// // Copyright 2010-2011,2014 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace po = boost::program_options; static bool stop_signal_called = false; void sig_int_handler(int){stop_signal_called = true;} template void recv_to_file( uhd::usrp::multi_usrp::sptr usrp, const std::string &cpu_format, const std::string &wire_format, const size_t &channel, const std::string &file, size_t samps_per_buff, unsigned long long num_requested_samples, double time_requested = 0.0, bool bw_summary = false, bool stats = false, bool null = false, bool enable_size_map = false, bool continue_on_bad_packet = false ){ unsigned long long num_total_samps = 0; //create a receive streamer uhd::stream_args_t stream_args(cpu_format,wire_format); std::vector channel_nums; channel_nums.push_back(channel); stream_args.channels = channel_nums; uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); uhd::rx_metadata_t md; std::vector buff(samps_per_buff); std::ofstream outfile; if (not null) outfile.open(file.c_str(), std::ofstream::binary); bool overflow_message = true; //setup streaming uhd::stream_cmd_t stream_cmd((num_requested_samples == 0)? uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS: uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE ); stream_cmd.num_samps = size_t(num_requested_samples); stream_cmd.stream_now = true; stream_cmd.time_spec = uhd::time_spec_t(); rx_stream->issue_stream_cmd(stream_cmd); typedef std::map SizeMap; SizeMap mapSizes; const auto start_time = std::chrono::steady_clock::now(); const auto stop_time = start_time + std::chrono::milliseconds(int64_t(1000 * time_requested)); // Track time and samps between updating the BW summary auto last_update = start_time; unsigned long long last_update_samps = 0; // Run this loop until either time expired (if a duration was given), until // the requested number of samples were collected (if such a number was // given), or until Ctrl-C was pressed. while (not stop_signal_called and (num_requested_samples != num_total_samps or num_requested_samples == 0) and (time_requested == 0.0 or std::chrono::steady_clock::now() <= stop_time) ) { const auto now = std::chrono::steady_clock::now(); size_t num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md, 3.0, enable_size_map); if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) { std::cout << boost::format("Timeout while streaming") << std::endl; break; } if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW){ if (overflow_message) { overflow_message = false; std::cerr << boost::format( "Got an overflow indication. Please consider the following:\n" " Your write medium must sustain a rate of %fMB/s.\n" " Dropped samples will not be written to the file.\n" " Please modify this example for your purposes.\n" " This message will not appear again.\n" ) % (usrp->get_rx_rate(channel)*sizeof(samp_type)/1e6); } continue; } if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE){ std::string error = str(boost::format("Receiver error: %s") % md.strerror()); if (continue_on_bad_packet){ std::cerr << error << std::endl; continue; } else throw std::runtime_error(error); } if (enable_size_map) { SizeMap::iterator it = mapSizes.find(num_rx_samps); if (it == mapSizes.end()) mapSizes[num_rx_samps] = 0; mapSizes[num_rx_samps] += 1; } num_total_samps += num_rx_samps; if (outfile.is_open()) { outfile.write( (const char*)&buff.front(), num_rx_samps*sizeof(samp_type) ); } if (bw_summary) { last_update_samps += num_rx_samps; const auto time_since_last_update = now - last_update; if (time_since_last_update > std::chrono::seconds(1)) { const double time_since_last_update_s = std::chrono::duration(time_since_last_update).count(); const double rate = double(last_update_samps) / time_since_last_update_s; std::cout << "\t" << (rate/1e6) << " Msps" << std::endl; last_update_samps = 0; last_update = now; } } } const auto actual_stop_time = std::chrono::steady_clock::now(); stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS; rx_stream->issue_stream_cmd(stream_cmd); if (outfile.is_open()) { outfile.close(); } if (stats) { std::cout << std::endl; const double actual_duration_seconds = std::chrono::duration(actual_stop_time - start_time).count(); std::cout << boost::format("Received %d samples in %f seconds") % num_total_samps % actual_duration_seconds << std::endl; const double rate = (double)num_total_samps / actual_duration_seconds; std::cout << (rate/1e6) << " Msps" << std::endl; if (enable_size_map) { std::cout << std::endl; std::cout << "Packet size map (bytes: count)" << std::endl; for (SizeMap::iterator it = mapSizes.begin(); it != mapSizes.end(); it++) std::cout << it->first << ":\t" << it->second << std::endl; } } } typedef std::function get_sensor_fn_t; bool check_locked_sensor( std::vector sensor_names, const char* sensor_name, get_sensor_fn_t get_sensor_fn, double setup_time ) { if (std::find(sensor_names.begin(), sensor_names.end(), sensor_name) == sensor_names.end()) return false; auto setup_timeout = std::chrono::steady_clock::now() + std::chrono::milliseconds(int64_t(setup_time * 1000)); bool lock_detected = false; std::cout << boost::format("Waiting for \"%s\": ") % sensor_name; std::cout.flush(); while (true) { if (lock_detected and (std::chrono::steady_clock::now() > setup_timeout)) { std::cout << " locked." << std::endl; break; } if (get_sensor_fn(sensor_name).to_bool()) { std::cout << "+"; std::cout.flush(); lock_detected = true; } else { if (std::chrono::steady_clock::now() > setup_timeout) { std::cout << std::endl; throw std::runtime_error(str( boost::format("timed out waiting for consecutive locks on sensor \"%s\"") % sensor_name )); } std::cout << "_"; std::cout.flush(); } std::this_thread::sleep_for(std::chrono::milliseconds(100)); } std::cout << std::endl; return true; } int UHD_SAFE_MAIN(int argc, char *argv[]){ uhd::set_thread_priority_safe(); //variables to be set by po std::string args, file, type, ant, subdev, ref, wirefmt; size_t channel, total_num_samps, spb; double rate, freq, gain, bw, total_time, setup_time, lo_offset; //setup the program options po::options_description desc("Allowed options"); desc.add_options() ("help", "help message") ("args", po::value(&args)->default_value(""), "multi uhd device address args") ("file", po::value(&file)->default_value("usrp_samples.dat"), "name of the file to write binary samples to") ("type", po::value(&type)->default_value("short"), "sample type: double, float, or short") ("nsamps", po::value(&total_num_samps)->default_value(0), "total number of samples to receive") ("duration", po::value(&total_time)->default_value(0), "total number of seconds to receive") ("time", po::value(&total_time), "(DEPRECATED) will go away soon! Use --duration instead") ("spb", po::value(&spb)->default_value(10000), "samples per buffer") ("rate", po::value(&rate)->default_value(1e6), "rate of incoming samples") ("freq", po::value(&freq)->default_value(0.0), "RF center frequency in Hz") ("lo-offset", po::value(&lo_offset)->default_value(0.0), "Offset for frontend LO in Hz (optional)") ("gain", po::value(&gain), "gain for the RF chain") ("ant", po::value(&ant), "antenna selection") ("subdev", po::value(&subdev), "subdevice specification") ("channel", po::value(&channel)->default_value(0), "which channel to use") ("bw", po::value(&bw), "analog frontend filter bandwidth in Hz") ("ref", po::value(&ref)->default_value("internal"), "reference source (internal, external, mimo)") ("wirefmt", po::value(&wirefmt)->default_value("sc16"), "wire format (sc8, sc16 or s16)") ("setup", po::value(&setup_time)->default_value(1.0), "seconds of setup time") ("progress", "periodically display short-term bandwidth") ("stats", "show average bandwidth on exit") ("sizemap", "track packet size and display breakdown on exit") ("null", "run without writing to file") ("continue", "don't abort on a bad packet") ("skip-lo", "skip checking LO lock status") ("int-n", "tune USRP with integer-N tuning") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); //print the help message if (vm.count("help")) { std::cout << boost::format("UHD RX samples to file %s") % desc << std::endl; std::cout << std::endl << "This application streams data from a single channel of a USRP device to a file.\n" << std::endl; return ~0; } bool bw_summary = vm.count("progress") > 0; bool stats = vm.count("stats") > 0; bool null = vm.count("null") > 0; bool enable_size_map = vm.count("sizemap") > 0; bool continue_on_bad_packet = vm.count("continue") > 0; if (enable_size_map) std::cout << "Packet size tracking enabled - will only recv one packet at a time!" << std::endl; //create a usrp device std::cout << std::endl; std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); //Lock mboard clocks usrp->set_clock_source(ref); //always select the subdevice first, the channel mapping affects the other settings if (vm.count("subdev")) usrp->set_rx_subdev_spec(subdev); std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl; //set the sample rate if (rate <= 0.0){ std::cerr << "Please specify a valid sample rate" << std::endl; return ~0; } std::cout << boost::format("Setting RX Rate: %f Msps...") % (rate/1e6) << std::endl; usrp->set_rx_rate(rate, channel); std::cout << boost::format("Actual RX Rate: %f Msps...") % (usrp->get_rx_rate(channel)/1e6) << std::endl << std::endl; //set the center frequency if (vm.count("freq")) { //with default of 0.0 this will always be true std::cout << boost::format("Setting RX Freq: %f MHz...") % (freq/1e6) << std::endl; std::cout << boost::format("Setting RX LO Offset: %f MHz...") % (lo_offset/1e6) << std::endl; uhd::tune_request_t tune_request(freq, lo_offset); if(vm.count("int-n")) tune_request.args = uhd::device_addr_t("mode_n=integer"); usrp->set_rx_freq(tune_request, channel); std::cout << boost::format("Actual RX Freq: %f MHz...") % (usrp->get_rx_freq(channel)/1e6) << std::endl << std::endl; } //set the rf gain if (vm.count("gain")) { std::cout << boost::format("Setting RX Gain: %f dB...") % gain << std::endl; usrp->set_rx_gain(gain, channel); std::cout << boost::format("Actual RX Gain: %f dB...") % usrp->get_rx_gain(channel) << std::endl << std::endl; } //set the IF filter bandwidth if (vm.count("bw")) { std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % (bw/1e6) << std::endl; usrp->set_rx_bandwidth(bw, channel); std::cout << boost::format("Actual RX Bandwidth: %f MHz...") % (usrp->get_rx_bandwidth(channel)/1e6) << std::endl << std::endl; } //set the antenna if (vm.count("ant")) usrp->set_rx_antenna(ant, channel); std::this_thread::sleep_for( std::chrono::milliseconds(int64_t(1000 * setup_time)) ); //check Ref and LO Lock detect if (not vm.count("skip-lo")){ check_locked_sensor( usrp->get_rx_sensor_names(channel), "lo_locked", [usrp,channel](const std::string& sensor_name){ return usrp->get_rx_sensor(sensor_name, channel); }, setup_time ); if (ref == "mimo") { check_locked_sensor( usrp->get_mboard_sensor_names(0), "mimo_locked", [usrp](const std::string& sensor_name){ return usrp->get_mboard_sensor(sensor_name); }, setup_time ); } if (ref == "external") { check_locked_sensor( usrp->get_mboard_sensor_names(0), "ref_locked", [usrp](const std::string& sensor_name){ return usrp->get_mboard_sensor(sensor_name); }, setup_time ); } } if (total_num_samps == 0){ std::signal(SIGINT, &sig_int_handler); std::cout << "Press Ctrl + C to stop streaming..." << std::endl; } #define recv_to_file_args(format) \ (usrp, format, wirefmt, channel, file, spb, total_num_samps, total_time, bw_summary, stats, null, enable_size_map, continue_on_bad_packet) //recv to file if (wirefmt == "s16") { if (type == "double") recv_to_filerecv_to_file_args("f64"); else if (type == "float") recv_to_filerecv_to_file_args("f32"); else if (type == "short") recv_to_filerecv_to_file_args("s16"); else throw std::runtime_error("Unknown type " + type); } else { if (type == "double") recv_to_file >recv_to_file_args("fc64"); else if (type == "float") recv_to_file >recv_to_file_args("fc32"); else if (type == "short") recv_to_file >recv_to_file_args("sc16"); else throw std::runtime_error("Unknown type " + type); } //finished std::cout << std::endl << "Done!" << std::endl << std::endl; return EXIT_SUCCESS; }