//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include //system time
#include
#include
#include
#include
#include
namespace po = boost::program_options;
int UHD_SAFE_MAIN(int argc, char *argv[]){
uhd::set_thread_priority_safe();
//variables to be set by po
std::string args, wave_type;
size_t total_duration, mspb;
double rate, freq, wave_freq, aepb;
float ampl, gain;
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value(&args)->default_value(""), "simple uhd device address args")
("duration", po::value(&total_duration)->default_value(3), "number of seconds to transmit")
("mspb", po::value(&mspb)->default_value(10000), "mimimum samples per buffer")
("aepb", po::value(&aepb)->default_value(1e-5), "allowed error per buffer")
("rate", po::value(&rate)->default_value(100e6/16), "rate of outgoing samples")
("freq", po::value(&freq)->default_value(0), "rf center frequency in Hz")
("ampl", po::value(&l)->default_value(float(0.3)), "amplitude of the waveform")
("gain", po::value(&gain)->default_value(float(0)), "gain for the RF chain")
("wave-type", po::value(&wave_type)->default_value("SINE"), "waveform type (CONST, SQUARE, RAMP, SINE)")
("wave-freq", po::value(&wave_freq)->default_value(0), "waveform frequency in Hz")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("UHD TX Waveforms %s") % desc << std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::simple_usrp::sptr sdev = uhd::usrp::simple_usrp::make(args);
uhd::device::sptr dev = sdev->get_device();
std::cout << boost::format("Using Device: %s") % sdev->get_pp_string() << std::endl;
//set the tx sample rate
std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate/1e6) << std::endl;
sdev->set_tx_rate(rate);
std::cout << boost::format("Actual TX Rate: %f Msps...") % (sdev->get_tx_rate()/1e6) << std::endl << std::endl;
//set the tx center frequency
std::cout << boost::format("Setting TX Freq: %f Mhz...") % (freq/1e6) << std::endl;
sdev->set_tx_freq(freq);
std::cout << boost::format("Actual TX Freq: %f Mhz...") % (sdev->get_tx_freq()/1e6) << std::endl << std::endl;
//set the tx rf gain
std::cout << boost::format("Setting TX Gain: %f dB...") % gain << std::endl;
sdev->set_tx_gain(gain);
std::cout << boost::format("Actual TX Gain: %f dB...") % sdev->get_tx_gain() << std::endl << std::endl;
//for the const wave, set the wave freq for small samples per period
if (wave_freq == 0 and wave_type == "CONST"){
wave_freq = sdev->get_tx_rate()/2;
}
//error when the waveform is not possible to generate
if (std::abs(wave_freq)/sdev->get_tx_rate() < 0.5/mspb){
throw std::runtime_error("wave freq/tx rate too small");
}
if (std::abs(wave_freq) > sdev->get_tx_rate()/2){
throw std::runtime_error("wave freq out of Nyquist zone");
}
//how many periods should we have per buffer to mimimize error
double samps_per_period = sdev->get_tx_rate()/std::abs(wave_freq);
std::cout << boost::format("Samples per waveform period: %d") % samps_per_period << std::endl;
size_t periods_per_buff = std::max(1, mspb/samps_per_period);
while (true){
double num_samps_per_buff = periods_per_buff*samps_per_period;
double sample_error = num_samps_per_buff - boost::math::round(num_samps_per_buff);
if (std::abs(sample_error) <= aepb) break;
periods_per_buff++;
}
//allocate data to send (fill with several periods worth of IQ samples)
std::vector > buff(samps_per_period*periods_per_buff);
const double i_ahead = (wave_freq > 0)? samps_per_period/4 : 0;
const double q_ahead = (wave_freq < 0)? samps_per_period/4 : 0;
std::cout << boost::format("Samples per send buffer: %d") % buff.size() << std::endl;
if (wave_type == "CONST"){
for (size_t n = 0; n < buff.size(); n++){
buff[n] = std::complex(ampl, ampl);
}
}
else if (wave_type == "SQUARE"){
for (size_t n = 0; n < buff.size(); n++){
float I = (std::fmod(n+i_ahead, samps_per_period) > samps_per_period/2)? ampl : 0;
float Q = (std::fmod(n+q_ahead, samps_per_period) > samps_per_period/2)? ampl : 0;
buff[n] = std::complex(I, Q);
}
}
else if (wave_type == "RAMP"){
for (size_t n = 0; n < buff.size(); n++){
float I = float(std::fmod(n+i_ahead, samps_per_period)/samps_per_period * 2*ampl - ampl);
float Q = float(std::fmod(n+q_ahead, samps_per_period)/samps_per_period * 2*ampl - ampl);
buff[n] = std::complex(I, Q);
}
}
else if (wave_type == "SINE"){
for (size_t n = 0; n < buff.size(); n++){
float I = float(ampl*std::sin(2*M_PI*(n+i_ahead)/samps_per_period));
float Q = float(ampl*std::sin(2*M_PI*(n+q_ahead)/samps_per_period));
buff[n] = std::complex(I, Q);
}
}
else throw std::runtime_error("unknown waveform type: " + wave_type);
//setup the metadata flags
uhd::tx_metadata_t md;
md.start_of_burst = true; //always SOB (good for continuous streaming)
md.end_of_burst = false;
//send the data in multiple packets
boost::system_time end_time(boost::get_system_time() + boost::posix_time::seconds(total_duration));
while(end_time > boost::get_system_time()) dev->send(
&buff.front(), buff.size(), md,
uhd::io_type_t::COMPLEX_FLOAT32,
uhd::device::SEND_MODE_FULL_BUFF
);
//send a mini EOB packet
md.start_of_burst = false;
md.end_of_burst = true;
dev->send(NULL, 0, md,
uhd::io_type_t::COMPLEX_FLOAT32,
uhd::device::SEND_MODE_FULL_BUFF
);
//finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return 0;
}