diff options
author | matt <matt@221aa14e-8319-0410-a670-987f0aec2ac5> | 2009-03-09 17:41:33 +0000 |
---|---|---|
committer | matt <matt@221aa14e-8319-0410-a670-987f0aec2ac5> | 2009-03-09 17:41:33 +0000 |
commit | 395ef5918b68aab93f80ac3109a63f347486f515 (patch) | |
tree | 86b68db61531b2fce8335144ecda85d88d33b117 | |
parent | 35f670dae971bc315ed85246f0e01a49c3a05df8 (diff) | |
download | uhd-395ef5918b68aab93f80ac3109a63f347486f515.tar.gz uhd-395ef5918b68aab93f80ac3109a63f347486f515.tar.bz2 uhd-395ef5918b68aab93f80ac3109a63f347486f515.zip |
copied over old one which works with icarus
git-svn-id: http://gnuradio.org/svn/gnuradio/trunk@10578 221aa14e-8319-0410-a670-987f0aec2ac5
-rw-r--r-- | models/FIFO_GENERATOR_V4_3.v | 2779 |
1 files changed, 1090 insertions, 1689 deletions
diff --git a/models/FIFO_GENERATOR_V4_3.v b/models/FIFO_GENERATOR_V4_3.v index 3489ee501..bcb9af8a7 100644 --- a/models/FIFO_GENERATOR_V4_3.v +++ b/models/FIFO_GENERATOR_V4_3.v @@ -1,8 +1,8 @@ /* - * $RDCfile: $ $Revision: 1.1.2.6 $ $Date: 2007/11/28 17:15:18 $ + * $RDCfile: $ $Revision: 1.1.2.15 $ $Date: 2007/07/25 15:58:33 $ ******************************************************************************* * - * FIFO Generator - Verilog Behavioral Model + * FIFO Generator v3.3 - Verilog Behavioral Model * ******************************************************************************* * @@ -45,32 +45,8 @@ * ******************************************************************************* * - * Filename: FIFO_GENERATOR_V4_3.v + * Filename: fifo_generator_v4_3_bhv.v * - * Author : Xilinx - * - ******************************************************************************* - * Structure: - * - * fifo_generator_v4_3.vhd - * | - * +-fifo_generator_v4_3_bhv_as - * | - * +-fifo_generator_v4_3_bhv_ss - * | - * +-fifo_generator_v4_3_bhv_preload0 - * - ******************************************************************************* - * Description: - * - * The Verilog behavioral model for the FIFO Generator. - * - * The behavioral model has three parts: - * - The behavioral model for independent clocks FIFOs (_as) - * - The behavioral model for common clock FIFOs (_ss) - * - The "preload logic" block which implements First-word Fall-through - * - ******************************************************************************* * Description: * The verilog behavioral model for the FIFO generator core. * @@ -84,8 +60,8 @@ ******************************************************************************/ module FIFO_GENERATOR_V4_3 ( - BACKUP, //not used - BACKUP_MARKER, //not used + BACKUP, + BACKUP_MARKER, CLK, DIN, PROG_EMPTY_THRESH, @@ -96,12 +72,12 @@ module FIFO_GENERATOR_V4_3 PROG_FULL_THRESH_NEGATE, RD_CLK, RD_EN, - RD_RST, //not used + RD_RST, RST, SRST, WR_CLK, WR_EN, - WR_RST, //not used + WR_RST, INT_CLK, ALMOST_EMPTY, @@ -118,169 +94,59 @@ module FIFO_GENERATOR_V4_3 VALID, WR_ACK, WR_DATA_COUNT, - SBITERR, DBITERR ); -/* - ****************************************************************************** - * Definition of Parameters - ****************************************************************************** - * C_COMMON_CLOCK : Common Clock (1), Independent Clocks (0) - * C_COUNT_TYPE : *not used - * C_DATA_COUNT_WIDTH : Width of DATA_COUNT bus - * C_DEFAULT_VALUE : *not used - * C_DIN_WIDTH : Width of DIN bus - * C_DOUT_RST_VAL : Reset value of DOUT - * C_DOUT_WIDTH : Width of DOUT bus - * C_ENABLE_RLOCS : *not used - * C_FAMILY : not used in bhv model - * C_FULL_FLAGS_RST_VAL : Full flags rst val (0 or 1) - * C_HAS_ALMOST_EMPTY : 1=Core has ALMOST_EMPTY flag - * C_HAS_ALMOST_FULL : 1=Core has ALMOST_FULL flag - * C_HAS_BACKUP : *not used - * C_HAS_DATA_COUNT : 1=Core has DATA_COUNT bus - * C_HAS_INT_CLK : not used in bhv model - * C_HAS_MEMINIT_FILE : *not used - * C_HAS_OVERFLOW : 1=Core has OVERFLOW flag - * C_HAS_RD_DATA_COUNT : 1=Core has RD_DATA_COUNT bus - * C_HAS_RD_RST : *not used - * C_HAS_RST : 1=Core has Async Rst - * C_HAS_SRST : 1=Core has Sync Rst - * C_HAS_UNDERFLOW : 1=Core has UNDERFLOW flag - * C_HAS_VALID : 1=Core has VALID flag - * C_HAS_WR_ACK : 1=Core has WR_ACK flag - * C_HAS_WR_DATA_COUNT : 1=Core has WR_DATA_COUNT bus - * C_HAS_WR_RST : *not used - * C_IMPLEMENTATION_TYPE : 0=Common-Clock Bram/Dram - * 1=Common-Clock ShiftRam - * 2=Indep. Clocks Bram/Dram - * 3=Virtex-4 Built-in - * 4=Virtex-5 Built-in - * C_INIT_WR_PNTR_VAL : *not used - * C_MEMORY_TYPE : 1=Block RAM - * 2=Distributed RAM - * 3=Shift RAM - * 4=Built-in FIFO - * C_MIF_FILE_NAME : *not used - * C_OPTIMIZATION_MODE : *not used - * C_OVERFLOW_LOW : 1=OVERFLOW active low - * C_PRELOAD_LATENCY : Latency of read: 0, 1, 2 - * C_PRELOAD_REGS : 1=Use output registers - * C_PRIM_FIFO_TYPE : not used in bhv model - * C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold - * C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold - * C_PROG_EMPTY_TYPE : 0=No programmable empty - * 1=Single prog empty thresh constant - * 2=Multiple prog empty thresh constants - * 3=Single prog empty thresh input - * 4=Multiple prog empty thresh inputs - * C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold - * C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold - * C_PROG_FULL_TYPE : 0=No prog full - * 1=Single prog full thresh constant - * 2=Multiple prog full thresh constants - * 3=Single prog full thresh input - * 4=Multiple prog full thresh inputs - * C_RD_DATA_COUNT_WIDTH : Width of RD_DATA_COUNT bus - * C_RD_DEPTH : Depth of read interface (2^N) - * C_RD_FREQ : not used in bhv model - * C_RD_PNTR_WIDTH : always log2(C_RD_DEPTH) - * C_UNDERFLOW_LOW : 1=UNDERFLOW active low - * C_USE_DOUT_RST : 1=Resets DOUT on RST - * C_USE_ECC : not used in bhv model - * C_USE_EMBEDDED_REG : 1=Use BRAM embedded output register - * C_USE_FIFO16_FLAGS : not used in bhv model - * C_USE_FWFT_DATA_COUNT : 1=Use extra logic for FWFT data count - * C_VALID_LOW : 1=VALID active low - * C_WR_ACK_LOW : 1=WR_ACK active low - * C_WR_DATA_COUNT_WIDTH : Width of WR_DATA_COUNT bus - * C_WR_DEPTH : Depth of write interface (2^N) - * C_WR_FREQ : not used in bhv model - * C_WR_PNTR_WIDTH : always log2(C_WR_DEPTH) - * C_WR_RESPONSE_LATENCY : *not used - * C_MSGON_VAL : *not used by bhv model - ****************************************************************************** - * Definition of Ports - ****************************************************************************** - * BACKUP : Not used - * BACKUP_MARKER: Not used - * CLK : Clock - * DIN : Input data bus - * PROG_EMPTY_THRESH : Threshold for Programmable Empty Flag - * PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag - * PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag - * PROG_FULL_THRESH : Threshold for Programmable Full Flag - * PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag - * PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag - * RD_CLK : Read Domain Clock - * RD_EN : Read enable - * RD_RST : Not used - * RST : Asynchronous Reset - * SRST : Synchronous Reset - * WR_CLK : Write Domain Clock - * WR_EN : Write enable - * WR_RST : Not used - * INT_CLK : Internal Clock - * ALMOST_EMPTY : One word remaining in FIFO - * ALMOST_FULL : One empty space remaining in FIFO - * DATA_COUNT : Number of data words in fifo( synchronous to CLK) - * DOUT : Output data bus - * EMPTY : Empty flag - * FULL : Full flag - * OVERFLOW : Last write rejected - * PROG_EMPTY : Programmable Empty Flag - * PROG_FULL : Programmable Full Flag - * RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK) - * UNDERFLOW : Last read rejected - * VALID : Last read acknowledged, DOUT bus VALID - * WR_ACK : Last write acknowledged - * WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK) - * SBITERR : Single Bit ECC Error Detected - * DBITERR : Double Bit ECC Error Detected - ****************************************************************************** - */ + /**************************************************************************** + * Definition of Ports + * + * + ***************************************************************************** + * Definition of Parameters + * + * + *****************************************************************************/ - /**************************************************************************** * Declare user parameters and their defaults *****************************************************************************/ parameter C_COMMON_CLOCK = 0; - parameter C_COUNT_TYPE = 0; //not used + parameter C_COUNT_TYPE = 0; parameter C_DATA_COUNT_WIDTH = 2; - parameter C_DEFAULT_VALUE = ""; //not used + parameter C_DEFAULT_VALUE = ""; parameter C_DIN_WIDTH = 8; parameter C_DOUT_RST_VAL = ""; parameter C_DOUT_WIDTH = 8; - parameter C_ENABLE_RLOCS = 0; //not used - parameter C_FAMILY = "virtex2"; //not used in bhv model - parameter C_FULL_FLAGS_RST_VAL = 1; + parameter C_ENABLE_RLOCS = 0; + + parameter C_FAMILY = "virtex2"; + //Not allowed in Verilog model + parameter C_HAS_ALMOST_EMPTY = 0; parameter C_HAS_ALMOST_FULL = 0; - parameter C_HAS_BACKUP = 0; //not used + parameter C_HAS_BACKUP = 0; parameter C_HAS_DATA_COUNT = 0; - parameter C_HAS_INT_CLK = 0; //not used in bhv model - parameter C_HAS_MEMINIT_FILE = 0; //not used + parameter C_HAS_MEMINIT_FILE = 0; parameter C_HAS_OVERFLOW = 0; parameter C_HAS_RD_DATA_COUNT = 0; - parameter C_HAS_RD_RST = 0; //not used + parameter C_HAS_RD_RST = 0; parameter C_HAS_RST = 0; parameter C_HAS_SRST = 0; parameter C_HAS_UNDERFLOW = 0; parameter C_HAS_VALID = 0; parameter C_HAS_WR_ACK = 0; parameter C_HAS_WR_DATA_COUNT = 0; - parameter C_HAS_WR_RST = 0; //not used + parameter C_HAS_WR_RST = 0; parameter C_IMPLEMENTATION_TYPE = 0; - parameter C_INIT_WR_PNTR_VAL = 0; //not used + parameter C_INIT_WR_PNTR_VAL = 0; parameter C_MEMORY_TYPE = 1; - parameter C_MIF_FILE_NAME = ""; //not used - parameter C_OPTIMIZATION_MODE = 0; //not used + parameter C_MIF_FILE_NAME = ""; + parameter C_OPTIMIZATION_MODE = 0; parameter C_OVERFLOW_LOW = 0; parameter C_PRELOAD_LATENCY = 1; parameter C_PRELOAD_REGS = 0; - parameter C_PRIM_FIFO_TYPE = 512; //not used in bhv model + parameter C_PRIM_FIFO_TYPE = 512; parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0; parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0; parameter C_PROG_EMPTY_TYPE = 0; @@ -289,38 +155,34 @@ module FIFO_GENERATOR_V4_3 parameter C_PROG_FULL_TYPE = 0; parameter C_RD_DATA_COUNT_WIDTH = 2; parameter C_RD_DEPTH = 256; - parameter C_RD_FREQ = 1; //not used in bhv model + parameter C_RD_FREQ = 1; parameter C_RD_PNTR_WIDTH = 8; parameter C_UNDERFLOW_LOW = 0; - parameter C_USE_DOUT_RST = 0; - parameter C_USE_ECC = 0; //not used in bhv model - parameter C_USE_EMBEDDED_REG = 0; - parameter C_USE_FIFO16_FLAGS = 0; //not used in bhv model - parameter C_USE_FWFT_DATA_COUNT = 0; + parameter C_USE_FIFO16_FLAGS = 0; parameter C_VALID_LOW = 0; parameter C_WR_ACK_LOW = 0; parameter C_WR_DATA_COUNT_WIDTH = 2; parameter C_WR_DEPTH = 256; - parameter C_WR_FREQ = 1; //not used in bhv model + parameter C_WR_FREQ = 1; parameter C_WR_PNTR_WIDTH = 8; - parameter C_WR_RESPONSE_LATENCY = 1; //not used - parameter C_MSGON_VAL = 1; //not used - - + parameter C_WR_RESPONSE_LATENCY = 1; + parameter C_USE_ECC = 0; + parameter C_FULL_FLAGS_RST_VAL = 1; + parameter C_HAS_INT_CLK = 0; + parameter C_USE_EMBEDDED_REG = 0; + parameter C_USE_FWFT_DATA_COUNT = 0; - /***************************************************************************** - * Derived parameters - ****************************************************************************/ //There are 2 Verilog behavioral models - // 0 = Common-Clock FIFO/ShiftRam FIFO - // 1 = Independent Clocks FIFO + // 0 = Synchronous FIFO/ShiftRam FIFO + // 1 = Asynchronous FIFO parameter C_VERILOG_IMPL = (C_IMPLEMENTATION_TYPE==0 ? 0 : (C_IMPLEMENTATION_TYPE==1 ? 0 : (C_IMPLEMENTATION_TYPE==2 ? 1 : 0))); - /***************************************************************************** + + /****************************************************************************** * Declare Input and Output Ports - ****************************************************************************/ + *****************************************************************************/ input CLK; input BACKUP; input BACKUP_MARKER; @@ -414,40 +276,45 @@ module FIFO_GENERATOR_V4_3 wire RDEN_P0_OUT; wire [C_DOUT_WIDTH-1:0] DATA_P0_IN; wire EMPTY_P0_IN; - reg [31:0] DATA_COUNT_FWFT; - reg SS_FWFT_WR ; - reg SS_FWFT_RD ; assign SBITERR = 1'b0; assign DBITERR = 1'b0; - -// Choose the behavioral model to instantiate based on the C_VERILOG_IMPL -// parameter (1=Independent Clocks, 0=Common Clock) +// choose the base FIFO implementation for simulation generate case (C_VERILOG_IMPL) 0 : begin : block1 - //Common Clock Behavioral Model fifo_generator_v4_3_bhv_ver_ss #( + C_COMMON_CLOCK, + C_COUNT_TYPE, C_DATA_COUNT_WIDTH, + C_DEFAULT_VALUE, C_DIN_WIDTH, C_DOUT_RST_VAL, C_DOUT_WIDTH, - C_FULL_FLAGS_RST_VAL, + C_ENABLE_RLOCS, + C_FAMILY,//Not allowed in Verilog model C_HAS_ALMOST_EMPTY, C_HAS_ALMOST_FULL, + C_HAS_BACKUP, C_HAS_DATA_COUNT, + C_HAS_MEMINIT_FILE, C_HAS_OVERFLOW, C_HAS_RD_DATA_COUNT, + C_HAS_RD_RST, C_HAS_RST, C_HAS_SRST, C_HAS_UNDERFLOW, C_HAS_VALID, C_HAS_WR_ACK, C_HAS_WR_DATA_COUNT, + C_HAS_WR_RST, C_IMPLEMENTATION_TYPE, + C_INIT_WR_PNTR_VAL, C_MEMORY_TYPE, + C_MIF_FILE_NAME, + C_OPTIMIZATION_MODE, C_OVERFLOW_LOW, C_PRELOAD_LATENCY, C_PRELOAD_REGS, @@ -461,14 +328,14 @@ case (C_VERILOG_IMPL) C_RD_DEPTH, C_RD_PNTR_WIDTH, C_UNDERFLOW_LOW, - C_USE_DOUT_RST, - C_USE_EMBEDDED_REG, - C_USE_FWFT_DATA_COUNT, C_VALID_LOW, C_WR_ACK_LOW, C_WR_DATA_COUNT_WIDTH, C_WR_DEPTH, - C_WR_PNTR_WIDTH + C_WR_PNTR_WIDTH, + C_WR_RESPONSE_LATENCY, + C_FULL_FLAGS_RST_VAL, + C_USE_EMBEDDED_REG ) gen_ss ( @@ -499,26 +366,36 @@ case (C_VERILOG_IMPL) ); end 1 : begin : block1 - //Independent Clocks Behavioral Model fifo_generator_v4_3_bhv_ver_as #( + C_COMMON_CLOCK, + C_COUNT_TYPE, C_DATA_COUNT_WIDTH, + C_DEFAULT_VALUE, C_DIN_WIDTH, C_DOUT_RST_VAL, C_DOUT_WIDTH, - C_FULL_FLAGS_RST_VAL, + C_ENABLE_RLOCS, + C_FAMILY,//Not allowed in Verilog model C_HAS_ALMOST_EMPTY, C_HAS_ALMOST_FULL, + C_HAS_BACKUP, C_HAS_DATA_COUNT, + C_HAS_MEMINIT_FILE, C_HAS_OVERFLOW, C_HAS_RD_DATA_COUNT, + C_HAS_RD_RST, C_HAS_RST, C_HAS_UNDERFLOW, C_HAS_VALID, C_HAS_WR_ACK, C_HAS_WR_DATA_COUNT, + C_HAS_WR_RST, C_IMPLEMENTATION_TYPE, + C_INIT_WR_PNTR_VAL, C_MEMORY_TYPE, + C_MIF_FILE_NAME, + C_OPTIMIZATION_MODE, C_OVERFLOW_LOW, C_PRELOAD_LATENCY, C_PRELOAD_REGS, @@ -532,14 +409,15 @@ end C_RD_DEPTH, C_RD_PNTR_WIDTH, C_UNDERFLOW_LOW, - C_USE_DOUT_RST, - C_USE_EMBEDDED_REG, - C_USE_FWFT_DATA_COUNT, C_VALID_LOW, C_WR_ACK_LOW, C_WR_DATA_COUNT_WIDTH, C_WR_DEPTH, - C_WR_PNTR_WIDTH + C_WR_PNTR_WIDTH, + C_WR_RESPONSE_LATENCY, + C_FULL_FLAGS_RST_VAL, + C_USE_FWFT_DATA_COUNT, + C_USE_EMBEDDED_REG ) gen_as ( @@ -572,26 +450,36 @@ end end default : begin : block1 - //Independent Clocks Behavioral Model fifo_generator_v4_3_bhv_ver_as #( + C_COMMON_CLOCK, + C_COUNT_TYPE, C_DATA_COUNT_WIDTH, + C_DEFAULT_VALUE, C_DIN_WIDTH, C_DOUT_RST_VAL, C_DOUT_WIDTH, - C_FULL_FLAGS_RST_VAL, + C_ENABLE_RLOCS, + C_FAMILY,//Not allowed in Verilog model C_HAS_ALMOST_EMPTY, C_HAS_ALMOST_FULL, + C_HAS_BACKUP, C_HAS_DATA_COUNT, + C_HAS_MEMINIT_FILE, C_HAS_OVERFLOW, C_HAS_RD_DATA_COUNT, + C_HAS_RD_RST, C_HAS_RST, C_HAS_UNDERFLOW, C_HAS_VALID, C_HAS_WR_ACK, C_HAS_WR_DATA_COUNT, + C_HAS_WR_RST, C_IMPLEMENTATION_TYPE, + C_INIT_WR_PNTR_VAL, C_MEMORY_TYPE, + C_MIF_FILE_NAME, + C_OPTIMIZATION_MODE, C_OVERFLOW_LOW, C_PRELOAD_LATENCY, C_PRELOAD_REGS, @@ -605,14 +493,15 @@ default : begin : block1 C_RD_DEPTH, C_RD_PNTR_WIDTH, C_UNDERFLOW_LOW, - C_USE_DOUT_RST, - C_USE_EMBEDDED_REG, - C_USE_FWFT_DATA_COUNT, C_VALID_LOW, C_WR_ACK_LOW, C_WR_DATA_COUNT_WIDTH, C_WR_DEPTH, - C_WR_PNTR_WIDTH + C_WR_PNTR_WIDTH, + C_WR_RESPONSE_LATENCY, + C_FULL_FLAGS_RST_VAL, + C_USE_FWFT_DATA_COUNT, + C_USE_EMBEDDED_REG ) gen_as ( @@ -648,685 +537,391 @@ endcase endgenerate - //************************************************************************** - // Connect Internal Signals - // (Signals labeled internal_*) - // In the normal case, these signals tie directly to the FIFO's inputs and - // outputs. - // In the case of Preload Latency 0 or 1, there are intermediate - // signals between the internal FIFO and the preload logic. - //************************************************************************** - - - //*********************************************** - // If First-Word Fall-Through, instantiate - // the preload0 (FWFT) module - //*********************************************** - generate - if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin : block2 - - - fifo_generator_v4_3_bhv_ver_preload0 - #( - C_DOUT_RST_VAL, - C_DOUT_WIDTH, - C_HAS_RST, - C_USE_DOUT_RST, - C_VALID_LOW, - C_UNDERFLOW_LOW - ) - fgpl0 - ( - .RD_CLK (RD_CLK_P0_IN), - .RD_RST (RST_P0_IN), - .RD_EN (RD_EN_P0_IN), - .FIFOEMPTY (EMPTY_P0_IN), - .FIFODATA (DATA_P0_IN), - .USERDATA (DATA_P0_OUT), - .USERVALID (VALID_P0_OUT), - .USEREMPTY (EMPTY_P0_OUT), - .USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT), - .USERUNDERFLOW (UNDERFLOW_P0_OUT), - .RAMVALID (RAMVALID_P0_OUT), - .FIFORDEN (RDEN_P0_OUT) - ); - - - //*********************************************** - // Connect inputs to preload (FWFT) module - //*********************************************** - //Connect the RD_CLK of the Preload (FWFT) module to CLK if we - // have a common-clock FIFO, or RD_CLK if we have an - // independent clock FIFO - assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK); - assign RST_P0_IN = RST; - assign RD_EN_P0_IN = RD_EN; - assign EMPTY_P0_IN = EMPTY_FIFO_OUT; - assign DATA_P0_IN = DOUT_FIFO_OUT; - - //*********************************************** - // Connect outputs from preload (FWFT) module - //*********************************************** - assign DOUT = DATA_P0_OUT; - assign VALID = VALID_P0_OUT ; - assign EMPTY = EMPTY_P0_OUT; - assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT; - assign UNDERFLOW = UNDERFLOW_P0_OUT ; - - assign RD_EN_FIFO_IN = RDEN_P0_OUT; - - - //*********************************************** - // Create DATA_COUNT from First-Word Fall-Through - // data count - //*********************************************** - assign DATA_COUNT = (C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ? - DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] : - DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1]; - - //*********************************************** - // Create DATA_COUNT from First-Word Fall-Through - // data count - //*********************************************** - always @ (posedge RD_CLK or posedge RST) begin - if (RST) begin - EMPTY_P0_OUT_Q <= 1; - ALMOSTEMPTY_P0_OUT_Q <= 1; - end else begin - EMPTY_P0_OUT_Q <= EMPTY_P0_OUT; - ALMOSTEMPTY_P0_OUT_Q <= ALMOSTEMPTY_P0_OUT; - end - end //always - - - //*********************************************** - // logic for common-clock data count when FWFT is selected - //*********************************************** - initial begin - SS_FWFT_RD = 1'b0; - DATA_COUNT_FWFT = 0 ; - SS_FWFT_WR = 1'b0 ; - end //initial - - - //*********************************************** - // common-clock data count is implemented as an - // up-down counter. SS_FWFT_WR and SS_FWFT_RD - // are the up/down enables for the counter. - //*********************************************** - always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT) begin - SS_FWFT_RD = RD_EN && VALID_P0_OUT ; - SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT)) ; - end - - //*********************************************** - // common-clock data count is implemented as an - // up-down counter for FWFT. This always block - // calculates the counter. - //*********************************************** - always @ (posedge RD_CLK_P0_IN or posedge RST) begin - if (RST && (C_HAS_RST == 1) ) begin - DATA_COUNT_FWFT <= 0; - end else begin - if (SRST && (C_HAS_SRST == 1) ) begin - DATA_COUNT_FWFT <= 0; - end else begin - case ( {SS_FWFT_WR, SS_FWFT_RD}) - 2'b00: DATA_COUNT_FWFT <= DATA_COUNT_FWFT ; - 2'b01: DATA_COUNT_FWFT <= DATA_COUNT_FWFT - 1 ; - 2'b10: DATA_COUNT_FWFT <= DATA_COUNT_FWFT + 1 ; - 2'b11: DATA_COUNT_FWFT <= DATA_COUNT_FWFT ; - endcase - end //if SRST - end //IF RST - end //always - - - end else begin : block2 //if !(C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) - - //*********************************************** - // If NOT First-Word Fall-Through, wire the outputs - // of the internal _ss or _as FIFO directly to the - // output, and do not instantiate the preload0 - // module. - //*********************************************** - - assign RD_CLK_P0_IN = 0; - assign RST_P0_IN = 0; - assign RD_EN_P0_IN = 0; - - assign RD_EN_FIFO_IN = RD_EN; - - assign DOUT = DOUT_FIFO_OUT; - assign DATA_P0_IN = 0; - assign VALID = VALID_FIFO_OUT; - assign EMPTY = EMPTY_FIFO_OUT; - assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT; - assign EMPTY_P0_IN = 0; - assign UNDERFLOW = UNDERFLOW_FIFO_OUT; - assign DATA_COUNT = DATA_COUNT_FIFO_OUT; - - end //if !(C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) - endgenerate - - - //*********************************************** - // Connect user flags to internal signals - //*********************************************** - - //If we are using extra logic for the FWFT data count, then override the - //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY. - //RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY. - generate - if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ) begin : block3 - assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT); - end //block3 - endgenerate - - //If we are using extra logic for the FWFT data count, then override the - //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY. - //Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY. - generate - if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) ) begin : block30 - assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT); - end //block30 - endgenerate - - //If we are not using extra logic for the FWFT data count, - //then connect RD_DATA_COUNT to the RD_DATA_COUNT from the - //internal FIFO instance - generate - if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31 - assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; - end - endgenerate +//************************************************************************** +// Connect Internal Signals +// (Signals labeled internal_*) +// In the normal case, these signals tie directly to the FIFO's inputs and +// outputs. +// In the case of Preload Latency 0 or 1, there are intermediate +// signals between the internal FIFO and the preload logic. +//************************************************************************** - //Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal - //FIFO instance - generate - if (C_USE_FWFT_DATA_COUNT==1) begin : block4 - assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT; - end - else begin : block4 - assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT; - end - endgenerate +generate +if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) + begin : block2 +fifo_generator_v4_3_bhv_ver_preload0 + #( + C_DOUT_RST_VAL, + C_DOUT_WIDTH, + C_HAS_RST, + C_VALID_LOW, + C_UNDERFLOW_LOW + ) + fgpl0 +( + .RD_CLK (RD_CLK_P0_IN), + .RD_RST (RST_P0_IN), + .RD_EN (RD_EN_P0_IN), + .FIFOEMPTY (EMPTY_P0_IN), + .FIFODATA (DATA_P0_IN), + .USERDATA (DATA_P0_OUT), + .USERVALID (VALID_P0_OUT), + .USEREMPTY (EMPTY_P0_OUT), + .USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT), + .USERUNDERFLOW (UNDERFLOW_P0_OUT), + .RAMVALID (RAMVALID_P0_OUT), + .FIFORDEN (RDEN_P0_OUT) + ); + + assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK); + assign RST_P0_IN = RST; + assign RD_EN_P0_IN = RD_EN; + + assign RD_EN_FIFO_IN = RDEN_P0_OUT; + + assign DOUT = DATA_P0_OUT; + assign DATA_P0_IN = DOUT_FIFO_OUT; + assign VALID = VALID_P0_OUT ; + assign EMPTY = EMPTY_P0_OUT; + assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT; + assign EMPTY_P0_IN = EMPTY_FIFO_OUT; + assign UNDERFLOW = UNDERFLOW_P0_OUT ; + + always @ (posedge RD_CLK or posedge RST) + begin + if (RST) + begin + EMPTY_P0_OUT_Q <= 1; + ALMOSTEMPTY_P0_OUT_Q <= 1; + end + else + begin + EMPTY_P0_OUT_Q <= EMPTY_P0_OUT; + ALMOSTEMPTY_P0_OUT_Q <= ALMOSTEMPTY_P0_OUT; + end + end - //Connect other flags to the internal FIFO instance - assign FULL = FULL_FIFO_OUT; - assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT; - assign WR_ACK = WR_ACK_FIFO_OUT; - assign OVERFLOW = OVERFLOW_FIFO_OUT; - assign PROG_FULL = PROG_FULL_FIFO_OUT; - assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT; + end +else + begin : block2 + assign RD_CLK_P0_IN = 0; + assign RST_P0_IN = 0; + assign RD_EN_P0_IN = 0; - // if an asynchronous FIFO has been selected, display a message that the FIFO - // will not be cycle-accurate in simulation - initial begin - if (C_IMPLEMENTATION_TYPE == 2) begin - $display("Warning in %m at time %t: When using an asynchronous configuration for the FIFO Generator, the behavioral model is not cycle-accurate. You may wish to choose the structural simulation model instead of the behavioral model. This will ensure accurate behavior and latencies during simulation. You can enable this from CORE Generator by selecting Project -> Project Options -> Generation tab -> Structural Simulation. See the FIFO Generator User Guide for more information.", $time); - end else if (C_IMPLEMENTATION_TYPE == 3 || C_IMPLEMENTATION_TYPE == 4) begin - $display("Failure in %m at time %t: Use of Virtex-4 and Virtex-5 built-in FIFO configurations is currently not supported. Please use the structural simulation model. You can enable this from CORE Generator by selecting Project -> Project Options -> Generation tab -> Structural Simulation. See the FIFO Generator User Guide for more information.", $time); - $finish; - end - end //initial + assign RD_EN_FIFO_IN = RD_EN; -endmodule //FIFO_GENERATOR_V4_3 + assign DOUT = DOUT_FIFO_OUT; + assign DATA_P0_IN = 0; + assign VALID = VALID_FIFO_OUT; + assign EMPTY = EMPTY_FIFO_OUT; + assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT; + assign EMPTY_P0_IN = 0; + assign UNDERFLOW = UNDERFLOW_FIFO_OUT; + end +endgenerate -/******************************************************************************* - * Declaration of Independent-Clocks FIFO Module - ******************************************************************************/ -module fifo_generator_v4_3_bhv_ver_as - ( - WR_CLK, RD_CLK, RST, DIN, WR_EN, RD_EN, - PROG_EMPTY_THRESH, PROG_EMPTY_THRESH_ASSERT, PROG_EMPTY_THRESH_NEGATE, - PROG_FULL_THRESH, PROG_FULL_THRESH_ASSERT, PROG_FULL_THRESH_NEGATE, - DOUT, FULL, ALMOST_FULL, WR_ACK, OVERFLOW, EMPTY, ALMOST_EMPTY, VALID, - UNDERFLOW, RD_DATA_COUNT, WR_DATA_COUNT, PROG_FULL, PROG_EMPTY - ); - - /*************************************************************************** - * Declare user parameters and their defaults - ***************************************************************************/ - parameter C_DATA_COUNT_WIDTH = 2; - parameter C_DIN_WIDTH = 8; - parameter C_DOUT_RST_VAL = ""; - parameter C_DOUT_WIDTH = 8; - parameter C_FULL_FLAGS_RST_VAL = 1; - parameter C_HAS_ALMOST_EMPTY = 0; - parameter C_HAS_ALMOST_FULL = 0; - parameter C_HAS_DATA_COUNT = 0; - parameter C_HAS_OVERFLOW = 0; - parameter C_HAS_RD_DATA_COUNT = 0; - parameter C_HAS_RST = 0; - parameter C_HAS_UNDERFLOW = 0; - parameter C_HAS_VALID = 0; - parameter C_HAS_WR_ACK = 0; - parameter C_HAS_WR_DATA_COUNT = 0; - parameter C_IMPLEMENTATION_TYPE = 0; - parameter C_MEMORY_TYPE = 1; - parameter C_OVERFLOW_LOW = 0; - parameter C_PRELOAD_LATENCY = 1; - parameter C_PRELOAD_REGS = 0; - parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0; - parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0; - parameter C_PROG_EMPTY_TYPE = 0; - parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0; - parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0; - parameter C_PROG_FULL_TYPE = 0; - parameter C_RD_DATA_COUNT_WIDTH = 2; - parameter C_RD_DEPTH = 256; - parameter C_RD_PNTR_WIDTH = 8; - parameter C_UNDERFLOW_LOW = 0; - parameter C_USE_DOUT_RST = 0; - parameter C_USE_EMBEDDED_REG = 0; - parameter C_USE_FWFT_DATA_COUNT = 0; - parameter C_VALID_LOW = 0; - parameter C_WR_ACK_LOW = 0; - parameter C_WR_DATA_COUNT_WIDTH = 2; - parameter C_WR_DEPTH = 256; - parameter C_WR_PNTR_WIDTH = 8; - - /*************************************************************************** - * Declare Input and Output Ports - ***************************************************************************/ - input [C_DIN_WIDTH-1:0] DIN; - input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; - input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; - input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; - input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; - input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; - input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; - input RD_CLK; - input RD_EN; - input RST; - input WR_CLK; - input WR_EN; - output ALMOST_EMPTY; - output ALMOST_FULL; - output [C_DOUT_WIDTH-1:0] DOUT; - output EMPTY; - output FULL; - output OVERFLOW; - output PROG_EMPTY; - output PROG_FULL; - output VALID; - output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT; - output UNDERFLOW; - output WR_ACK; - output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT; - - /************************************************************************* - * Declare the type for each Input/Output port, and connect each I/O - * to it's associated internal signal in the behavioral model - * - * The values for the outputs are assigned in assign statements immediately - * following wire, parameter, and function declarations in this code. - *************************************************************************/ - //Inputs - wire [C_DIN_WIDTH-1:0] DIN; - wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; - wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; - wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; - wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; - wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; - wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; - wire RD_CLK; - wire RD_EN; - wire RST; - wire WR_CLK; - wire WR_EN; - - //Outputs - wire ALMOST_EMPTY; - wire ALMOST_FULL; - wire [C_DOUT_WIDTH-1:0] DOUT; - wire EMPTY; - wire FULL; - wire OVERFLOW; - wire PROG_EMPTY; - wire PROG_FULL; - wire VALID; - wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT; - wire UNDERFLOW; - wire WR_ACK; - wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT; - - - /*************************************************************************** - * Parameters used as constants - **************************************************************************/ - //When RST is present, set FULL reset value to '1'. - //If core has no RST, make sure FULL powers-on as '0'. - parameter C_DEPTH_RATIO_WR = - (C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1; - parameter C_DEPTH_RATIO_RD = - (C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1; - parameter C_FIFO_WR_DEPTH = C_WR_DEPTH - 1; - parameter C_FIFO_RD_DEPTH = C_RD_DEPTH - 1; +//Connect Data Count Signals +generate +if (C_USE_FWFT_DATA_COUNT==1) begin : block3 + assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT); +end +else begin : block3 + assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; +end +endgenerate - - // EXTRA_WORDS = 2 * C_DEPTH_RATIO_WR / C_DEPTH_RATIO_RD - // WR_DEPTH : RD_DEPTH = 1:2 => EXTRA_WORDS = 1 - // WR_DEPTH : RD_DEPTH = 1:4 => EXTRA_WORDS = 1 (rounded to ceiling) - // WR_DEPTH : RD_DEPTH = 2:1 => EXTRA_WORDS = 4 - // WR_DEPTH : RD_DEPTH = 4:1 => EXTRA_WORDS = 8 - parameter EXTRA_WORDS = (C_DEPTH_RATIO_RD > 1)? 1:(2 * C_DEPTH_RATIO_WR); - // extra_words_dc = 2 * C_DEPTH_RATIO_WR / C_DEPTH_RATIO_RD - // C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC - // -----------------|------------------|-----------------|--------------- - // 1 | 8 | C_RD_PNTR_WIDTH | 0 - // 1 | 4 | C_RD_PNTR_WIDTH | 0 - // 1 | 2 | C_RD_PNTR_WIDTH | 1 - // 1 | 1 | C_WR_PNTR_WIDTH | 2 - // 2 | 1 | C_WR_PNTR_WIDTH | 4 - // 4 | 1 | C_WR_PNTR_WIDTH | 8 - // 8 | 1 | C_WR_PNTR_WIDTH | 16 - parameter EXTRA_WORDS_DC = ( C_DEPTH_RATIO_RD > 2)? - 0:(2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); - +generate +if (C_USE_FWFT_DATA_COUNT==1) begin : block4 + assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT; +end +else begin : block4 + assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT; +end +endgenerate - parameter [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH; - - parameter [31:0] log2_reads_per_write = log2_val(reads_per_write); - - parameter [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH; - - parameter [31:0] log2_writes_per_read = log2_val(writes_per_read); + assign FULL = FULL_FIFO_OUT; + assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT; + assign WR_ACK = WR_ACK_FIFO_OUT; + assign OVERFLOW = OVERFLOW_FIFO_OUT; + assign PROG_FULL = PROG_FULL_FIFO_OUT; + assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT; + assign DATA_COUNT = DATA_COUNT_FIFO_OUT; + + + // if an asynchronous FIFO has been selected, display a message that the FIFO + // will not be cycle-accurate in simulation + initial begin + //if (C_IMPLEMENTATION_TYPE == 1) begin //bug in v3.1 + if (C_IMPLEMENTATION_TYPE == 2) begin //fixed in v3.2 (IP2_Im) + $display("Warning in %m at time %t: When using an asynchronous configuration for the FIFO Generator, the behavioral model is not cycle-accurate. You may wish to choose the structural simulation model instead of the behavioral model. This will ensure accurate behavior and latencies during simulation. You can enable this from CORE Generator by selecting Project -> Project Options -> Generation tab -> Structural Simulation. See the FIFO Generator User Guide for more information.", $time); + end else if (C_IMPLEMENTATION_TYPE == 3 || C_IMPLEMENTATION_TYPE == 4) begin + $display("Failure in %m at time %t: Use of Virtex-4 and Virtex-5 built-in FIFO configurations is currently not supported. Please use the structural simulation model. You can enable this from CORE Generator by selecting Project -> Project Options -> Generation tab -> Structural Simulation. See the FIFO Generator User Guide for more information.", $time); + $finish; + end + end - /************************************************************************** - * FIFO Contents Tracking and Data Count Calculations - *************************************************************************/ - - //Memory which will be used to simulate a FIFO - reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; - - //The amount of data stored in the FIFO at any time is given - // by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK - // domain. - //num_wr_bits is calculated by considering the total words in the FIFO, - // and the state of the read pointer (which may not have yet crossed clock - // domains.) - //num_rd_bits is calculated by considering the total words in the FIFO, - // and the state of the write pointer (which may not have yet crossed clock - // domains.) - reg [31:0] num_wr_bits; - reg [31:0] num_rd_bits; - reg [31:0] next_num_wr_bits; - reg [31:0] next_num_rd_bits; - - //The write pointer - tracks write operations - // (Works opposite to core: wr_ptr is a DOWN counter) - reg [31:0] wr_ptr; - - //The read pointer - tracks read operations - // (Works opposite to core: rd_ptr is a DOWN counter) - reg [31:0] rd_ptr; - - //Pointers passed into opposite clock domain - reg [31:0] wr_ptr_rdclk; - reg [31:0] wr_ptr_rdclk_next; - reg [31:0] rd_ptr_wrclk; - reg [31:0] rd_ptr_wrclk_next; - - //Amount of data stored in the FIFO scaled to the narrowest (deepest) port - // (Do not include data in FWFT stages) - //Used to calculate PROG_EMPTY. - wire [31:0] num_read_words_pe = - num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR); - - //Amount of data stored in the FIFO scaled to the narrowest (deepest) port - // (Do not include data in FWFT stages) - //Used to calculate PROG_FULL. - wire [31:0] num_write_words_pf = - num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD); - - /************************** - * Read Data Count - *************************/ - - /* ORIGINAL CODE - Removed 10/24/07 jeo - //Amount of data stored in the FIFO scaled to read words - // (Do not include data in FWFT stages) - //Not used in the code. - wire [31:0] num_read_words_dc = num_rd_bits/C_DOUT_WIDTH; - - //Amount of data stored in the FIFO scaled to read words - // (Include data in FWFT stages) - //Not used in the code. - wire [31:0] num_read_words_fwft_dc = (num_rd_bits/C_DOUT_WIDTH+2); - - //Not used in the code. - wire [31:0] num_read_words_dc_i = - C_USE_FWFT_DATA_COUNT ? num_read_words_fwft_dc : num_read_words_dc; +endmodule //fifo_generator_v4_3_bhv_ver - //Not used in the code. - wire [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized = - num_read_words_dc_i[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH]; - - //Not used in the code. - wire [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_fwft = - num_read_words_dc_i[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1]; - //Used to calculate ideal_rd_count (RD_DATA_COUNT) - wire [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i = - C_USE_FWFT_DATA_COUNT ? num_read_words_sized_fwft : num_read_words_sized; - */ - reg [31:0] num_read_words_dc; - reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i; - - always @(num_rd_bits) begin - if (C_USE_FWFT_DATA_COUNT) begin - - //If using extra logic for FWFT Data Counts, - // then scale FIFO contents to read domain, - // and add two read words for FWFT stages - //This value is only a temporary value and not used in the code. - num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2); - - //Trim the read words for use with RD_DATA_COUNT - num_read_words_sized_i = - num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1]; - - end else begin - - //If not using extra logic for FWFT Data Counts, - // then scale FIFO contents to read domain. - //This value is only a temporary value and not used in the code. - num_read_words_dc = num_rd_bits/C_DOUT_WIDTH; - - //Trim the read words for use with RD_DATA_COUNT - num_read_words_sized_i = - num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH]; - - end //if (C_USE_FWFT_DATA_COUNT) - end //always +/******************************************************************************* + * Declaration of asynchronous FIFO Module + ******************************************************************************/ +module fifo_generator_v4_3_bhv_ver_as + ( + WR_CLK, RD_CLK, RST, DIN, WR_EN, RD_EN, + PROG_EMPTY_THRESH, PROG_EMPTY_THRESH_ASSERT, PROG_EMPTY_THRESH_NEGATE, + PROG_FULL_THRESH, PROG_FULL_THRESH_ASSERT, PROG_FULL_THRESH_NEGATE, + DOUT, FULL, ALMOST_FULL, WR_ACK, OVERFLOW, EMPTY, ALMOST_EMPTY, VALID, + UNDERFLOW, RD_DATA_COUNT, WR_DATA_COUNT, PROG_FULL, PROG_EMPTY + ); + /***************************************************************************** + * Declare user parameters and their defaults + *****************************************************************************/ + parameter C_COMMON_CLOCK = 0; + parameter C_COUNT_TYPE = 0; + parameter C_DATA_COUNT_WIDTH = 2; + parameter C_DEFAULT_VALUE = ""; + parameter C_DIN_WIDTH = 8; + parameter C_DOUT_RST_VAL = ""; + parameter C_DOUT_WIDTH = 8; + parameter C_ENABLE_RLOCS = 0; + parameter C_FAMILY = "virtex2"; //Not allowed in Verilog model + parameter C_HAS_ALMOST_EMPTY = 0; + parameter C_HAS_ALMOST_FULL = 0; + parameter C_HAS_BACKUP = 0; + parameter C_HAS_DATA_COUNT = 0; + parameter C_HAS_MEMINIT_FILE = 0; + parameter C_HAS_OVERFLOW = 0; + parameter C_HAS_RD_DATA_COUNT = 0; + parameter C_HAS_RD_RST = 0; + parameter C_HAS_RST = 0; + parameter C_HAS_UNDERFLOW = 0; + parameter C_HAS_VALID = 0; + parameter C_HAS_WR_ACK = 0; + parameter C_HAS_WR_DATA_COUNT = 0; + parameter C_HAS_WR_RST = 0; + parameter C_IMPLEMENTATION_TYPE = 0; + parameter C_INIT_WR_PNTR_VAL = 0; + parameter C_MEMORY_TYPE = 1; + parameter C_MIF_FILE_NAME = ""; + parameter C_OPTIMIZATION_MODE = 0; + parameter C_OVERFLOW_LOW = 0; + parameter C_PRELOAD_LATENCY = 1; + parameter C_PRELOAD_REGS = 0; + parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0; + parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0; + parameter C_PROG_EMPTY_TYPE = 0; + parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0; + parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0; + parameter C_PROG_FULL_TYPE = 0; + parameter C_RD_DATA_COUNT_WIDTH = 2; + parameter C_RD_DEPTH = 256; + parameter C_RD_PNTR_WIDTH = 8; + parameter C_UNDERFLOW_LOW = 0; + parameter C_VALID_LOW = 0; + parameter C_WR_ACK_LOW = 0; + parameter C_WR_DATA_COUNT_WIDTH = 2; + parameter C_WR_DEPTH = 256; + parameter C_WR_PNTR_WIDTH = 8; + parameter C_WR_RESPONSE_LATENCY = 1; + parameter C_FULL_FLAGS_RST_VAL = 1; + parameter C_USE_FWFT_DATA_COUNT = 0; + parameter C_USE_EMBEDDED_REG = 0; - - - - /************************** - * Write Data Count - *************************/ - /* ORIGINAL CODE - Removed 10/24/07 jeo - - //Calculate the Data Count value for the number of write words, when not - // using First-Word Fall-Through with extra logic for Data Counts. This - // calculates only the number of words in the internal FIFO. - //The expression (((A-1)/B))+1 divides A/B, but takes the - // ceiling of the result. - //When num_wr_bits==0, set the result manually to prevent division errors. - wire [31:0] num_write_words_dc = - (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH) + 1; - - //Calculate the Data Count value for the number of write words, when using - // First-Word Fall-Through with extra logic for Data Counts. This takes into - // consideration the number of words that are expected to be stored in the - // FWFT register stages (it always assumes they are filled). - //The expression (((A-1)/B))+1 divides A/B, but takes the - // ceiling of the result. - //When num_wr_bits==0, set the result manually to prevent division errors. - //EXTRA_WORDS_DC is the number of words added to write_words due to FWFT. - wire [31:0] num_write_words_fwft_dc = - (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH) + 1) + EXTRA_WORDS_DC ; - - wire [31:0] num_write_words_dc_i = - C_USE_FWFT_DATA_COUNT ? num_write_words_fwft_dc : num_write_words_dc; - - - - wire [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized = - num_write_words_dc_i[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH]; - - wire [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_fwft = - num_write_words_dc_i[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1]; + /***************************************************************************** + * Declare Input and Output Ports + *****************************************************************************/ + input [C_DIN_WIDTH-1:0] DIN; + input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; + input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; + input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; + input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; + input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; + input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; + input RD_CLK; + input RD_EN; + input RST; + input WR_CLK; + input WR_EN; + output ALMOST_EMPTY; + output ALMOST_FULL; + output [C_DOUT_WIDTH-1:0] DOUT; + output EMPTY; + output FULL; + output OVERFLOW; + output PROG_EMPTY; + output PROG_FULL; + output VALID; + output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT; + output UNDERFLOW; + output WR_ACK; + output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT; - wire [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i = C_USE_FWFT_DATA_COUNT? - num_write_words_sized_fwft:num_write_words_sized; - - */ + /******************************************************************************* + * Input and output register declarations + ******************************************************************************/ + /******************************************************************************* + * Parameters used as constants + ******************************************************************************/ + //When RST is present, set FULL reset value to '1'. + //If core has no RST, make sure FULL powers-on as '0'. + parameter C_DEPTH_RATIO_WR = + (C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1; + parameter C_DEPTH_RATIO_RD = + (C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1; + parameter C_FIFO_WR_DEPTH = + (C_COMMON_CLOCK) ? + C_WR_DEPTH : C_WR_DEPTH - 1; + parameter C_FIFO_RD_DEPTH = + (C_COMMON_CLOCK) ? + C_RD_DEPTH : C_RD_DEPTH - 1; - reg [31:0] num_write_words_dc; - reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i; - - always @(num_wr_bits) begin - if (C_USE_FWFT_DATA_COUNT) begin - - //Calculate the Data Count value for the number of write words, - // when using First-Word Fall-Through with extra logic for Data - // Counts. This takes into consideration the number of words that - // are expected to be stored in the FWFT register stages (it always - // assumes they are filled). - //This value is scaled to the Write Domain. - //The expression (((A-1)/B))+1 divides A/B, but takes the - // ceiling of the result. - //When num_wr_bits==0, set the result manually to prevent - // division errors. - //EXTRA_WORDS_DC is the number of words added to write_words - // due to FWFT. - //This value is only a temporary value and not used in the code. - num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ; - - //Trim the write words for use with WR_DATA_COUNT - num_write_words_sized_i = - num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1]; - - end else begin - - //Calculate the Data Count value for the number of write words, when NOT - // using First-Word Fall-Through with extra logic for Data Counts. This - // calculates only the number of words in the internal FIFO. - //The expression (((A-1)/B))+1 divides A/B, but takes the - // ceiling of the result. - //This value is scaled to the Write Domain. - //When num_wr_bits==0, set the result manually to prevent - // division errors. - //This value is only a temporary value and not used in the code. - num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1; - - //Trim the read words for use with RD_DATA_COUNT - num_write_words_sized_i = - num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH]; - - end //if (C_USE_FWFT_DATA_COUNT) - end //always + + // EXTRA_WORDS = 2 * C_DEPTH_RATIO_WR / C_DEPTH_RATIO_RD + // WR_DEPTH : RD_DEPTH = 1:2 => EXTRA_WORDS = 1 + // WR_DEPTH : RD_DEPTH = 1:4 => EXTRA_WORDS = 1 (rounded to ceiling) + // WR_DEPTH : RD_DEPTH = 2:1 => EXTRA_WORDS = 4 + // WR_DEPTH : RD_DEPTH = 4:1 => EXTRA_WORDS = 8 + parameter EXTRA_WORDS = (C_DEPTH_RATIO_RD > 1)? 1:(2 * C_DEPTH_RATIO_WR); + // extra_words_dc = 2 * C_DEPTH_RATIO_WR / C_DEPTH_RATIO_RD + // C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC + // -----------------|------------------|-----------------|--------------- + // 1 | 8 | C_RD_PNTR_WIDTH | 2 + // 1 | 4 | C_RD_PNTR_WIDTH | 2 + // 1 | 2 | C_RD_PNTR_WIDTH | 2 + // 1 | 1 | C_WR_PNTR_WIDTH | 2 + // 2 | 1 | C_WR_PNTR_WIDTH | 4 + // 4 | 1 | C_WR_PNTR_WIDTH | 8 + // 8 | 1 | C_WR_PNTR_WIDTH | 16 + parameter EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR)? + 2:(2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); + + + //Memory which will be used to simulate a FIFO + reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; + reg [31:0] num_wr_bits; + reg [31:0] num_rd_bits; + reg [31:0] next_num_wr_bits; + reg [31:0] next_num_rd_bits; + reg [31:0] wr_ptr; + reg [31:0] rd_ptr; + reg [31:0] wr_ptr_rdclk; + reg [31:0] wr_ptr_rdclk_next; + reg [31:0] rd_ptr_wrclk; + reg [31:0] rd_ptr_wrclk_next; + wire [31:0] num_read_words = num_rd_bits/C_DOUT_WIDTH; + wire [31:0] num_read_words_dc_i; + wire [31:0] num_read_words_dc = num_rd_bits/C_DOUT_WIDTH; + wire [31:0] num_read_words_fwft_dc = (num_rd_bits/C_DOUT_WIDTH+2); + wire [31:0] num_read_words_pe = + num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR); + wire [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i; + wire [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized + = num_read_words_dc_i[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH]; + wire [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_fwft + = num_read_words_dc_i[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1]; + wire [31:0] num_write_words = num_wr_bits/C_DIN_WIDTH; + wire [31:0] num_write_words_dc_i; + wire [31:0] num_write_words_dc = 1+(num_wr_bits-1)/C_DIN_WIDTH;//roof of num_wr_bits/C_DIN_WIDTH + wire [31:0] num_write_words_fwft_dc = + (num_wr_bits/C_DIN_WIDTH*C_DEPTH_RATIO_RD+2*C_DEPTH_RATIO_WR)/C_DEPTH_RATIO_RD; + wire [31:0] num_write_words_pf = + num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD); + wire [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i; + wire [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized + = num_write_words_dc_i[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH]; + wire [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_fwft + = num_write_words_dc_i[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1]; + wire [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH; + wire [31:0] log2_reads_per_write = log2_val(reads_per_write); + wire [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH; + wire [31:0] log2_writes_per_read = log2_val(writes_per_read); + + /******************************************************************************* + * Internal Registers and wires + ******************************************************************************/ + wire wr_ack_i; + wire overflow_i; + wire underflow_i; + wire valid_i; + wire valid_out; + reg valid_d1; + /******************************************************************************* + * Internal registers and wires for internal reset logics + ******************************************************************************/ + reg rd_rst_asreg =0; + reg rd_rst_asreg_d1 =0; + reg rd_rst_asreg_d2 =0; + reg rd_rst_reg =0; + reg rd_rst_d1 =0; + reg wr_rst_asreg =0; + reg wr_rst_asreg_d1 =0; + reg wr_rst_asreg_d2 =0; + reg wr_rst_reg =0; + reg wr_rst_d1 =0; + wire rd_rst_comb; + wire rd_rst_i; + wire wr_rst_comb; + wire wr_rst_i; + + + + //Special ideal FIFO signals + reg [C_DOUT_WIDTH-1:0] ideal_dout; + wire [C_DOUT_WIDTH-1:0] ideal_dout_out; + reg [C_DOUT_WIDTH-1:0] ideal_dout_d1; + reg ideal_wr_ack; + reg ideal_valid; + reg ideal_overflow; + reg ideal_underflow; + reg ideal_full; + reg ideal_empty; + reg ideal_almost_full; + reg ideal_almost_empty; + reg ideal_prog_full; + reg ideal_prog_empty; + + //MSBs of the counts + reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count; + reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count; + + //user specified value for reseting the size of the fifo + reg [C_DOUT_WIDTH-1:0] dout_reset_val; + + //temporary registers for WR_RESPONSE_LATENCY feature + + integer tmp_wr_listsize; + integer tmp_rd_listsize; + + //Signal for registered version of prog full and empty + reg prog_full_d; + reg prog_empty_d; + + //Threshold values for Programmable Flags + integer prog_empty_actual_thresh_assert; + integer prog_empty_actual_thresh_negate; + integer prog_full_actual_thresh_assert; + integer prog_full_actual_thresh_negate; - - - /*************************************************************************** - * Internal registers and wires - **************************************************************************/ - - //Temporary signals used for calculating the model's outputs. These - //are only used in the assign statements immediately following wire, - //parameter, and function declarations. - wire [C_DOUT_WIDTH-1:0] ideal_dout_out; - wire valid_i; - wire valid_out; - wire underflow_i; - - //Ideal FIFO signals. These are the raw output of the behavioral model, - //which behaves like an ideal FIFO. - reg [C_DOUT_WIDTH-1:0] ideal_dout; - reg [C_DOUT_WIDTH-1:0] ideal_dout_d1; - reg ideal_wr_ack; - reg ideal_valid; - reg ideal_overflow; - reg ideal_underflow; - reg ideal_full; - reg ideal_empty; - reg ideal_almost_full; - reg ideal_almost_empty; - reg ideal_prog_full; - reg ideal_prog_empty; - reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count; - reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count; - - //Assorted reg values for delayed versions of signals - reg valid_d1; - reg prog_full_d; - reg prog_empty_d; - - //Internal reset signals - reg rd_rst_asreg =0; - reg rd_rst_asreg_d1 =0; - reg rd_rst_asreg_d2 =0; - reg rd_rst_reg =0; - reg rd_rst_d1 =0; - reg wr_rst_asreg =0; - reg wr_rst_asreg_d1 =0; - reg wr_rst_asreg_d2 =0; - reg wr_rst_reg =0; - reg wr_rst_d1 =0; - - wire rd_rst_comb; - wire rd_rst_i; - wire wr_rst_comb; - wire wr_rst_i; - - - //user specified value for reseting the size of the fifo - reg [C_DOUT_WIDTH-1:0] dout_reset_val; - - //temporary registers for WR_RESPONSE_LATENCY feature - - integer tmp_wr_listsize; - integer tmp_rd_listsize; - - //Signal for registered version of prog full and empty - - //Threshold values for Programmable Flags - integer prog_empty_actual_thresh_assert; - integer prog_empty_actual_thresh_negate; - integer prog_full_actual_thresh_assert; - integer prog_full_actual_thresh_negate; - /**************************************************************************** * Function Declarations ***************************************************************************/ - /************************************************************************** - * write_fifo - * This task writes a word to the FIFO memory and updates the - * write pointer. - * FIFO size is relative to write domain. - ***************************************************************************/ task write_fifo; begin memory[wr_ptr] <= DIN; - // (Works opposite to core: wr_ptr is a DOWN counter) if (wr_ptr == 0) begin wr_ptr <= C_WR_DEPTH - 1; end else begin @@ -1335,12 +930,6 @@ module fifo_generator_v4_3_bhv_ver_as end endtask // write_fifo - /************************************************************************** - * read_fifo - * This task reads a word from the FIFO memory and updates the read - * pointer. It's output is the ideal_dout bus. - * FIFO size is relative to write domain. - ***************************************************************************/ task read_fifo; integer i; reg [C_DOUT_WIDTH-1:0] tmp_dout; @@ -1356,8 +945,6 @@ module fifo_generator_v4_3_bhv_ver_as for (i = writes_per_read - 1; i >= 0; i = i - 1) begin tmp_dout = tmp_dout << C_DIN_WIDTH; tmp_dout = tmp_dout | memory[tmp_rd_ptr]; - - // (Works opposite to core: rd_ptr is a DOWN counter) if (tmp_rd_ptr == 0) begin tmp_rd_ptr = C_WR_DEPTH - 1; end else begin @@ -1377,8 +964,6 @@ module fifo_generator_v4_3_bhv_ver_as tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH); end ideal_dout <= tmp_dout; - - // (Works opposite to core: rd_ptr is a DOWN counter) if (rd_ptr == 0) begin rd_ptr <= C_RD_DEPTH - 1; end else begin @@ -1387,7 +972,7 @@ module fifo_generator_v4_3_bhv_ver_as end endtask - /************************************************************************** + /**************************************************************************** * log2_val * Returns the 'log2' value for the input value for the supported ratios ***************************************************************************/ @@ -1405,7 +990,7 @@ module fifo_generator_v4_3_bhv_ver_as end endfunction - /*********************************************************************** + /************************************************************************* * hexstr_conv * Converts a string of type hex to a binary value (for C_DOUT_RST_VAL) ***********************************************************************/ @@ -1469,7 +1054,8 @@ module fifo_generator_v4_3_bhv_ver_as /************************************************************************* * Initialize Signals for clean power-on simulation *************************************************************************/ - initial begin + initial + begin num_wr_bits = 0; num_rd_bits = 0; next_num_wr_bits = 0; @@ -1480,92 +1066,97 @@ module fifo_generator_v4_3_bhv_ver_as wr_ptr_rdclk = wr_ptr; dout_reset_val = hexstr_conv(C_DOUT_RST_VAL); ideal_dout = dout_reset_val; - ideal_dout_d1 = 0 ; ideal_wr_ack = 1'b0; ideal_valid = 1'b0; - valid_d1 = 1'b0; ideal_overflow = 1'b0; ideal_underflow = 1'b0; - ideal_full = 1'b0; + //Modified the start-up value of FULL to '0' in v3.2 (IP2_Im) + //ideal_full = C_FULL_RESET_VAL; //was in v3.1 + ideal_full = 1'b0; //v3.2 ideal_empty = 1'b1; - ideal_almost_full = 1'b0; + //Modified the start-up value of ALMOST_FULL to '0' in v3.2 (IP2_Im) + //ideal_almost_full = C_ALMOST_FULL_RESET_VAL; //was in v3.1 + ideal_almost_full = 1'b0; //v3.2 ideal_almost_empty = 1'b1; ideal_wr_count = 0; ideal_rd_count = 0; - ideal_prog_full = 1'b0; + //Modified the start-up value of PROG_FULL to '0' in v3.2 (IP2_Im) + //ideal_prog_full = C_PROG_FULL_RESET_VAL; //was in v3.1 + ideal_prog_full = 1'b0; //v3.2 ideal_prog_empty = 1'b1; - prog_full_d = 1'b0; + //Modified the start-up value of PROG_FULL to '0' in v3.2 (IP2_Im) + //Therefore, prog_full_d has to start-up at '0' too + //prog_full_d = C_PROG_FULL_RESET_VAL; //was in v3.1 + prog_full_d = 1'b0; //v3.2 prog_empty_d = 1'b1; end + /************************************************************************* - * Connect the module inputs and outputs to the internal signals of the - * behavioral model. + * Assign Internal ideal signals to output ports *************************************************************************/ - //Inputs - /* - wire [C_DIN_WIDTH-1:0] DIN; - wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; - wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; - wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; - wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; - wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; - wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; - wire RD_CLK; - wire RD_EN; - wire RST; - wire WR_CLK; - wire WR_EN; - */ - - //Outputs - assign ALMOST_EMPTY = ideal_almost_empty; - assign ALMOST_FULL = ideal_almost_full; - - //Dout may change behavior based on latency - assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 && + assign ideal_dout_out= (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? ideal_dout_d1: ideal_dout; - assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out; - - assign EMPTY = ideal_empty; - assign FULL = ideal_full; - - //Overflow may be active-low - assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW; - - assign PROG_EMPTY = ideal_prog_empty; - assign PROG_FULL = ideal_prog_full; - - //Valid may change behavior based on latency or active-low - assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid; - assign valid_out = (C_PRELOAD_LATENCY==2 && - (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? - valid_d1: valid_i; - assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW; - - assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = ideal_rd_count; - - //Underflow may change behavior based on latency or active-low - assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow; - assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW; + assign DOUT = ideal_dout_out; + assign FULL = ideal_full; + assign EMPTY = ideal_empty; + assign ALMOST_FULL = ideal_almost_full; + assign ALMOST_EMPTY = ideal_almost_empty; + assign num_write_words_sized_i=C_USE_FWFT_DATA_COUNT? + num_write_words_sized_fwft:num_write_words_sized; + assign num_read_words_sized_i=C_USE_FWFT_DATA_COUNT? + num_read_words_sized_fwft:num_read_words_sized; + assign num_write_words_dc_i = C_USE_FWFT_DATA_COUNT? + num_write_words_fwft_dc: num_write_words_dc; + assign num_read_words_dc_i = C_USE_FWFT_DATA_COUNT? + num_read_words_fwft_dc: num_read_words_dc; + assign WR_DATA_COUNT = ideal_wr_count; + assign RD_DATA_COUNT = ideal_rd_count; + assign PROG_FULL = ideal_prog_full; + assign PROG_EMPTY = ideal_prog_empty; - //Write acknowledge may be active low - assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW; - - assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = ideal_wr_count; + //Handshaking signals can be active low, depending on _LOW parameters + assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid; + assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW; + assign valid_out = (C_PRELOAD_LATENCY==2 && + (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? + valid_d1: valid_i; + assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow; + assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW; + assign WR_ACK = wr_ack_i ? !C_WR_ACK_LOW : C_WR_ACK_LOW; + assign wr_ack_i = (C_WR_RESPONSE_LATENCY==1) ? ideal_wr_ack : + (WR_EN & !FULL); + assign OVERFLOW = overflow_i ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW; + assign overflow_i = (C_WR_RESPONSE_LATENCY==1) ? ideal_overflow : + (WR_EN & FULL); - /************************************************************************** - * Internal reset logic - **************************************************************************/ + /******************************************************************************* + * Internal reset logics + ******************************************************************************/ assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg; assign rd_rst_comb = !rd_rst_asreg_d2 && rd_rst_asreg; assign wr_rst_i = C_HAS_RST ? wr_rst_reg : 0; assign rd_rst_i = C_HAS_RST ? rd_rst_reg : 0; + always @(posedge RD_CLK or posedge rd_rst_i) begin + if (rd_rst_i == 1'b1) begin + valid_d1 <= 1'b0; + end else begin + valid_d1 <= valid_i; + end + end + always @(posedge RD_CLK or posedge rd_rst_i) begin + if (rd_rst_i == 1'b1) begin + ideal_dout_d1 <= dout_reset_val; + end else begin + ideal_dout_d1 <= ideal_dout; + end + end + always @(posedge WR_CLK or posedge RST) begin if (RST == 1'b1) begin wr_rst_asreg <= 1'b1; @@ -1623,42 +1214,18 @@ module fifo_generator_v4_3_bhv_ver_as end end - /************************************************************************** - * Assorted registers for delayed versions of signals - **************************************************************************/ - //Capture delayed version of valid - always @(posedge RD_CLK or posedge rd_rst_i) begin - if (rd_rst_i == 1'b1) begin - valid_d1 <= 1'b0; - end else begin - valid_d1 <= valid_i; - end - end - - //Capture delayed version of dout - always @(posedge RD_CLK or posedge rd_rst_i) begin - if (rd_rst_i == 1'b1 && C_USE_DOUT_RST == 1) begin - ideal_dout_d1 <= dout_reset_val; - end else begin - ideal_dout_d1 <= ideal_dout; - end - end - - /************************************************************************** - * Overflow and Underflow Flag calculation - * (handled separately because they don't support rst) - **************************************************************************/ + //Generate overflow and underflow flags seperately + //because they don't support async rst always @(posedge WR_CLK) begin ideal_overflow <= WR_EN & ideal_full; end - always @(posedge RD_CLK) begin ideal_underflow <= ideal_empty & RD_EN; end - /************************************************************************** - * Write Domain Logic - **************************************************************************/ + /******************************************************************************* + * Write and Read Logics + ******************************************************************************/ always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_w /****** Reset fifo (case 1)***************************************/ @@ -1710,9 +1277,8 @@ module fifo_generator_v4_3_bhv_ver_as ideal_wr_count <= num_write_words_sized_i; //If the FIFO is one from full, but reporting full - end else - if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == - C_FIFO_WR_DEPTH-1) begin + end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == + C_FIFO_WR_DEPTH-1) begin //No change to FIFO //Write not successful @@ -1726,9 +1292,8 @@ module fifo_generator_v4_3_bhv_ver_as //If the FIFO is completely empty, but it is // reporting FULL for some reason (like reset) - end else - if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <= - C_FIFO_WR_DEPTH-2) begin + end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <= + C_FIFO_WR_DEPTH-2) begin //No change to FIFO //Write not successful @@ -1757,9 +1322,8 @@ module fifo_generator_v4_3_bhv_ver_as ideal_wr_count <= num_write_words_sized_i; //If the FIFO is one from full - end else - if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == - C_FIFO_WR_DEPTH-1) begin + end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == + C_FIFO_WR_DEPTH-1) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; @@ -1774,9 +1338,8 @@ module fifo_generator_v4_3_bhv_ver_as ideal_wr_count <= num_write_words_sized_i; //If the FIFO is 2 from full - end else - if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == - C_FIFO_WR_DEPTH-2) begin + end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == + C_FIFO_WR_DEPTH-2) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; @@ -1791,9 +1354,8 @@ module fifo_generator_v4_3_bhv_ver_as ideal_wr_count <= num_write_words_sized_i; //If the FIFO is not close to being full - end else - if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD < - C_FIFO_WR_DEPTH-2) begin + end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD < + C_FIFO_WR_DEPTH-2) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; @@ -1905,10 +1467,6 @@ module fifo_generator_v4_3_bhv_ver_as end //wr_rst_i==0 end // write always - - /************************************************************************** - * Read Domain Logic - **************************************************************************/ always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_r /****** Reset fifo (case 1)***************************************/ @@ -1917,11 +1475,7 @@ module fifo_generator_v4_3_bhv_ver_as next_num_rd_bits <= 0; rd_ptr <= C_RD_DEPTH -1; wr_ptr_rdclk <= C_WR_DEPTH -1; - if (C_USE_DOUT_RST == 1) begin ideal_dout <= dout_reset_val; - end else begin - ideal_dout <= ideal_dout; - end ideal_valid <= 1'b0; ideal_empty <= 1'b1; ideal_almost_empty <= 1'b1; @@ -2365,183 +1919,147 @@ endmodule // fifo_generator_v4_3_bhv_ver_as ******************************************************************************/ module fifo_generator_v4_3_bhv_ver_ss ( - CLK, RST, SRST, DIN, WR_EN, RD_EN, - PROG_FULL_THRESH, PROG_FULL_THRESH_ASSERT, PROG_FULL_THRESH_NEGATE, - PROG_EMPTY_THRESH, PROG_EMPTY_THRESH_ASSERT, PROG_EMPTY_THRESH_NEGATE, - DOUT, FULL, ALMOST_FULL, WR_ACK, OVERFLOW, EMPTY, - ALMOST_EMPTY, VALID, UNDERFLOW, DATA_COUNT, - PROG_FULL, PROG_EMPTY + CLK, RST, SRST, DIN, WR_EN, RD_EN, + PROG_FULL_THRESH, PROG_FULL_THRESH_ASSERT, PROG_FULL_THRESH_NEGATE, + PROG_EMPTY_THRESH, PROG_EMPTY_THRESH_ASSERT, PROG_EMPTY_THRESH_NEGATE, + DOUT, FULL, ALMOST_FULL, WR_ACK, OVERFLOW, EMPTY, + ALMOST_EMPTY, VALID, UNDERFLOW, DATA_COUNT, + PROG_FULL, PROG_EMPTY ); - - /************************************************************************** - * Declare user parameters and their defaults - *************************************************************************/ - parameter C_DATA_COUNT_WIDTH = 2; - parameter C_DIN_WIDTH = 8; - parameter C_DOUT_RST_VAL = ""; - parameter C_DOUT_WIDTH = 8; - parameter C_FULL_FLAGS_RST_VAL = 1; - parameter C_HAS_ALMOST_EMPTY = 0; - parameter C_HAS_ALMOST_FULL = 0; - parameter C_HAS_DATA_COUNT = 0; - parameter C_HAS_OVERFLOW = 0; - parameter C_HAS_RD_DATA_COUNT = 0; - parameter C_HAS_RST = 0; - parameter C_HAS_SRST = 0; - parameter C_HAS_UNDERFLOW = 0; - parameter C_HAS_VALID = 0; - parameter C_HAS_WR_ACK = 0; - parameter C_HAS_WR_DATA_COUNT = 0; - parameter C_IMPLEMENTATION_TYPE = 0; - parameter C_MEMORY_TYPE = 1; - parameter C_OVERFLOW_LOW = 0; - parameter C_PRELOAD_LATENCY = 1; - parameter C_PRELOAD_REGS = 0; - parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0; - parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0; - parameter C_PROG_EMPTY_TYPE = 0; - parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0; - parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0; - parameter C_PROG_FULL_TYPE = 0; - parameter C_RD_DATA_COUNT_WIDTH = 2; - parameter C_RD_DEPTH = 256; - parameter C_RD_PNTR_WIDTH = 8; - parameter C_UNDERFLOW_LOW = 0; - parameter C_USE_DOUT_RST = 0; - parameter C_USE_EMBEDDED_REG = 0; - parameter C_USE_FWFT_DATA_COUNT = 0; - parameter C_VALID_LOW = 0; - parameter C_WR_ACK_LOW = 0; - parameter C_WR_DATA_COUNT_WIDTH = 2; - parameter C_WR_DEPTH = 256; - parameter C_WR_PNTR_WIDTH = 8; - - - /************************************************************************** - * Declare Input and Output Ports - *************************************************************************/ - //Inputs - input CLK; - input [C_DIN_WIDTH-1:0] DIN; - input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; - input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; - input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; - input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; - input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; - input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; - input RD_EN; - input RST; - input SRST; - input WR_EN; - - //Outputs - output ALMOST_EMPTY; - output ALMOST_FULL; - output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT; - output [C_DOUT_WIDTH-1:0] DOUT; - output EMPTY; - output FULL; - output OVERFLOW; - output PROG_EMPTY; - output PROG_FULL; - output VALID; - output UNDERFLOW; - output WR_ACK; - /************************************************************************* - * Declare the type for each Input/Output port, and connect each I/O - * to it's associated internal signal in the behavioral model - * - * The values for the outputs are assigned in assign statements immediately - * following wire, parameter, and function declarations in this code. - *************************************************************************/ - //Inputs - wire CLK; - wire [C_DIN_WIDTH-1:0] DIN; - wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; - wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; - wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; - wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; - wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; - wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; - wire RD_EN; - wire RST; - wire SRST; - wire WR_EN; - - //Outputs - wire ALMOST_EMPTY; - wire ALMOST_FULL; - reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT; - wire [C_DOUT_WIDTH-1:0] DOUT; - wire EMPTY; - wire FULL; - wire OVERFLOW; - wire PROG_EMPTY; - wire PROG_FULL; - wire VALID; - wire UNDERFLOW; - wire WR_ACK; - - - /*************************************************************************** - * Parameters used as constants - **************************************************************************/ +/****************************************************************************** + * Declare user parameters and their defaults + *****************************************************************************/ + parameter C_COMMON_CLOCK = 0; + parameter C_COUNT_TYPE = 0; + parameter C_DATA_COUNT_WIDTH = 2; + parameter C_DEFAULT_VALUE = ""; + parameter C_DIN_WIDTH = 8; + parameter C_DOUT_RST_VAL = ""; + parameter C_DOUT_WIDTH = 8; + parameter C_ENABLE_RLOCS = 0; + parameter C_FAMILY = "virtex2"; //Not allowed in Verilog model + parameter C_HAS_ALMOST_EMPTY = 0; + parameter C_HAS_ALMOST_FULL = 0; + parameter C_HAS_BACKUP = 0; + parameter C_HAS_DATA_COUNT = 0; + parameter C_HAS_MEMINIT_FILE = 0; + parameter C_HAS_OVERFLOW = 0; + parameter C_HAS_RD_DATA_COUNT = 0; + parameter C_HAS_RD_RST = 0; + parameter C_HAS_RST = 0; + parameter C_HAS_SRST = 0; + parameter C_HAS_UNDERFLOW = 0; + parameter C_HAS_VALID = 0; + parameter C_HAS_WR_ACK = 0; + parameter C_HAS_WR_DATA_COUNT = 0; + parameter C_HAS_WR_RST = 0; + parameter C_IMPLEMENTATION_TYPE = 0; + parameter C_INIT_WR_PNTR_VAL = 0; + parameter C_MEMORY_TYPE = 1; + parameter C_MIF_FILE_NAME = ""; + parameter C_OPTIMIZATION_MODE = 0; + parameter C_OVERFLOW_LOW = 0; + parameter C_PRELOAD_LATENCY = 1; + parameter C_PRELOAD_REGS = 0; + parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0; + parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0; + parameter C_PROG_EMPTY_TYPE = 0; + parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0; + parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0; + parameter C_PROG_FULL_TYPE = 0; + parameter C_RD_DATA_COUNT_WIDTH = 2; + parameter C_RD_DEPTH = 256; + parameter C_RD_PNTR_WIDTH = 8; + parameter C_UNDERFLOW_LOW = 0; + parameter C_VALID_LOW = 0; + parameter C_WR_ACK_LOW = 0; + parameter C_WR_DATA_COUNT_WIDTH = 2; + parameter C_WR_DEPTH = 256; + parameter C_WR_PNTR_WIDTH = 8; + parameter C_WR_RESPONSE_LATENCY = 1; + parameter C_FULL_FLAGS_RST_VAL = 1; + parameter C_USE_EMBEDDED_REG = 0; + + +/****************************************************************************** + * Declare Input and Output Ports + *****************************************************************************/ + input CLK; + input [C_DIN_WIDTH-1:0] DIN; + input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; + input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; + input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; + input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; + input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; + input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; + input RD_EN; + input RST; + input SRST; + input WR_EN; + output ALMOST_EMPTY; + output ALMOST_FULL; + output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT; + output [C_DOUT_WIDTH-1:0] DOUT; + output EMPTY; + output FULL; + output OVERFLOW; + output PROG_EMPTY; + output PROG_FULL; + output VALID; + output UNDERFLOW; + output WR_ACK; + +/******************************************************************************* + * Input and output register declarations + ******************************************************************************/ +/******************************************************************************* + * Parameters used as constants + ******************************************************************************/ //When RST is present, set FULL reset value to '1'. //If core has no RST, make sure FULL powers-on as '0'. //The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not //changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0. // Therefore, during SRST, all the FULL flags reset to 0. parameter C_HAS_FAST_FIFO = 0; - parameter C_FIFO_WR_DEPTH = C_WR_DEPTH; - parameter C_FIFO_RD_DEPTH = C_RD_DEPTH; + parameter C_FIFO_WR_DEPTH = (C_COMMON_CLOCK) ? C_WR_DEPTH : C_WR_DEPTH - 1; + parameter C_FIFO_RD_DEPTH = (C_COMMON_CLOCK) ? C_RD_DEPTH : C_RD_DEPTH - 1; + + /**************************************************************************** + * Internal Registers and wires + ***************************************************************************/ + wire wr_ack_i; + wire overflow_i; + wire underflow_i; + wire valid_i; + wire valid_out; + reg valid_d1; + wire srst_i; + /******************************************************************************* + * Internal registers and wires for internal reset logics + ******************************************************************************/ + reg rst_asreg =0; + reg rst_asreg_d1 =0; + reg rst_asreg_d2 =0; + reg rst_reg =0; + reg rst_d1 =0; + wire rst_comb; + wire rst_i; + - /************************************************************************** - * FIFO Contents Tracking and Data Count Calculations - *************************************************************************/ //Memory which will be used to simulate a FIFO reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; - - //The amount of data stored in the FIFO at any time is given - // by num_bits. - //num_bits is calculated by from the total words in the FIFO. reg [31:0] num_bits; - - //The write pointer - tracks write operations - // (Works opposite to core: wr_ptr is a DOWN counter) reg [31:0] wr_ptr; - - //The write pointer - tracks read operations - // (Works opposite to core: rd_ptr is a DOWN counter) reg [31:0] rd_ptr; - - /************************** - * Data Count - *************************/ - //Amount of data stored in the FIFO scaled to read words wire [31:0] num_read_words = num_bits/C_DOUT_WIDTH; - //num_read_words delayed 1 clock cycle reg [31:0] num_read_words_q; - - //Amount of data stored in the FIFO scaled to write words wire [31:0] num_write_words = num_bits/C_DIN_WIDTH; - //num_write_words delayed 1 clock cycle reg [31:0] num_write_words_q; + //Removed power_on_timer in v3.2 (IP2_Im). For all reset types (Async, Sync, or no reset), the power-on values of the flags in the core are modified so that the core is ready to use from the very first clock cycle. + //reg [3:0] power_on_timer; - - /************************************************************************** - * Internal Registers and wires - *************************************************************************/ - - //Temporary signals used for calculating the model's outputs. These - //are only used in the assign statements immediately following wire, - //parameter, and function declarations. - wire underflow_i; - wire valid_i; - wire valid_out; - - //Ideal FIFO signals. These are the raw output of the behavioral model, - //which behaves like an ideal FIFO. + //Special ideal FIFO signals reg [C_DOUT_WIDTH-1:0] ideal_dout; reg [C_DOUT_WIDTH-1:0] ideal_dout_d1; wire [C_DOUT_WIDTH-1:0] ideal_dout_out; @@ -2556,40 +2074,28 @@ module fifo_generator_v4_3_bhv_ver_ss reg ideal_prog_full; reg ideal_prog_empty; - //Assorted reg values for delayed versions of signals - reg valid_d1; - reg prog_full_d; - reg prog_empty_d; - - - //Internal reset signals - reg rst_asreg =0; - reg rst_asreg_d1 =0; - reg rst_asreg_d2 =0; - reg rst_reg =0; - reg rst_d1 =0; - wire rst_comb; - wire rst_i; - wire srst_i; - //Delayed version of RST - reg rst_q; - reg rst_qq; + //MSBs of the counts + wire [C_DATA_COUNT_WIDTH-1:0] ideal_d_count; //user specified value for reseting the size of the fifo reg [C_DOUT_WIDTH-1:0] dout_reset_val; + //temporary registers for WR_RESPONSE_LATENCY feature + reg ideal_wr_ack_q; + reg ideal_overflow_q; + + reg prog_full_d; + reg prog_empty_d; + + //Delayed version of RST + reg rst_q; + reg rst_qq; + /**************************************************************************** * Function Declarations ***************************************************************************/ - - /************************************************************************** - * write_fifo - * This task writes a word to the FIFO memory and updates the - * write pointer. - * FIFO size is relative to write domain. - ***************************************************************************/ task write_fifo; begin memory[wr_ptr] <= DIN; @@ -2601,12 +2107,6 @@ module fifo_generator_v4_3_bhv_ver_ss end endtask // write_fifo - /************************************************************************** - * read_fifo - * This task reads a word from the FIFO memory and updates the read - * pointer. It's output is the ideal_dout bus. - * FIFO size is relative to write domain. - ***************************************************************************/ task read_fifo; begin ideal_dout <= memory[rd_ptr]; @@ -2697,10 +2197,9 @@ module fifo_generator_v4_3_bhv_ver_ss end endfunction - - /************************************************************************* - * Initialize Signals for clean power-on simulation - *************************************************************************/ + /***************************************************************************** + * Initialize Signals + ****************************************************************************/ initial begin num_bits = 0; num_read_words_q = 0; @@ -2714,91 +2213,113 @@ module fifo_generator_v4_3_bhv_ver_ss valid_d1 = 1'b0; ideal_overflow = 1'b0; ideal_underflow = 1'b0; - ideal_full = 1'b0; + //Modified the start-up value of FULL to '0' in v3.2 (IP2_Im) + //ideal_full = C_FULL_RESET_VAL; //was in v3.1 + ideal_full = 1'b0; //v3.2 ideal_empty = 1'b1; + //Modified the start-up value of ALMOST_FULL to '0' in v3.2 (IP2_Im) + //ideal_almost_full = C_ALMOST_FULL_RESET_VAL; //was in v3.1 ideal_almost_full = 1'b0; ideal_almost_empty = 1'b1; - ideal_prog_full = 1'b0; + //Modified the start-up value of PROG_FULL to '0' in v3.2 (IP2_Im) + //ideal_prog_full = C_PROG_FULL_RESET_VAL; //was in v3.1 + ideal_prog_full = 1'b0; //v3.2 ideal_prog_empty = 1'b1; - prog_full_d = 1'b0; + + //Modified the start-up value of PROG_FULL to '0' in v3.2 (IP2_Im) + //Therefore, prog_full_d is also changed + //prog_full_d = C_PROG_FULL_RESET_VAL; //was in v3.1 + prog_full_d = 1'b0; //v3.2 prog_empty_d = 1'b1; + + //Removed in v3.2 + //power_on_timer = C_HAS_RST ? 4'h3 : 4'h0; + + //Added these initial values in v3.2 to make it consistent with the synchronization flop stages in the core. rst_q = 1'b0; rst_qq = 1'b0; end - /************************************************************************* - * Connect the module inputs and outputs to the internal signals of the - * behavioral model. - *************************************************************************/ - //Inputs - /* - wire CLK; - wire [C_DIN_WIDTH-1:0] DIN; - wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; - wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; - wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; - wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; - wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; - wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; - wire RD_EN; - wire RST; - wire WR_EN; - */ - - //Outputs - assign ALMOST_EMPTY = ideal_almost_empty; - assign ALMOST_FULL = ideal_almost_full; - - //Dout may change behavior based on latency + /***************************************************************************** + * Assign Internal ideal signals to output ports + ****************************************************************************/ assign ideal_dout_out= (C_USE_EMBEDDED_REG==1 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? ideal_dout_d1: ideal_dout; - assign DOUT = ideal_dout_out; - - assign EMPTY = ideal_empty; + assign DOUT = ideal_dout_out; + //was in v3.1 + //assign FULL = (power_on_timer) ? C_FULL_RESET_VAL : ideal_full; + //v3.2 assign FULL = ideal_full; - //Overflow may be active-low - assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW; + assign EMPTY = ideal_empty; + //was in v3.1 + //assign ALMOST_FULL = (power_on_timer) ? C_ALMOST_FULL_RESET_VAL : ideal_almost_full; + //v3.2 + assign ALMOST_FULL = ideal_almost_full; - assign PROG_EMPTY = ideal_prog_empty; + assign ALMOST_EMPTY = ideal_almost_empty; + + assign ideal_d_count = num_read_words[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH]; + assign DATA_COUNT = ideal_d_count; + + //was in v3.1 + //assign PROG_FULL = (power_on_timer) ? C_PROG_FULL_RESET_VAL : ideal_prog_full; + //v3.2 assign PROG_FULL = ideal_prog_full; - //Valid may change behavior based on latency or active-low + assign PROG_EMPTY = ideal_prog_empty; + + //Handshaking signals can be active low, depending on _LOW parameters assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid; + assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW; assign valid_out = (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? valid_d1: valid_i; - assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW; - - //Trim data count differently depending on set widths - always @(num_read_words) begin - if (C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) begin - DATA_COUNT = num_read_words[C_RD_PNTR_WIDTH:0]; - end else begin - DATA_COUNT = - num_read_words[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH]; - end //if - end //always - - //Underflow may change behavior based on latency or active-low assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow; assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW; - - //Write acknowledge may be active low - assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW; + assign WR_ACK = wr_ack_i ? !C_WR_ACK_LOW : C_WR_ACK_LOW; + assign wr_ack_i = (C_WR_RESPONSE_LATENCY==2) ? ideal_wr_ack_q : + (C_WR_RESPONSE_LATENCY==1) ? ideal_wr_ack : + (WR_EN & !FULL); + assign OVERFLOW = overflow_i ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW; + assign overflow_i = (C_WR_RESPONSE_LATENCY==2) ? ideal_overflow_q : + (C_WR_RESPONSE_LATENCY==1) ? ideal_overflow : + (WR_EN & FULL); + assign srst_i = C_HAS_SRST ? SRST : 0; - - /***************************************************************************** - * Internal reset logic - ****************************************************************************/ - assign srst_i = C_HAS_SRST ? SRST : 0; + /******************************************************************************* + * Internal reset logics + ******************************************************************************/ assign rst_comb = !rst_asreg_d2 && rst_asreg; assign rst_i = C_HAS_RST ? rst_reg : 0; + always @(posedge CLK or posedge rst_i) begin + if (rst_i == 1'b1) begin + valid_d1 <= 1'b0; + end else begin + if (srst_i) begin + valid_d1 <= 1'b0; + end else begin + valid_d1 <= valid_i; + end + end + end + always @(posedge CLK or posedge rst_i) begin + if (rst_i == 1'b1) begin + ideal_dout_d1 <= dout_reset_val; + end else begin + if (srst_i) begin + ideal_dout_d1 <= dout_reset_val; + end else begin + ideal_dout_d1 <= ideal_dout; + end + end + end + always @(posedge CLK or posedge RST) begin if (RST == 1'b1) begin rst_asreg <= 1'b1; @@ -2824,127 +2345,117 @@ module fifo_generator_v4_3_bhv_ver_ss end end - /************************************************************************** - * Assorted registers for delayed versions of signals - **************************************************************************/ - //Capture delayed version of valid - always @(posedge CLK or posedge rst_i) begin - if (rst_i == 1'b1) begin - valid_d1 <= 1'b0; - end else begin - if (srst_i) begin - valid_d1 <= 1'b0; - end else begin - valid_d1 <= valid_i; - end - end - end // always @ (posedge CLK or posedge rst_i) - - //Capture delayed version of dout - always @(posedge CLK or posedge rst_i) begin - if (rst_i == 1'b1 && C_USE_DOUT_RST == 1) begin - ideal_dout_d1 <= dout_reset_val; + + /******************************************************************************* + * Write and Read Logics + ******************************************************************************/ + + always @(posedge CLK or posedge rst_i) + begin : gen_wr_ack_resp + + //Register reset + rst_q <= rst_i; + rst_qq <= rst_q; + + //Register output signals to achieve desired WR_RESPONSE latency + if (C_WR_RESPONSE_LATENCY == 2) begin + if (rst_i == 1) begin + ideal_wr_ack_q <= 0; + ideal_overflow_q <= 0; + end else begin + ideal_wr_ack_q <= ideal_wr_ack; + ideal_overflow_q <= ideal_overflow; + end + end + + //Removed in v3.2 + /* + if (rst_i == 1) begin + power_on_timer <= 0; + end else if (power_on_timer > 0) begin + power_on_timer <= power_on_timer -1; end else begin - if (srst_i && C_USE_DOUT_RST == 1) begin - ideal_dout_d1 <= dout_reset_val; - end else begin - ideal_dout_d1 <= ideal_dout; - end - end - end - - /************************************************************************** - * Overflow and Underflow Flag calculation - * (handled separately because they don't support rst) - **************************************************************************/ - always @(posedge CLK) begin - ideal_overflow <= WR_EN & ideal_full; - ideal_underflow <= ideal_empty & RD_EN; - end - - /************************************************************************* - * Write and Read Logic - ************************************************************************/ - always @(posedge CLK or posedge rst_i) - begin : gen_wr_ack_resp - - //Register reset - rst_q <= rst_i; - rst_qq <= rst_q; - - end // block: gen_wr_ack_resp - + power_on_timer <= 0; + end + */ + end // block: gen_wr_ack_resp + // block memory has a synchronous reset always @(posedge CLK) begin : gen_fifo_blkmemdout - //Changed the latency of during async reset to '1' instead of '2' to - // make it consistent with the core. - if (rst_i || rst_q || srst_i) begin - /******Initialize Read Domain Signals*********************************/ - if (C_MEMORY_TYPE == 1 && C_USE_DOUT_RST == 1) begin + //Changed the latency of during async reset to '1' instead of '2' to make it consistent with the core. + //if (rst_i || rst_q || rst_qq) begin //was in v3.1 + if (rst_i || rst_q || srst_i) begin //v3.2 + /******Initialize Read Domain Signals************************************/ + if (C_MEMORY_TYPE == 1) begin ideal_dout <= dout_reset_val; end - end - end //always - + //v3.2 + //end else begin + //if (C_MEMORY_TYPE == 1 && power_on_timer >= 2) begin //was in v3.1 + // if (C_MEMORY_TYPE == 1) begin //v3.2 + // ideal_dout <= dout_reset_val; + // end + end + end + always @(posedge CLK or posedge rst_i) begin : gen_fifo - - /****** Reset fifo - Asynchronous Reset**********************************/ - //Changed the latency of during async reset to '1' instead of '2' to - // make it consistent with the core. - if (rst_i) begin //v3.2 - /******Initialize Generic FIFO constructs*****************************/ + + /****** Reset fifo - Asynchronous Reset*************************************/ + //Changed the latency of during async reset to '1' instead of '2' to make it consistent with the core. + //if (rst_i || rst_q || rst_qq) begin //was in v3.1 + //if (rst_i || rst_q) begin //v3.2 + if (rst_i ) begin //v3.2 + /******Initialize Generic FIFO constructs********************************/ num_bits <= 0; wr_ptr <= C_WR_DEPTH - 1; rd_ptr <= C_RD_DEPTH - 1; num_read_words_q <= 0; num_write_words_q <= 0; - - - /******Initialize Write Domain Signals********************************/ + + + /******Initialize Write Domain Signals***********************************/ ideal_wr_ack <= 0; ideal_full <= C_FULL_FLAGS_RST_VAL; ideal_almost_full <= C_FULL_FLAGS_RST_VAL; - - /******Initialize Read Domain Signals*********************************/ - if (C_MEMORY_TYPE != 1 && C_USE_DOUT_RST == 1) begin + + /******Initialize Read Domain Signals************************************/ + if (C_MEMORY_TYPE != 1) begin ideal_dout <= dout_reset_val; end ideal_valid <= 1'b0; ideal_empty <= 1'b1; ideal_almost_empty <= 1'b1; - + end else begin if (srst_i) begin - // SRST is available only for Sync BRAM and Sync DRAM. - // Not for SSHFT. + // SRST is available only for Sync BRAM and Sync DRAM. Not for SSHFT. if (C_MEMORY_TYPE == 1 || C_MEMORY_TYPE == 2) begin - /******Initialize Generic FIFO constructs***********************/ + /******Initialize Generic FIFO constructs********************************/ num_bits <= 0; wr_ptr <= C_WR_DEPTH - 1; rd_ptr <= C_RD_DEPTH - 1; num_read_words_q <= 0; num_write_words_q <= 0; - - /******Initialize Write Domain Signals**************************/ + + /******Initialize Write Domain Signals***********************************/ ideal_wr_ack <= 0; ideal_full <= 0; //'0' ideal_almost_full <= 0; //'0' - - /******Initialize Read Domain Signals***************************/ - //Reset DOUT of Sync DRAM. Sync BRAM DOUT was reset in the - // above always block. - if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1 ) begin + + /******Initialize Read Domain Signals************************************/ + //Reset DOUT of Sync DRAM. Sync BRAM DOUT was reset in the above always block. + if (C_MEMORY_TYPE == 2) begin ideal_dout <= dout_reset_val; end ideal_valid <= 1'b0; ideal_empty <= 1'b1; ideal_almost_empty <= 1'b1; end - + end else begin //normal operating conditions - /********************************************************************/ + /**********************************************************************/ // Synchronous FIFO Condition #1 : Writing and not reading - /********************************************************************/ + /**********************************************************************/ if (WR_EN & ~RD_EN) begin /*********************************/ @@ -3107,9 +2618,9 @@ module fifo_generator_v4_3_bhv_ver_ss end // average case - /******************************************************************/ + /**********************************************************************/ // Synchronous FIFO Condition #2 : Reading and not writing - /******************************************************************/ + /**********************************************************************/ end else if (~WR_EN & RD_EN) begin /*********************************/ @@ -3253,9 +2764,9 @@ module fifo_generator_v4_3_bhv_ver_ss end // average read - /******************************************************************/ + /**********************************************************************/ // Synchronous FIFO Condition #3 : Reading and writing - /******************************************************************/ + /**********************************************************************/ end else if (WR_EN & RD_EN) begin /*********************************/ @@ -3411,9 +2922,10 @@ module fifo_generator_v4_3_bhv_ver_ss end // average case - /******************************************************************/ + /**********************************************************************/ // Synchronous FIFO Condition #4 : Not reading or writing - /******************************************************************/ + /*** + *******************************************************************/ end else begin /*********************************/ @@ -3515,13 +3027,19 @@ module fifo_generator_v4_3_bhv_ver_ss end // block: gen_fifo + //Generate overflow and underflow flags seperately + //because they don't support async rst + always @(posedge CLK) begin + ideal_overflow <= WR_EN & ideal_full; + ideal_underflow <= ideal_empty & RD_EN; + end always @(posedge CLK or posedge rst_i) begin : gen_fifo_p /****** Reset fifo - Async Reset****************************************/ - //The latency of de-assertion of the flags is reduced by 1 to be - // consistent with the core. - if (rst_i) begin + //The latency of de-assertion of the flags is reduced by 1 to be consistent with the core. + //if (rst_i || rst_q) begin //was in v3.1 + if (rst_i) begin //v3.2 ideal_prog_full <= C_FULL_FLAGS_RST_VAL; ideal_prog_empty <= 1'b1; prog_full_d <= C_FULL_FLAGS_RST_VAL; @@ -3538,126 +3056,69 @@ module fifo_generator_v4_3_bhv_ver_ss end end else begin - /*************************************************************** - * Programmable FULL flags - ****************************************************************/ - //calculation for standard fifo and latency =2 - if (! (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) ) begin - //Single constant threshold - if (C_PROG_FULL_TYPE == 1) begin - if ((num_write_words >= C_PROG_FULL_THRESH_ASSERT_VAL-1) - && WR_EN && !RD_EN) begin - prog_full_d <= 1'b1; - end else if (((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL) - && RD_EN && !WR_EN) || (rst_q && !rst_i)) begin - prog_full_d <= 1'b0; - end - - //Dual constant thresholds - end else if (C_PROG_FULL_TYPE == 2) begin - if ((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL-1) - && WR_EN && !RD_EN) begin - prog_full_d <= 1'b1; - end else if ((num_write_words == C_PROG_FULL_THRESH_NEGATE_VAL) - && RD_EN && !WR_EN) begin - prog_full_d <= 1'b0; - end - - //Single input threshold - end else if (C_PROG_FULL_TYPE == 3) begin - if ((num_write_words == PROG_FULL_THRESH-1) - && WR_EN && !RD_EN) begin - prog_full_d <= 1'b1; - end else if ((num_write_words == PROG_FULL_THRESH) - && !WR_EN && RD_EN) begin - prog_full_d <= 1'b0; - end else if (num_write_words >= PROG_FULL_THRESH) begin - prog_full_d <= 1'b1; - end else if (num_write_words < PROG_FULL_THRESH) begin - prog_full_d <= 1'b0; - end - - //Dual input thresholds - end else begin - if ((num_write_words == PROG_FULL_THRESH_ASSERT-1) - && WR_EN && !RD_EN) begin - prog_full_d <= 1'b1; - end else if ((num_write_words == PROG_FULL_THRESH_NEGATE) - && !WR_EN && RD_EN)begin - prog_full_d <= 1'b0; - end else if (num_write_words >= PROG_FULL_THRESH_ASSERT) begin - prog_full_d <= 1'b1; - end else if (num_write_words < PROG_FULL_THRESH_NEGATE) begin - prog_full_d <= 1'b0; - end + /***************************************************************** + * Programmable FULL flags + ****************************************************************/ + //Single constant threshold + if (C_PROG_FULL_TYPE == 1) begin + if ((num_write_words >= C_PROG_FULL_THRESH_ASSERT_VAL-1) + && WR_EN && !RD_EN) begin + prog_full_d <= 1'b1; + end else if (((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL) + && RD_EN && !WR_EN) || (rst_q && !rst_i)) begin //v3.2 + prog_full_d <= 1'b0; + end + + //Dual constant thresholds + end else if (C_PROG_FULL_TYPE == 2) begin + if ((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL-1) + && WR_EN && !RD_EN) begin + prog_full_d <= 1'b1; + end else if ((num_write_words == C_PROG_FULL_THRESH_NEGATE_VAL) + && RD_EN && !WR_EN) begin + prog_full_d <= 1'b0; + end + + //Single input threshold + end else if (C_PROG_FULL_TYPE == 3) begin + if ((num_write_words == PROG_FULL_THRESH-1) + && WR_EN && !RD_EN) begin + prog_full_d <= 1'b1; + end else if ((num_write_words == PROG_FULL_THRESH) + && !WR_EN && RD_EN) begin + prog_full_d <= 1'b0; + end else if (num_write_words >= PROG_FULL_THRESH) begin + prog_full_d <= 1'b1; + end else if (num_write_words < PROG_FULL_THRESH) begin + prog_full_d <= 1'b0; + end + + //Dual input thresholds + end else begin + if ((num_write_words == PROG_FULL_THRESH_ASSERT-1) + && WR_EN && !RD_EN) begin + prog_full_d <= 1'b1; + end else if ((num_write_words == PROG_FULL_THRESH_NEGATE) + && !WR_EN && RD_EN)begin + prog_full_d <= 1'b0; + end else if (num_write_words >= PROG_FULL_THRESH_ASSERT) begin + prog_full_d <= 1'b1; + end else if (num_write_words < PROG_FULL_THRESH_NEGATE) begin + prog_full_d <= 1'b0; end - end // (~ (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) ) - - - //calculation for FWFT fifo - if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin - if (C_PROG_FULL_TYPE == 1) begin - if ((num_write_words >= C_PROG_FULL_THRESH_ASSERT_VAL-1 - 2) - && WR_EN && !RD_EN) begin - prog_full_d <= 1'b1; - end else if (((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL - 2) - && RD_EN && !WR_EN) || (rst_q && !rst_i)) begin - prog_full_d <= 1'b0; - end - - //Dual constant thresholds - end else if (C_PROG_FULL_TYPE == 2) begin - if ((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL-1 - 2) - && WR_EN && !RD_EN) begin - prog_full_d <= 1'b1; - end else if ((num_write_words == C_PROG_FULL_THRESH_NEGATE_VAL - 2) - && RD_EN && !WR_EN) begin - prog_full_d <= 1'b0; - end - - //Single input threshold - end else if (C_PROG_FULL_TYPE == 3) begin - if ((num_write_words == PROG_FULL_THRESH-1 - 2) - && WR_EN && !RD_EN) begin - prog_full_d <= 1'b1; - end else if ((num_write_words == PROG_FULL_THRESH - 2) - && !WR_EN && RD_EN) begin - prog_full_d <= 1'b0; - end else if (num_write_words >= PROG_FULL_THRESH - 2) begin - prog_full_d <= 1'b1; - end else if (num_write_words < PROG_FULL_THRESH - 2) begin - prog_full_d <= 1'b0; - end - - //Dual input thresholds - end else begin - if ((num_write_words == PROG_FULL_THRESH_ASSERT-1 - 2) - && WR_EN && !RD_EN) begin - prog_full_d <= 1'b1; - end else if ((num_write_words == PROG_FULL_THRESH_NEGATE - 2) - && !WR_EN && RD_EN)begin - prog_full_d <= 1'b0; - end else if (num_write_words >= PROG_FULL_THRESH_ASSERT - 2) begin - prog_full_d <= 1'b1; - end else if (num_write_words < PROG_FULL_THRESH_NEGATE - 2) begin - prog_full_d <= 1'b0; - end - end - end // (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) - + end + /***************************************************************** * Programmable EMPTY flags ****************************************************************/ - //calculation for standard fifo and latency = 2 - if (! (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) ) begin - //Single constant threshold - if (C_PROG_EMPTY_TYPE == 1) begin - if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL+1) - && RD_EN && !WR_EN) begin - prog_empty_d <= 1'b1; - end else if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL) - && WR_EN && !RD_EN) begin - prog_empty_d <= 1'b0; + //Single constant threshold + if (C_PROG_EMPTY_TYPE == 1) begin + if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL+1) + && RD_EN && !WR_EN) begin + prog_empty_d <= 1'b1; + end else if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL) + && WR_EN && !RD_EN) begin + prog_empty_d <= 1'b0; end //Dual constant thresholds end else if (C_PROG_EMPTY_TYPE == 2) begin @@ -3697,77 +3158,20 @@ module fifo_generator_v4_3_bhv_ver_ss prog_empty_d <= 1'b0; end end - end // (~ (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) ) - - //calculation for FWFT fifo - if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin - //Single constant threshold - if (C_PROG_EMPTY_TYPE == 1) begin - if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL+1 - 2) - && RD_EN && !WR_EN) begin - prog_empty_d <= 1'b1; - end else if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL - 2) - && WR_EN && !RD_EN) begin - prog_empty_d <= 1'b0; - end - //Dual constant thresholds - end else if (C_PROG_EMPTY_TYPE == 2) begin - if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL+1 - 2) - && RD_EN && !WR_EN) begin - prog_empty_d <= 1'b1; - end else if ((num_read_words == C_PROG_EMPTY_THRESH_NEGATE_VAL - 2) - && !RD_EN && WR_EN) begin - prog_empty_d <= 1'b0; - end - - //Single input threshold - end else if (C_PROG_EMPTY_TYPE == 3) begin - if ((num_read_words == PROG_EMPTY_THRESH+1 - 2) - && RD_EN && !WR_EN) begin - prog_empty_d <= 1'b1; - end else if ((num_read_words == PROG_EMPTY_THRESH - 2) - && !RD_EN && WR_EN) begin - prog_empty_d <= 1'b0; - end else if (num_read_words <= PROG_EMPTY_THRESH - 2) begin - prog_empty_d <= 1'b1; - end else if (num_read_words > PROG_EMPTY_THRESH - 2)begin - prog_empty_d <= 1'b0; - end - - //Dual input thresholds - end else begin - if (num_read_words <= PROG_EMPTY_THRESH_ASSERT - 2) begin - prog_empty_d <= 1'b1; - end else if ((num_read_words == PROG_EMPTY_THRESH_ASSERT+1 - 2) - && RD_EN && !WR_EN) begin - prog_empty_d <= 1'b1; - end else if (num_read_words > PROG_EMPTY_THRESH_NEGATE - 2)begin - prog_empty_d <= 1'b0; - end else if ((num_read_words == PROG_EMPTY_THRESH_NEGATE - 2) - && !RD_EN && WR_EN) begin - prog_empty_d <= 1'b0; - end - end - end // (~ (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) ) - + ideal_prog_empty <= prog_empty_d; if (rst_q && !rst_i) begin - ideal_prog_full <= 1'b0; - prog_full_d <= 1'b0; + ideal_prog_full <= 1'b0; end else begin - ideal_prog_full <= prog_full_d; + ideal_prog_full <= prog_full_d; end - + end //if (srst_i) begin end //if (rst_i) begin end //always @(posedge CLK or posedge rst_i) begin : gen_fifo_p endmodule // fifo_generator_v4_3_bhv_ver_ss - -/************************************************************************** - * First-Word Fall-Through module (preload 0) - **************************************************************************/ module fifo_generator_v4_3_bhv_ver_preload0 ( RD_CLK, @@ -3784,21 +3188,19 @@ module fifo_generator_v4_3_bhv_ver_preload0 FIFORDEN ); + parameter C_DOUT_RST_VAL = ""; parameter C_DOUT_WIDTH = 8; parameter C_HAS_RST = 0; - parameter C_USE_DOUT_RST = 0; parameter C_USERVALID_LOW = 0; parameter C_USERUNDERFLOW_LOW = 0; - //Inputs + input RD_CLK; input RD_RST; input RD_EN; input FIFOEMPTY; input [C_DOUT_WIDTH-1:0] FIFODATA; - - //Outputs output [C_DOUT_WIDTH-1:0] USERDATA; output USERVALID; output USERUNDERFLOW; @@ -3807,14 +3209,11 @@ module fifo_generator_v4_3_bhv_ver_preload0 output RAMVALID; output FIFORDEN; - //Inputs wire RD_CLK; wire RD_RST; wire RD_EN; wire FIFOEMPTY; wire [C_DOUT_WIDTH-1:0] FIFODATA; - - //Outputs reg [C_DOUT_WIDTH-1:0] USERDATA; wire USERVALID; wire USERUNDERFLOW; @@ -3823,7 +3222,6 @@ module fifo_generator_v4_3_bhv_ver_preload0 wire RAMVALID; wire FIFORDEN; - //Internal signals wire preloadstage1; wire preloadstage2; reg ram_valid_i; @@ -3832,10 +3230,10 @@ module fifo_generator_v4_3_bhv_ver_preload0 wire ram_rd_en; reg empty_i = 1'b1; reg empty_q = 1'b1; - reg rd_en_q = 1'b0; + reg rd_en_q = 1'b0; //Fix for CR:236270 in v3.2 //prasanna reg almost_empty_i = 1'b1; reg almost_empty_q = 1'b1; - wire rd_rst_i; + wire rd_rst_i; /************************************************************************* @@ -3903,191 +3301,194 @@ module fifo_generator_v4_3_bhv_ver_preload0 end endfunction - - //************************************************************************* - // Set power-on states for regs - //************************************************************************* - initial begin - ram_valid_i = 1'b0; - read_data_valid_i = 1'b0; - USERDATA = hexstr_conv(C_DOUT_RST_VAL); - end //initial - - //*************************************************************************** - // connect up optional reset - //*************************************************************************** - assign rd_rst_i = C_HAS_RST ? RD_RST : 0; - - - //*************************************************************************** - // preloadstage2 indicates that stage2 needs to be updated. This is true - // whenever read_data_valid is false, and RAM_valid is true. - //*************************************************************************** - assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN); - - //*************************************************************************** - // preloadstage1 indicates that stage1 needs to be updated. This is true - // whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is - // false (indicating that Stage1 needs updating), or preloadstage2 is active - // (indicating that Stage2 is going to update, so Stage1, therefore, must - // also be updated to keep it valid. - //*************************************************************************** - assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY); - - //*************************************************************************** - // Calculate RAM_REGOUT_EN - // The output registers are controlled by the ram_regout_en signal. - // These registers should be updated either when the output in Stage2 is - // invalid (preloadstage2), OR when the user is reading, in which case the - // Stage2 value will go invalid unless it is replenished. - //*************************************************************************** - assign ram_regout_en = preloadstage2; - - //*************************************************************************** - // Calculate RAM_RD_EN - // RAM_RD_EN will be asserted whenever the RAM needs to be read in order to - // update the value in Stage1. - // One case when this happens is when preloadstage1=true, which indicates - // that the data in Stage1 or Stage2 is invalid, and needs to automatically - // be updated. - // The other case is when the user is reading from the FIFO, which - // guarantees that Stage1 or Stage2 will be invalid on the next clock - // cycle, unless it is replinished by data from the memory. So, as long - // as the RAM has data in it, a read of the RAM should occur. - //*************************************************************************** - assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1; - - //*************************************************************************** - // Calculate RAMVALID_P0_OUT - // RAMVALID_P0_OUT indicates that the data in Stage1 is valid. - // - // If the RAM is being read from on this clock cycle (ram_rd_en=1), then - // RAMVALID_P0_OUT is certainly going to be true. - // If the RAM is not being read from, but the output registers are being - // updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying, - // therefore causing RAMVALID_P0_OUT to be false. - // Otherwise, RAMVALID_P0_OUT will remain unchanged. - //*************************************************************************** - // PROCESS regout_valid - always @ (posedge RD_CLK or posedge rd_rst_i) begin - if (rd_rst_i) begin - // asynchronous reset (active high) - ram_valid_i <= 1'b0; - end else begin - if (ram_rd_en == 1'b1) begin - ram_valid_i <= 1'b1; - end else begin - if (ram_regout_en == 1'b1) - ram_valid_i <= 1'b0; - else - ram_valid_i <= ram_valid_i; - end - end //rd_rst_i - end //always - - //*************************************************************************** - // Calculate READ_DATA_VALID - // READ_DATA_VALID indicates whether the value in Stage2 is valid or not. - // Stage2 has valid data whenever Stage1 had valid data and - // ram_regout_en_i=1, such that the data in Stage1 is propogated - // into Stage2. - //*************************************************************************** - always @ (posedge RD_CLK or posedge rd_rst_i) begin - if (rd_rst_i) - read_data_valid_i <= 1'b0; +initial + begin + ram_valid_i = 1'b0; + read_data_valid_i = 1'b0; + USERDATA = hexstr_conv(C_DOUT_RST_VAL); + end + + + //****************************************************************************** + // connect up optional reset + //****************************************************************************** + assign rd_rst_i = C_HAS_RST ? RD_RST : 0; + + + //****************************************************************************** + // preloadstage2 indicates that stage2 needs to be updated. This is true + // whenever read_data_valid is false, and RAM_valid is true. + //****************************************************************************** + assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN); + + //****************************************************************************** + // preloadstage1 indicates that stage1 needs to be updated. This is true + // whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is + // false (indicating that Stage1 needs updating), or preloadstage2 is active + // (indicating that Stage2 is going to update, so Stage1, therefore, must + // also be updated to keep it valid. + //****************************************************************************** + assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY); + + //****************************************************************************** + // Calculate RAM_REGOUT_EN + // The output registers are controlled by the ram_regout_en signal. + // These registers should be updated either when the output in Stage2 is + // invalid (preloadstage2), OR when the user is reading, in which case the + // Stage2 value will go invalid unless it is replenished. + //****************************************************************************** + assign ram_regout_en = preloadstage2; + + //****************************************************************************** + // Calculate RAM_RD_EN + // RAM_RD_EN will be asserted whenever the RAM needs to be read in order to + // update the value in Stage1. + // One case when this happens is when preloadstage1=true, which indicates + // that the data in Stage1 or Stage2 is invalid, and needs to automatically + // be updated. + // The other case is when the user is reading from the FIFO, which guarantees + // that Stage1 or Stage2 will be invalid on the next clock cycle, unless it is + // replinished by data from the memory. So, as long as the RAM has data in it, + // a read of the RAM should occur. + //****************************************************************************** + assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1; + + //****************************************************************************** + // Calculate RAMVALID_P0_OUT + // RAMVALID_P0_OUT indicates that the data in Stage1 is valid. + // + // If the RAM is being read from on this clock cycle (ram_rd_en=1), then + // RAMVALID_P0_OUT is certainly going to be true. + // If the RAM is not being read from, but the output registers are being + // updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying, + // therefore causing RAMVALID_P0_OUT to be false. + // Otherwise, RAMVALID_P0_OUT will remain unchanged. + //****************************************************************************** + always @ (posedge RD_CLK or posedge rd_rst_i) + begin // PROCESS regout_valid + if (rd_rst_i) // asynchronous reset (active high) + ram_valid_i <= 1'b0; + else + begin + if (ram_rd_en == 1'b1) + ram_valid_i <= 1'b1; else - read_data_valid_i <= ram_valid_i | (read_data_valid_i & ~RD_EN); - end //always - - - //************************************************************************** - // Calculate EMPTY - // Defined as the inverse of READ_DATA_VALID - // - // Description: - // - // If read_data_valid_i indicates that the output is not valid, - // and there is no valid data on the output of the ram to preload it - // with, then we will report empty. - // - // If there is no valid data on the output of the ram and we are - // reading, then the FIFO will go empty. - // - //************************************************************************** - always @ (posedge RD_CLK or posedge rd_rst_i) begin - if (rd_rst_i) begin - // asynchronous reset (active high) - empty_i <= 1'b1; - empty_q <= 1'b1; - end else begin - // rising clock edge - empty_i <= (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN); - empty_q <= empty_i; - end + if (ram_regout_en == 1'b1) + ram_valid_i <= 1'b0; + else + ram_valid_i <= ram_valid_i; + end //rd_rst_i + end //always + + //****************************************************************************** + // Calculate READ_DATA_VALID + // READ_DATA_VALID indicates whether the value in Stage2 is valid or not. + // Stage2 has valid data whenever Stage1 had valid data and ram_regout_en_i=1, + // such that the data in Stage1 is propogated into Stage2. + //****************************************************************************** + always @ (posedge RD_CLK or posedge rd_rst_i) + begin + if (rd_rst_i) + read_data_valid_i <= 1'b0; + else + read_data_valid_i <= ram_valid_i | (read_data_valid_i & ~RD_EN); end //always - - //Register RD_EN from user to calculate USERUNDERFLOW. - always @ (posedge RD_CLK or posedge rd_rst_i) begin - if (rd_rst_i) begin - // asynchronous reset (active high) - rd_en_q <= 1'b0; - end else begin - // rising clock edge - rd_en_q <= RD_EN; + + + //***************************************************************************** + // Calculate EMPTY + // Defined as the inverse of READ_DATA_VALID + // + // Description: + // + // If read_data_valid_i indicates that the output is not valid, + // and there is no valid data on the output of the ram to preload it + // with, then we will report empty. + // + // If there is no valid data on the output of the ram and we are + // reading, then the FIFO will go empty. + // + //***************************************************************************** + always @ (posedge RD_CLK or posedge rd_rst_i) + begin + if (rd_rst_i) // asynchronous reset (active high) + begin + empty_i <= 1'b1; + empty_q <= 1'b1; + end + else // rising clock edge + begin + empty_i <= (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN); + empty_q <= empty_i; + end + end //always + + //Fix for CR:236270 //prasanna + //Register RD_EN from user to calculate USERUNDERFLOW. + always @ (posedge RD_CLK or posedge rd_rst_i) + begin + if (rd_rst_i) // asynchronous reset (active high) + begin + rd_en_q <= 1'b0; + end + else // rising clock edge + begin + rd_en_q <= RD_EN; + end + end //always + + + //***************************************************************************** + // Calculate user_almost_empty + // user_almost_empty is defined such that, unless more words are written + // to the FIFO, the next read will cause the FIFO to go EMPTY. + // + // In most cases, whenever the output registers are updated (due to a user + // read or a preload condition), then user_almost_empty will update to + // whatever RAM_EMPTY is. + // + // The exception is when the output is valid, the user is not reading, and + // Stage1 is not empty. In this condition, Stage1 will be preloaded from the + // memory, so we need to make sure user_almost_empty deasserts properly under + // this condition. + //***************************************************************************** + always @ (posedge RD_CLK or posedge rd_rst_i) + begin + if (rd_rst_i) // asynchronous reset (active high) + begin + almost_empty_i <= 1'b1; + almost_empty_q <= 1'b1; + end + else // rising clock edge + begin + if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) + begin + almost_empty_i <= FIFOEMPTY; end - end //always - - - //*************************************************************************** - // Calculate user_almost_empty - // user_almost_empty is defined such that, unless more words are written - // to the FIFO, the next read will cause the FIFO to go EMPTY. - // - // In most cases, whenever the output registers are updated (due to a user - // read or a preload condition), then user_almost_empty will update to - // whatever RAM_EMPTY is. - // - // The exception is when the output is valid, the user is not reading, and - // Stage1 is not empty. In this condition, Stage1 will be preloaded from the - // memory, so we need to make sure user_almost_empty deasserts properly under - // this condition. - //*************************************************************************** - always @ (posedge RD_CLK or posedge rd_rst_i) - begin - if (rd_rst_i) // asynchronous reset (active high) - begin - almost_empty_i <= 1'b1; - almost_empty_q <= 1'b1; - end - else // rising clock edge - begin - if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) - begin - almost_empty_i <= FIFOEMPTY; - end - almost_empty_q <= empty_i; - end - end //always - - - assign USEREMPTY = empty_i; - assign USERALMOSTEMPTY = almost_empty_i; - assign FIFORDEN = ram_rd_en; - assign RAMVALID = ram_valid_i; - assign USERVALID = C_USERVALID_LOW ? ~read_data_valid_i : read_data_valid_i; - assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q; - - always @ (posedge RD_CLK or posedge rd_rst_i) - begin - if (rd_rst_i && C_USE_DOUT_RST == 1) //asynchronous reset (active high) - USERDATA <= hexstr_conv(C_DOUT_RST_VAL); - else // rising clock edge - if (ram_regout_en) - USERDATA <= FIFODATA; - end //always - - - - - + almost_empty_q <= empty_i; + end + end //always + + + assign USEREMPTY = empty_i; + assign USERALMOSTEMPTY = almost_empty_i; + assign FIFORDEN = ram_rd_en; + assign RAMVALID = ram_valid_i; + assign USERVALID = C_USERVALID_LOW ? ~read_data_valid_i : read_data_valid_i; + //assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & RD_EN) : empty_q & RD_EN; //Bug in v3.1 (CR:236270) + assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q; //Fix for CR:236270 in v3.2 //prasanna + + always @ (posedge RD_CLK or posedge rd_rst_i) + begin + if (rd_rst_i) // asynchronous reset (active high) + USERDATA <= hexstr_conv(C_DOUT_RST_VAL); + else // rising clock edge + if (ram_regout_en) + USERDATA <= FIFODATA; + end //always + + + + + endmodule |