/* * The MIT License (MIT) * * Copyright (c) 2019 Matthias P. Braendli, Maximilien Cuony * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "analog_input.h" #include "FreeRTOS.h" #include "task.h" #include "timers.h" #include "Core/delay.h" #include "Core/common.h" #include "stm32f4xx_conf.h" #include "stm32f4xx_adc.h" #include "stm32f4xx_gpio.h" #include #include "GPIO/usart.h" #define PIN_SUPPLY GPIO_Pin_5 #define PIN_SWR_FWD GPIO_Pin_6 #define PIN_SWR_REFL GPIO_Pin_7 // see doc/pio.txt for allocation #define PINS_ADC1 /* PA pins */ (GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7) #define ADC1_CHANNEL_SUPPLY ADC_Channel_5 #define ADC1_CHANNEL_SWR_FWD ADC_Channel_6 #define ADC1_CHANNEL_SWR_REFL ADC_Channel_7 // Measured on the board itself const float v_ref = 2.965f; void analog_init(void) { // Enable ADC and GPIOA clocks RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); // Set analog input pins mode GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_Pin = PINS_ADC1; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); // Init ADC1 for supply measurement ADC_CommonInitTypeDef ADC_CommonInitStruct; ADC_CommonInitStruct.ADC_Mode = ADC_Mode_Independent; ADC_CommonInitStruct.ADC_Prescaler = ADC_Prescaler_Div8; ADC_CommonInitStruct.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; ADC_CommonInitStruct.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; ADC_CommonInit(&ADC_CommonInitStruct); ADC_InitTypeDef ADC_InitStruct; ADC_InitStruct.ADC_Resolution = ADC_Resolution_12b; ADC_InitStruct.ADC_ScanConvMode = DISABLE; ADC_InitStruct.ADC_ContinuousConvMode = DISABLE; ADC_InitStruct.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; ADC_InitStruct.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStruct.ADC_NbrOfConversion = 3; ADC_Init(ADC1, &ADC_InitStruct); // Enable ADC ADC_Cmd(ADC1, ENABLE); } static uint16_t adc1_read(uint8_t channel) { ADC_RegularChannelConfig(ADC1, channel, 1, ADC_SampleTime_480Cycles); ADC_SoftwareStartConv(ADC1); /* Timeout: * System clock is at 168MHz, ADC is on APB2 which has a prescaler of 2. * 480 cycles at 84Mhz is about 6us. * * If we have no result after 1000ms it is a real problem. Keep in mind * we could get preempted. */ int ready = 0; vTaskSuspendAll(); for (int i = 0; i < 10000; i++) { if (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == SET) { ready = 1; break; } delay_us(100); } xTaskResumeAll(); if (!ready) { trigger_fault(FAULT_SOURCE_ADC1); } return ADC_GetConversionValue(ADC1); } float analog_measure_12v(void) { const uint16_t raw_value = adc1_read(ADC1_CHANNEL_SUPPLY); const float adc_max_value = (1 << 12); // Convert ADC measurement to voltage float voltage = ((float)raw_value*v_ref/adc_max_value); // Compensate resistor divider on board (see schematic) return voltage * 202.0f / 22.0f; } int analog_measure_swr(int *forward_mv, int* reflected_mv) { const uint16_t raw_swr_fwd_value = adc1_read(ADC1_CHANNEL_SWR_FWD); const uint16_t raw_swr_refl_value = adc1_read(ADC1_CHANNEL_SWR_REFL); const float adc_max_value = (1 << 12); // Convert ADC measurement to mV (includes times 100 amplifier) const int swr_fwd = ((float)raw_swr_fwd_value*10.0f*v_ref/adc_max_value); const int swr_refl = ((float)raw_swr_refl_value*10.0f*v_ref/adc_max_value); *forward_mv = swr_fwd; *reflected_mv = swr_refl; return 1; }