// // Copyright 2011 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Parameter LE tells us if we are little-endian. // Little-endian means send lower 16 bits first. // Default is big endian (network order), send upper bits first. module fifo19_to_fifo36 #(parameter LE=0) (input clk, input reset, input clear, input [18:0] f19_datain, input f19_src_rdy_i, output f19_dst_rdy_o, output [35:0] f36_dataout, output f36_src_rdy_o, input f36_dst_rdy_i, output [31:0] debug ); // Shortfifo on input to guarantee no deadlock wire [18:0] f19_data_int; wire f19_src_rdy_int, f19_dst_rdy_int; fifo_short #(.WIDTH(19)) head_fifo (.clk(clk),.reset(reset),.clear(clear), .datain(f19_datain), .src_rdy_i(f19_src_rdy_i), .dst_rdy_o(f19_dst_rdy_o), .dataout(f19_data_int), .src_rdy_o(f19_src_rdy_int), .dst_rdy_i(f19_dst_rdy_int), .space(),.occupied() ); // Actual f19 to f36 which could deadlock if not connected to shortfifos reg f36_sof_int, f36_eof_int; reg [1:0] f36_occ_int; wire [35:0] f36_data_int; wire f36_src_rdy_int, f36_dst_rdy_int; reg [1:0] state; reg [15:0] dat0, dat1; wire f19_sof_int = f19_data_int[16]; wire f19_eof_int = f19_data_int[17]; wire f19_occ_int = f19_data_int[18]; wire xfer_out = f36_src_rdy_int & f36_dst_rdy_int; always @(posedge clk) if(f19_src_rdy_int & ((state==0)|xfer_out)) f36_sof_int <= f19_sof_int; always @(posedge clk) if(f19_src_rdy_int & ((state != 2)|xfer_out)) f36_eof_int <= f19_eof_int; always @(posedge clk) if(reset) begin state <= 0; f36_occ_int <= 0; end else if(f19_src_rdy_int) case(state) 0 : begin dat0 <= f19_data_int; if(f19_eof_int) begin state <= 2; f36_occ_int <= f19_occ_int ? 2'b01 : 2'b10; end else state <= 1; end 1 : begin dat1 <= f19_data_int; state <= 2; if(f19_eof_int) f36_occ_int <= f19_occ_int ? 2'b11 : 2'b00; end 2 : if(xfer_out) begin dat0 <= f19_data_int; if(f19_eof_int) // remain in state 2 if we are at eof f36_occ_int <= f19_occ_int ? 2'b01 : 2'b10; else state <= 1; end endcase // case(state) else if(xfer_out) begin state <= 0; f36_occ_int <= 0; end assign f19_dst_rdy_int = xfer_out | (state != 2); assign f36_data_int = LE ? {f36_occ_int,f36_eof_int,f36_sof_int,dat1,dat0} : {f36_occ_int,f36_eof_int,f36_sof_int,dat0,dat1}; assign f36_src_rdy_int = (state == 2); assign debug = state; // Shortfifo on output to guarantee no deadlock fifo_short #(.WIDTH(36)) tail_fifo (.clk(clk),.reset(reset),.clear(clear), .datain(f36_data_int), .src_rdy_i(f36_src_rdy_int), .dst_rdy_o(f36_dst_rdy_int), .dataout(f36_dataout), .src_rdy_o(f36_src_rdy_o), .dst_rdy_i(f36_dst_rdy_i), .space(),.occupied() ); endmodule // fifo19_to_fifo36