1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Parameter LE tells us if we are little-endian.
// Little-endian means send lower 16 bits first.
// Default is big endian (network order), send upper bits first.
module fifo19_to_fifo36
#(parameter LE=0)
(input clk, input reset, input clear,
input [18:0] f19_datain,
input f19_src_rdy_i,
output f19_dst_rdy_o,
output [35:0] f36_dataout,
output f36_src_rdy_o,
input f36_dst_rdy_i,
output [31:0] debug
);
// Shortfifo on input to guarantee no deadlock
wire [18:0] f19_data_int;
wire f19_src_rdy_int, f19_dst_rdy_int;
fifo_short #(.WIDTH(19)) head_fifo
(.clk(clk),.reset(reset),.clear(clear),
.datain(f19_datain), .src_rdy_i(f19_src_rdy_i), .dst_rdy_o(f19_dst_rdy_o),
.dataout(f19_data_int), .src_rdy_o(f19_src_rdy_int), .dst_rdy_i(f19_dst_rdy_int),
.space(),.occupied() );
// Actual f19 to f36 which could deadlock if not connected to shortfifos
reg f36_sof_int, f36_eof_int;
reg [1:0] f36_occ_int;
wire [35:0] f36_data_int;
wire f36_src_rdy_int, f36_dst_rdy_int;
reg [1:0] state;
reg [15:0] dat0, dat1;
wire f19_sof_int = f19_data_int[16];
wire f19_eof_int = f19_data_int[17];
wire f19_occ_int = f19_data_int[18];
wire xfer_out = f36_src_rdy_int & f36_dst_rdy_int;
always @(posedge clk)
if(f19_src_rdy_int & ((state==0)|xfer_out))
f36_sof_int <= f19_sof_int;
always @(posedge clk)
if(f19_src_rdy_int & ((state != 2)|xfer_out))
f36_eof_int <= f19_eof_int;
always @(posedge clk)
if(reset)
begin
state <= 0;
f36_occ_int <= 0;
end
else
if(f19_src_rdy_int)
case(state)
0 :
begin
dat0 <= f19_data_int;
if(f19_eof_int)
begin
state <= 2;
f36_occ_int <= f19_occ_int ? 2'b01 : 2'b10;
end
else
state <= 1;
end
1 :
begin
dat1 <= f19_data_int;
state <= 2;
if(f19_eof_int)
f36_occ_int <= f19_occ_int ? 2'b11 : 2'b00;
end
2 :
if(xfer_out)
begin
dat0 <= f19_data_int;
if(f19_eof_int) // remain in state 2 if we are at eof
f36_occ_int <= f19_occ_int ? 2'b01 : 2'b10;
else
state <= 1;
end
endcase // case(state)
else
if(xfer_out)
begin
state <= 0;
f36_occ_int <= 0;
end
assign f19_dst_rdy_int = xfer_out | (state != 2);
assign f36_data_int = LE ? {f36_occ_int,f36_eof_int,f36_sof_int,dat1,dat0} :
{f36_occ_int,f36_eof_int,f36_sof_int,dat0,dat1};
assign f36_src_rdy_int = (state == 2);
assign debug = state;
// Shortfifo on output to guarantee no deadlock
fifo_short #(.WIDTH(36)) tail_fifo
(.clk(clk),.reset(reset),.clear(clear),
.datain(f36_data_int), .src_rdy_i(f36_src_rdy_int), .dst_rdy_o(f36_dst_rdy_int),
.dataout(f36_dataout), .src_rdy_o(f36_src_rdy_o), .dst_rdy_i(f36_dst_rdy_i),
.space(),.occupied() );
endmodule // fifo19_to_fifo36
|