1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Matthias P. Braendli, Maximilien Cuony
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "analog_input.h"
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#include "Core/delay.h"
#include "Core/common.h"
#include "stm32f4xx_conf.h"
#include "stm32f4xx_adc.h"
#include "stm32f4xx_gpio.h"
#include <math.h>
#include "GPIO/usart.h"
#define PIN_SUPPLY GPIO_Pin_5
#define PIN_SWR_FWD GPIO_Pin_6
#define PIN_SWR_REFL GPIO_Pin_7
// see doc/pio.txt for allocation
#define PINS_ADC1 /* PA pins */ (GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7)
#define ADC1_CHANNEL_SUPPLY ADC_Channel_5
#define ADC1_CHANNEL_SWR_FWD ADC_Channel_6
#define ADC1_CHANNEL_SWR_REFL ADC_Channel_7
// Measured on the board itself
const float v_ref = 2.965f;
void analog_init(void)
{
// Enable ADC and GPIOA clocks
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
// Set analog input pins mode
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_Pin = PINS_ADC1;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// Init ADC1 for supply measurement
ADC_CommonInitTypeDef ADC_CommonInitStruct;
ADC_CommonInitStruct.ADC_Mode = ADC_Mode_Independent;
ADC_CommonInitStruct.ADC_Prescaler = ADC_Prescaler_Div8;
ADC_CommonInitStruct.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
ADC_CommonInitStruct.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
ADC_CommonInit(&ADC_CommonInitStruct);
ADC_InitTypeDef ADC_InitStruct;
ADC_InitStruct.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStruct.ADC_ScanConvMode = DISABLE;
ADC_InitStruct.ADC_ContinuousConvMode = DISABLE;
ADC_InitStruct.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
ADC_InitStruct.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStruct.ADC_NbrOfConversion = 3;
ADC_Init(ADC1, &ADC_InitStruct);
// Enable ADC
ADC_Cmd(ADC1, ENABLE);
}
static uint16_t adc1_read(uint8_t channel)
{
ADC_RegularChannelConfig(ADC1,
channel,
1,
ADC_SampleTime_480Cycles);
ADC_SoftwareStartConv(ADC1);
/* Timeout:
* System clock is at 168MHz, ADC is on APB2 which has a prescaler of 2.
* 480 cycles at 84Mhz is about 6us.
*
* If we have no result after 1000ms it is a real problem. Keep in mind
* we could get preempted.
*/
int ready = 0;
vTaskSuspendAll();
for (int i = 0; i < 10000; i++) {
if (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == SET) {
ready = 1;
break;
}
delay_us(100);
}
xTaskResumeAll();
if (!ready) {
trigger_fault(FAULT_SOURCE_ADC1);
}
return ADC_GetConversionValue(ADC1);
}
float analog_measure_12v(void)
{
const uint16_t raw_value = adc1_read(ADC1_CHANNEL_SUPPLY);
const float adc_max_value = (1 << 12);
// Convert ADC measurement to voltage
float voltage = ((float)raw_value*v_ref/adc_max_value);
// Compensate resistor divider on board (see schematic)
return voltage * 202.0f / 22.0f;
}
int analog_measure_swr(int *forward_mv, int* reflected_mv)
{
const uint16_t raw_swr_fwd_value = adc1_read(ADC1_CHANNEL_SWR_FWD);
const uint16_t raw_swr_refl_value = adc1_read(ADC1_CHANNEL_SWR_REFL);
const float adc_max_value = (1 << 12);
// Convert ADC measurement to mV (includes times 100 amplifier)
const int swr_fwd = ((float)raw_swr_fwd_value*10.0f*v_ref/adc_max_value);
const int swr_refl = ((float)raw_swr_refl_value*10.0f*v_ref/adc_max_value);
*forward_mv = swr_fwd;
*reflected_mv = swr_refl;
return 1;
}
|