subtree, + fe_path / "los" / lo / "freq" / "value", + LMX2572_DEFAULT_FREQ, + AUTO_RESOLVE_ON_WRITE); + + subtree->create<meta_range_t>(fe_path / "los" / lo / "freq/range") + .set_publisher( + [this, lo, chan_idx]() { return this->_get_lo_freq_range(lo, chan_idx); }) + .add_coerced_subscriber([](const meta_range_t&) { + throw uhd::runtime_error("Attempting to update freq range!"); + }); + subtree->create<std::vector<std::string>>(fe_path / "los" / lo / "source/options") + .set_publisher([this, lo, trx, chan_idx]() { + return trx == TX_DIRECTION ? this->get_tx_lo_sources(lo, chan_idx) + : this->get_rx_lo_sources(lo, chan_idx); + }) + .add_coerced_subscriber([](const std::vector<std::string>&) { + throw uhd::runtime_error("Attempting to update LO source options!"); + }); + + subtree + ->create<sensor_value_t>( + fe_path / "sensors" / boost::algorithm::to_lower_copy(lo) + "_locked") + .add_coerced_subscriber([](const sensor_value_t&) { + throw uhd::runtime_error("Attempting to write to sensor!"); + }) + .set_publisher([this, lo, trx, chan_idx]() { + return sensor_value_t(lo, + this->_lo_ctrl_map + .at(zbx_lo_ctrl::lo_string_to_enum(trx, chan_idx, lo)) + ->get_lock_status(), + "locked", + "unlocked"); + }); + } + + // The NCO gets a sub-node called 'reset'. It is read/write: Write will + // perform a reset, and read will return the reset status. The latter is + // also returned in the 'locked' sensor for the NCO, but the 'nco_locked' + // sensor node is read-only, and returns a sensor_value_t (not a bool). + // This node is primarily used for debugging, but can also serve as a manual + // reset line for the NCOs. + const auto nco = (trx == TX_DIRECTION) + ? (chan_idx == 0 ? rfdc_control::rfdc_type::TX0 + : rfdc_control::rfdc_type::TX1) + : (chan_idx == 0 ? rfdc_control::rfdc_type::RX0 + : rfdc_control::rfdc_type::RX1); + subtree->create<bool>(fe_path / "los" / RFDC_NCO / "reset") + .set_publisher([this]() { return this->_rfdcc->get_nco_reset_done(); }) + .add_coerced_subscriber([this, nco, chan_idx](const bool&) { + RFNOC_LOG_TRACE("Resetting NCO " << size_t(nco) << ", chan " << chan_idx); + this->_rfdcc->reset_ncos({nco}, this->_time_accessor(chan_idx)); + }); + + expert_factory::add_dual_prop_node<double>(expert, + subtree, + fe_path / "los" / RFDC_NCO / "freq" / "value", + // Initialize with current value + _mb_rpcc->rfdc_get_nco_freq(trx == TX_DIRECTION ? "tx" : "rx", _db_idx, chan_idx), + AUTO_RESOLVE_ON_WRITE); + + expert_factory::add_prop_node<zbx_lo_source_t>(expert, + subtree, + fe_path / "ch" / RFDC_NCO / "source", + ZBX_DEFAULT_LO_SOURCE, + AUTO_RESOLVE_ON_WRITE); + + // LO lock sensor + // We can't make this its own property value because it has to have access to two + // containers (two instances of zbx lo expert) + subtree->create<sensor_value_t>(fe_path / "sensors" / "lo_locked") + .set(sensor_value_t("all_los", false, "locked", "unlocked")) + .add_coerced_subscriber([](const sensor_value_t&) { + throw uhd::runtime_error("Attempting to write to sensor!"); + }) + .set_publisher([this, trx, chan_idx]() { + return sensor_value_t("all_los", + this->_get_all_los_locked(trx, chan_idx), + "locked", + "unlocked"); + }); + subtree->create<sensor_value_t>(fe_path / "sensors" / "nco_locked") + .add_coerced_subscriber([](const sensor_value_t&) { + throw uhd::runtime_error("Attempting to write to sensor!"); + }) + .set_publisher([this]() { + return sensor_value_t( + RFDC_NCO, this->_rfdcc->get_nco_reset_done(), "locked", "unlocked"); + }); +} +}}} // namespace uhd::usrp::zbx |