1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
|
//
// Copyright 2010-2011,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/types/tune_request.hpp>
#include <uhd/utils/thread.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/exception.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <iostream>
#include <fstream>
#include <csignal>
#include <complex>
#include <thread>
#include <chrono>
namespace po = boost::program_options;
static bool stop_signal_called = false;
void sig_int_handler(int){stop_signal_called = true;}
template<typename samp_type> void recv_to_file(
uhd::usrp::multi_usrp::sptr usrp,
const std::string &cpu_format,
const std::string &wire_format,
const size_t &channel,
const std::string &file,
size_t samps_per_buff,
unsigned long long num_requested_samples,
double time_requested = 0.0,
bool bw_summary = false,
bool stats = false,
bool null = false,
bool enable_size_map = false,
bool continue_on_bad_packet = false
){
unsigned long long num_total_samps = 0;
//create a receive streamer
uhd::stream_args_t stream_args(cpu_format,wire_format);
std::vector<size_t> channel_nums;
channel_nums.push_back(channel);
stream_args.channels = channel_nums;
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
uhd::rx_metadata_t md;
std::vector<samp_type> buff(samps_per_buff);
std::ofstream outfile;
if (not null)
outfile.open(file.c_str(), std::ofstream::binary);
bool overflow_message = true;
//setup streaming
uhd::stream_cmd_t stream_cmd((num_requested_samples == 0)?
uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS:
uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE
);
stream_cmd.num_samps = size_t(num_requested_samples);
stream_cmd.stream_now = true;
stream_cmd.time_spec = uhd::time_spec_t();
rx_stream->issue_stream_cmd(stream_cmd);
typedef std::map<size_t,size_t> SizeMap;
SizeMap mapSizes;
const auto start_time = std::chrono::steady_clock::now();
const auto stop_time =
start_time
+ std::chrono::milliseconds(int64_t(1000 * time_requested));
// Track time and samps between updating the BW summary
auto last_update = start_time;
unsigned long long last_update_samps = 0;
// Run this loop until either time expired (if a duration was given), until
// the requested number of samples were collected (if such a number was
// given), or until Ctrl-C was pressed.
while (not stop_signal_called
and (num_requested_samples != num_total_samps
or num_requested_samples == 0)
and (time_requested == 0.0
or std::chrono::steady_clock::now() <= stop_time)
) {
const auto now = std::chrono::steady_clock::now();
size_t num_rx_samps =
rx_stream->recv(&buff.front(), buff.size(), md, 3.0, enable_size_map);
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) {
std::cout << boost::format("Timeout while streaming") << std::endl;
break;
}
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW){
if (overflow_message) {
overflow_message = false;
std::cerr << boost::format(
"Got an overflow indication. Please consider the following:\n"
" Your write medium must sustain a rate of %fMB/s.\n"
" Dropped samples will not be written to the file.\n"
" Please modify this example for your purposes.\n"
" This message will not appear again.\n"
) % (usrp->get_rx_rate(channel)*sizeof(samp_type)/1e6);
}
continue;
}
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE){
std::string error = str(boost::format("Receiver error: %s") % md.strerror());
if (continue_on_bad_packet){
std::cerr << error << std::endl;
continue;
}
else
throw std::runtime_error(error);
}
if (enable_size_map) {
SizeMap::iterator it = mapSizes.find(num_rx_samps);
if (it == mapSizes.end())
mapSizes[num_rx_samps] = 0;
mapSizes[num_rx_samps] += 1;
}
num_total_samps += num_rx_samps;
if (outfile.is_open()) {
outfile.write(
(const char*)&buff.front(),
num_rx_samps*sizeof(samp_type)
);
}
if (bw_summary) {
last_update_samps += num_rx_samps;
const auto time_since_last_update = now - last_update;
if (time_since_last_update > std::chrono::seconds(1)) {
const double time_since_last_update_s =
std::chrono::duration<double>(time_since_last_update).count();
const double rate =
double(last_update_samps) / time_since_last_update_s;
std::cout << "\t" << (rate/1e6) << " Msps" << std::endl;
last_update_samps = 0;
last_update = now;
}
}
}
const auto actual_stop_time = std::chrono::steady_clock::now();
stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS;
rx_stream->issue_stream_cmd(stream_cmd);
if (outfile.is_open()) {
outfile.close();
}
if (stats) {
std::cout << std::endl;
const double actual_duration_seconds =
std::chrono::duration<float>(actual_stop_time - start_time).count();
std::cout
<< boost::format("Received %d samples in %f seconds")
% num_total_samps
% actual_duration_seconds
<< std::endl;
const double rate = (double)num_total_samps / actual_duration_seconds;
std::cout << (rate/1e6) << " Msps" << std::endl;
if (enable_size_map) {
std::cout << std::endl;
std::cout << "Packet size map (bytes: count)" << std::endl;
for (SizeMap::iterator it = mapSizes.begin(); it != mapSizes.end(); it++)
std::cout << it->first << ":\t" << it->second << std::endl;
}
}
}
typedef std::function<uhd::sensor_value_t(const std::string&)> get_sensor_fn_t;
bool check_locked_sensor(
std::vector<std::string> sensor_names,
const char* sensor_name,
get_sensor_fn_t get_sensor_fn,
double setup_time
) {
if (std::find(sensor_names.begin(), sensor_names.end(), sensor_name) == sensor_names.end())
return false;
auto setup_timeout =
std::chrono::steady_clock::now()
+ std::chrono::milliseconds(int64_t(setup_time * 1000));
bool lock_detected = false;
std::cout << boost::format("Waiting for \"%s\": ") % sensor_name;
std::cout.flush();
while (true) {
if (lock_detected and
(std::chrono::steady_clock::now() > setup_timeout)) {
std::cout << " locked." << std::endl;
break;
}
if (get_sensor_fn(sensor_name).to_bool()) {
std::cout << "+";
std::cout.flush();
lock_detected = true;
}
else {
if (std::chrono::steady_clock::now() > setup_timeout) {
std::cout << std::endl;
throw std::runtime_error(str(
boost::format("timed out waiting for consecutive locks on sensor \"%s\"")
% sensor_name
));
}
std::cout << "_";
std::cout.flush();
}
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
std::cout << std::endl;
return true;
}
int UHD_SAFE_MAIN(int argc, char *argv[]){
uhd::set_thread_priority_safe();
//variables to be set by po
std::string args, file, type, ant, subdev, ref, wirefmt;
size_t channel, total_num_samps, spb;
double rate, freq, gain, bw, total_time, setup_time, lo_offset;
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "multi uhd device address args")
("file", po::value<std::string>(&file)->default_value("usrp_samples.dat"), "name of the file to write binary samples to")
("type", po::value<std::string>(&type)->default_value("short"), "sample type: double, float, or short")
("nsamps", po::value<size_t>(&total_num_samps)->default_value(0), "total number of samples to receive")
("duration", po::value<double>(&total_time)->default_value(0), "total number of seconds to receive")
("time", po::value<double>(&total_time), "(DEPRECATED) will go away soon! Use --duration instead")
("spb", po::value<size_t>(&spb)->default_value(10000), "samples per buffer")
("rate", po::value<double>(&rate)->default_value(1e6), "rate of incoming samples")
("freq", po::value<double>(&freq)->default_value(0.0), "RF center frequency in Hz")
("lo-offset", po::value<double>(&lo_offset)->default_value(0.0),
"Offset for frontend LO in Hz (optional)")
("gain", po::value<double>(&gain), "gain for the RF chain")
("ant", po::value<std::string>(&ant), "antenna selection")
("subdev", po::value<std::string>(&subdev), "subdevice specification")
("channel", po::value<size_t>(&channel)->default_value(0), "which channel to use")
("bw", po::value<double>(&bw), "analog frontend filter bandwidth in Hz")
("ref", po::value<std::string>(&ref)->default_value("internal"), "reference source (internal, external, mimo)")
("wirefmt", po::value<std::string>(&wirefmt)->default_value("sc16"), "wire format (sc8, sc16 or s16)")
("setup", po::value<double>(&setup_time)->default_value(1.0), "seconds of setup time")
("progress", "periodically display short-term bandwidth")
("stats", "show average bandwidth on exit")
("sizemap", "track packet size and display breakdown on exit")
("null", "run without writing to file")
("continue", "don't abort on a bad packet")
("skip-lo", "skip checking LO lock status")
("int-n", "tune USRP with integer-N tuning")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")) {
std::cout << boost::format("UHD RX samples to file %s") % desc << std::endl;
std::cout
<< std::endl
<< "This application streams data from a single channel of a USRP device to a file.\n"
<< std::endl;
return ~0;
}
bool bw_summary = vm.count("progress") > 0;
bool stats = vm.count("stats") > 0;
bool null = vm.count("null") > 0;
bool enable_size_map = vm.count("sizemap") > 0;
bool continue_on_bad_packet = vm.count("continue") > 0;
if (enable_size_map)
std::cout << "Packet size tracking enabled - will only recv one packet at a time!" << std::endl;
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
//Lock mboard clocks
usrp->set_clock_source(ref);
//always select the subdevice first, the channel mapping affects the other settings
if (vm.count("subdev")) usrp->set_rx_subdev_spec(subdev);
std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
//set the sample rate
if (rate <= 0.0){
std::cerr << "Please specify a valid sample rate" << std::endl;
return ~0;
}
std::cout << boost::format("Setting RX Rate: %f Msps...") % (rate/1e6) << std::endl;
usrp->set_rx_rate(rate, channel);
std::cout << boost::format("Actual RX Rate: %f Msps...") % (usrp->get_rx_rate(channel)/1e6) << std::endl << std::endl;
//set the center frequency
if (vm.count("freq")) { //with default of 0.0 this will always be true
std::cout << boost::format("Setting RX Freq: %f MHz...") % (freq/1e6) << std::endl;
std::cout << boost::format("Setting RX LO Offset: %f MHz...") % (lo_offset/1e6)
<< std::endl;
uhd::tune_request_t tune_request(freq, lo_offset);
if(vm.count("int-n")) tune_request.args = uhd::device_addr_t("mode_n=integer");
usrp->set_rx_freq(tune_request, channel);
std::cout << boost::format("Actual RX Freq: %f MHz...") % (usrp->get_rx_freq(channel)/1e6) << std::endl << std::endl;
}
//set the rf gain
if (vm.count("gain")) {
std::cout << boost::format("Setting RX Gain: %f dB...") % gain << std::endl;
usrp->set_rx_gain(gain, channel);
std::cout << boost::format("Actual RX Gain: %f dB...") % usrp->get_rx_gain(channel) << std::endl << std::endl;
}
//set the IF filter bandwidth
if (vm.count("bw")) {
std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % (bw/1e6) << std::endl;
usrp->set_rx_bandwidth(bw, channel);
std::cout << boost::format("Actual RX Bandwidth: %f MHz...") % (usrp->get_rx_bandwidth(channel)/1e6) << std::endl << std::endl;
}
//set the antenna
if (vm.count("ant")) usrp->set_rx_antenna(ant, channel);
std::this_thread::sleep_for(
std::chrono::milliseconds(int64_t(1000 * setup_time))
);
//check Ref and LO Lock detect
if (not vm.count("skip-lo")){
check_locked_sensor(
usrp->get_rx_sensor_names(channel),
"lo_locked",
[usrp,channel](const std::string& sensor_name){
return usrp->get_rx_sensor(sensor_name, channel);
},
setup_time
);
if (ref == "mimo") {
check_locked_sensor(
usrp->get_mboard_sensor_names(0),
"mimo_locked",
[usrp](const std::string& sensor_name){
return usrp->get_mboard_sensor(sensor_name);
},
setup_time
);
}
if (ref == "external") {
check_locked_sensor(
usrp->get_mboard_sensor_names(0),
"ref_locked",
[usrp](const std::string& sensor_name){
return usrp->get_mboard_sensor(sensor_name);
},
setup_time
);
}
}
if (total_num_samps == 0){
std::signal(SIGINT, &sig_int_handler);
std::cout << "Press Ctrl + C to stop streaming..." << std::endl;
}
#define recv_to_file_args(format) \
(usrp, format, wirefmt, channel, file, spb, total_num_samps, total_time, bw_summary, stats, null, enable_size_map, continue_on_bad_packet)
//recv to file
if (wirefmt == "s16") {
if (type == "double") recv_to_file<double>recv_to_file_args("f64");
else if (type == "float") recv_to_file<float>recv_to_file_args("f32");
else if (type == "short") recv_to_file<short>recv_to_file_args("s16");
else throw std::runtime_error("Unknown type " + type);
} else {
if (type == "double") recv_to_file<std::complex<double> >recv_to_file_args("fc64");
else if (type == "float") recv_to_file<std::complex<float> >recv_to_file_args("fc32");
else if (type == "short") recv_to_file<std::complex<short> >recv_to_file_args("sc16");
else throw std::runtime_error("Unknown type " + type);
}
//finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return EXIT_SUCCESS;
}
|