1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
|
#!/usr/bin/env python
#
# Copyright 2016 Ettus Research
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
import rfnocsim
import math
import ni_hw_models as hw
class ColGlobals():
BPI = 4 # Number of bytes per sample or coefficient
BPP = 1024 # Bytes per packet
MIN_SAMP_HOPS = 1 # Minimum number of hops an RX sample will take before it is used to compute a PP
MAX_SAMP_HOPS = 3 # Maximum number of hops an RX sample will take before it is used to compute a PP
MIN_PP_HOPS = 0 # Minimum number of hops a PP will take before it is used to compute a TX sample
MAX_PP_HOPS = 1 # Maximum number of hops a PP will take before it is used to compute a TX sample
ELASTIC_BUFF_FULLNESS = 0.5
class PartialContribComputer(rfnocsim.Function):
"""
Simulation model for function that computes the contribution of radio chans on other radio chans.
This function computes a NxM dot product of FFTs, one bin at a time.
Features:
- Supports computing the product in multiple cycles (for resource reuse)
- Supports deinterleaving data in streams (i.e. is Radio 0+1 data comes in thru the same ethernet)
Args:
sim_core: Simulator core object
name: Name of this function
size: Number of chans (inputs) for which contribution partial products are computed
fft_size: The length of the FFT in bins
dst_chans: Computes the contribution of the input chans on these dst_chans
items_per_stream: How many channels per stream can this function deinterleave?
ticks_per_exec: How many ticks for the function to generate a full output set
"""
def __init__(self, sim_core, name, size, dst_chans, items_per_stream, app_settings):
ticks_per_exec = 1 # This function will run once every tick. No multi-cycle paths here.
rfnocsim.Function.__init__(self, sim_core, name, size, int(len(dst_chans)/items_per_stream), ticks_per_exec)
self.items_per_stream = items_per_stream # Each stream contains data from n radio chans
self.dst_chans = dst_chans # Where should the individual products go?
# This block has to buffer enough data to ensure
# sample alignment. How deep should those buffers be?
sync_buff_depth = (((ColGlobals.MAX_SAMP_HOPS - ColGlobals.MIN_SAMP_HOPS) *
hw.Bee7Fpga.IO_LN_LATENCY * float(app_settings['samp_rate'])) / ColGlobals.ELASTIC_BUFF_FULLNESS)
# Adder latency: log2(radix) adder stages + 2 pipeline flops
latency = math.ceil(math.log(size/len(dst_chans), 2)) + 2
# Synchronization latency based on buffer size
latency += (sync_buff_depth * ColGlobals.ELASTIC_BUFF_FULLNESS) * (self.get_tick_rate() / float(app_settings['samp_rate']))
# Packet alignment latency
latency += ColGlobals.BPP * (self.get_tick_rate() / hw.Bee7Fpga.IO_LN_BW)
self.estimate_resources(size*items_per_stream, len(dst_chans), app_settings, sync_buff_depth*size, latency)
def estimate_resources(self, N, M, app_settings, sync_buff_total_samps, pre_filt_latency):
rscrs = rfnocsim.HwRsrcs()
DSP_BLOCKS_PER_MAC = 3 # DSP blocks for a scaled complex MAC
MAX_DSP_RATE = 400e6 # Max clock rate for a DSP48E block
MAX_UNROLL_DEPTH = 2 # How many taps (or FFT bins) to compute in parallel?
COEFF_SETS = 1 # We need two copies of coefficients one live
# and one buffered for dynamic reload. If both
# live in BRAM, this should be 2. If the live
# set lives in registers, this should be 1
samp_rate = float(app_settings['samp_rate'])
dsp_cyc_per_samp = MAX_DSP_RATE / samp_rate
if app_settings['domain'] == 'time':
fir_taps = app_settings['fir_taps']
if (fir_taps <= dsp_cyc_per_samp):
unroll_factor = 1
dsp_rate = samp_rate * fir_taps
else:
unroll_factor = math.ceil((1.0 * fir_taps) / dsp_cyc_per_samp)
dsp_rate = MAX_DSP_RATE
if (unroll_factor > MAX_UNROLL_DEPTH):
raise self.SimCompError('Too many FIR coefficients! Reached loop unroll limit.')
rscrs.add('DSP', DSP_BLOCKS_PER_MAC * unroll_factor * N * M)
rscrs.add('BRAM_18kb', math.ceil(ColGlobals.BPI * app_settings['fir_dly_line'] / hw.Bee7Fpga.BRAM_BYTES) * N * M) # FIR delay line memory
rscrs.add('BRAM_18kb', math.ceil(ColGlobals.BPI * COEFF_SETS * fir_taps * unroll_factor * N * M / hw.Bee7Fpga.BRAM_BYTES)) # Coefficient storage
samp_per_tick = dsp_rate / self.get_tick_rate()
self.update_latency(func=pre_filt_latency + (fir_taps / (samp_per_tick * unroll_factor)))
else:
fft_size = app_settings['fft_size']
rscrs.add('DSP', DSP_BLOCKS_PER_MAC * N * M * MAX_UNROLL_DEPTH) # MACs
rscrs.add('BRAM_18kb', math.ceil(ColGlobals.BPI * N * M * fft_size * COEFF_SETS / hw.Bee7Fpga.BRAM_BYTES)) # Coeff storage
samp_per_tick = MAX_DSP_RATE / self.get_tick_rate()
self.update_latency(func=pre_filt_latency + (fft_size / samp_per_tick))
rscrs.add('BRAM_18kb', math.ceil(ColGlobals.BPI * sync_buff_total_samps / hw.Bee7Fpga.BRAM_BYTES))
self.update_rsrcs(rscrs)
def do_func(self, in_data):
"""
Gather FFT data from "size" channels, compute a dot product with the coeffieicnt
matrix and spit the partial products out. The dot product is computed for each
FFT bin serially.
"""
out_data = list()
src_chans = []
# Iterate over each input
for di in in_data:
if len(di.items) != self.items_per_stream:
raise RuntimeError('Incorrect items per stream. Expecting ' + str(self.items_per_stream))
# Deinterleave data
for do in range(len(di.items)):
(sid, coords) = rfnocsim.DataStream.submatrix_parse(di.items[do])
if sid != 'rx':
raise RuntimeError('Incorrect items. Expecting radio data (rx) but got ' + sid)
src_chans.extend(coords[0])
bpi = in_data[0].bpi
count = in_data[0].count
# Iterate through deinterleaved channels
for i in range(0, len(self.dst_chans), self.items_per_stream):
items = []
for j in range(self.items_per_stream):
# Compute partial products:
# pp = partial product of "src_chans" on "self.dst_chans[i+j]"
items.append(rfnocsim.DataStream.submatrix_gen('pp', [src_chans, self.dst_chans[i+j]]))
out_data.append(self.create_outdata_stream(bpi, items, count))
return out_data
class PartialContribCombiner(rfnocsim.Function):
"""
Simulation model for function that adds multiple partial contributions (products) into a larger
partial product. The combiner can optionally reduce a very large product into a smaller one.
Ex: pp[31:0,i] (contribution on chan 0..31 on i) can alias to tx[i] if there are 32 channels.
Args:
sim_core: Simulator core object
name: Name of this function
radix: Number of partial products that are combined (Number of inputs)
reducer_filter: A tuple that represents what pp channels to alias to what
items_per_stream: How many channels per stream can this function deinterleave?
"""
def __init__(self, sim_core, name, radix, app_settings, reducer_filter = (None, None), items_per_stream = 2):
rfnocsim.Function.__init__(self, sim_core, name, radix, 1)
self.radix = radix
self.reducer_filter = reducer_filter
self.items_per_stream = items_per_stream
# This block has to buffer enough data to ensure
# sample alignment. How deep should those buffers be?
sync_buff_depth = (((ColGlobals.MAX_PP_HOPS - ColGlobals.MIN_PP_HOPS) *
hw.Bee7Fpga.IO_LN_LATENCY * float(app_settings['samp_rate'])) / ColGlobals.ELASTIC_BUFF_FULLNESS)
# Figure out latency based on sync buffer and delay line
latency = math.ceil(math.log(radix, 2)) + 2 # log2(radix) adder stages + 2 pipeline flops
# Synchronization latency based on buffer size
latency += (sync_buff_depth * ColGlobals.ELASTIC_BUFF_FULLNESS) * (self.get_tick_rate() / float(app_settings['samp_rate']))
# Packet alignment latency
latency += ColGlobals.BPP * (self.get_tick_rate() / hw.Bee7Fpga.IO_LN_BW)
self.update_latency(func=latency)
self.estimate_resources(radix, sync_buff_depth)
def estimate_resources(self, radix, sync_buff_depth):
rscrs = rfnocsim.HwRsrcs()
# Assume that pipelined adders are inferred in logic (not DSP)
# Assume that buffering uses BRAM
rscrs.add('BRAM_18kb', math.ceil(ColGlobals.BPI * sync_buff_depth * radix / hw.Bee7Fpga.BRAM_BYTES))
self.update_rsrcs(rscrs)
def do_func(self, in_data):
"""
Gather partial dot products from inputs, add them together and spit them out
Perform sanity check to ensure that we are adding the correct things
"""
out_chans = dict()
# Iterate over each input
for di in in_data:
if len(di.items) != self.items_per_stream:
raise self.SimCompError('Incorrect items per stream. Expecting ' + str(self.items_per_stream))
# Deinterleave data
for do in range(len(di.items)):
(sid, coords) = rfnocsim.DataStream.submatrix_parse(di.items[do])
if sid == 'null':
continue
elif sid != 'pp':
raise self.SimCompError('Incorrect items. Expecting partial produts (pp) but got ' + sid)
if len(coords[1]) != 1:
raise self.SimCompError('Incorrect partial product. Target must be a single channel')
if coords[1][0] in out_chans:
out_chans[coords[1][0]].extend(coords[0])
else:
out_chans[coords[1][0]] = coords[0]
# Check if keys (targets) for partial products == items_per_stream
if len(list(out_chans.keys())) != self.items_per_stream:
raise self.SimCompError('Inconsistent partial products. Too many targets.')
# Verify that all influencers for each target are consistent
if not all(x == list(out_chans.values())[0] for x in list(out_chans.values())):
raise self.SimCompError('Inconsistent partial products. Influencers dont match.')
contrib_chans = list(out_chans.values())[0]
# Combine partial products and return
out_items = []
for ch in list(out_chans.keys()):
if sorted(self.reducer_filter[0]) == sorted(contrib_chans):
out_items.append(rfnocsim.DataStream.submatrix_gen(self.reducer_filter[1], [ch]))
else:
out_items.append(rfnocsim.DataStream.submatrix_gen('pp', [list(out_chans.values())[0], ch]))
return self.create_outdata_stream(in_data[0].bpi, out_items, in_data[0].count)
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# NOTE: The Torus Topology has not been maintained. Use at your own risk
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
class Topology_2D_4x4_Torus:
@classmethod
def config_bitstream(cls, bee7fpga, app_settings, in_chans, out_chans, total_num_chans, is_radio_node):
if len(in_chans) != 64:
raise bee7fpga.SimCompError('in_chans must be 64 channels wide. Got ' + str(len(in_chans)))
if len(out_chans) != 16:
raise bee7fpga.SimCompError('out_chans must be 16 channels wide. Got ' + str(len(out_chans)))
GRP_LEN = 16 / 2 # 2 radio channesl per USRP
# Broadcast raw data streams to all internal and external FPGAs
for i in range(GRP_LEN):
in_ln = bee7fpga.EXT_IO_LANES[bee7fpga.BP_BASE+i]
bee7fpga.sim_core.connect(bee7fpga.serdes_i[in_ln], 0, bee7fpga.serdes_o[bee7fpga.EW_IO_LANES[i]], 0)
bee7fpga.sim_core.connect(bee7fpga.serdes_i[in_ln], 0, bee7fpga.serdes_o[bee7fpga.NS_IO_LANES[i]], 0)
bee7fpga.sim_core.connect(bee7fpga.serdes_i[in_ln], 0, bee7fpga.serdes_o[bee7fpga.XX_IO_LANES[i]], 0)
bee7fpga.sim_core.connect(bee7fpga.serdes_i[in_ln], 0, bee7fpga.serdes_o[bee7fpga.EXT_IO_LANES[bee7fpga.BP_BASE+8+i]], 0)
# Create an internal bus to hold the generated partial products
bee7fpga.pp_bus = dict()
for i in range(GRP_LEN):
bee7fpga.pp_bus[i] = rfnocsim.Channel(bee7fpga.sim_core, '%s/_INTERNAL_PP_%02d' % (bee7fpga.name,i))
# We need to compute partial products of the data that is broadcast to us
# pp_input_lanes represents the IO lanes that hold this data
pp_input_lanes = bee7fpga.EXT_IO_LANES[bee7fpga.BP_BASE:bee7fpga.BP_BASE+GRP_LEN] + \
bee7fpga.EW_IO_LANES[0:GRP_LEN] + bee7fpga.NS_IO_LANES[0:GRP_LEN] + bee7fpga.XX_IO_LANES[0:GRP_LEN]
# The function that computes the partial products
func = PartialContribComputer(
sim_core=bee7fpga.sim_core, name=bee7fpga.name + '/pp_computer/', size=len(pp_input_lanes),
dst_chans=out_chans,
items_per_stream=2, app_settings=app_settings)
for i in range(len(pp_input_lanes)):
bee7fpga.sim_core.connect(bee7fpga.serdes_i[pp_input_lanes[i]], 0, func, i)
for i in range(GRP_LEN): #Outputs of function
bee7fpga.sim_core.connect(func, i, bee7fpga.pp_bus[i], 0)
bee7fpga.add_function(func)
# Add a function combine all partial products (one per IO lane)
for i in range(GRP_LEN):
func = PartialContribCombiner(
sim_core=bee7fpga.sim_core, name=bee7fpga.name + '/pp_combiner_%d/' % (i),
radix=2, app_settings=app_settings, reducer_filter=(list(range(total_num_chans)), 'tx'))
# Partial products generated internally have to be added to a partial
# sum coming from outside
bee7fpga.sim_core.connect(bee7fpga.serdes_i[bee7fpga.EXT_IO_LANES[bee7fpga.FP_BASE+i]], 0, func, 0)
bee7fpga.sim_core.connect(bee7fpga.pp_bus[i], 0, func, 1)
# If this FPGA is hooked up to the radio then send partial products
# back to when samples came from. Otherwise send it out to the PP output bus
if is_radio_node:
bee7fpga.sim_core.connect(func, 0, bee7fpga.serdes_o[bee7fpga.EXT_IO_LANES[bee7fpga.BP_BASE+i]], 0)
else:
bee7fpga.sim_core.connect(func, 0, bee7fpga.serdes_o[bee7fpga.EXT_IO_LANES[bee7fpga.FP_BASE+8+i]], 0)
bee7fpga.add_function(func)
@classmethod
def connect(cls, sim_core, usrps, bee7blades, hosts, app_settings):
USRPS_PER_BLADE = 32
# Create NULL source of "zero" partial products
null_items = ['null[(0);(0)]', 'null[(0);(0)]']
null_src = rfnocsim.Producer(sim_core, 'NULL_SRC', 4, null_items)
if app_settings['domain'] == 'frequency':
null_src.set_rate(app_settings['samp_rate']*(1.0 +
(float(app_settings['fft_overlap'])/app_settings['fft_size'])))
else:
null_src.set_rate(app_settings['samp_rate'])
# Reshape BEE7s
# The blades are arranged in 2D Torus network with 4 blades across
# each dimension (4x4 = 16)
bee7grid = []
for r in range(4):
bee7row = []
for c in range(4):
blade = bee7blades[4*r + c]
pp_chans = list(range(64*c,64*(c+1)))
for i in range(4):
Topology_2D_4x4_Torus.config_bitstream(
blade.fpgas[i], app_settings, pp_chans, pp_chans[i*16:(i+1)*16], 256, (r==c))
bee7row.append(blade)
bee7grid.append(bee7row)
# USRP-Bee7 Connections
# Blades across the diagonal are connected to USRPs
for b in range(4):
for u in range(USRPS_PER_BLADE):
sim_core.connect_bidir(
usrps[USRPS_PER_BLADE*b + u], 0, bee7grid[b][b],
len(hw.Bee7Fpga.EXT_IO_LANES)*(u/8) + hw.Bee7Fpga.BP_BASE+(u%8), 'SAMP')
sim_core.connect_bidir(
hosts[b], 0, bee7grid[b][b], hw.Bee7Fpga.FP_BASE+8, 'CONFIG', ['blue','blue'])
# Bee7-Bee7 Connections
null_srcs = []
for r in range(4): # Traverse across row
for c in range(4): # Traverse across col
for f in range(4):
samp_in_base = len(hw.Bee7Fpga.EXT_IO_LANES)*f + hw.Bee7Fpga.BP_BASE
samp_out_base = len(hw.Bee7Fpga.EXT_IO_LANES)*f + hw.Bee7Fpga.BP_BASE+8
pp_in_base = len(hw.Bee7Fpga.EXT_IO_LANES)*f + hw.Bee7Fpga.FP_BASE
pp_out_base = len(hw.Bee7Fpga.EXT_IO_LANES)*f + hw.Bee7Fpga.FP_BASE+8
if r != c:
sim_core.connect_multi_bidir(
bee7grid[r][(c+3)%4], list(range(samp_out_base,samp_out_base+8)),
bee7grid[r][c], list(range(samp_in_base,samp_in_base+8)),
'SAMP_O2I', ['black','blue'])
sim_core.connect_multi_bidir(
bee7grid[r][c], list(range(pp_out_base,pp_out_base+8)),
bee7grid[(r+1)%4][c], list(range(pp_in_base,pp_in_base+8)),
'PP_O2I', ['black','blue'])
else:
for i in range(8):
sim_core.connect(null_src, 0, bee7grid[(r+1)%4][c], pp_in_base + i)
class Topology_3D_4x4_FLB:
@classmethod
def get_radio_num(cls, router_addr, radio_idx, concentration):
"""
Returns the global radio index given local radio info
(global_radio_idx) = get_radio_num(router_addr, radio_idx, concentration) where:
- router_addr: Address of the current FPGA (router) in 3-D space
- radio_idx: The local index of the radio for the current router_addr
- concentration: Number of USRPs connected to each router
"""
DIM_SIZE = 4
multiplier = concentration
radio_num = 0
for dim in ['Z','Y','X']:
radio_num += router_addr[dim] * multiplier
multiplier *= DIM_SIZE
return radio_num + radio_idx
@classmethod
def get_portmap(cls, node_addr):
"""
Returns the router and terminal connections for the current FPGA
(router_map, terminal_map) = get_portmap(node_addr) where:
- node_addr: Address of the current FPGA in 3-D space
- router_map: A double map indexed by the dimension {X,Y,Z} and the
FPGA address in that dimension that returns the Aurora
lane index that connects the current node to the neighbor.
Example: if node_addr = [0,0,0] then router_map['X'][1] will
hold the IO lane index that connects the current node with
its X-axis neighbor with address 1
- terminal_map: A single map that maps a dimension {X,Y,Z} to the starting
IO lane index for terminals (like USRPs) in that dimension.
A terminal is a leaf node in the network.
"""
router_map = dict()
terminal_map = dict()
# If "node_addr" is the address of the current FPGA in the (X,Y,Z) space,
# then build a list of other addresses (neighbors) in each dimension
DIM_SIZE = 4
for dim in ['X','Y','Z']:
all_addrs = list(range(DIM_SIZE))
all_addrs.remove(node_addr[dim])
router_map[dim] = dict()
for dst in all_addrs:
router_map[dim][dst] = 0 # Assign lane index as 0 for now
# Assign Aurora lanes for all external connections between BEE7s
io_base = hw.Bee7Fpga.EXT_IO_LANES[0]
# ---- X-axis ----
# All BEE7s in the X dimension are connected via the RTM
# The fist quad on the RTM is reserved for SFP+ peripherals like
# the USRPs, Ethernet switch ports, etc
# All others are used for inter BEE connections over QSFP+
terminal_map['X'] = io_base + hw.Bee7Fpga.BP_BASE
xdst = terminal_map['X'] + DIM_SIZE
for dst in router_map['X']:
router_map['X'][dst] = xdst
xdst += DIM_SIZE
# ---- Z-axis ----
# All BEE7s in the Z dimension are connected via FMC IO cards (front panel)
# To be symmetric with the X-axis the first quad on the FMC bus is also
# reserved (regardless of all quads being symmetric)
terminal_map['Z'] = io_base + hw.Bee7Fpga.FP_BASE
zdst = terminal_map['Z'] + DIM_SIZE
for dst in router_map['Z']:
router_map['Z'][dst] = zdst
zdst += DIM_SIZE
# ---- Y-axis ----
# Within a BEE7, FPGAs re connected in the Y-dimension:
# 0 - 1
# | X |
# 2 - 3
Y_LANE_MAP = {
0:{1:hw.Bee7Fpga.EW_IO_LANES[0], 2:hw.Bee7Fpga.NS_IO_LANES[0], 3:hw.Bee7Fpga.XX_IO_LANES[0]},
1:{0:hw.Bee7Fpga.EW_IO_LANES[0], 2:hw.Bee7Fpga.XX_IO_LANES[0], 3:hw.Bee7Fpga.NS_IO_LANES[0]},
2:{0:hw.Bee7Fpga.NS_IO_LANES[0], 1:hw.Bee7Fpga.XX_IO_LANES[0], 3:hw.Bee7Fpga.EW_IO_LANES[0]},
3:{0:hw.Bee7Fpga.XX_IO_LANES[0], 1:hw.Bee7Fpga.NS_IO_LANES[0], 2:hw.Bee7Fpga.EW_IO_LANES[0]}}
for dst in router_map['Y']:
router_map['Y'][dst] = Y_LANE_MAP[node_addr['Y']][dst]
return (router_map, terminal_map)
@classmethod
def config_bitstream(cls, bee7fpga, app_settings, fpga_addr):
"""
Defines the FPGA behavior for the current FPGA. This function will make
create the necessary simulation functions, connect them to IO lanes and
define the various utilization metrics for the image.
config_bitstream(bee7fpga, app_settings, fpga_addr):
- bee7fpga: The FPGA simulation object being configured
- fpga_addr: Address of the FPGA in 3-D space
- app_settings: Application information
"""
if len(fpga_addr) != 3:
raise bee7fpga.SimCompError('fpga_addr must be 3-dimensional. Got ' + str(len(fpga_addr)))
# Map that stores lane indices for all neighbors of this node
(router_map, terminal_map) = cls.get_portmap(fpga_addr)
# USRPs are connected in the X dimension (RTM) because it has SFP+ ports
base_usrp_lane = terminal_map['X']
DIM_WIDTH = 4 # Dimension size for the 3-D network
MAX_USRPS = 4 # Max USRPs that can possibly be connected to each FPGA
NUM_USRPS = 2 # Number of USRPs actually connected to each FPGA
CHANS_PER_USRP = 2 # How many radio channels does each USRP have
ALL_CHANS = list(range(pow(DIM_WIDTH, 3) * NUM_USRPS * CHANS_PER_USRP))
# Each FPGA will forward the sample stream from each USRP to all of its
# X-axis neighbors
for ri in router_map['X']:
for li in range(MAX_USRPS): # li = GT Lane index
bee7fpga.sim_core.connect(bee7fpga.serdes_i[base_usrp_lane + li], 0, bee7fpga.serdes_o[router_map['X'][ri] + li], 0)
# Consequently, this FPGA will receive the USRP sample streams from each of
# its X-axis neighbors. Define an internal bus to aggregate all the neighbor
# streams with the native ones. Order the streams such that each FPGA sees the
# same data streams.
bee7fpga.int_samp_bus = dict()
for i in range(DIM_WIDTH):
for li in range(MAX_USRPS): # li = GT Lane index
bee7fpga.int_samp_bus[(MAX_USRPS*i) + li] = rfnocsim.Channel(
bee7fpga.sim_core, '%s/_INT_SAMP_%02d' % (bee7fpga.name,(MAX_USRPS*i) + li))
ln_base = base_usrp_lane if i == fpga_addr['X'] else router_map['X'][i]
bee7fpga.sim_core.connect(bee7fpga.serdes_i[ln_base + li], 0, bee7fpga.int_samp_bus[(MAX_USRPS*i) + li], 0)
# Forward the X-axis aggregated sample streams to all Y-axis neighbors
for ri in router_map['Y']:
for li in range(DIM_WIDTH*DIM_WIDTH): # li = GT Lane index
bee7fpga.sim_core.connect(bee7fpga.int_samp_bus[li], 0, bee7fpga.serdes_o[router_map['Y'][ri] + li], 0)
# What partial products will this FPGA compute?
# Generate channel list to compute partial products
pp_chans = list()
for cg in range(DIM_WIDTH): # cg = Channel group
for r in range(NUM_USRPS):
radio_num = cls.get_radio_num({'X':fpga_addr['X'], 'Y':fpga_addr['Y'], 'Z':cg}, r, NUM_USRPS)
for ch in range(CHANS_PER_USRP):
pp_chans.append(radio_num*CHANS_PER_USRP + ch)
# Instantiate partial product computer
bee7fpga.func_pp_comp = PartialContribComputer(
sim_core=bee7fpga.sim_core, name=bee7fpga.name+'/pp_computer/', size=DIM_WIDTH*DIM_WIDTH*NUM_USRPS,
dst_chans=pp_chans,
items_per_stream=CHANS_PER_USRP, app_settings=app_settings)
bee7fpga.add_function(bee7fpga.func_pp_comp)
# Partial product computer takes inputs from all Y-axis links
for sg in range(DIM_WIDTH): # sg = Group of sexdectects
for qi in range(DIM_WIDTH): # qi = GT Quad index
for li in range(NUM_USRPS):
func_inln = (sg * DIM_WIDTH * NUM_USRPS) + (qi * NUM_USRPS) + li
if sg == fpga_addr['Y']:
bee7fpga.sim_core.connect(bee7fpga.int_samp_bus[(qi * DIM_WIDTH) + li], 0,
bee7fpga.func_pp_comp, func_inln)
else:
bee7fpga.sim_core.connect(bee7fpga.serdes_i[router_map['Y'][sg] + (qi * DIM_WIDTH) + li], 0,
bee7fpga.func_pp_comp, func_inln)
# Internal bus to hold aggregated partial products
bee7fpga.pp_bus = dict()
for i in range(DIM_WIDTH*NUM_USRPS):
bee7fpga.pp_bus[i] = rfnocsim.Channel(bee7fpga.sim_core, '%s/_INT_PP_%02d' % (bee7fpga.name,i))
bee7fpga.sim_core.connect(bee7fpga.func_pp_comp, i, bee7fpga.pp_bus[i], 0)
# Forward partial products to Z-axis neighbors
for ri in router_map['Z']:
for li in range(NUM_USRPS): # li = GT Lane index
bee7fpga.sim_core.connect(bee7fpga.pp_bus[ri*NUM_USRPS + li], 0, bee7fpga.serdes_o[router_map['Z'][ri] + li], 0)
# Instantiate partial product adder
bee7fpga.func_pp_comb = dict()
for i in range(NUM_USRPS):
bee7fpga.func_pp_comb[i] = PartialContribCombiner(
sim_core=bee7fpga.sim_core, name=bee7fpga.name + '/pp_combiner_%d/'%(i),
radix=DIM_WIDTH, app_settings=app_settings, reducer_filter=(ALL_CHANS, 'tx'),
items_per_stream=CHANS_PER_USRP)
bee7fpga.add_function(bee7fpga.func_pp_comb[i])
# Aggregate partial products from Z-axis neighbors
for u in range(NUM_USRPS):
for ri in range(DIM_WIDTH):
if ri in router_map['Z']:
bee7fpga.sim_core.connect(bee7fpga.serdes_i[router_map['Z'][ri] + u], 0, bee7fpga.func_pp_comb[u], ri)
else:
bee7fpga.sim_core.connect(bee7fpga.pp_bus[ri*NUM_USRPS + u], 0, bee7fpga.func_pp_comb[u], ri)
# Instantiate partial product adder
for u in range(NUM_USRPS):
bee7fpga.sim_core.connect(bee7fpga.func_pp_comb[u], 0, bee7fpga.serdes_o[base_usrp_lane + u], 0)
# Coefficient consumer
bee7fpga.coeff_sink = rfnocsim.Consumer(bee7fpga.sim_core, bee7fpga.name + '/coeff_sink', 10e9/8, 0.0)
bee7fpga.sim_core.connect(bee7fpga.serdes_i[terminal_map['X'] + NUM_USRPS], 0, bee7fpga.coeff_sink, 0)
@classmethod
def connect(cls, sim_core, usrps, bee7blades, hosts, app_settings):
NUM_USRPS = 2
# Reshape BEE7s
# The blades are arranged in 3D Flattened Butterfly configuration
# with a dimension width of 4. The X and Z dimension represent row, col
# and the Y dimension represents the internal connections
bee7grid = []
for r in range(4):
bee7row = []
for c in range(4):
blade = bee7blades[4*r + c]
for f in range(blade.NUM_FPGAS):
cls.config_bitstream(blade.fpgas[f], app_settings, {'X':r, 'Y':f, 'Z':c})
bee7row.append(blade)
bee7grid.append(bee7row)
# USRP-Bee7 Connections
# Blades across the diagonal are connected to USRPs
for x in range(4):
for y in range(4):
for z in range(4):
for u in range(NUM_USRPS):
usrp_num = cls.get_radio_num({'X':x,'Y':y,'Z':z}, u, NUM_USRPS)
(router_map, terminal_map) = cls.get_portmap({'X':x,'Y':y,'Z':z})
sim_core.connect_bidir(
usrps[usrp_num], 0,
bee7grid[x][z], hw.Bee7Blade.io_lane(y, terminal_map['X'] + u), 'SAMP')
# Bee7-Bee7 Connections
null_srcs = []
for row in range(4):
for col in range(4):
for fpga in range(4):
(src_map, t) = cls.get_portmap({'X':row,'Y':fpga,'Z':col})
for dst in range(4):
if row != dst:
(dst_map, t) = cls.get_portmap({'X':dst,'Y':fpga,'Z':col})
sim_core.connect_multi(
bee7grid[row][col],
list(range(hw.Bee7Blade.io_lane(fpga, src_map['X'][dst]), hw.Bee7Blade.io_lane(fpga, src_map['X'][dst]+4))),
bee7grid[dst][col],
list(range(hw.Bee7Blade.io_lane(fpga, dst_map['X'][row]), hw.Bee7Blade.io_lane(fpga, dst_map['X'][row]+4))),
'SAMP')
if col != dst:
(dst_map, t) = cls.get_portmap({'X':row,'Y':fpga,'Z':dst})
sim_core.connect_multi(
bee7grid[row][col],
list(range(hw.Bee7Blade.io_lane(fpga, src_map['Z'][dst]), hw.Bee7Blade.io_lane(fpga, src_map['Z'][dst]+4))),
bee7grid[row][dst],
list(range(hw.Bee7Blade.io_lane(fpga, dst_map['Z'][col]), hw.Bee7Blade.io_lane(fpga, dst_map['Z'][col]+4))),
'PP', 'blue')
# Host connection
for row in range(4):
for col in range(4):
for fpga in range(4):
(router_map, terminal_map) = cls.get_portmap({'X':row,'Y':row,'Z':col})
sim_core.connect_bidir(
hosts[row], col*4 + fpga,
bee7grid[row][col], hw.Bee7Blade.io_lane(fpga, terminal_map['X'] + NUM_USRPS), 'COEFF', 'red')
|