| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
| |
- Remove documentation of skip_dram, skip_ddc, skip_duc, which are all
obsolete since UHD 4
- Properly document serialize_init
- Add a table of valid args for X310 as with other devices
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
The order must:
- Check transaction has the right number of hops, then read hop
- Check hop has the right number of operations (at least 2), then read
those ops
- Check the ops have the correct opcodes
The code was doing checks in the wrong order. Thanks to Github user
johnwstanford for pointing this out.
|
|
|
|
|
|
|
| |
This provides every block controller with a copy of its CHDR width.
Note: mock blocks always get configured with a 64-bit CHDR width, to
retain API compatibility.
|
|
|
|
|
|
|
| |
This allows consumers of UHD compiling with C++11 to include this file
(which is now included via noc_block_base) by turning a switch statement
into a functionally equivalent (albeit less readable) nested ternary
statement.
|
|
|
|
| |
Thanks to Github user johnwstanford for pointing this out.
|
|
|
|
|
|
|
|
|
|
| |
The times on the device can glitch if either the tick rate changes or
the number of active chains changes. This throws off the time if the
user gets streamers, changes the sample rate, or changes the tick rate
after synchronizing the time. This change re-synchronizes the times
automatically in those cases.
Signed-off-by: michael-west <michael.west@ettus.com>
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
This gets closer to what our hardware can actually support. See the
comments for further explanations.
This has the side-effect of patching an issue on X410 (using 200 MHz
images) where garbage samples would get injected (one per packet). It
is not, however, the final fix for that problem.
|
| |
|
|
|
|
|
|
| |
This lets Doxygen create a page in the UHD manual that lists all RFNoC
block controllers. It will be accessible under Manual -> Modules ->
RFNoC -> RFNoC Blocks shipped with UHD.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
"bank" refers to what the radio control sees, and "port" refers to what
the user looking at the physical device sees. For example, on X410 each
radio control only has a single (24-bit) output, which can be routed
to either of two ports.
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the GPIO API for X410 through get_gpio_attr and
set_gpio_attr. In ATR mode, which channel's ATR state is chosen by the
set_gpio_src call, setting e.g. DB0_RF0 for channel 0 or DB0_RF1 for
channel 1. In manual mode, all 24 bits (for both ports) are set in
a single register write.
Although the front panel of the device has two ports, labelled GPIO0 and
GPIO1, this API exposes them as though they were a single 24-bit GPIO
port.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes some constants from UHD that were left over from RFNoC/UHD
3.x. They are unused.
rfnoc_rx_to_file had a commented-out section that was also UHD-3 only.
Note that rfnoc/constants.hpp is pretty bare now, and could be removed.
However, it is in the public header section, so we shall leave the used
constants where they are.
This requires fixing includes in mgmt_portal.cpp.
|
|
|
|
|
|
| |
Aligning dependencies between KB entries and documentation for
Ubuntu 20.04 and bumping version numbers in the installation
documentation to latest available versions in Ubuntu and PPA.
|
| |
|
|
|
|
|
|
|
| |
Refactors register addresses into a gpio_atr_offsets structure which
contains the various register addresses. This allows creating other
devices with different GPIO register layouts with greater ease, and
eliminates the use of macros (yay!)
|
|
|
|
|
|
|
|
|
| |
The I and Q were swapped in sine_tone, which caused confusion and made
the rotation of REG_CARTESIAN clockwise by default. This effectively
made the resulting frequency negative. This PR makes the I and Q order
consistent with RFNoC and fixes the direction of rotation so that a
positive value for REG_PHASE_INC (phase increment) results in a
counter-clockwise rotation, which yields a positive frequency.
|
|
|
|
| |
Thanks to mait for the fix!
|
|
|
|
|
|
|
| |
This is necessary when compiling with -Werror=format-security as Debian
package builds do.
Thanks to mait for the fix!
|
|
|
|
|
|
|
| |
C++ syntax cleanup. g++ 11 is now more picky about syntax, and flags
errors rather than ignores use of template-id for a destructor.
Thanks to mait for these fixes!
|
|
|
|
| |
Thanks to Mait for pointing these out!
|
|
|
|
|
|
| |
This adds a section on GPIO bank names to multi_usrp.hpp, and clarifies
the difference between the multi_usrp and RFNoC APIs regarding GPIO
control.
|
| |
|
|
|
|
|
|
|
|
|
| |
In multiple places in the UHD code, we were doing the same calculation
for a wrapped frequency (wrap it into the first Nyquist zone). This math
was using boost::math, too. Instead of editing every instance, we create
a new function, uhd::math::wrap_frequency(), and replace all of its
separate implementations with this function. The new function also no
longer relies on boost::math::sign.
|
|
|
|
|
| |
We've been having issues with moving locations of Boost headers for this
function, and it's simple enough to implement ourselves.
|
|
|
|
| |
Replaced by std::numeric_limits<>.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a very mechanical task that could almost have been done with
sed. Boost versions of mutexes and locks were removed, and replaced with
std:: versions. The replacement tables are as follows:
== Mutexes ==
- boost::mutex -> std::mutex
- boost::recursive_mutex -> std::recursive_mutex
Mutexes behave identically between Boost and std:: and have the same
API.
== Locks ==
C++11 has only two types of lock that we use/need in UHD:
- std::lock_guard: Identical to boost::lock_guard
- std::unique_lock: Identical to boost::unique_lock
Boost also has boost::mutex::scoped_lock, which is a typedef for
boost::unique_lock<>. However, we often have used scoped_lock where we
meant to use lock_guard<>. The name is a bit misleading, "scoped lock"
sounding a bit like an RAII mechanism. Therefore, some previous
boost::mutex::scoped_lock are now std::lock_guard<>.
std::unique_lock is required when doing more than RAII locking (i.e.,
unlocking, relocking, usage with condition variables, etc.).
== Condition Variables ==
Condition variables were out of the scope of this lock/mutex change, but
in UHD, we inconsistently use boost::condition vs.
boost::condition_variable. The former is a templated version of the
latter, and thus works fine with std::mutex'es. Therefore, some
boost::condition_variable where changed to boost::condition.
All locks and mutexes use `#include <mutex>`. The corresponding Boost
includes were removed. In some cases, this exposed issues with implicit
Boost includes elsewhere. The missing explicit includes were added.
|
|
|
|
|
|
| |
current implementation uses version strings for comparisons. This led
version 3.10 to be smaller than 3.6 which is obviously wrong. Use
LooseVersion to have correct version comparison.
|
|
|
|
| |
Thanks for github user johnwstanford for pointing those out.
|
|
|
|
|
|
|
| |
the USRP power meter will only receive from a single channel which
is configured by the argument parameter. The streamer receive
data will therefor alwalys have a single channel. So do not index
with chan when passing the streamer to uhd.dsp.signals.get_usrp_power.
|
| |
|
|
|
|
|
|
|
| |
- Like with RX, this now allows passing in stream time and existing
streamer
- There was no EOB being sent at the end (now there is)
- Fixed some linter issues
|
|
|
|
|
|
|
|
|
| |
- This function didn't set the time properly for multi-chan rx
- There was no way to set a start time manually
- It relied on garbage collection and correct destruction of streamers
when being called multiple times. Addressed this by adding an option
to pass in an existing streamer object.
- Linter wasn't too happy with this function.
|
|
|
|
|
|
|
|
|
|
|
| |
The USB managed buffer implementation created a context every time one
was generated.
The additional load is not very high, because the global session is a
singleton, and simply returns the same context again with only a few
branches. Also, managed buffers persist for the entire session.
However, the context is never used in the managed buffer.
This code is thus confusing for the reader of this code, and we remove
the extraneous, unused context variable.
|
|
|
|
|
|
|
|
|
|
| |
As GitHub user marcosino points out, we're running the AD9361 in
overclocked mode. This is because the driver was written with no longer
valid recommendations.
We add a comment and some debug messages to clarify this. Should there
be RF impairments (signal integrity or other) because of overclocking,
users would be able to check DEBUG log statements to correlate with
overclocked configurations.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This fixes a subtle bug, where a variable to cache the timestamp of an
error gets bound to the metadata instead of creating a copy thereof.
Without this fix, the calculation of dropped samples would always be 0,
because the difference in timestamps would incorrectly be always zero.
This fix will now make a copy of the timestamp.
Shoutout to GitHub user bhorsfield for finding this issue.
|
| |
|
|
|
|
|
|
|
| |
At this point, this test chokes an RX streamer to force an overrun. It
then confirms that the overrun message is returned to the call site, and
that the streamer returns to continuous streaming after the overrun
handling.
|