1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
|
/*
* $RDCfile: $ $Revision: 1.1.2.6 $ $Date: 2007/11/28 17:15:18 $
*******************************************************************************
*
* FIFO Generator - Verilog Behavioral Model
*
*******************************************************************************
*
* Copyright(C) 2006 by Xilinx, Inc. All rights reserved.
* This text/file contains proprietary, confidential
* information of Xilinx, Inc., is distributed under
* license from Xilinx, Inc., and may be used, copied
* and/or disclosed only pursuant to the terms of a valid
* license agreement with Xilinx, Inc. Xilinx hereby
* grants you a license to use this text/file solely for
* design, simulation, implementation and creation of
* design files limited to Xilinx devices or technologies.
* Use with non-Xilinx devices or technologies is expressly
* prohibited and immediately terminates your license unless
* covered by a separate agreement.
*
* Xilinx is providing theis design, code, or information
* "as-is" solely for use in developing programs and
* solutions for Xilinx devices, with no obligation on the
* part of Xilinx to provide support. By providing this design,
* code, or information as one possible implementation of
* this feature, application or standard. Xilinx is making no
* representation that this implementation is free from any
* claims of infringement. You are responsible for obtaining
* any rights you may require for your implementation.
* Xilinx expressly disclaims any warranty whatsoever with
* respect to the adequacy of the implementation, including
* but not limited to any warranties or representations that this
* implementation is free from claims of infringement, implied
* warranties of merchantability or fitness for a particular
* purpose.
*
* Xilinx products are not intended for use in life support
* appliances, devices, or systems. Use in such applications is
* expressly prohibited.
*
* This copyright and support notice must be retained as part
* of this text at all times. (c)Copyright 1995-2006 Xilinx, Inc.
* All rights reserved.
*
*******************************************************************************
*
* Filename: FIFO_GENERATOR_V4_3.v
*
* Author : Xilinx
*
*******************************************************************************
* Structure:
*
* fifo_generator_v4_3.vhd
* |
* +-fifo_generator_v4_3_bhv_as
* |
* +-fifo_generator_v4_3_bhv_ss
* |
* +-fifo_generator_v4_3_bhv_preload0
*
*******************************************************************************
* Description:
*
* The Verilog behavioral model for the FIFO Generator.
*
* The behavioral model has three parts:
* - The behavioral model for independent clocks FIFOs (_as)
* - The behavioral model for common clock FIFOs (_ss)
* - The "preload logic" block which implements First-word Fall-through
*
*******************************************************************************
* Description:
* The verilog behavioral model for the FIFO generator core.
*
*******************************************************************************
*/
`timescale 1ps/1ps
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module FIFO_GENERATOR_V4_3
(
BACKUP, //not used
BACKUP_MARKER, //not used
CLK,
DIN,
PROG_EMPTY_THRESH,
PROG_EMPTY_THRESH_ASSERT,
PROG_EMPTY_THRESH_NEGATE,
PROG_FULL_THRESH,
PROG_FULL_THRESH_ASSERT,
PROG_FULL_THRESH_NEGATE,
RD_CLK,
RD_EN,
RD_RST, //not used
RST,
SRST,
WR_CLK,
WR_EN,
WR_RST, //not used
INT_CLK,
ALMOST_EMPTY,
ALMOST_FULL,
DATA_COUNT,
DOUT,
EMPTY,
FULL,
OVERFLOW,
PROG_EMPTY,
PROG_FULL,
RD_DATA_COUNT,
UNDERFLOW,
VALID,
WR_ACK,
WR_DATA_COUNT,
SBITERR,
DBITERR
);
/*
******************************************************************************
* Definition of Parameters
******************************************************************************
* C_COMMON_CLOCK : Common Clock (1), Independent Clocks (0)
* C_COUNT_TYPE : *not used
* C_DATA_COUNT_WIDTH : Width of DATA_COUNT bus
* C_DEFAULT_VALUE : *not used
* C_DIN_WIDTH : Width of DIN bus
* C_DOUT_RST_VAL : Reset value of DOUT
* C_DOUT_WIDTH : Width of DOUT bus
* C_ENABLE_RLOCS : *not used
* C_FAMILY : not used in bhv model
* C_FULL_FLAGS_RST_VAL : Full flags rst val (0 or 1)
* C_HAS_ALMOST_EMPTY : 1=Core has ALMOST_EMPTY flag
* C_HAS_ALMOST_FULL : 1=Core has ALMOST_FULL flag
* C_HAS_BACKUP : *not used
* C_HAS_DATA_COUNT : 1=Core has DATA_COUNT bus
* C_HAS_INT_CLK : not used in bhv model
* C_HAS_MEMINIT_FILE : *not used
* C_HAS_OVERFLOW : 1=Core has OVERFLOW flag
* C_HAS_RD_DATA_COUNT : 1=Core has RD_DATA_COUNT bus
* C_HAS_RD_RST : *not used
* C_HAS_RST : 1=Core has Async Rst
* C_HAS_SRST : 1=Core has Sync Rst
* C_HAS_UNDERFLOW : 1=Core has UNDERFLOW flag
* C_HAS_VALID : 1=Core has VALID flag
* C_HAS_WR_ACK : 1=Core has WR_ACK flag
* C_HAS_WR_DATA_COUNT : 1=Core has WR_DATA_COUNT bus
* C_HAS_WR_RST : *not used
* C_IMPLEMENTATION_TYPE : 0=Common-Clock Bram/Dram
* 1=Common-Clock ShiftRam
* 2=Indep. Clocks Bram/Dram
* 3=Virtex-4 Built-in
* 4=Virtex-5 Built-in
* C_INIT_WR_PNTR_VAL : *not used
* C_MEMORY_TYPE : 1=Block RAM
* 2=Distributed RAM
* 3=Shift RAM
* 4=Built-in FIFO
* C_MIF_FILE_NAME : *not used
* C_OPTIMIZATION_MODE : *not used
* C_OVERFLOW_LOW : 1=OVERFLOW active low
* C_PRELOAD_LATENCY : Latency of read: 0, 1, 2
* C_PRELOAD_REGS : 1=Use output registers
* C_PRIM_FIFO_TYPE : not used in bhv model
* C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold
* C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold
* C_PROG_EMPTY_TYPE : 0=No programmable empty
* 1=Single prog empty thresh constant
* 2=Multiple prog empty thresh constants
* 3=Single prog empty thresh input
* 4=Multiple prog empty thresh inputs
* C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold
* C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold
* C_PROG_FULL_TYPE : 0=No prog full
* 1=Single prog full thresh constant
* 2=Multiple prog full thresh constants
* 3=Single prog full thresh input
* 4=Multiple prog full thresh inputs
* C_RD_DATA_COUNT_WIDTH : Width of RD_DATA_COUNT bus
* C_RD_DEPTH : Depth of read interface (2^N)
* C_RD_FREQ : not used in bhv model
* C_RD_PNTR_WIDTH : always log2(C_RD_DEPTH)
* C_UNDERFLOW_LOW : 1=UNDERFLOW active low
* C_USE_DOUT_RST : 1=Resets DOUT on RST
* C_USE_ECC : not used in bhv model
* C_USE_EMBEDDED_REG : 1=Use BRAM embedded output register
* C_USE_FIFO16_FLAGS : not used in bhv model
* C_USE_FWFT_DATA_COUNT : 1=Use extra logic for FWFT data count
* C_VALID_LOW : 1=VALID active low
* C_WR_ACK_LOW : 1=WR_ACK active low
* C_WR_DATA_COUNT_WIDTH : Width of WR_DATA_COUNT bus
* C_WR_DEPTH : Depth of write interface (2^N)
* C_WR_FREQ : not used in bhv model
* C_WR_PNTR_WIDTH : always log2(C_WR_DEPTH)
* C_WR_RESPONSE_LATENCY : *not used
* C_MSGON_VAL : *not used by bhv model
******************************************************************************
* Definition of Ports
******************************************************************************
* BACKUP : Not used
* BACKUP_MARKER: Not used
* CLK : Clock
* DIN : Input data bus
* PROG_EMPTY_THRESH : Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag
* PROG_FULL_THRESH : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag
* RD_CLK : Read Domain Clock
* RD_EN : Read enable
* RD_RST : Not used
* RST : Asynchronous Reset
* SRST : Synchronous Reset
* WR_CLK : Write Domain Clock
* WR_EN : Write enable
* WR_RST : Not used
* INT_CLK : Internal Clock
* ALMOST_EMPTY : One word remaining in FIFO
* ALMOST_FULL : One empty space remaining in FIFO
* DATA_COUNT : Number of data words in fifo( synchronous to CLK)
* DOUT : Output data bus
* EMPTY : Empty flag
* FULL : Full flag
* OVERFLOW : Last write rejected
* PROG_EMPTY : Programmable Empty Flag
* PROG_FULL : Programmable Full Flag
* RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK)
* UNDERFLOW : Last read rejected
* VALID : Last read acknowledged, DOUT bus VALID
* WR_ACK : Last write acknowledged
* WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK)
* SBITERR : Single Bit ECC Error Detected
* DBITERR : Double Bit ECC Error Detected
******************************************************************************
*/
/****************************************************************************
* Declare user parameters and their defaults
*****************************************************************************/
parameter C_COMMON_CLOCK = 0;
parameter C_COUNT_TYPE = 0; //not used
parameter C_DATA_COUNT_WIDTH = 2;
parameter C_DEFAULT_VALUE = ""; //not used
parameter C_DIN_WIDTH = 8;
parameter C_DOUT_RST_VAL = "";
parameter C_DOUT_WIDTH = 8;
parameter C_ENABLE_RLOCS = 0; //not used
parameter C_FAMILY = "virtex2"; //not used in bhv model
parameter C_FULL_FLAGS_RST_VAL = 1;
parameter C_HAS_ALMOST_EMPTY = 0;
parameter C_HAS_ALMOST_FULL = 0;
parameter C_HAS_BACKUP = 0; //not used
parameter C_HAS_DATA_COUNT = 0;
parameter C_HAS_INT_CLK = 0; //not used in bhv model
parameter C_HAS_MEMINIT_FILE = 0; //not used
parameter C_HAS_OVERFLOW = 0;
parameter C_HAS_RD_DATA_COUNT = 0;
parameter C_HAS_RD_RST = 0; //not used
parameter C_HAS_RST = 0;
parameter C_HAS_SRST = 0;
parameter C_HAS_UNDERFLOW = 0;
parameter C_HAS_VALID = 0;
parameter C_HAS_WR_ACK = 0;
parameter C_HAS_WR_DATA_COUNT = 0;
parameter C_HAS_WR_RST = 0; //not used
parameter C_IMPLEMENTATION_TYPE = 0;
parameter C_INIT_WR_PNTR_VAL = 0; //not used
parameter C_MEMORY_TYPE = 1;
parameter C_MIF_FILE_NAME = ""; //not used
parameter C_OPTIMIZATION_MODE = 0; //not used
parameter C_OVERFLOW_LOW = 0;
parameter C_PRELOAD_LATENCY = 1;
parameter C_PRELOAD_REGS = 0;
parameter C_PRIM_FIFO_TYPE = 512; //not used in bhv model
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0;
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0;
parameter C_PROG_EMPTY_TYPE = 0;
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0;
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0;
parameter C_PROG_FULL_TYPE = 0;
parameter C_RD_DATA_COUNT_WIDTH = 2;
parameter C_RD_DEPTH = 256;
parameter C_RD_FREQ = 1; //not used in bhv model
parameter C_RD_PNTR_WIDTH = 8;
parameter C_UNDERFLOW_LOW = 0;
parameter C_USE_DOUT_RST = 0;
parameter C_USE_ECC = 0; //not used in bhv model
parameter C_USE_EMBEDDED_REG = 0;
parameter C_USE_FIFO16_FLAGS = 0; //not used in bhv model
parameter C_USE_FWFT_DATA_COUNT = 0;
parameter C_VALID_LOW = 0;
parameter C_WR_ACK_LOW = 0;
parameter C_WR_DATA_COUNT_WIDTH = 2;
parameter C_WR_DEPTH = 256;
parameter C_WR_FREQ = 1; //not used in bhv model
parameter C_WR_PNTR_WIDTH = 8;
parameter C_WR_RESPONSE_LATENCY = 1; //not used
parameter C_MSGON_VAL = 1; //not used
/*****************************************************************************
* Derived parameters
****************************************************************************/
//There are 2 Verilog behavioral models
// 0 = Common-Clock FIFO/ShiftRam FIFO
// 1 = Independent Clocks FIFO
parameter C_VERILOG_IMPL = (C_IMPLEMENTATION_TYPE==0 ? 0 :
(C_IMPLEMENTATION_TYPE==1 ? 0 :
(C_IMPLEMENTATION_TYPE==2 ? 1 : 0)));
/*****************************************************************************
* Declare Input and Output Ports
****************************************************************************/
input CLK;
input BACKUP;
input BACKUP_MARKER;
input [C_DIN_WIDTH-1:0] DIN;
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
input RD_CLK;
input RD_EN;
input RD_RST;
input RST;
input SRST;
input WR_CLK;
input WR_EN;
input WR_RST;
input INT_CLK;
output ALMOST_EMPTY;
output ALMOST_FULL;
output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
output [C_DOUT_WIDTH-1:0] DOUT;
output EMPTY;
output FULL;
output OVERFLOW;
output PROG_EMPTY;
output PROG_FULL;
output VALID;
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
output UNDERFLOW;
output WR_ACK;
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
output SBITERR;
output DBITERR;
wire ALMOST_EMPTY;
wire ALMOST_FULL;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
wire [C_DOUT_WIDTH-1:0] DOUT;
wire EMPTY;
wire FULL;
wire OVERFLOW;
wire PROG_EMPTY;
wire PROG_FULL;
wire VALID;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
wire UNDERFLOW;
wire WR_ACK;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
wire RD_CLK_P0_IN;
wire RST_P0_IN;
wire RD_EN_FIFO_IN;
wire RD_EN_P0_IN;
wire ALMOST_EMPTY_FIFO_OUT;
wire ALMOST_FULL_FIFO_OUT;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT_FIFO_OUT;
wire [C_DOUT_WIDTH-1:0] DOUT_FIFO_OUT;
wire EMPTY_FIFO_OUT;
wire FULL_FIFO_OUT;
wire OVERFLOW_FIFO_OUT;
wire PROG_EMPTY_FIFO_OUT;
wire PROG_FULL_FIFO_OUT;
wire VALID_FIFO_OUT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT_FIFO_OUT;
wire UNDERFLOW_FIFO_OUT;
wire WR_ACK_FIFO_OUT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT_FIFO_OUT;
//***************************************************************************
// Internal Signals
// The core uses either the internal_ wires or the preload0_ wires depending
// on whether the core uses Preload0 or not.
// When using preload0, the internal signals connect the internal core to
// the preload logic, and the external core's interfaces are tied to the
// preload0 signals from the preload logic.
//***************************************************************************
wire [C_DOUT_WIDTH-1:0] DATA_P0_OUT;
wire VALID_P0_OUT;
wire EMPTY_P0_OUT;
wire ALMOSTEMPTY_P0_OUT;
reg EMPTY_P0_OUT_Q;
reg ALMOSTEMPTY_P0_OUT_Q;
wire UNDERFLOW_P0_OUT;
wire RDEN_P0_OUT;
wire [C_DOUT_WIDTH-1:0] DATA_P0_IN;
wire EMPTY_P0_IN;
reg [31:0] DATA_COUNT_FWFT;
reg SS_FWFT_WR ;
reg SS_FWFT_RD ;
assign SBITERR = 1'b0;
assign DBITERR = 1'b0;
// Choose the behavioral model to instantiate based on the C_VERILOG_IMPL
// parameter (1=Independent Clocks, 0=Common Clock)
generate
case (C_VERILOG_IMPL)
0 : begin : block1
//Common Clock Behavioral Model
fifo_generator_v4_3_bhv_ver_ss
#(
C_DATA_COUNT_WIDTH,
C_DIN_WIDTH,
C_DOUT_RST_VAL,
C_DOUT_WIDTH,
C_FULL_FLAGS_RST_VAL,
C_HAS_ALMOST_EMPTY,
C_HAS_ALMOST_FULL,
C_HAS_DATA_COUNT,
C_HAS_OVERFLOW,
C_HAS_RD_DATA_COUNT,
C_HAS_RST,
C_HAS_SRST,
C_HAS_UNDERFLOW,
C_HAS_VALID,
C_HAS_WR_ACK,
C_HAS_WR_DATA_COUNT,
C_IMPLEMENTATION_TYPE,
C_MEMORY_TYPE,
C_OVERFLOW_LOW,
C_PRELOAD_LATENCY,
C_PRELOAD_REGS,
C_PROG_EMPTY_THRESH_ASSERT_VAL,
C_PROG_EMPTY_THRESH_NEGATE_VAL,
C_PROG_EMPTY_TYPE,
C_PROG_FULL_THRESH_ASSERT_VAL,
C_PROG_FULL_THRESH_NEGATE_VAL,
C_PROG_FULL_TYPE,
C_RD_DATA_COUNT_WIDTH,
C_RD_DEPTH,
C_RD_PNTR_WIDTH,
C_UNDERFLOW_LOW,
C_USE_DOUT_RST,
C_USE_EMBEDDED_REG,
C_USE_FWFT_DATA_COUNT,
C_VALID_LOW,
C_WR_ACK_LOW,
C_WR_DATA_COUNT_WIDTH,
C_WR_DEPTH,
C_WR_PNTR_WIDTH
)
gen_ss
(
.CLK (CLK),
.RST (RST),
.SRST (SRST),
.DIN (DIN),
.WR_EN (WR_EN),
.RD_EN (RD_EN_FIFO_IN),
.PROG_EMPTY_THRESH (PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
.PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
.PROG_FULL_THRESH (PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT),
.PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.DATA_COUNT (DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT)
);
end
1 : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v4_3_bhv_ver_as
#(
C_DATA_COUNT_WIDTH,
C_DIN_WIDTH,
C_DOUT_RST_VAL,
C_DOUT_WIDTH,
C_FULL_FLAGS_RST_VAL,
C_HAS_ALMOST_EMPTY,
C_HAS_ALMOST_FULL,
C_HAS_DATA_COUNT,
C_HAS_OVERFLOW,
C_HAS_RD_DATA_COUNT,
C_HAS_RST,
C_HAS_UNDERFLOW,
C_HAS_VALID,
C_HAS_WR_ACK,
C_HAS_WR_DATA_COUNT,
C_IMPLEMENTATION_TYPE,
C_MEMORY_TYPE,
C_OVERFLOW_LOW,
C_PRELOAD_LATENCY,
C_PRELOAD_REGS,
C_PROG_EMPTY_THRESH_ASSERT_VAL,
C_PROG_EMPTY_THRESH_NEGATE_VAL,
C_PROG_EMPTY_TYPE,
C_PROG_FULL_THRESH_ASSERT_VAL,
C_PROG_FULL_THRESH_NEGATE_VAL,
C_PROG_FULL_TYPE,
C_RD_DATA_COUNT_WIDTH,
C_RD_DEPTH,
C_RD_PNTR_WIDTH,
C_UNDERFLOW_LOW,
C_USE_DOUT_RST,
C_USE_EMBEDDED_REG,
C_USE_FWFT_DATA_COUNT,
C_VALID_LOW,
C_WR_ACK_LOW,
C_WR_DATA_COUNT_WIDTH,
C_WR_DEPTH,
C_WR_PNTR_WIDTH
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (RST),
.DIN (DIN),
.WR_EN (WR_EN),
.RD_EN (RD_EN_FIFO_IN),
.PROG_EMPTY_THRESH (PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
.PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
.PROG_FULL_THRESH (PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT),
.PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT)
);
end
default : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v4_3_bhv_ver_as
#(
C_DATA_COUNT_WIDTH,
C_DIN_WIDTH,
C_DOUT_RST_VAL,
C_DOUT_WIDTH,
C_FULL_FLAGS_RST_VAL,
C_HAS_ALMOST_EMPTY,
C_HAS_ALMOST_FULL,
C_HAS_DATA_COUNT,
C_HAS_OVERFLOW,
C_HAS_RD_DATA_COUNT,
C_HAS_RST,
C_HAS_UNDERFLOW,
C_HAS_VALID,
C_HAS_WR_ACK,
C_HAS_WR_DATA_COUNT,
C_IMPLEMENTATION_TYPE,
C_MEMORY_TYPE,
C_OVERFLOW_LOW,
C_PRELOAD_LATENCY,
C_PRELOAD_REGS,
C_PROG_EMPTY_THRESH_ASSERT_VAL,
C_PROG_EMPTY_THRESH_NEGATE_VAL,
C_PROG_EMPTY_TYPE,
C_PROG_FULL_THRESH_ASSERT_VAL,
C_PROG_FULL_THRESH_NEGATE_VAL,
C_PROG_FULL_TYPE,
C_RD_DATA_COUNT_WIDTH,
C_RD_DEPTH,
C_RD_PNTR_WIDTH,
C_UNDERFLOW_LOW,
C_USE_DOUT_RST,
C_USE_EMBEDDED_REG,
C_USE_FWFT_DATA_COUNT,
C_VALID_LOW,
C_WR_ACK_LOW,
C_WR_DATA_COUNT_WIDTH,
C_WR_DEPTH,
C_WR_PNTR_WIDTH
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (RST),
.DIN (DIN),
.WR_EN (WR_EN),
.RD_EN (RD_EN_FIFO_IN),
.PROG_EMPTY_THRESH (PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
.PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
.PROG_FULL_THRESH (PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT),
.PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT)
);
end
endcase
endgenerate
//**************************************************************************
// Connect Internal Signals
// (Signals labeled internal_*)
// In the normal case, these signals tie directly to the FIFO's inputs and
// outputs.
// In the case of Preload Latency 0 or 1, there are intermediate
// signals between the internal FIFO and the preload logic.
//**************************************************************************
//***********************************************
// If First-Word Fall-Through, instantiate
// the preload0 (FWFT) module
//***********************************************
generate
if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin : block2
fifo_generator_v4_3_bhv_ver_preload0
#(
C_DOUT_RST_VAL,
C_DOUT_WIDTH,
C_HAS_RST,
C_USE_DOUT_RST,
C_VALID_LOW,
C_UNDERFLOW_LOW
)
fgpl0
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (RST_P0_IN),
.RD_EN (RD_EN_P0_IN),
.FIFOEMPTY (EMPTY_P0_IN),
.FIFODATA (DATA_P0_IN),
.USERDATA (DATA_P0_OUT),
.USERVALID (VALID_P0_OUT),
.USEREMPTY (EMPTY_P0_OUT),
.USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT),
.USERUNDERFLOW (UNDERFLOW_P0_OUT),
.RAMVALID (RAMVALID_P0_OUT),
.FIFORDEN (RDEN_P0_OUT)
);
//***********************************************
// Connect inputs to preload (FWFT) module
//***********************************************
//Connect the RD_CLK of the Preload (FWFT) module to CLK if we
// have a common-clock FIFO, or RD_CLK if we have an
// independent clock FIFO
assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK);
assign RST_P0_IN = RST;
assign RD_EN_P0_IN = RD_EN;
assign EMPTY_P0_IN = EMPTY_FIFO_OUT;
assign DATA_P0_IN = DOUT_FIFO_OUT;
//***********************************************
// Connect outputs from preload (FWFT) module
//***********************************************
assign DOUT = DATA_P0_OUT;
assign VALID = VALID_P0_OUT ;
assign EMPTY = EMPTY_P0_OUT;
assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT;
assign UNDERFLOW = UNDERFLOW_P0_OUT ;
assign RD_EN_FIFO_IN = RDEN_P0_OUT;
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
assign DATA_COUNT = (C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ?
DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] :
DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1];
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
always @ (posedge RD_CLK or posedge RST) begin
if (RST) begin
EMPTY_P0_OUT_Q <= 1;
ALMOSTEMPTY_P0_OUT_Q <= 1;
end else begin
EMPTY_P0_OUT_Q <= EMPTY_P0_OUT;
ALMOSTEMPTY_P0_OUT_Q <= ALMOSTEMPTY_P0_OUT;
end
end //always
//***********************************************
// logic for common-clock data count when FWFT is selected
//***********************************************
initial begin
SS_FWFT_RD = 1'b0;
DATA_COUNT_FWFT = 0 ;
SS_FWFT_WR = 1'b0 ;
end //initial
//***********************************************
// common-clock data count is implemented as an
// up-down counter. SS_FWFT_WR and SS_FWFT_RD
// are the up/down enables for the counter.
//***********************************************
always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT) begin
SS_FWFT_RD = RD_EN && VALID_P0_OUT ;
SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT)) ;
end
//***********************************************
// common-clock data count is implemented as an
// up-down counter for FWFT. This always block
// calculates the counter.
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST) begin
if (RST && (C_HAS_RST == 1) ) begin
DATA_COUNT_FWFT <= 0;
end else begin
if (SRST && (C_HAS_SRST == 1) ) begin
DATA_COUNT_FWFT <= 0;
end else begin
case ( {SS_FWFT_WR, SS_FWFT_RD})
2'b00: DATA_COUNT_FWFT <= DATA_COUNT_FWFT ;
2'b01: DATA_COUNT_FWFT <= DATA_COUNT_FWFT - 1 ;
2'b10: DATA_COUNT_FWFT <= DATA_COUNT_FWFT + 1 ;
2'b11: DATA_COUNT_FWFT <= DATA_COUNT_FWFT ;
endcase
end //if SRST
end //IF RST
end //always
end else begin : block2 //if !(C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
//***********************************************
// If NOT First-Word Fall-Through, wire the outputs
// of the internal _ss or _as FIFO directly to the
// output, and do not instantiate the preload0
// module.
//***********************************************
assign RD_CLK_P0_IN = 0;
assign RST_P0_IN = 0;
assign RD_EN_P0_IN = 0;
assign RD_EN_FIFO_IN = RD_EN;
assign DOUT = DOUT_FIFO_OUT;
assign DATA_P0_IN = 0;
assign VALID = VALID_FIFO_OUT;
assign EMPTY = EMPTY_FIFO_OUT;
assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT;
assign EMPTY_P0_IN = 0;
assign UNDERFLOW = UNDERFLOW_FIFO_OUT;
assign DATA_COUNT = DATA_COUNT_FIFO_OUT;
end //if !(C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
endgenerate
//***********************************************
// Connect user flags to internal signals
//***********************************************
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ) begin : block3
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT);
end //block3
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) ) begin : block30
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT);
end //block30
endgenerate
//If we are not using extra logic for the FWFT data count,
//then connect RD_DATA_COUNT to the RD_DATA_COUNT from the
//internal FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal
//FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==1) begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
else begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Connect other flags to the internal FIFO instance
assign FULL = FULL_FIFO_OUT;
assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT;
assign WR_ACK = WR_ACK_FIFO_OUT;
assign OVERFLOW = OVERFLOW_FIFO_OUT;
assign PROG_FULL = PROG_FULL_FIFO_OUT;
assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT;
// if an asynchronous FIFO has been selected, display a message that the FIFO
// will not be cycle-accurate in simulation
initial begin
if (C_IMPLEMENTATION_TYPE == 2) begin
$display("Warning in %m at time %t: When using an asynchronous configuration for the FIFO Generator, the behavioral model is not cycle-accurate. You may wish to choose the structural simulation model instead of the behavioral model. This will ensure accurate behavior and latencies during simulation. You can enable this from CORE Generator by selecting Project -> Project Options -> Generation tab -> Structural Simulation. See the FIFO Generator User Guide for more information.", $time);
end else if (C_IMPLEMENTATION_TYPE == 3 || C_IMPLEMENTATION_TYPE == 4) begin
$display("Failure in %m at time %t: Use of Virtex-4 and Virtex-5 built-in FIFO configurations is currently not supported. Please use the structural simulation model. You can enable this from CORE Generator by selecting Project -> Project Options -> Generation tab -> Structural Simulation. See the FIFO Generator User Guide for more information.", $time);
$finish;
end
end //initial
endmodule //FIFO_GENERATOR_V4_3
/*******************************************************************************
* Declaration of Independent-Clocks FIFO Module
******************************************************************************/
module fifo_generator_v4_3_bhv_ver_as
(
WR_CLK, RD_CLK, RST, DIN, WR_EN, RD_EN,
PROG_EMPTY_THRESH, PROG_EMPTY_THRESH_ASSERT, PROG_EMPTY_THRESH_NEGATE,
PROG_FULL_THRESH, PROG_FULL_THRESH_ASSERT, PROG_FULL_THRESH_NEGATE,
DOUT, FULL, ALMOST_FULL, WR_ACK, OVERFLOW, EMPTY, ALMOST_EMPTY, VALID,
UNDERFLOW, RD_DATA_COUNT, WR_DATA_COUNT, PROG_FULL, PROG_EMPTY
);
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
parameter C_DATA_COUNT_WIDTH = 2;
parameter C_DIN_WIDTH = 8;
parameter C_DOUT_RST_VAL = "";
parameter C_DOUT_WIDTH = 8;
parameter C_FULL_FLAGS_RST_VAL = 1;
parameter C_HAS_ALMOST_EMPTY = 0;
parameter C_HAS_ALMOST_FULL = 0;
parameter C_HAS_DATA_COUNT = 0;
parameter C_HAS_OVERFLOW = 0;
parameter C_HAS_RD_DATA_COUNT = 0;
parameter C_HAS_RST = 0;
parameter C_HAS_UNDERFLOW = 0;
parameter C_HAS_VALID = 0;
parameter C_HAS_WR_ACK = 0;
parameter C_HAS_WR_DATA_COUNT = 0;
parameter C_IMPLEMENTATION_TYPE = 0;
parameter C_MEMORY_TYPE = 1;
parameter C_OVERFLOW_LOW = 0;
parameter C_PRELOAD_LATENCY = 1;
parameter C_PRELOAD_REGS = 0;
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0;
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0;
parameter C_PROG_EMPTY_TYPE = 0;
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0;
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0;
parameter C_PROG_FULL_TYPE = 0;
parameter C_RD_DATA_COUNT_WIDTH = 2;
parameter C_RD_DEPTH = 256;
parameter C_RD_PNTR_WIDTH = 8;
parameter C_UNDERFLOW_LOW = 0;
parameter C_USE_DOUT_RST = 0;
parameter C_USE_EMBEDDED_REG = 0;
parameter C_USE_FWFT_DATA_COUNT = 0;
parameter C_VALID_LOW = 0;
parameter C_WR_ACK_LOW = 0;
parameter C_WR_DATA_COUNT_WIDTH = 2;
parameter C_WR_DEPTH = 256;
parameter C_WR_PNTR_WIDTH = 8;
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
input [C_DIN_WIDTH-1:0] DIN;
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
input RD_CLK;
input RD_EN;
input RST;
input WR_CLK;
input WR_EN;
output ALMOST_EMPTY;
output ALMOST_FULL;
output [C_DOUT_WIDTH-1:0] DOUT;
output EMPTY;
output FULL;
output OVERFLOW;
output PROG_EMPTY;
output PROG_FULL;
output VALID;
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
output UNDERFLOW;
output WR_ACK;
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
/*************************************************************************
* Declare the type for each Input/Output port, and connect each I/O
* to it's associated internal signal in the behavioral model
*
* The values for the outputs are assigned in assign statements immediately
* following wire, parameter, and function declarations in this code.
*************************************************************************/
//Inputs
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_CLK;
wire RD_EN;
wire RST;
wire WR_CLK;
wire WR_EN;
//Outputs
wire ALMOST_EMPTY;
wire ALMOST_FULL;
wire [C_DOUT_WIDTH-1:0] DOUT;
wire EMPTY;
wire FULL;
wire OVERFLOW;
wire PROG_EMPTY;
wire PROG_FULL;
wire VALID;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
wire UNDERFLOW;
wire WR_ACK;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
parameter C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
parameter C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
parameter C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
parameter C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
// EXTRA_WORDS = 2 * C_DEPTH_RATIO_WR / C_DEPTH_RATIO_RD
// WR_DEPTH : RD_DEPTH = 1:2 => EXTRA_WORDS = 1
// WR_DEPTH : RD_DEPTH = 1:4 => EXTRA_WORDS = 1 (rounded to ceiling)
// WR_DEPTH : RD_DEPTH = 2:1 => EXTRA_WORDS = 4
// WR_DEPTH : RD_DEPTH = 4:1 => EXTRA_WORDS = 8
parameter EXTRA_WORDS = (C_DEPTH_RATIO_RD > 1)? 1:(2 * C_DEPTH_RATIO_WR);
// extra_words_dc = 2 * C_DEPTH_RATIO_WR / C_DEPTH_RATIO_RD
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 0
// 1 | 4 | C_RD_PNTR_WIDTH | 0
// 1 | 2 | C_RD_PNTR_WIDTH | 1
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
parameter EXTRA_WORDS_DC = ( C_DEPTH_RATIO_RD > 2)?
0:(2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
parameter [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
parameter [31:0] log2_reads_per_write = log2_val(reads_per_write);
parameter [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
parameter [31:0] log2_writes_per_read = log2_val(writes_per_read);
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
//Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
//The amount of data stored in the FIFO at any time is given
// by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK
// domain.
//num_wr_bits is calculated by considering the total words in the FIFO,
// and the state of the read pointer (which may not have yet crossed clock
// domains.)
//num_rd_bits is calculated by considering the total words in the FIFO,
// and the state of the write pointer (which may not have yet crossed clock
// domains.)
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
//The read pointer - tracks read operations
// (Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
//Pointers passed into opposite clock domain
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_EMPTY.
wire [31:0] num_read_words_pe =
num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR);
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_FULL.
wire [31:0] num_write_words_pf =
num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD);
/**************************
* Read Data Count
*************************/
/* ORIGINAL CODE - Removed 10/24/07 jeo
//Amount of data stored in the FIFO scaled to read words
// (Do not include data in FWFT stages)
//Not used in the code.
wire [31:0] num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Amount of data stored in the FIFO scaled to read words
// (Include data in FWFT stages)
//Not used in the code.
wire [31:0] num_read_words_fwft_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Not used in the code.
wire [31:0] num_read_words_dc_i =
C_USE_FWFT_DATA_COUNT ? num_read_words_fwft_dc : num_read_words_dc;
//Not used in the code.
wire [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized =
num_read_words_dc_i[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
//Not used in the code.
wire [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_fwft =
num_read_words_dc_i[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
//Used to calculate ideal_rd_count (RD_DATA_COUNT)
wire [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i =
C_USE_FWFT_DATA_COUNT ? num_read_words_sized_fwft : num_read_words_sized;
*/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
/* ORIGINAL CODE - Removed 10/24/07 jeo
//Calculate the Data Count value for the number of write words, when not
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent division errors.
wire [31:0] num_write_words_dc =
(num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH) + 1;
//Calculate the Data Count value for the number of write words, when using
// First-Word Fall-Through with extra logic for Data Counts. This takes into
// consideration the number of words that are expected to be stored in the
// FWFT register stages (it always assumes they are filled).
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent division errors.
//EXTRA_WORDS_DC is the number of words added to write_words due to FWFT.
wire [31:0] num_write_words_fwft_dc =
(num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH) + 1) + EXTRA_WORDS_DC ;
wire [31:0] num_write_words_dc_i =
C_USE_FWFT_DATA_COUNT ? num_write_words_fwft_dc : num_write_words_dc;
wire [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized =
num_write_words_dc_i[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
wire [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_fwft =
num_write_words_dc_i[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
wire [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i = C_USE_FWFT_DATA_COUNT?
num_write_words_sized_fwft:num_write_words_sized;
*/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/***************************************************************************
* Internal registers and wires
**************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire valid_i;
wire valid_out;
wire underflow_i;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [C_DOUT_WIDTH-1:0] ideal_dout;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1;
reg ideal_wr_ack;
reg ideal_valid;
reg ideal_overflow;
reg ideal_underflow;
reg ideal_full;
reg ideal_empty;
reg ideal_almost_full;
reg ideal_almost_empty;
reg ideal_prog_full;
reg ideal_prog_empty;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count;
//Assorted reg values for delayed versions of signals
reg valid_d1;
reg prog_full_d;
reg prog_empty_d;
//Internal reset signals
reg rd_rst_asreg =0;
reg rd_rst_asreg_d1 =0;
reg rd_rst_asreg_d2 =0;
reg rd_rst_reg =0;
reg rd_rst_d1 =0;
reg wr_rst_asreg =0;
reg wr_rst_asreg_d1 =0;
reg wr_rst_asreg_d2 =0;
reg wr_rst_reg =0;
reg wr_rst_d1 =0;
wire rd_rst_comb;
wire rd_rst_i;
wire wr_rst_comb;
wire wr_rst_i;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/****************************************************************************
* Function Declarations
***************************************************************************/
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
begin
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr];
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
/***********************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
ideal_dout_d1 = 0 ;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
ideal_overflow = 1'b0;
ideal_underflow = 1'b0;
ideal_full = 1'b0;
ideal_empty = 1'b1;
ideal_almost_full = 1'b0;
ideal_almost_empty = 1'b1;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
prog_full_d = 1'b0;
prog_empty_d = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_CLK;
wire RD_EN;
wire RST;
wire WR_CLK;
wire WR_EN;
*/
//Outputs
assign ALMOST_EMPTY = ideal_almost_empty;
assign ALMOST_FULL = ideal_almost_full;
//Dout may change behavior based on latency
assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out;
assign EMPTY = ideal_empty;
assign FULL = ideal_full;
//Overflow may be active-low
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
assign PROG_EMPTY = ideal_prog_empty;
assign PROG_FULL = ideal_prog_full;
//Valid may change behavior based on latency or active-low
assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
valid_d1: valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = ideal_rd_count;
//Underflow may change behavior based on latency or active-low
assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
//Write acknowledge may be active low
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = ideal_wr_count;
/**************************************************************************
* Internal reset logic
**************************************************************************/
assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg;
assign rd_rst_comb = !rd_rst_asreg_d2 && rd_rst_asreg;
assign wr_rst_i = C_HAS_RST ? wr_rst_reg : 0;
assign rd_rst_i = C_HAS_RST ? rd_rst_reg : 0;
always @(posedge WR_CLK or posedge RST) begin
if (RST == 1'b1) begin
wr_rst_asreg <= 1'b1;
end else begin
if (wr_rst_asreg_d1 == 1'b1) begin
wr_rst_asreg <= 1'b0;
end else begin
wr_rst_asreg <= wr_rst_asreg;
end
end
end
always @(posedge WR_CLK) begin
wr_rst_asreg_d1 <= wr_rst_asreg;
wr_rst_asreg_d2 <= wr_rst_asreg_d1;
end
always @(posedge WR_CLK or posedge wr_rst_comb) begin
if (wr_rst_comb == 1'b1) begin
wr_rst_reg <= 1'b1;
end else begin
wr_rst_reg <= 1'b0;
end
end
always @(posedge WR_CLK or posedge wr_rst_i) begin
if (wr_rst_i == 1'b1) begin
wr_rst_d1 <= 1'b1;
end else begin
wr_rst_d1 <= wr_rst_i;
end
end
always @(posedge RD_CLK or posedge RST) begin
if (RST == 1'b1) begin
rd_rst_asreg <= 1'b1;
end else begin
if (rd_rst_asreg_d1 == 1'b1) begin
rd_rst_asreg <= 1'b0;
end else begin
rd_rst_asreg <= rd_rst_asreg;
end
end
end
always @(posedge RD_CLK) begin
rd_rst_asreg_d1 <= rd_rst_asreg;
rd_rst_asreg_d2 <= rd_rst_asreg_d1;
end
always @(posedge RD_CLK or posedge rd_rst_comb) begin
if (rd_rst_comb == 1'b1) begin
rd_rst_reg <= 1'b1;
end else begin
rd_rst_reg <= 1'b0;
end
end
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
valid_d1 <= 1'b0;
end else begin
valid_d1 <= valid_i;
end
end
//Capture delayed version of dout
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1 && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= dout_reset_val;
end else begin
ideal_dout_d1 <= ideal_dout;
end
end
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
always @(posedge WR_CLK) begin
ideal_overflow <= WR_EN & ideal_full;
end
always @(posedge RD_CLK) begin
ideal_underflow <= ideal_empty & RD_EN;
end
/**************************************************************************
* Write Domain Logic
**************************************************************************/
always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (wr_rst_i == 1'b1) begin
num_wr_bits <= 0;
next_num_wr_bits <= 0;
wr_ptr <= C_WR_DEPTH - 1;
rd_ptr_wrclk <= C_RD_DEPTH - 1;
ideal_wr_ack <= 0;
ideal_full <= C_FULL_FLAGS_RST_VAL;
ideal_almost_full <= C_FULL_FLAGS_RST_VAL;
ideal_wr_count <= 0;
ideal_prog_full <= C_FULL_FLAGS_RST_VAL;
prog_full_d <= C_FULL_FLAGS_RST_VAL;
end else begin //wr_rst_i==0
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
//If this is a write, handle the write by adding the value
// to the linked list, and updating all outputs appropriately
if (WR_EN == 1'b1) begin
if (ideal_full == 1'b1) begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD
>= C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= 0;
//Reminder that FIFO is still full
ideal_full <= 1'b1;
ideal_almost_full <= 1'b1;
ideal_wr_count <= num_write_words_sized_i;
//If the FIFO is one from full, but reporting full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= 0;
//With DEPTH-1 words in the FIFO, it is almost_full
ideal_full <= 1'b0;
ideal_almost_full <= 1'b1;
ideal_wr_count <= num_write_words_sized_i;
//If the FIFO is completely empty, but it is
// reporting FULL for some reason (like reset)
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <=
C_FIFO_WR_DEPTH-2) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= 0;
//FIFO is really not close to full, so change flag status.
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
ideal_wr_count <= num_write_words_sized_i;
end //(tmp_wr_listsize == 0)
end else begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >=
C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= 0;
//Reminder that FIFO is still full
ideal_full <= 1'b1;
ideal_almost_full <= 1'b1;
ideal_wr_count <= num_write_words_sized_i;
//If the FIFO is one from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= 1;
//This write is CAUSING the FIFO to go full
ideal_full <= 1'b1;
ideal_almost_full <= 1'b1;
ideal_wr_count <= num_write_words_sized_i;
//If the FIFO is 2 from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= 1;
//Still 2 from full
ideal_full <= 1'b0;
//2 from full, and writing, so set almost_full
ideal_almost_full <= 1'b1;
ideal_wr_count <= num_write_words_sized_i;
//If the FIFO is not close to being full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= 1;
//Not even close to full.
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
ideal_wr_count <= num_write_words_sized_i;
end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= 0;
//Implied statements:
//ideal_empty <= ideal_empty;
//ideal_almost_empty <= ideal_almost_empty;
//Check for full
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >= C_FIFO_WR_DEPTH)
ideal_full <= 1'b1;
else
ideal_full <= 1'b0;
//Check for almost_full
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >= C_FIFO_WR_DEPTH-1)
ideal_almost_full <= 1'b1;
else
ideal_almost_full <= 1'b0;
ideal_wr_count <= num_write_words_sized_i;
end
/*********************************************************
* Programmable FULL flags
*********************************************************/
//Single Programmable Full Constant Threshold
if (C_PROG_FULL_TYPE==1) begin
if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
prog_full_actual_thresh_assert = C_PROG_FULL_THRESH_ASSERT_VAL-EXTRA_WORDS;
prog_full_actual_thresh_negate = C_PROG_FULL_THRESH_ASSERT_VAL-EXTRA_WORDS;
end else begin
prog_full_actual_thresh_assert = C_PROG_FULL_THRESH_ASSERT_VAL;
prog_full_actual_thresh_negate = C_PROG_FULL_THRESH_ASSERT_VAL;
end
//Two Programmable Full Constant Thresholds
end else if (C_PROG_FULL_TYPE==2) begin
if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
prog_full_actual_thresh_assert = C_PROG_FULL_THRESH_ASSERT_VAL-EXTRA_WORDS;
prog_full_actual_thresh_negate = C_PROG_FULL_THRESH_NEGATE_VAL-EXTRA_WORDS;
end else begin
prog_full_actual_thresh_assert = C_PROG_FULL_THRESH_ASSERT_VAL;
prog_full_actual_thresh_negate = C_PROG_FULL_THRESH_NEGATE_VAL;
end
//Single Programmable Full Threshold Input
end else if (C_PROG_FULL_TYPE==3) begin
if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
prog_full_actual_thresh_assert = PROG_FULL_THRESH-EXTRA_WORDS;
prog_full_actual_thresh_negate = PROG_FULL_THRESH-EXTRA_WORDS;
end else begin
prog_full_actual_thresh_assert = PROG_FULL_THRESH;
prog_full_actual_thresh_negate = PROG_FULL_THRESH;
end
//Two Programmable Full Threshold Inputs
end else if (C_PROG_FULL_TYPE==4) begin
if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
prog_full_actual_thresh_assert = PROG_FULL_THRESH_ASSERT-EXTRA_WORDS;
prog_full_actual_thresh_negate = PROG_FULL_THRESH_NEGATE-EXTRA_WORDS;
end else begin
prog_full_actual_thresh_assert = PROG_FULL_THRESH_ASSERT;
prog_full_actual_thresh_negate = PROG_FULL_THRESH_NEGATE;
end
end //C_PROG_FULL_TYPE
if (num_write_words_pf==0) begin
prog_full_d <= 1'b0;
end else begin
if (((1+(num_write_words_pf-1)/C_DEPTH_RATIO_RD)
== prog_full_actual_thresh_assert-1) && WR_EN) begin
prog_full_d <= 1'b1;
end else if ((1+(num_write_words_pf-1)/C_DEPTH_RATIO_RD)
>= prog_full_actual_thresh_assert) begin
prog_full_d <= 1'b1;
end else if ((1+(num_write_words_pf-1)/C_DEPTH_RATIO_RD)
< prog_full_actual_thresh_negate) begin
prog_full_d <= 1'b0;
end
end
if (wr_rst_d1==1 && wr_rst_i==0) begin
ideal_prog_full <= 0;
end else begin
ideal_prog_full <= prog_full_d;
end
num_wr_bits <= next_num_wr_bits;
rd_ptr_wrclk <= rd_ptr;
end //wr_rst_i==0
end // write always
/**************************************************************************
* Read Domain Logic
**************************************************************************/
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rd_rst_i) begin
num_rd_bits <= 0;
next_num_rd_bits <= 0;
rd_ptr <= C_RD_DEPTH -1;
wr_ptr_rdclk <= C_WR_DEPTH -1;
if (C_USE_DOUT_RST == 1) begin
ideal_dout <= dout_reset_val;
end else begin
ideal_dout <= ideal_dout;
end
ideal_valid <= 1'b0;
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
ideal_rd_count <= 0;
ideal_prog_empty <= 1'b1;
prog_empty_d <= 1;
end else begin //rd_rst_i==0
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
/*****************************************************************/
// Read Operation - Read Latency 1
/*****************************************************************/
if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin
if (RD_EN == 1'b1) begin
if (ideal_empty == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= 1'b0;
//Reminder that FIFO is still empty
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
ideal_rd_count <= num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
//If the FIFO is one from empty, but it is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b1;
ideal_rd_count <= num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is two from empty, and is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
ideal_rd_count <= num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH))
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
ideal_rd_count <= num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end // else: if(ideal_empty == 1'b1)
else //if (ideal_empty == 1'b0)
begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= 1'b1;
//Not close to empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
ideal_rd_count <= num_read_words_sized_i;
end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH)
//If the FIFO is not close to being empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= 1'b1;
//Not close to empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
ideal_rd_count <= num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
//If the FIFO is two from empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b1;
ideal_rd_count <= num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is one from empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= 1'b1;
//Note that FIFO is GOING empty
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
ideal_rd_count <= num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is completely empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= 1'b0;
//Reminder that FIFO is still empty
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
ideal_rd_count <= num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end //(RD_EN == 1'b1)
else //if (RD_EN == 1'b0)
begin
//If user did not attempt a read, do not give an ack or err
ideal_valid <= 1'b0;
//Check for empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
ideal_empty <= 1'b1;
else
ideal_empty <= 1'b0;
//Check for almost_empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 1)
ideal_almost_empty <= 1'b1;
else
ideal_almost_empty <= 1'b0;
ideal_rd_count <= num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
/*****************************************************************/
// Read Operation - Read Latency 0
/*****************************************************************/
end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
if (RD_EN == 1'b1) begin
if (ideal_empty == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= 1'b0;
//Reminder that FIFO is still empty
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
ideal_rd_count <= num_read_words_sized_i;
//If the FIFO is one from empty, but it is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b1;
ideal_rd_count <= num_read_words_sized_i;
//If the FIFO is two from empty, and is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
ideal_rd_count <= num_read_words_sized_i;
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
ideal_rd_count <= num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end else begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= 1'b1;
//Not close to empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
ideal_rd_count <= num_read_words_sized_i;
//If the FIFO is not close to being empty
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= 1'b1;
//Not close to empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
ideal_rd_count <= num_read_words_sized_i;
//If the FIFO is two from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b1;
ideal_rd_count <= num_read_words_sized_i;
//If the FIFO is one from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= 1'b1;
//Note that FIFO is GOING empty
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
ideal_rd_count <= num_read_words_sized_i;
//If the FIFO is completely empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= 1'b0;
//Reminder that FIFO is still empty
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
ideal_rd_count <= num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end else begin//(RD_EN == 1'b0)
//If user did not attempt a read, do not give an ack or err
ideal_valid <= 1'b0;
//Check for empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
ideal_empty <= 1'b1;
else
ideal_empty <= 1'b0;
//Check for almost_empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 1)
ideal_almost_empty <= 1'b1;
else
ideal_almost_empty <= 1'b0;
ideal_rd_count <= num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
/*********************************************************
* Programmable EMPTY flags
*********************************************************/
//Determine the Assert and Negate thresholds for Programmable Empty
// (Subtract 2 read-sized words when using Preload 0)
//Single Programmable Empty Constant Threshold
if (C_PROG_EMPTY_TYPE==1) begin
if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
prog_empty_actual_thresh_assert = C_PROG_EMPTY_THRESH_ASSERT_VAL-2;
prog_empty_actual_thresh_negate = C_PROG_EMPTY_THRESH_ASSERT_VAL-2;
end
else begin
prog_empty_actual_thresh_assert = C_PROG_EMPTY_THRESH_ASSERT_VAL;
prog_empty_actual_thresh_negate = C_PROG_EMPTY_THRESH_ASSERT_VAL;
end
//Two Programmable Empty Constant Thresholds
end else if (C_PROG_EMPTY_TYPE==2) begin
if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
prog_empty_actual_thresh_assert = C_PROG_EMPTY_THRESH_ASSERT_VAL-2;
prog_empty_actual_thresh_negate = C_PROG_EMPTY_THRESH_NEGATE_VAL-2;
end
else begin
prog_empty_actual_thresh_assert = C_PROG_EMPTY_THRESH_ASSERT_VAL;
prog_empty_actual_thresh_negate = C_PROG_EMPTY_THRESH_NEGATE_VAL;
end
//Single Programmable Empty Constant Threshold
end else if (C_PROG_EMPTY_TYPE==3) begin
if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
prog_empty_actual_thresh_assert = PROG_EMPTY_THRESH-2;
prog_empty_actual_thresh_negate = PROG_EMPTY_THRESH-2;
end
else begin
prog_empty_actual_thresh_assert = PROG_EMPTY_THRESH;
prog_empty_actual_thresh_negate = PROG_EMPTY_THRESH;
end
//Two Programmable Empty Constant Thresholds
end else if (C_PROG_EMPTY_TYPE==4) begin
if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
prog_empty_actual_thresh_assert = PROG_EMPTY_THRESH_ASSERT-2;
prog_empty_actual_thresh_negate = PROG_EMPTY_THRESH_NEGATE-2;
end
else begin
prog_empty_actual_thresh_assert = PROG_EMPTY_THRESH_ASSERT;
prog_empty_actual_thresh_negate = PROG_EMPTY_THRESH_NEGATE;
end
end
if ((num_read_words_pe/C_DEPTH_RATIO_WR == prog_empty_actual_thresh_assert+1)
&& RD_EN) begin
prog_empty_d <= 1'b1;
end else if (num_read_words_pe/C_DEPTH_RATIO_WR
<= prog_empty_actual_thresh_assert) begin
prog_empty_d <= 1'b1;
end else if (num_read_words_pe/C_DEPTH_RATIO_WR
> prog_empty_actual_thresh_negate) begin
prog_empty_d <= 1'b0;
end
ideal_prog_empty <= prog_empty_d;
num_rd_bits <= next_num_rd_bits;
wr_ptr_rdclk <= wr_ptr;
end //rd_rst_i==0
end //always
endmodule // fifo_generator_v4_3_bhv_ver_as
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_v4_3_bhv_ver_ss
(
CLK, RST, SRST, DIN, WR_EN, RD_EN,
PROG_FULL_THRESH, PROG_FULL_THRESH_ASSERT, PROG_FULL_THRESH_NEGATE,
PROG_EMPTY_THRESH, PROG_EMPTY_THRESH_ASSERT, PROG_EMPTY_THRESH_NEGATE,
DOUT, FULL, ALMOST_FULL, WR_ACK, OVERFLOW, EMPTY,
ALMOST_EMPTY, VALID, UNDERFLOW, DATA_COUNT,
PROG_FULL, PROG_EMPTY
);
/**************************************************************************
* Declare user parameters and their defaults
*************************************************************************/
parameter C_DATA_COUNT_WIDTH = 2;
parameter C_DIN_WIDTH = 8;
parameter C_DOUT_RST_VAL = "";
parameter C_DOUT_WIDTH = 8;
parameter C_FULL_FLAGS_RST_VAL = 1;
parameter C_HAS_ALMOST_EMPTY = 0;
parameter C_HAS_ALMOST_FULL = 0;
parameter C_HAS_DATA_COUNT = 0;
parameter C_HAS_OVERFLOW = 0;
parameter C_HAS_RD_DATA_COUNT = 0;
parameter C_HAS_RST = 0;
parameter C_HAS_SRST = 0;
parameter C_HAS_UNDERFLOW = 0;
parameter C_HAS_VALID = 0;
parameter C_HAS_WR_ACK = 0;
parameter C_HAS_WR_DATA_COUNT = 0;
parameter C_IMPLEMENTATION_TYPE = 0;
parameter C_MEMORY_TYPE = 1;
parameter C_OVERFLOW_LOW = 0;
parameter C_PRELOAD_LATENCY = 1;
parameter C_PRELOAD_REGS = 0;
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0;
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0;
parameter C_PROG_EMPTY_TYPE = 0;
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0;
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0;
parameter C_PROG_FULL_TYPE = 0;
parameter C_RD_DATA_COUNT_WIDTH = 2;
parameter C_RD_DEPTH = 256;
parameter C_RD_PNTR_WIDTH = 8;
parameter C_UNDERFLOW_LOW = 0;
parameter C_USE_DOUT_RST = 0;
parameter C_USE_EMBEDDED_REG = 0;
parameter C_USE_FWFT_DATA_COUNT = 0;
parameter C_VALID_LOW = 0;
parameter C_WR_ACK_LOW = 0;
parameter C_WR_DATA_COUNT_WIDTH = 2;
parameter C_WR_DEPTH = 256;
parameter C_WR_PNTR_WIDTH = 8;
/**************************************************************************
* Declare Input and Output Ports
*************************************************************************/
//Inputs
input CLK;
input [C_DIN_WIDTH-1:0] DIN;
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
input RD_EN;
input RST;
input SRST;
input WR_EN;
//Outputs
output ALMOST_EMPTY;
output ALMOST_FULL;
output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
output [C_DOUT_WIDTH-1:0] DOUT;
output EMPTY;
output FULL;
output OVERFLOW;
output PROG_EMPTY;
output PROG_FULL;
output VALID;
output UNDERFLOW;
output WR_ACK;
/*************************************************************************
* Declare the type for each Input/Output port, and connect each I/O
* to it's associated internal signal in the behavioral model
*
* The values for the outputs are assigned in assign statements immediately
* following wire, parameter, and function declarations in this code.
*************************************************************************/
//Inputs
wire CLK;
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_EN;
wire RST;
wire SRST;
wire WR_EN;
//Outputs
wire ALMOST_EMPTY;
wire ALMOST_FULL;
reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
wire [C_DOUT_WIDTH-1:0] DOUT;
wire EMPTY;
wire FULL;
wire OVERFLOW;
wire PROG_EMPTY;
wire PROG_FULL;
wire VALID;
wire UNDERFLOW;
wire WR_ACK;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
//The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not
//changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0.
// Therefore, during SRST, all the FULL flags reset to 0.
parameter C_HAS_FAST_FIFO = 0;
parameter C_FIFO_WR_DEPTH = C_WR_DEPTH;
parameter C_FIFO_RD_DEPTH = C_RD_DEPTH;
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
//Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
//The amount of data stored in the FIFO at any time is given
// by num_bits.
//num_bits is calculated by from the total words in the FIFO.
reg [31:0] num_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
//The write pointer - tracks read operations
// (Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
/**************************
* Data Count
*************************/
//Amount of data stored in the FIFO scaled to read words
wire [31:0] num_read_words = num_bits/C_DOUT_WIDTH;
//num_read_words delayed 1 clock cycle
reg [31:0] num_read_words_q;
//Amount of data stored in the FIFO scaled to write words
wire [31:0] num_write_words = num_bits/C_DIN_WIDTH;
//num_write_words delayed 1 clock cycle
reg [31:0] num_write_words_q;
/**************************************************************************
* Internal Registers and wires
*************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire underflow_i;
wire valid_i;
wire valid_out;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [C_DOUT_WIDTH-1:0] ideal_dout;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1;
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
reg ideal_wr_ack;
reg ideal_valid;
reg ideal_overflow;
reg ideal_underflow;
reg ideal_full;
reg ideal_empty;
reg ideal_almost_full;
reg ideal_almost_empty;
reg ideal_prog_full;
reg ideal_prog_empty;
//Assorted reg values for delayed versions of signals
reg valid_d1;
reg prog_full_d;
reg prog_empty_d;
//Internal reset signals
reg rst_asreg =0;
reg rst_asreg_d1 =0;
reg rst_asreg_d2 =0;
reg rst_reg =0;
reg rst_d1 =0;
wire rst_comb;
wire rst_i;
wire srst_i;
//Delayed version of RST
reg rst_q;
reg rst_qq;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val;
/****************************************************************************
* Function Declarations
***************************************************************************/
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
begin
ideal_dout <= memory[rd_ptr];
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/****************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
/****************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***************************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_bits = 0;
num_read_words_q = 0;
num_write_words_q = 0;
rd_ptr = C_RD_DEPTH -1;
wr_ptr = C_WR_DEPTH -1;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
ideal_overflow = 1'b0;
ideal_underflow = 1'b0;
ideal_full = 1'b0;
ideal_empty = 1'b1;
ideal_almost_full = 1'b0;
ideal_almost_empty = 1'b1;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
prog_full_d = 1'b0;
prog_empty_d = 1'b1;
rst_q = 1'b0;
rst_qq = 1'b0;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire CLK;
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_EN;
wire RST;
wire WR_EN;
*/
//Outputs
assign ALMOST_EMPTY = ideal_almost_empty;
assign ALMOST_FULL = ideal_almost_full;
//Dout may change behavior based on latency
assign ideal_dout_out= (C_USE_EMBEDDED_REG==1 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT = ideal_dout_out;
assign EMPTY = ideal_empty;
assign FULL = ideal_full;
//Overflow may be active-low
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
assign PROG_EMPTY = ideal_prog_empty;
assign PROG_FULL = ideal_prog_full;
//Valid may change behavior based on latency or active-low
assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
valid_d1: valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
//Trim data count differently depending on set widths
always @(num_read_words) begin
if (C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) begin
DATA_COUNT = num_read_words[C_RD_PNTR_WIDTH:0];
end else begin
DATA_COUNT =
num_read_words[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH];
end //if
end //always
//Underflow may change behavior based on latency or active-low
assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
//Write acknowledge may be active low
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
/*****************************************************************************
* Internal reset logic
****************************************************************************/
assign srst_i = C_HAS_SRST ? SRST : 0;
assign rst_comb = !rst_asreg_d2 && rst_asreg;
assign rst_i = C_HAS_RST ? rst_reg : 0;
always @(posedge CLK or posedge RST) begin
if (RST == 1'b1) begin
rst_asreg <= 1'b1;
end else begin
if (rst_asreg_d1 == 1'b1) begin
rst_asreg <= 1'b0;
end else begin
rst_asreg <= rst_asreg;
end
end
end
always @(posedge CLK) begin
rst_asreg_d1 <= rst_asreg;
rst_asreg_d2 <= rst_asreg_d1;
end
always @(posedge CLK or posedge rst_comb) begin
if (rst_comb == 1'b1) begin
rst_reg <= 1'b1;
end else begin
rst_reg <= 1'b0;
end
end
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= 1'b0;
end else begin
if (srst_i) begin
valid_d1 <= 1'b0;
end else begin
valid_d1 <= valid_i;
end
end
end // always @ (posedge CLK or posedge rst_i)
//Capture delayed version of dout
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1 && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= dout_reset_val;
end else begin
if (srst_i && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= dout_reset_val;
end else begin
ideal_dout_d1 <= ideal_dout;
end
end
end
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
always @(posedge CLK) begin
ideal_overflow <= WR_EN & ideal_full;
ideal_underflow <= ideal_empty & RD_EN;
end
/*************************************************************************
* Write and Read Logic
************************************************************************/
always @(posedge CLK or posedge rst_i)
begin : gen_wr_ack_resp
//Register reset
rst_q <= rst_i;
rst_qq <= rst_q;
end // block: gen_wr_ack_resp
// block memory has a synchronous reset
always @(posedge CLK) begin : gen_fifo_blkmemdout
//Changed the latency of during async reset to '1' instead of '2' to
// make it consistent with the core.
if (rst_i || rst_q || srst_i) begin
/******Initialize Read Domain Signals*********************************/
if (C_MEMORY_TYPE == 1 && C_USE_DOUT_RST == 1) begin
ideal_dout <= dout_reset_val;
end
end
end //always
always @(posedge CLK or posedge rst_i) begin : gen_fifo
/****** Reset fifo - Asynchronous Reset**********************************/
//Changed the latency of during async reset to '1' instead of '2' to
// make it consistent with the core.
if (rst_i) begin //v3.2
/******Initialize Generic FIFO constructs*****************************/
num_bits <= 0;
wr_ptr <= C_WR_DEPTH - 1;
rd_ptr <= C_RD_DEPTH - 1;
num_read_words_q <= 0;
num_write_words_q <= 0;
/******Initialize Write Domain Signals********************************/
ideal_wr_ack <= 0;
ideal_full <= C_FULL_FLAGS_RST_VAL;
ideal_almost_full <= C_FULL_FLAGS_RST_VAL;
/******Initialize Read Domain Signals*********************************/
if (C_MEMORY_TYPE != 1 && C_USE_DOUT_RST == 1) begin
ideal_dout <= dout_reset_val;
end
ideal_valid <= 1'b0;
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
end else begin
if (srst_i) begin
// SRST is available only for Sync BRAM and Sync DRAM.
// Not for SSHFT.
if (C_MEMORY_TYPE == 1 || C_MEMORY_TYPE == 2) begin
/******Initialize Generic FIFO constructs***********************/
num_bits <= 0;
wr_ptr <= C_WR_DEPTH - 1;
rd_ptr <= C_RD_DEPTH - 1;
num_read_words_q <= 0;
num_write_words_q <= 0;
/******Initialize Write Domain Signals**************************/
ideal_wr_ack <= 0;
ideal_full <= 0; //'0'
ideal_almost_full <= 0; //'0'
/******Initialize Read Domain Signals***************************/
//Reset DOUT of Sync DRAM. Sync BRAM DOUT was reset in the
// above always block.
if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1 ) begin
ideal_dout <= dout_reset_val;
end
ideal_valid <= 1'b0;
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
end
end else begin //normal operating conditions
/********************************************************************/
// Synchronous FIFO Condition #1 : Writing and not reading
/********************************************************************/
if (WR_EN & ~RD_EN) begin
/*********************************/
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
/*********************************/
if (num_write_words >= C_FIFO_WR_DEPTH) begin
ideal_wr_ack <= 0;
//still full
ideal_full <= 1'b1;
ideal_almost_full <= 1'b1;
//write unsuccessful - do not change contents
// no read attempted
ideal_valid <= 1'b0;
//Not near empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
/*********************************/
//If the FIFO is reporting FULL
// (Startup condition)
/*********************************/
end else if ((num_write_words < C_FIFO_WR_DEPTH) && (ideal_full == 1'b1)) begin
ideal_wr_ack <= 0;
//still full
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//write unsuccessful - do not change contents
// no read attempted
ideal_valid <= 1'b0;
//FIFO EMPTY in this state can not be determined
//ideal_empty <= 1'b0;
//ideal_almost_empty <= 1'b0;
/*********************************/
//If the FIFO is one from full
/*********************************/
end else if (num_write_words == C_FIFO_WR_DEPTH-1) begin
//good write
ideal_wr_ack <= 1;
//FIFO is one from FULL and going FULL
ideal_full <= 1'b1;
ideal_almost_full <= 1'b1;
//Add input data
write_fifo;
// no read attempted
ideal_valid <= 1'b0;
//Not near empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
num_bits <= num_bits + C_DIN_WIDTH;
/*********************************/
//If the FIFO is 2 from full
/*********************************/
end else if (num_write_words == C_FIFO_WR_DEPTH-2) begin
//good write
ideal_wr_ack <= 1;
//2 from full, and writing, so set almost_full
ideal_full <= 1'b0;
ideal_almost_full <= 1'b1;
//Add input data
write_fifo;
//no read attempted
ideal_valid <= 1'b0;
//Not near empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
num_bits <= num_bits + C_DIN_WIDTH;
/*********************************/
//If the FIFO is ALMOST EMPTY
/*********************************/
end else if (num_read_words == 1) begin
//good write
ideal_wr_ack <= 1;
//Not near FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//Add input data
write_fifo;
// no read attempted
ideal_valid <= 1'b0;
//Leaving ALMOST_EMPTY
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
num_bits <= num_bits + C_DIN_WIDTH;
/*********************************/
//If the FIFO is EMPTY
/*********************************/
end else if (num_read_words == 0) begin
// good write
ideal_wr_ack <= 1;
//Not near FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//Add input data
write_fifo;
// no read attempted
ideal_valid <= 1'b0;
//Leaving EMPTY (still ALMOST_EMPTY)
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b1;
num_bits <= num_bits + C_DIN_WIDTH;
/*********************************/
//If the FIFO is not near EMPTY or FULL
/*********************************/
end else begin
// good write
ideal_wr_ack <= 1;
//Not near FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//Add input data
write_fifo;
// no read attempted
ideal_valid <= 1'b0;
//Not near EMPTY
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
num_bits <= num_bits + C_DIN_WIDTH;
end // average case
/******************************************************************/
// Synchronous FIFO Condition #2 : Reading and not writing
/******************************************************************/
end else if (~WR_EN & RD_EN) begin
/*********************************/
//If the FIFO is EMPTY
/*********************************/
if ((num_read_words == 0) || (ideal_empty == 1'b1)) begin
//no write attemped
ideal_wr_ack <= 0;
//FIFO is not near FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//Read will fail
ideal_valid <= 1'b0;
//FIFO is still empty
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
//No read
/*********************************/
//If the FIFO is ALMOST EMPTY
/*********************************/
end else if (num_read_words == 1) begin
//no write attempted
ideal_wr_ack <= 0;
//FIFO is not near FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//Read successful
ideal_valid <= 1'b1;
//This read will make FIFO go empty
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
//Get the data from the FIFO
read_fifo;
num_bits <= num_bits - C_DIN_WIDTH;
/*********************************/
//If the FIFO is 2 from EMPTY
/*********************************/
end else if (num_read_words == 2) begin
//no write attempted
ideal_wr_ack <= 0;
//FIFO is not near FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//Read successful
ideal_valid <= 1'b1;
//FIFO is going ALMOST_EMPTY
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b1;
//Get the data from the FIFO
read_fifo;
num_bits <= num_bits - C_DOUT_WIDTH;
/*********************************/
//If the FIFO is one from full
/*********************************/
end else if (num_write_words == C_FIFO_WR_DEPTH-1) begin
//no write attempted
ideal_wr_ack <= 0;
//FIFO is leaving ALMOST FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//Read successful
ideal_valid <= 1'b1;
//Not near empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
//Read from the FIFO
read_fifo;
num_bits <= num_bits - C_DOUT_WIDTH;
/*********************************/
// FIFO is FULL
/*********************************/
end else if (num_write_words >= C_FIFO_WR_DEPTH)
begin
//no write attempted
ideal_wr_ack <= 0;
//FIFO is leaving FULL, but is still ALMOST_FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b1;
//Read successful
ideal_valid <= 1'b1;
//Not near empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
//Read from the FIFO
read_fifo;
num_bits <= num_bits - C_DOUT_WIDTH;
/*********************************/
//If the FIFO is not near EMPTY or FULL
/*********************************/
end else begin
//no write attemped
ideal_wr_ack <= 0;
//Not near empty
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//Read successful
ideal_valid <= 1'b1;
//Not near empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
//Read from the FIFO
read_fifo;
num_bits <= num_bits - C_DOUT_WIDTH;
end // average read
/******************************************************************/
// Synchronous FIFO Condition #3 : Reading and writing
/******************************************************************/
end else if (WR_EN & RD_EN) begin
/*********************************/
// FIFO is FULL
/*********************************/
if (num_write_words >= C_FIFO_WR_DEPTH) begin
ideal_wr_ack <= 0;
//Read will be successful, so FIFO will leave FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b1;
//Read successful
ideal_valid <= 1'b1;
//Not near empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
//Read from the FIFO
read_fifo;
num_bits <= num_bits - C_DOUT_WIDTH;
/*********************************/
// FIFO is reporting FULL, but it is empty
// (This is a special case, when coming out of RST
/*********************************/
end else if ((num_write_words == 0) && (ideal_full == 1'b1)) begin
ideal_wr_ack <= 0;
//Read will be successful, so FIFO will leave FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//Read unsuccessful
ideal_valid <= 1'b0;
//Report empty condition
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
//Do not read from empty FIFO
// Read from the FIFO
/*********************************/
//If the FIFO is one from full
/*********************************/
end else if (num_write_words == C_FIFO_WR_DEPTH-1) begin
//Write successful
ideal_wr_ack <= 1;
//FIFO will remain ALMOST_FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b1;
// put the data into the FIFO
write_fifo;
//Read successful
ideal_valid <= 1'b1;
//Not near empty
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
//Read from the FIFO
read_fifo;
num_bits <= num_bits + C_DIN_WIDTH - C_DOUT_WIDTH;
/*********************************/
//If the FIFO is ALMOST EMPTY
/*********************************/
end else if (num_read_words == 1) begin
//Write successful
ideal_wr_ack <= 1;
// Not near FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
// put the data into the FIFO
write_fifo;
//Read successful
ideal_valid <= 1'b1;
//FIFO will stay ALMOST_EMPTY
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b1;
//Read from the FIFO
read_fifo;
num_bits <= num_bits + C_DIN_WIDTH - C_DOUT_WIDTH;
/*********************************/
//If the FIFO is EMPTY
/*********************************/
end else if (num_read_words == 0) begin
//Write successful
ideal_wr_ack <= 1;
// Not near FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
// put the data into the FIFO
write_fifo;
//Read will fail
ideal_valid <= 1'b0;
//FIFO will leave EMPTY
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b1;
// No read
num_bits <= num_bits + C_DIN_WIDTH;
/*********************************/
//If the FIFO is not near EMPTY or FULL
/*********************************/
end else begin
//Write successful
ideal_wr_ack <= 1;
// Not near FULL
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
// put the data into the FIFO
write_fifo;
//Read successful
ideal_valid <= 1'b1;
// Not near EMPTY
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
//Read from the FIFO
read_fifo;
num_bits <= num_bits + C_DIN_WIDTH - C_DOUT_WIDTH;
end // average case
/******************************************************************/
// Synchronous FIFO Condition #4 : Not reading or writing
/******************************************************************/
end else begin
/*********************************/
// FIFO is FULL
/*********************************/
if (num_write_words >= C_FIFO_WR_DEPTH) begin
//No write
ideal_wr_ack <= 0;
ideal_full <= 1'b1;
ideal_almost_full <= 1'b1;
//No read
ideal_valid <= 1'b0;
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
//No change to memory
/*********************************/
//If the FIFO is one from full
/*********************************/
end else if (num_write_words == C_FIFO_WR_DEPTH-1) begin
//No write
ideal_wr_ack <= 0;
ideal_full <= 1'b0;
ideal_almost_full <= 1'b1;
//No read
ideal_valid <= 1'b0;
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
//No change to memory
/*********************************/
//If the FIFO is ALMOST EMPTY
/*********************************/
end else if (num_read_words == 1) begin
//No write
ideal_wr_ack <= 0;
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//No read
ideal_valid <= 1'b0;
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b1;
//No change to memory
end // almost empty
/*********************************/
//If the FIFO is EMPTY
/*********************************/
else if (num_read_words == 0)
begin
//No write
ideal_wr_ack <= 0;
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//No read
ideal_valid <= 1'b0;
ideal_empty <= 1'b1;
ideal_almost_empty <= 1'b1;
//No change to memory
/*********************************/
//If the FIFO is not near EMPTY or FULL
/*********************************/
end else begin
//No write
ideal_wr_ack <= 0;
ideal_full <= 1'b0;
ideal_almost_full <= 1'b0;
//No read
ideal_valid <= 1'b0;
ideal_empty <= 1'b0;
ideal_almost_empty <= 1'b0;
//No change to memory
end // average case
end // neither reading or writing
num_read_words_q <= num_read_words;
num_write_words_q <= num_write_words;
end //normal operating conditions
end
end // block: gen_fifo
always @(posedge CLK or posedge rst_i) begin : gen_fifo_p
/****** Reset fifo - Async Reset****************************************/
//The latency of de-assertion of the flags is reduced by 1 to be
// consistent with the core.
if (rst_i) begin
ideal_prog_full <= C_FULL_FLAGS_RST_VAL;
ideal_prog_empty <= 1'b1;
prog_full_d <= C_FULL_FLAGS_RST_VAL;
prog_empty_d <= 1'b1;
end else begin
if (srst_i) begin
//SRST is available only for Sync BRAM and Sync DRAM. Not for SSHFT.
if (C_MEMORY_TYPE == 1 || C_MEMORY_TYPE == 2) begin
ideal_prog_full <= 1'b0;
ideal_prog_empty <= 1'b1;
prog_full_d <= 1'b0;
prog_empty_d <= 1'b1;
end
end else begin
/***************************************************************
* Programmable FULL flags
****************************************************************/
//calculation for standard fifo and latency =2
if (! (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) ) begin
//Single constant threshold
if (C_PROG_FULL_TYPE == 1) begin
if ((num_write_words >= C_PROG_FULL_THRESH_ASSERT_VAL-1)
&& WR_EN && !RD_EN) begin
prog_full_d <= 1'b1;
end else if (((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL)
&& RD_EN && !WR_EN) || (rst_q && !rst_i)) begin
prog_full_d <= 1'b0;
end
//Dual constant thresholds
end else if (C_PROG_FULL_TYPE == 2) begin
if ((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL-1)
&& WR_EN && !RD_EN) begin
prog_full_d <= 1'b1;
end else if ((num_write_words == C_PROG_FULL_THRESH_NEGATE_VAL)
&& RD_EN && !WR_EN) begin
prog_full_d <= 1'b0;
end
//Single input threshold
end else if (C_PROG_FULL_TYPE == 3) begin
if ((num_write_words == PROG_FULL_THRESH-1)
&& WR_EN && !RD_EN) begin
prog_full_d <= 1'b1;
end else if ((num_write_words == PROG_FULL_THRESH)
&& !WR_EN && RD_EN) begin
prog_full_d <= 1'b0;
end else if (num_write_words >= PROG_FULL_THRESH) begin
prog_full_d <= 1'b1;
end else if (num_write_words < PROG_FULL_THRESH) begin
prog_full_d <= 1'b0;
end
//Dual input thresholds
end else begin
if ((num_write_words == PROG_FULL_THRESH_ASSERT-1)
&& WR_EN && !RD_EN) begin
prog_full_d <= 1'b1;
end else if ((num_write_words == PROG_FULL_THRESH_NEGATE)
&& !WR_EN && RD_EN)begin
prog_full_d <= 1'b0;
end else if (num_write_words >= PROG_FULL_THRESH_ASSERT) begin
prog_full_d <= 1'b1;
end else if (num_write_words < PROG_FULL_THRESH_NEGATE) begin
prog_full_d <= 1'b0;
end
end
end // (~ (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) )
//calculation for FWFT fifo
if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
if (C_PROG_FULL_TYPE == 1) begin
if ((num_write_words >= C_PROG_FULL_THRESH_ASSERT_VAL-1 - 2)
&& WR_EN && !RD_EN) begin
prog_full_d <= 1'b1;
end else if (((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL - 2)
&& RD_EN && !WR_EN) || (rst_q && !rst_i)) begin
prog_full_d <= 1'b0;
end
//Dual constant thresholds
end else if (C_PROG_FULL_TYPE == 2) begin
if ((num_write_words == C_PROG_FULL_THRESH_ASSERT_VAL-1 - 2)
&& WR_EN && !RD_EN) begin
prog_full_d <= 1'b1;
end else if ((num_write_words == C_PROG_FULL_THRESH_NEGATE_VAL - 2)
&& RD_EN && !WR_EN) begin
prog_full_d <= 1'b0;
end
//Single input threshold
end else if (C_PROG_FULL_TYPE == 3) begin
if ((num_write_words == PROG_FULL_THRESH-1 - 2)
&& WR_EN && !RD_EN) begin
prog_full_d <= 1'b1;
end else if ((num_write_words == PROG_FULL_THRESH - 2)
&& !WR_EN && RD_EN) begin
prog_full_d <= 1'b0;
end else if (num_write_words >= PROG_FULL_THRESH - 2) begin
prog_full_d <= 1'b1;
end else if (num_write_words < PROG_FULL_THRESH - 2) begin
prog_full_d <= 1'b0;
end
//Dual input thresholds
end else begin
if ((num_write_words == PROG_FULL_THRESH_ASSERT-1 - 2)
&& WR_EN && !RD_EN) begin
prog_full_d <= 1'b1;
end else if ((num_write_words == PROG_FULL_THRESH_NEGATE - 2)
&& !WR_EN && RD_EN)begin
prog_full_d <= 1'b0;
end else if (num_write_words >= PROG_FULL_THRESH_ASSERT - 2) begin
prog_full_d <= 1'b1;
end else if (num_write_words < PROG_FULL_THRESH_NEGATE - 2) begin
prog_full_d <= 1'b0;
end
end
end // (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
/*****************************************************************
* Programmable EMPTY flags
****************************************************************/
//calculation for standard fifo and latency = 2
if (! (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) ) begin
//Single constant threshold
if (C_PROG_EMPTY_TYPE == 1) begin
if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL+1)
&& RD_EN && !WR_EN) begin
prog_empty_d <= 1'b1;
end else if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL)
&& WR_EN && !RD_EN) begin
prog_empty_d <= 1'b0;
end
//Dual constant thresholds
end else if (C_PROG_EMPTY_TYPE == 2) begin
if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL+1)
&& RD_EN && !WR_EN) begin
prog_empty_d <= 1'b1;
end else if ((num_read_words == C_PROG_EMPTY_THRESH_NEGATE_VAL)
&& !RD_EN && WR_EN) begin
prog_empty_d <= 1'b0;
end
//Single input threshold
end else if (C_PROG_EMPTY_TYPE == 3) begin
if ((num_read_words == PROG_EMPTY_THRESH+1)
&& RD_EN && !WR_EN) begin
prog_empty_d <= 1'b1;
end else if ((num_read_words == PROG_EMPTY_THRESH)
&& !RD_EN && WR_EN) begin
prog_empty_d <= 1'b0;
end else if (num_read_words <= PROG_EMPTY_THRESH) begin
prog_empty_d <= 1'b1;
end else if (num_read_words > PROG_EMPTY_THRESH)begin
prog_empty_d <= 1'b0;
end
//Dual input thresholds
end else begin
if (num_read_words <= PROG_EMPTY_THRESH_ASSERT) begin
prog_empty_d <= 1'b1;
end else if ((num_read_words == PROG_EMPTY_THRESH_ASSERT+1)
&& RD_EN && !WR_EN) begin
prog_empty_d <= 1'b1;
end else if (num_read_words > PROG_EMPTY_THRESH_NEGATE)begin
prog_empty_d <= 1'b0;
end else if ((num_read_words == PROG_EMPTY_THRESH_NEGATE)
&& !RD_EN && WR_EN) begin
prog_empty_d <= 1'b0;
end
end
end // (~ (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) )
//calculation for FWFT fifo
if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
//Single constant threshold
if (C_PROG_EMPTY_TYPE == 1) begin
if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL+1 - 2)
&& RD_EN && !WR_EN) begin
prog_empty_d <= 1'b1;
end else if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL - 2)
&& WR_EN && !RD_EN) begin
prog_empty_d <= 1'b0;
end
//Dual constant thresholds
end else if (C_PROG_EMPTY_TYPE == 2) begin
if ((num_read_words == C_PROG_EMPTY_THRESH_ASSERT_VAL+1 - 2)
&& RD_EN && !WR_EN) begin
prog_empty_d <= 1'b1;
end else if ((num_read_words == C_PROG_EMPTY_THRESH_NEGATE_VAL - 2)
&& !RD_EN && WR_EN) begin
prog_empty_d <= 1'b0;
end
//Single input threshold
end else if (C_PROG_EMPTY_TYPE == 3) begin
if ((num_read_words == PROG_EMPTY_THRESH+1 - 2)
&& RD_EN && !WR_EN) begin
prog_empty_d <= 1'b1;
end else if ((num_read_words == PROG_EMPTY_THRESH - 2)
&& !RD_EN && WR_EN) begin
prog_empty_d <= 1'b0;
end else if (num_read_words <= PROG_EMPTY_THRESH - 2) begin
prog_empty_d <= 1'b1;
end else if (num_read_words > PROG_EMPTY_THRESH - 2)begin
prog_empty_d <= 1'b0;
end
//Dual input thresholds
end else begin
if (num_read_words <= PROG_EMPTY_THRESH_ASSERT - 2) begin
prog_empty_d <= 1'b1;
end else if ((num_read_words == PROG_EMPTY_THRESH_ASSERT+1 - 2)
&& RD_EN && !WR_EN) begin
prog_empty_d <= 1'b1;
end else if (num_read_words > PROG_EMPTY_THRESH_NEGATE - 2)begin
prog_empty_d <= 1'b0;
end else if ((num_read_words == PROG_EMPTY_THRESH_NEGATE - 2)
&& !RD_EN && WR_EN) begin
prog_empty_d <= 1'b0;
end
end
end // (~ (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) )
ideal_prog_empty <= prog_empty_d;
if (rst_q && !rst_i) begin
ideal_prog_full <= 1'b0;
prog_full_d <= 1'b0;
end else begin
ideal_prog_full <= prog_full_d;
end
end //if (srst_i) begin
end //if (rst_i) begin
end //always @(posedge CLK or posedge rst_i) begin : gen_fifo_p
endmodule // fifo_generator_v4_3_bhv_ver_ss
/**************************************************************************
* First-Word Fall-Through module (preload 0)
**************************************************************************/
module fifo_generator_v4_3_bhv_ver_preload0
(
RD_CLK,
RD_RST,
RD_EN,
FIFOEMPTY,
FIFODATA,
USERDATA,
USERVALID,
USERUNDERFLOW,
USEREMPTY,
USERALMOSTEMPTY,
RAMVALID,
FIFORDEN
);
parameter C_DOUT_RST_VAL = "";
parameter C_DOUT_WIDTH = 8;
parameter C_HAS_RST = 0;
parameter C_USE_DOUT_RST = 0;
parameter C_USERVALID_LOW = 0;
parameter C_USERUNDERFLOW_LOW = 0;
//Inputs
input RD_CLK;
input RD_RST;
input RD_EN;
input FIFOEMPTY;
input [C_DOUT_WIDTH-1:0] FIFODATA;
//Outputs
output [C_DOUT_WIDTH-1:0] USERDATA;
output USERVALID;
output USERUNDERFLOW;
output USEREMPTY;
output USERALMOSTEMPTY;
output RAMVALID;
output FIFORDEN;
//Inputs
wire RD_CLK;
wire RD_RST;
wire RD_EN;
wire FIFOEMPTY;
wire [C_DOUT_WIDTH-1:0] FIFODATA;
//Outputs
reg [C_DOUT_WIDTH-1:0] USERDATA;
wire USERVALID;
wire USERUNDERFLOW;
wire USEREMPTY;
wire USERALMOSTEMPTY;
wire RAMVALID;
wire FIFORDEN;
//Internal signals
wire preloadstage1;
wire preloadstage2;
reg ram_valid_i;
reg read_data_valid_i;
wire ram_regout_en;
wire ram_rd_en;
reg empty_i = 1'b1;
reg empty_q = 1'b1;
reg rd_en_q = 1'b0;
reg almost_empty_i = 1'b1;
reg almost_empty_q = 1'b1;
wire rd_rst_i;
/*************************************************************************
* FUNCTIONS
*************************************************************************/
/*************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
//*************************************************************************
// Set power-on states for regs
//*************************************************************************
initial begin
ram_valid_i = 1'b0;
read_data_valid_i = 1'b0;
USERDATA = hexstr_conv(C_DOUT_RST_VAL);
end //initial
//***************************************************************************
// connect up optional reset
//***************************************************************************
assign rd_rst_i = C_HAS_RST ? RD_RST : 0;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN);
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = preloadstage2;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1;
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false.
// Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
ram_valid_i <= 1'b0;
end else begin
if (ram_rd_en == 1'b1) begin
ram_valid_i <= 1'b1;
end else begin
if (ram_regout_en == 1'b1)
ram_valid_i <= 1'b0;
else
ram_valid_i <= ram_valid_i;
end
end //rd_rst_i
end //always
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= 1'b0;
else
read_data_valid_i <= ram_valid_i | (read_data_valid_i & ~RD_EN);
end //always
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= 1'b1;
empty_q <= 1'b1;
end else begin
// rising clock edge
empty_i <= (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN);
empty_q <= empty_i;
end
end //always
//Register RD_EN from user to calculate USERUNDERFLOW.
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
rd_en_q <= 1'b0;
end else begin
// rising clock edge
rd_en_q <= RD_EN;
end
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) // asynchronous reset (active high)
begin
almost_empty_i <= 1'b1;
almost_empty_q <= 1'b1;
end
else // rising clock edge
begin
if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN))
begin
almost_empty_i <= FIFOEMPTY;
end
almost_empty_q <= empty_i;
end
end //always
assign USEREMPTY = empty_i;
assign USERALMOSTEMPTY = almost_empty_i;
assign FIFORDEN = ram_rd_en;
assign RAMVALID = ram_valid_i;
assign USERVALID = C_USERVALID_LOW ? ~read_data_valid_i : read_data_valid_i;
assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q;
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i && C_USE_DOUT_RST == 1) //asynchronous reset (active high)
USERDATA <= hexstr_conv(C_DOUT_RST_VAL);
else // rising clock edge
if (ram_regout_en)
USERDATA <= FIFODATA;
end //always
endmodule
|