1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/usrp/simple_usrp.hpp>
#include <boost/program_options.hpp>
#include <boost/thread/thread_time.hpp> //system time
#include <boost/math/special_functions/round.hpp>
#include <boost/format.hpp>
#include <iostream>
#include <complex>
#include <cmath>
namespace po = boost::program_options;
int UHD_SAFE_MAIN(int argc, char *argv[]){
uhd::set_thread_priority_safe();
//variables to be set by po
std::string args, wave_type;
size_t total_duration, mspb;
double rate, freq, wave_freq, aepb;
float ampl, gain;
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "simple uhd device address args")
("duration", po::value<size_t>(&total_duration)->default_value(3), "number of seconds to transmit")
("mspb", po::value<size_t>(&mspb)->default_value(10000), "mimimum samples per buffer")
("aepb", po::value<double>(&aepb)->default_value(1e-5), "allowed error per buffer")
("rate", po::value<double>(&rate)->default_value(100e6/16), "rate of outgoing samples")
("freq", po::value<double>(&freq)->default_value(0), "rf center frequency in Hz")
("ampl", po::value<float>(&l)->default_value(float(0.3)), "amplitude of the waveform")
("gain", po::value<float>(&gain)->default_value(float(0)), "gain for the RF chain")
("wave-type", po::value<std::string>(&wave_type)->default_value("SINE"), "waveform type (CONST, SQUARE, RAMP, SINE)")
("wave-freq", po::value<double>(&wave_freq)->default_value(0), "waveform frequency in Hz")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("UHD TX Waveforms %s") % desc << std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::simple_usrp::sptr sdev = uhd::usrp::simple_usrp::make(args);
uhd::device::sptr dev = sdev->get_device();
std::cout << boost::format("Using Device: %s") % sdev->get_pp_string() << std::endl;
//set the tx sample rate
std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate/1e6) << std::endl;
sdev->set_tx_rate(rate);
std::cout << boost::format("Actual TX Rate: %f Msps...") % (sdev->get_tx_rate()/1e6) << std::endl << std::endl;
//set the tx center frequency
std::cout << boost::format("Setting TX Freq: %f Mhz...") % (freq/1e6) << std::endl;
sdev->set_tx_freq(freq);
std::cout << boost::format("Actual TX Freq: %f Mhz...") % (sdev->get_tx_freq()/1e6) << std::endl << std::endl;
//set the tx rf gain
std::cout << boost::format("Setting TX Gain: %f dB...") % gain << std::endl;
sdev->set_tx_gain(gain);
std::cout << boost::format("Actual TX Gain: %f dB...") % sdev->get_tx_gain() << std::endl << std::endl;
//for the const wave, set the wave freq for small samples per period
if (wave_freq == 0 and wave_type == "CONST"){
wave_freq = sdev->get_tx_rate()/2;
}
//error when the waveform is not possible to generate
if (std::abs(wave_freq)/sdev->get_tx_rate() < 0.5/mspb){
throw std::runtime_error("wave freq/tx rate too small");
}
if (std::abs(wave_freq) > sdev->get_tx_rate()/2){
throw std::runtime_error("wave freq out of Nyquist zone");
}
//how many periods should we have per buffer to mimimize error
double samps_per_period = sdev->get_tx_rate()/std::abs(wave_freq);
std::cout << boost::format("Samples per waveform period: %d") % samps_per_period << std::endl;
size_t periods_per_buff = std::max<size_t>(1, mspb/samps_per_period);
while (true){
double num_samps_per_buff = periods_per_buff*samps_per_period;
double sample_error = num_samps_per_buff - boost::math::round(num_samps_per_buff);
if (std::abs(sample_error) <= aepb) break;
periods_per_buff++;
}
//allocate data to send (fill with several periods worth of IQ samples)
std::vector<std::complex<float> > buff(samps_per_period*periods_per_buff);
const double i_ahead = (wave_freq > 0)? samps_per_period/4 : 0;
const double q_ahead = (wave_freq < 0)? samps_per_period/4 : 0;
std::cout << boost::format("Samples per send buffer: %d") % buff.size() << std::endl;
if (wave_type == "CONST"){
for (size_t n = 0; n < buff.size(); n++){
buff[n] = std::complex<float>(ampl, ampl);
}
}
else if (wave_type == "SQUARE"){
for (size_t n = 0; n < buff.size(); n++){
float I = (std::fmod(n+i_ahead, samps_per_period) > samps_per_period/2)? ampl : 0;
float Q = (std::fmod(n+q_ahead, samps_per_period) > samps_per_period/2)? ampl : 0;
buff[n] = std::complex<float>(I, Q);
}
}
else if (wave_type == "RAMP"){
for (size_t n = 0; n < buff.size(); n++){
float I = float(std::fmod(n+i_ahead, samps_per_period)/samps_per_period * 2*ampl - ampl);
float Q = float(std::fmod(n+q_ahead, samps_per_period)/samps_per_period * 2*ampl - ampl);
buff[n] = std::complex<float>(I, Q);
}
}
else if (wave_type == "SINE"){
for (size_t n = 0; n < buff.size(); n++){
float I = float(ampl*std::sin(2*M_PI*(n+i_ahead)/samps_per_period));
float Q = float(ampl*std::sin(2*M_PI*(n+q_ahead)/samps_per_period));
buff[n] = std::complex<float>(I, Q);
}
}
else throw std::runtime_error("unknown waveform type: " + wave_type);
//setup the metadata flags
uhd::tx_metadata_t md;
md.start_of_burst = true; //always SOB (good for continuous streaming)
md.end_of_burst = false;
//send the data in multiple packets
boost::system_time end_time(boost::get_system_time() + boost::posix_time::seconds(total_duration));
while(end_time > boost::get_system_time()) dev->send(
&buff.front(), buff.size(), md,
uhd::io_type_t::COMPLEX_FLOAT32,
uhd::device::SEND_MODE_FULL_BUFF
);
//send a mini EOB packet
md.start_of_burst = false;
md.end_of_burst = true;
dev->send(NULL, 0, md,
uhd::io_type_t::COMPLEX_FLOAT32,
uhd::device::SEND_MODE_FULL_BUFF
);
//finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return 0;
}
|