// // Copyright 2010 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include #include #include #include #include //system time #include #include #include #include #include namespace po = boost::program_options; int UHD_SAFE_MAIN(int argc, char *argv[]){ uhd::set_thread_priority_safe(); //variables to be set by po std::string args, wave_type; size_t total_duration, mspb; double rate, freq, wave_freq, aepb; float ampl, gain; //setup the program options po::options_description desc("Allowed options"); desc.add_options() ("help", "help message") ("args", po::value(&args)->default_value(""), "simple uhd device address args") ("duration", po::value(&total_duration)->default_value(3), "number of seconds to transmit") ("mspb", po::value(&mspb)->default_value(10000), "mimimum samples per buffer") ("aepb", po::value(&aepb)->default_value(1e-5), "allowed error per buffer") ("rate", po::value(&rate)->default_value(100e6/16), "rate of outgoing samples") ("freq", po::value(&freq)->default_value(0), "rf center frequency in Hz") ("ampl", po::value(&l)->default_value(float(0.3)), "amplitude of the waveform") ("gain", po::value(&gain)->default_value(float(0)), "gain for the RF chain") ("wave-type", po::value(&wave_type)->default_value("SINE"), "waveform type (CONST, SQUARE, RAMP, SINE)") ("wave-freq", po::value(&wave_freq)->default_value(0), "waveform frequency in Hz") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); //print the help message if (vm.count("help")){ std::cout << boost::format("UHD TX Waveforms %s") % desc << std::endl; return ~0; } //create a usrp device std::cout << std::endl; std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl; uhd::usrp::simple_usrp::sptr sdev = uhd::usrp::simple_usrp::make(args); uhd::device::sptr dev = sdev->get_device(); std::cout << boost::format("Using Device: %s") % sdev->get_pp_string() << std::endl; //set the tx sample rate std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate/1e6) << std::endl; sdev->set_tx_rate(rate); std::cout << boost::format("Actual TX Rate: %f Msps...") % (sdev->get_tx_rate()/1e6) << std::endl << std::endl; //set the tx center frequency std::cout << boost::format("Setting TX Freq: %f Mhz...") % (freq/1e6) << std::endl; sdev->set_tx_freq(freq); std::cout << boost::format("Actual TX Freq: %f Mhz...") % (sdev->get_tx_freq()/1e6) << std::endl << std::endl; //set the tx rf gain std::cout << boost::format("Setting TX Gain: %f dB...") % gain << std::endl; sdev->set_tx_gain(gain); std::cout << boost::format("Actual TX Gain: %f dB...") % sdev->get_tx_gain() << std::endl << std::endl; //for the const wave, set the wave freq for small samples per period if (wave_freq == 0 and wave_type == "CONST"){ wave_freq = sdev->get_tx_rate()/2; } //error when the waveform is not possible to generate if (std::abs(wave_freq)/sdev->get_tx_rate() < 0.5/mspb){ throw std::runtime_error("wave freq/tx rate too small"); } if (std::abs(wave_freq) > sdev->get_tx_rate()/2){ throw std::runtime_error("wave freq out of Nyquist zone"); } //how many periods should we have per buffer to mimimize error double samps_per_period = sdev->get_tx_rate()/std::abs(wave_freq); std::cout << boost::format("Samples per waveform period: %d") % samps_per_period << std::endl; size_t periods_per_buff = std::max(1, mspb/samps_per_period); while (true){ double num_samps_per_buff = periods_per_buff*samps_per_period; double sample_error = num_samps_per_buff - boost::math::round(num_samps_per_buff); if (std::abs(sample_error) <= aepb) break; periods_per_buff++; } //allocate data to send (fill with several periods worth of IQ samples) std::vector > buff(samps_per_period*periods_per_buff); const double i_ahead = (wave_freq > 0)? samps_per_period/4 : 0; const double q_ahead = (wave_freq < 0)? samps_per_period/4 : 0; std::cout << boost::format("Samples per send buffer: %d") % buff.size() << std::endl; if (wave_type == "CONST"){ for (size_t n = 0; n < buff.size(); n++){ buff[n] = std::complex(ampl, ampl); } } else if (wave_type == "SQUARE"){ for (size_t n = 0; n < buff.size(); n++){ float I = (std::fmod(n+i_ahead, samps_per_period) > samps_per_period/2)? ampl : 0; float Q = (std::fmod(n+q_ahead, samps_per_period) > samps_per_period/2)? ampl : 0; buff[n] = std::complex(I, Q); } } else if (wave_type == "RAMP"){ for (size_t n = 0; n < buff.size(); n++){ float I = float(std::fmod(n+i_ahead, samps_per_period)/samps_per_period * 2*ampl - ampl); float Q = float(std::fmod(n+q_ahead, samps_per_period)/samps_per_period * 2*ampl - ampl); buff[n] = std::complex(I, Q); } } else if (wave_type == "SINE"){ for (size_t n = 0; n < buff.size(); n++){ float I = float(ampl*std::sin(2*M_PI*(n+i_ahead)/samps_per_period)); float Q = float(ampl*std::sin(2*M_PI*(n+q_ahead)/samps_per_period)); buff[n] = std::complex(I, Q); } } else throw std::runtime_error("unknown waveform type: " + wave_type); //setup the metadata flags uhd::tx_metadata_t md; md.start_of_burst = true; //always SOB (good for continuous streaming) md.end_of_burst = false; //send the data in multiple packets boost::system_time end_time(boost::get_system_time() + boost::posix_time::seconds(total_duration)); while(end_time > boost::get_system_time()) dev->send( &buff.front(), buff.size(), md, uhd::io_type_t::COMPLEX_FLOAT32, uhd::device::SEND_MODE_FULL_BUFF ); //send a mini EOB packet md.start_of_burst = false; md.end_of_burst = true; dev->send(NULL, 0, md, uhd::io_type_t::COMPLEX_FLOAT32, uhd::device::SEND_MODE_FULL_BUFF ); //finished std::cout << std::endl << "Done!" << std::endl << std::endl; return 0; }