aboutsummaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
authorMaximilien Cuony <maximilien@theglu.org>2016-05-31 21:58:17 +0200
committerMaximilien Cuony <maximilien@theglu.org>2016-05-31 21:58:17 +0200
commit9069fc127e4f73041fbd1f66e4506fcf12418315 (patch)
tree902aa478c6e9d47cde89eaa996b5f7f662070518 /src
parent4803231e214fbd19eab4ba2289583859ee07183f (diff)
downloadglutte-o-matic-9069fc127e4f73041fbd1f66e4506fcf12418315.tar.gz
glutte-o-matic-9069fc127e4f73041fbd1f66e4506fcf12418315.tar.bz2
glutte-o-matic-9069fc127e4f73041fbd1f66e4506fcf12418315.zip
Simuator - Work in progress
Diffstat (limited to 'src')
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Full/BlockQ.c350
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Full/PollQ.c262
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Full/death.c245
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Full/dynamic.c620
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Full/events.c410
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Full/flop.c373
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Full/integer.c369
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Full/print.c148
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Full/semtest.c327
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Minimal/GenQTest.c783
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Minimal/QPeek.c478
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Minimal/blocktim.c509
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Minimal/countsem.c326
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Minimal/crflash.c250
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Minimal/crhook.c274
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/Minimal/recmutex.c444
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/BlockQ.h78
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/GenQTest.h80
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/PollQ.h78
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/QPeek.h79
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/blocktim.h78
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/countsem.h77
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/crflash.h89
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/crhook.h85
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/death.h78
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/dynamic.h78
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/fileIO.h78
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/flop.h78
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/integer.h78
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/mevents.h78
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/partest.h80
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/print.h79
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/recmutex.h77
-rw-r--r--src/FreeRTOS-Sim-master/Demo/Common/include/semtest.h77
-rw-r--r--src/FreeRTOS-Sim-master/LICENSE340
-rw-r--r--src/FreeRTOS-Sim-master/Makefile148
-rw-r--r--src/FreeRTOS-Sim-master/POSIX/FileIO/fileIO.c127
-rw-r--r--src/FreeRTOS-Sim-master/POSIX/FileIO/fileIO.h78
-rw-r--r--src/FreeRTOS-Sim-master/POSIX/FreeRTOSConfig.h82
-rw-r--r--src/FreeRTOS-Sim-master/POSIX/ParTest/ParTest.c158
-rw-r--r--src/FreeRTOS-Sim-master/POSIX/ParTest/partest.h80
-rw-r--r--src/FreeRTOS-Sim-master/POSIX/main.c132
-rw-r--r--src/FreeRTOS-Sim-master/README.md9
-rw-r--r--src/FreeRTOS-Sim-master/Source/croutine.c395
-rw-r--r--src/FreeRTOS-Sim-master/Source/event_groups.c683
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/FreeRTOS.h831
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/StackMacros.h184
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/croutine.h762
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/deprecated_definitions.h321
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/event_groups.h730
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/list.h453
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/mpu_wrappers.h177
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/portable.h207
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/projdefs.h156
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/queue.h1691
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/semphr.h844
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/stdint.readme27
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/task.h2021
-rw-r--r--src/FreeRTOS-Sim-master/Source/include/timers.h1146
-rw-r--r--src/FreeRTOS-Sim-master/Source/list.c240
-rw-r--r--src/FreeRTOS-Sim-master/Source/portable/GCC/POSIX/port.c787
-rw-r--r--src/FreeRTOS-Sim-master/Source/portable/GCC/POSIX/portmacro.h128
-rw-r--r--src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_1.c174
-rw-r--r--src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_2.c303
-rw-r--r--src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_3.c135
-rw-r--r--src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_4.c474
-rw-r--r--src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_5.c523
-rw-r--r--src/FreeRTOS-Sim-master/Source/queue.c2609
-rw-r--r--src/FreeRTOS-Sim-master/Source/readme.txt17
-rw-r--r--src/FreeRTOS-Sim-master/Source/tasks.c4449
-rw-r--r--src/FreeRTOS-Sim-master/Source/timers.c917
-rw-r--r--src/common/includes/Core/common.h (renamed from src/fsm/common.h)1
-rw-r--r--src/common/includes/Core/usart.h (renamed from src/fsm/usart.h)0
-rw-r--r--src/common/src/Core/FreeRTOSConfig.h (renamed from src/fsm/FreeRTOSConfig.h)2
-rw-r--r--src/common/src/Core/common.c231
-rw-r--r--src/common/src/Core/main.c399
-rw-r--r--src/fsm/main.c445
-rw-r--r--src/simulator/.gitignore1
-rw-r--r--src/simulator/Makefile134
l---------src/simulator/Source1
-rw-r--r--src/simulator/src/Core/FreeRTOSConfig.h4
-rw-r--r--src/simulator/src/Core/common.c7
-rw-r--r--src/simulator/src/Core/main.c37
-rw-r--r--src/simulator/src/Core/usart.c190
-rw-r--r--src/simulator/src/Gui/nuklear.h19765
-rw-r--r--src/simulator/src/Gui/nuklear_xlib_gl3.h687
-rw-r--r--src/simulator/src/Gui/test.c285
-rw-r--r--src/simulator/vc.h4
-rw-r--r--src/stm32f/.gitignore1
l---------src/stm32f/FreeRTOS (renamed from src/fsm/FreeRTOS)0
-rw-r--r--src/stm32f/Makefile131
-rw-r--r--src/stm32f/bin/.gitignore2
l---------src/stm32f/bsp (renamed from src/fsm/bsp)0
-rw-r--r--src/stm32f/obj/.gitignore2
-rw-r--r--src/stm32f/src/Core/FreeRTOSConfig.h3
-rw-r--r--src/stm32f/src/Core/common.c7
-rw-r--r--src/stm32f/src/Core/main.c74
-rw-r--r--src/stm32f/src/Core/usart.c (renamed from src/fsm/usart.c)6
l---------src/stm32f/tm_stm32f4_ds18b20.c (renamed from src/fsm/tm_stm32f4_ds18b20.c)0
l---------src/stm32f/tm_stm32f4_ds18b20.h (renamed from src/fsm/tm_stm32f4_ds18b20.h)0
l---------src/stm32f/tm_stm32f4_onewire.c (renamed from src/fsm/tm_stm32f4_onewire.c)0
l---------src/stm32f/tm_stm32f4_onewire.h (renamed from src/fsm/tm_stm32f4_onewire.h)0
102 files changed, 52100 insertions, 450 deletions
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Full/BlockQ.c b/src/FreeRTOS-Sim-master/Demo/Common/Full/BlockQ.c
new file mode 100644
index 0000000..bcd8075
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Full/BlockQ.c
@@ -0,0 +1,350 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/**
+ * Creates six tasks that operate on three queues as follows:
+ *
+ * The first two tasks send and receive an incrementing number to/from a queue.
+ * One task acts as a producer and the other as the consumer. The consumer is a
+ * higher priority than the producer and is set to block on queue reads. The queue
+ * only has space for one item - as soon as the producer posts a message on the
+ * queue the consumer will unblock, pre-empt the producer, and remove the item.
+ *
+ * The second two tasks work the other way around. Again the queue used only has
+ * enough space for one item. This time the consumer has a lower priority than the
+ * producer. The producer will try to post on the queue blocking when the queue is
+ * full. When the consumer wakes it will remove the item from the queue, causing
+ * the producer to unblock, pre-empt the consumer, and immediately re-fill the
+ * queue.
+ *
+ * The last two tasks use the same queue producer and consumer functions. This time the queue has
+ * enough space for lots of items and the tasks operate at the same priority. The
+ * producer will execute, placing items into the queue. The consumer will start
+ * executing when either the queue becomes full (causing the producer to block) or
+ * a context switch occurs (tasks of the same priority will time slice).
+ *
+ * \page BlockQC blockQ.c
+ * \ingroup DemoFiles
+ * <HR>
+ */
+
+/*
+Changes from V1.00:
+
+ + Reversed the priority and block times of the second two demo tasks so
+ they operate as per the description above.
+
+Changes from V2.0.0
+
+ + Delay periods are now specified using variables and constants of
+ TickType_t rather than unsigned long.
+
+Changes from V4.0.2
+
+ + The second set of tasks were created the wrong way around. This has been
+ corrected.
+*/
+
+
+#include <stdlib.h>
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "queue.h"
+
+/* Demo program include files. */
+#include "BlockQ.h"
+#include "print.h"
+
+#define blckqSTACK_SIZE ( ( unsigned short ) configMINIMAL_STACK_SIZE )
+#define blckqNUM_TASK_SETS ( 3 )
+
+/* Structure used to pass parameters to the blocking queue tasks. */
+typedef struct BLOCKING_QUEUE_PARAMETERS
+{
+ QueueHandle_t xQueue; /*< The queue to be used by the task. */
+ TickType_t xBlockTime; /*< The block time to use on queue reads/writes. */
+ volatile short *psCheckVariable; /*< Incremented on each successful cycle to check the task is still running. */
+} xBlockingQueueParameters;
+
+/* Task function that creates an incrementing number and posts it on a queue. */
+static void vBlockingQueueProducer( void *pvParameters );
+
+/* Task function that removes the incrementing number from a queue and checks that
+it is the expected number. */
+static void vBlockingQueueConsumer( void *pvParameters );
+
+/* Variables which are incremented each time an item is removed from a queue, and
+found to be the expected value.
+These are used to check that the tasks are still running. */
+static volatile short sBlockingConsumerCount[ blckqNUM_TASK_SETS ] = { ( short ) 0, ( short ) 0, ( short ) 0 };
+
+/* Variable which are incremented each time an item is posted on a queue. These
+are used to check that the tasks are still running. */
+static volatile short sBlockingProducerCount[ blckqNUM_TASK_SETS ] = { ( short ) 0, ( short ) 0, ( short ) 0 };
+
+/*-----------------------------------------------------------*/
+
+void vStartBlockingQueueTasks( unsigned portBASE_TYPE uxPriority )
+{
+xBlockingQueueParameters *pxQueueParameters1, *pxQueueParameters2;
+xBlockingQueueParameters *pxQueueParameters3, *pxQueueParameters4;
+xBlockingQueueParameters *pxQueueParameters5, *pxQueueParameters6;
+const unsigned portBASE_TYPE uxQueueSize1 = 1, uxQueueSize5 = 5;
+const TickType_t xBlockTime = ( TickType_t ) 1000 / portTICK_PERIOD_MS;
+const TickType_t xDontBlock = ( TickType_t ) 0;
+
+ /* Create the first two tasks as described at the top of the file. */
+
+ /* First create the structure used to pass parameters to the consumer tasks. */
+ pxQueueParameters1 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
+
+ /* Create the queue used by the first two tasks to pass the incrementing number.
+ Pass a pointer to the queue in the parameter structure. */
+ pxQueueParameters1->xQueue = xQueueCreate( uxQueueSize1, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
+
+ /* The consumer is created first so gets a block time as described above. */
+ pxQueueParameters1->xBlockTime = xBlockTime;
+
+ /* Pass in the variable that this task is going to increment so we can check it
+ is still running. */
+ pxQueueParameters1->psCheckVariable = &( sBlockingConsumerCount[ 0 ] );
+
+ /* Create the structure used to pass parameters to the producer task. */
+ pxQueueParameters2 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
+
+ /* Pass the queue to this task also, using the parameter structure. */
+ pxQueueParameters2->xQueue = pxQueueParameters1->xQueue;
+
+ /* The producer is not going to block - as soon as it posts the consumer will
+ wake and remove the item so the producer should always have room to post. */
+ pxQueueParameters2->xBlockTime = xDontBlock;
+
+ /* Pass in the variable that this task is going to increment so we can check
+ it is still running. */
+ pxQueueParameters2->psCheckVariable = &( sBlockingProducerCount[ 0 ] );
+
+
+ /* Note the producer has a lower priority than the consumer when the tasks are
+ spawned. */
+ xTaskCreate( vBlockingQueueConsumer, "QConsB1", blckqSTACK_SIZE, ( void * ) pxQueueParameters1, uxPriority, NULL );
+ xTaskCreate( vBlockingQueueProducer, "QProdB2", blckqSTACK_SIZE, ( void * ) pxQueueParameters2, tskIDLE_PRIORITY, NULL );
+
+
+
+ /* Create the second two tasks as described at the top of the file. This uses
+ the same mechanism but reverses the task priorities. */
+
+ pxQueueParameters3 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
+ pxQueueParameters3->xQueue = xQueueCreate( uxQueueSize1, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
+ pxQueueParameters3->xBlockTime = xDontBlock;
+ pxQueueParameters3->psCheckVariable = &( sBlockingProducerCount[ 1 ] );
+
+ pxQueueParameters4 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
+ pxQueueParameters4->xQueue = pxQueueParameters3->xQueue;
+ pxQueueParameters4->xBlockTime = xBlockTime;
+ pxQueueParameters4->psCheckVariable = &( sBlockingConsumerCount[ 1 ] );
+
+ xTaskCreate( vBlockingQueueProducer, "QProdB3", blckqSTACK_SIZE, ( void * ) pxQueueParameters3, tskIDLE_PRIORITY, NULL );
+ xTaskCreate( vBlockingQueueConsumer, "QConsB4", blckqSTACK_SIZE, ( void * ) pxQueueParameters4, uxPriority, NULL );
+
+
+
+ /* Create the last two tasks as described above. The mechanism is again just
+ the same. This time both parameter structures are given a block time. */
+ pxQueueParameters5 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
+ pxQueueParameters5->xQueue = xQueueCreate( uxQueueSize5, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
+ pxQueueParameters5->xBlockTime = xBlockTime;
+ pxQueueParameters5->psCheckVariable = &( sBlockingProducerCount[ 2 ] );
+
+ pxQueueParameters6 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
+ pxQueueParameters6->xQueue = pxQueueParameters5->xQueue;
+ pxQueueParameters6->xBlockTime = xBlockTime;
+ pxQueueParameters6->psCheckVariable = &( sBlockingConsumerCount[ 2 ] );
+
+ xTaskCreate( vBlockingQueueProducer, "QProdB5", blckqSTACK_SIZE, ( void * ) pxQueueParameters5, tskIDLE_PRIORITY, NULL );
+ xTaskCreate( vBlockingQueueConsumer, "QConsB6", blckqSTACK_SIZE, ( void * ) pxQueueParameters6, tskIDLE_PRIORITY, NULL );
+}
+/*-----------------------------------------------------------*/
+
+static void vBlockingQueueProducer( void *pvParameters )
+{
+unsigned short usValue = 0;
+xBlockingQueueParameters *pxQueueParameters;
+const char * const pcTaskStartMsg = "Blocking queue producer started.\r\n";
+const char * const pcTaskErrorMsg = "Could not post on blocking queue\r\n";
+short sErrorEverOccurred = pdFALSE;
+
+ pxQueueParameters = ( xBlockingQueueParameters * ) pvParameters;
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ for( ;; )
+ {
+ if( xQueueSendToBack( pxQueueParameters->xQueue, ( void * ) &usValue, pxQueueParameters->xBlockTime ) != pdPASS )
+ {
+ vPrintDisplayMessage( &pcTaskErrorMsg );
+ sErrorEverOccurred = pdTRUE;
+ }
+ else
+ {
+ /* We have successfully posted a message, so increment the variable
+ used to check we are still running. */
+ if( sErrorEverOccurred == pdFALSE )
+ {
+ ( *pxQueueParameters->psCheckVariable )++;
+ }
+
+ /* Increment the variable we are going to post next time round. The
+ consumer will expect the numbers to follow in numerical order. */
+ ++usValue;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void vBlockingQueueConsumer( void *pvParameters )
+{
+unsigned short usData, usExpectedValue = 0;
+xBlockingQueueParameters *pxQueueParameters;
+const char * const pcTaskStartMsg = "Blocking queue consumer started.\r\n";
+const char * const pcTaskErrorMsg = "Incorrect value received on blocking queue.\r\n";
+short sErrorEverOccurred = pdFALSE;
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ pxQueueParameters = ( xBlockingQueueParameters * ) pvParameters;
+
+ for( ;; )
+ {
+ if( xQueueReceive( pxQueueParameters->xQueue, &usData, pxQueueParameters->xBlockTime ) == pdPASS )
+ {
+ if( usData != usExpectedValue )
+ {
+ vPrintDisplayMessage( &pcTaskErrorMsg );
+
+ /* Catch-up. */
+ usExpectedValue = usData;
+
+ sErrorEverOccurred = pdTRUE;
+ }
+ else
+ {
+ /* We have successfully received a message, so increment the
+ variable used to check we are still running. */
+ if( sErrorEverOccurred == pdFALSE )
+ {
+ ( *pxQueueParameters->psCheckVariable )++;
+ }
+
+ /* Increment the value we expect to remove from the queue next time
+ round. */
+ ++usExpectedValue;
+ }
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+/* This is called to check that all the created tasks are still running. */
+portBASE_TYPE xAreBlockingQueuesStillRunning( void )
+{
+static short sLastBlockingConsumerCount[ blckqNUM_TASK_SETS ] = { ( short ) 0, ( short ) 0, ( short ) 0 };
+static short sLastBlockingProducerCount[ blckqNUM_TASK_SETS ] = { ( short ) 0, ( short ) 0, ( short ) 0 };
+portBASE_TYPE xReturn = pdPASS, xTasks;
+
+ /* Not too worried about mutual exclusion on these variables as they are 16
+ bits and we are only reading them. We also only care to see if they have
+ changed or not.
+
+ Loop through each check variable and return pdFALSE if any are found not
+ to have changed since the last call. */
+
+ for( xTasks = 0; xTasks < blckqNUM_TASK_SETS; xTasks++ )
+ {
+ if( sBlockingConsumerCount[ xTasks ] == sLastBlockingConsumerCount[ xTasks ] )
+ {
+ xReturn = pdFALSE;
+ }
+ sLastBlockingConsumerCount[ xTasks ] = sBlockingConsumerCount[ xTasks ];
+
+
+ if( sBlockingProducerCount[ xTasks ] == sLastBlockingProducerCount[ xTasks ] )
+ {
+ xReturn = pdFALSE;
+ }
+ sLastBlockingProducerCount[ xTasks ] = sBlockingProducerCount[ xTasks ];
+ }
+
+ return xReturn;
+}
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Full/PollQ.c b/src/FreeRTOS-Sim-master/Demo/Common/Full/PollQ.c
new file mode 100644
index 0000000..99b05ce
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Full/PollQ.c
@@ -0,0 +1,262 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+
+/**
+ * This is a very simple queue test. See the BlockQ. c documentation for a more
+ * comprehensive version.
+ *
+ * Creates two tasks that communicate over a single queue. One task acts as a
+ * producer, the other a consumer.
+ *
+ * The producer loops for three iteration, posting an incrementing number onto the
+ * queue each cycle. It then delays for a fixed period before doing exactly the
+ * same again.
+ *
+ * The consumer loops emptying the queue. Each item removed from the queue is
+ * checked to ensure it contains the expected value. When the queue is empty it
+ * blocks for a fixed period, then does the same again.
+ *
+ * All queue access is performed without blocking. The consumer completely empties
+ * the queue each time it runs so the producer should never find the queue full.
+ *
+ * An error is flagged if the consumer obtains an unexpected value or the producer
+ * find the queue is full.
+ *
+ * \page PollQC pollQ.c
+ * \ingroup DemoFiles
+ * <HR>
+ */
+
+/*
+Changes from V2.0.0
+
+ + Delay periods are now specified using variables and constants of
+ TickType_t rather than unsigned long.
+*/
+
+#include <stdlib.h>
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "queue.h"
+#include "print.h"
+
+/* Demo program include files. */
+#include "PollQ.h"
+
+#define pollqSTACK_SIZE ( ( unsigned short ) configMINIMAL_STACK_SIZE )
+
+/* The task that posts the incrementing number onto the queue. */
+static void vPolledQueueProducer( void *pvParameters );
+
+/* The task that empties the queue. */
+static void vPolledQueueConsumer( void *pvParameters );
+
+/* Variables that are used to check that the tasks are still running with no errors. */
+static volatile short sPollingConsumerCount = 0, sPollingProducerCount = 0;
+/*-----------------------------------------------------------*/
+
+void vStartPolledQueueTasks( unsigned portBASE_TYPE uxPriority )
+{
+static QueueHandle_t xPolledQueue;
+const unsigned portBASE_TYPE uxQueueSize = 10;
+
+ /* Create the queue used by the producer and consumer. */
+ xPolledQueue = xQueueCreate( uxQueueSize, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
+
+ /* Spawn the producer and consumer. */
+ xTaskCreate( vPolledQueueConsumer, "QConsNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, NULL );
+ xTaskCreate( vPolledQueueProducer, "QProdNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, NULL );
+}
+/*-----------------------------------------------------------*/
+
+static void vPolledQueueProducer( void *pvParameters )
+{
+unsigned short usValue = 0, usLoop;
+QueueHandle_t *pxQueue;
+const TickType_t xDelay = ( TickType_t ) 200 / portTICK_PERIOD_MS;
+const unsigned short usNumToProduce = 3;
+const char * const pcTaskStartMsg = "Polled queue producer started.\r\n";
+const char * const pcTaskErrorMsg = "Could not post on polled queue.\r\n";
+short sError = pdFALSE;
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ /* The queue being used is passed in as the parameter. */
+ pxQueue = ( QueueHandle_t * ) pvParameters;
+
+ for( ;; )
+ {
+ for( usLoop = 0; usLoop < usNumToProduce; ++usLoop )
+ {
+ /* Send an incrementing number on the queue without blocking. */
+ if( xQueueSendToBack( *pxQueue, ( void * ) &usValue, ( TickType_t ) 0 ) != pdPASS )
+ {
+ /* We should never find the queue full - this is an error. */
+ vPrintDisplayMessage( &pcTaskErrorMsg );
+ sError = pdTRUE;
+ }
+ else
+ {
+ if( sError == pdFALSE )
+ {
+ /* If an error has ever been recorded we stop incrementing the
+ check variable. */
+ ++sPollingProducerCount;
+ }
+
+ /* Update the value we are going to post next time around. */
+ ++usValue;
+ }
+ }
+
+ /* Wait before we start posting again to ensure the consumer runs and
+ empties the queue. */
+ vTaskDelay( xDelay );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void vPolledQueueConsumer( void *pvParameters )
+{
+unsigned short usData, usExpectedValue = 0;
+QueueHandle_t *pxQueue;
+const TickType_t xDelay = ( TickType_t ) 200 / portTICK_PERIOD_MS;
+const char * const pcTaskStartMsg = "Polled queue consumer started.\r\n";
+const char * const pcTaskErrorMsg = "Incorrect value received on polled queue.\r\n";
+short sError = pdFALSE;
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ /* The queue being used is passed in as the parameter. */
+ pxQueue = ( QueueHandle_t * ) pvParameters;
+
+ for( ;; )
+ {
+ /* Loop until the queue is empty. */
+ while( uxQueueMessagesWaiting( *pxQueue ) )
+ {
+ if( xQueueReceive( *pxQueue, &usData, ( TickType_t ) 0 ) == pdPASS )
+ {
+ if( usData != usExpectedValue )
+ {
+ /* This is not what we expected to receive so an error has
+ occurred. */
+ vPrintDisplayMessage( &pcTaskErrorMsg );
+ sError = pdTRUE;
+ /* Catch-up to the value we received so our next expected value
+ should again be correct. */
+ usExpectedValue = usData;
+ }
+ else
+ {
+ if( sError == pdFALSE )
+ {
+ /* Only increment the check variable if no errors have
+ occurred. */
+ ++sPollingConsumerCount;
+ }
+ }
+ ++usExpectedValue;
+ }
+ }
+
+ /* Now the queue is empty we block, allowing the producer to place more
+ items in the queue. */
+ vTaskDelay( xDelay );
+ }
+}
+/*-----------------------------------------------------------*/
+
+/* This is called to check that all the created tasks are still running with no errors. */
+portBASE_TYPE xArePollingQueuesStillRunning( void )
+{
+static short sLastPollingConsumerCount = 0, sLastPollingProducerCount = 0;
+portBASE_TYPE xReturn;
+
+ if( ( sLastPollingConsumerCount == sPollingConsumerCount ) ||
+ ( sLastPollingProducerCount == sPollingProducerCount )
+ )
+ {
+ xReturn = pdFALSE;
+ }
+ else
+ {
+ xReturn = pdTRUE;
+ }
+
+ sLastPollingConsumerCount = sPollingConsumerCount;
+ sLastPollingProducerCount = sPollingProducerCount;
+
+ return xReturn;
+}
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Full/death.c b/src/FreeRTOS-Sim-master/Demo/Common/Full/death.c
new file mode 100644
index 0000000..94d4f6d
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Full/death.c
@@ -0,0 +1,245 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/**
+ * Create a single persistent task which periodically dynamically creates another
+ * four tasks. The original task is called the creator task, the four tasks it
+ * creates are called suicidal tasks.
+ *
+ * Two of the created suicidal tasks kill one other suicidal task before killing
+ * themselves - leaving just the original task remaining.
+ *
+ * The creator task must be spawned after all of the other demo application tasks
+ * as it keeps a check on the number of tasks under the scheduler control. The
+ * number of tasks it expects to see running should never be greater than the
+ * number of tasks that were in existence when the creator task was spawned, plus
+ * one set of four suicidal tasks. If this number is exceeded an error is flagged.
+ *
+ * \page DeathC death.c
+ * \ingroup DemoFiles
+ * <HR>
+ */
+
+/*
+Changes from V2.0.0
+
+ + Delay periods are now specified using variables and constants of
+ TickType_t rather than unsigned long.
+*/
+
+#include <stdlib.h>
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+
+/* Demo program include files. */
+#include "death.h"
+#include "print.h"
+
+#define deathSTACK_SIZE ( ( unsigned short ) 512 )
+
+/* The task originally created which is responsible for periodically dynamically
+creating another four tasks. */
+static void vCreateTasks( void *pvParameters );
+
+/* The task function of the dynamically created tasks. */
+static void vSuicidalTask( void *pvParameters );
+
+/* A variable which is incremented every time the dynamic tasks are created. This
+is used to check that the task is still running. */
+static volatile short sCreationCount = 0;
+
+/* Used to store the number of tasks that were originally running so the creator
+task can tell if any of the suicidal tasks have failed to die. */
+static volatile unsigned portBASE_TYPE uxTasksRunningAtStart = 0;
+static const unsigned portBASE_TYPE uxMaxNumberOfExtraTasksRunning = 5;
+
+/* Used to store a handle to the tasks that should be killed by a suicidal task,
+before it kills itself. */
+TaskHandle_t xCreatedTask1, xCreatedTask2;
+
+/*-----------------------------------------------------------*/
+
+void vCreateSuicidalTasks( unsigned portBASE_TYPE uxPriority )
+{
+unsigned portBASE_TYPE *puxPriority;
+
+ /* Create the Creator tasks - passing in as a parameter the priority at which
+ the suicidal tasks should be created. */
+ puxPriority = ( unsigned portBASE_TYPE * ) pvPortMalloc( sizeof( unsigned portBASE_TYPE ) );
+ *puxPriority = uxPriority;
+
+ xTaskCreate( vCreateTasks, "CREATOR", deathSTACK_SIZE, ( void * ) puxPriority, uxPriority, NULL );
+
+ /* Record the number of tasks that are running now so we know if any of the
+ suicidal tasks have failed to be killed. */
+ uxTasksRunningAtStart = uxTaskGetNumberOfTasks();
+}
+/*-----------------------------------------------------------*/
+
+static void vSuicidalTask( void *pvParameters )
+{
+portDOUBLE d1, d2;
+TaskHandle_t xTaskToKill;
+const TickType_t xDelay = ( TickType_t ) 500 / portTICK_PERIOD_MS;
+
+ if( pvParameters != NULL )
+ {
+ /* This task is periodically created four times. Tow created tasks are
+ passed a handle to the other task so it can kill it before killing itself.
+ The other task is passed in null. */
+ xTaskToKill = *( TaskHandle_t* )pvParameters;
+ }
+ else
+ {
+ xTaskToKill = NULL;
+ }
+
+ for( ;; )
+ {
+ /* Do something random just to use some stack and registers. */
+ d1 = 2.4;
+ d2 = 89.2;
+ d2 *= d1;
+ vTaskDelay( xDelay );
+
+ if( xTaskToKill != NULL )
+ {
+ /* Make sure the other task has a go before we delete it. */
+ vTaskDelay( ( TickType_t ) 0 );
+ /* Kill the other task that was created by vCreateTasks(). */
+ vTaskDelete( xTaskToKill );
+ /* Kill ourselves. */
+ vTaskDelete( NULL );
+ }
+ }
+}/*lint !e818 !e550 Function prototype must be as per standard for task functions. */
+/*-----------------------------------------------------------*/
+
+static void vCreateTasks( void *pvParameters )
+{
+const TickType_t xDelay = ( TickType_t ) 1000 / portTICK_PERIOD_MS;
+unsigned portBASE_TYPE uxPriority;
+const char * const pcTaskStartMsg = "Create task started.\r\n";
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ uxPriority = *( unsigned portBASE_TYPE * ) pvParameters;
+ vPortFree( pvParameters );
+
+ for( ;; )
+ {
+ /* Just loop round, delaying then creating the four suicidal tasks. */
+ vTaskDelay( xDelay );
+
+ xTaskCreate( vSuicidalTask, "SUICIDE1", deathSTACK_SIZE, NULL, uxPriority, &xCreatedTask1 );
+ xTaskCreate( vSuicidalTask, "SUICIDE2", deathSTACK_SIZE, &xCreatedTask1, uxPriority, NULL );
+
+ xTaskCreate( vSuicidalTask, "SUICIDE1", deathSTACK_SIZE, NULL, uxPriority, &xCreatedTask2 );
+ xTaskCreate( vSuicidalTask, "SUICIDE2", deathSTACK_SIZE, &xCreatedTask2, uxPriority, NULL );
+
+ ++sCreationCount;
+ }
+}
+/*-----------------------------------------------------------*/
+
+/* This is called to check that the creator task is still running and that there
+are not any more than four extra tasks. */
+portBASE_TYPE xIsCreateTaskStillRunning( void )
+{
+static short sLastCreationCount = 0;
+short sReturn = pdTRUE;
+unsigned portBASE_TYPE uxTasksRunningNow;
+
+ if( sLastCreationCount == sCreationCount )
+ {
+ sReturn = pdFALSE;
+ }
+
+ uxTasksRunningNow = uxTaskGetNumberOfTasks();
+
+ if( uxTasksRunningNow < uxTasksRunningAtStart )
+ {
+ sReturn = pdFALSE;
+ }
+ else if( ( uxTasksRunningNow - uxTasksRunningAtStart ) > uxMaxNumberOfExtraTasksRunning )
+ {
+ sReturn = pdFALSE;
+ }
+ else
+ {
+ /* Everything is okay. */
+ }
+
+ return sReturn;
+}
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Full/dynamic.c b/src/FreeRTOS-Sim-master/Demo/Common/Full/dynamic.c
new file mode 100644
index 0000000..a52392b
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Full/dynamic.c
@@ -0,0 +1,620 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/**
+ * The first test creates three tasks - two counter tasks (one continuous count
+ * and one limited count) and one controller. A "count" variable is shared
+ * between all three tasks. The two counter tasks should never be in a "ready"
+ * state at the same time. The controller task runs at the same priority as
+ * the continuous count task, and at a lower priority than the limited count
+ * task.
+ *
+ * One counter task loops indefinitely, incrementing the shared count variable
+ * on each iteration. To ensure it has exclusive access to the variable it
+ * raises it's priority above that of the controller task before each
+ * increment, lowering it again to it's original priority before starting the
+ * next iteration.
+ *
+ * The other counter task increments the shared count variable on each
+ * iteration of it's loop until the count has reached a limit of 0xff - at
+ * which point it suspends itself. It will not start a new loop until the
+ * controller task has made it "ready" again by calling vTaskResume ().
+ * This second counter task operates at a higher priority than controller
+ * task so does not need to worry about mutual exclusion of the counter
+ * variable.
+ *
+ * The controller task is in two sections. The first section controls and
+ * monitors the continuous count task. When this section is operational the
+ * limited count task is suspended. Likewise, the second section controls
+ * and monitors the limited count task. When this section is operational the
+ * continuous count task is suspended.
+ *
+ * In the first section the controller task first takes a copy of the shared
+ * count variable. To ensure mutual exclusion on the count variable it
+ * suspends the continuous count task, resuming it again when the copy has been
+ * taken. The controller task then sleeps for a fixed period - during which
+ * the continuous count task will execute and increment the shared variable.
+ * When the controller task wakes it checks that the continuous count task
+ * has executed by comparing the copy of the shared variable with its current
+ * value. This time, to ensure mutual exclusion, the scheduler itself is
+ * suspended with a call to vTaskSuspendAll (). This is for demonstration
+ * purposes only and is not a recommended technique due to its inefficiency.
+ *
+ * After a fixed number of iterations the controller task suspends the
+ * continuous count task, and moves on to its second section.
+ *
+ * At the start of the second section the shared variable is cleared to zero.
+ * The limited count task is then woken from it's suspension by a call to
+ * vTaskResume (). As this counter task operates at a higher priority than
+ * the controller task the controller task should not run again until the
+ * shared variable has been counted up to the limited value causing the counter
+ * task to suspend itself. The next line after vTaskResume () is therefore
+ * a check on the shared variable to ensure everything is as expected.
+ *
+ *
+ * The second test consists of a couple of very simple tasks that post onto a
+ * queue while the scheduler is suspended. This test was added to test parts
+ * of the scheduler not exercised by the first test.
+ *
+ *
+ * The final set of two tasks implements a third test. This simply raises the
+ * priority of a task while the scheduler is suspended. Again this test was
+ * added to exercise parts of the code not covered by the first test.
+ *
+ * \page Priorities dynamic.c
+ * \ingroup DemoFiles
+ * <HR>
+ */
+
+/*
+Changes from V2.0.0
+
+ + Delay periods are now specified using variables and constants of
+ TickType_t rather than unsigned long.
+ + Added a second, simple test that uses the functions
+ vQueueReceiveWhenSuspendedTask() and vQueueSendWhenSuspendedTask().
+
+Changes from V3.1.1
+
+ + Added a third simple test that uses the vTaskPrioritySet() function
+ while the scheduler is suspended.
+ + Modified the controller task slightly to test the calling of
+ vTaskResumeAll() while the scheduler is suspended.
+*/
+
+#include <stdlib.h>
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "semphr.h"
+
+/* Demo app include files. */
+#include "dynamic.h"
+#include "print.h"
+
+/* Function that implements the "limited count" task as described above. */
+static void vLimitedIncrementTask( void * pvParameters );
+
+/* Function that implements the "continuous count" task as described above. */
+static void vContinuousIncrementTask( void * pvParameters );
+
+/* Function that implements the controller task as described above. */
+static void vCounterControlTask( void * pvParameters );
+
+/* The simple test functions that check sending and receiving while the
+scheduler is suspended. */
+static void vQueueReceiveWhenSuspendedTask( void *pvParameters );
+static void vQueueSendWhenSuspendedTask( void *pvParameters );
+
+/* The simple test functions that check raising and lowering of task priorities
+while the scheduler is suspended. */
+static void prvChangePriorityWhenSuspendedTask( void *pvParameters );
+static void prvChangePriorityHelperTask( void *pvParameters );
+
+
+/* Demo task specific constants. */
+#define priSTACK_SIZE ( ( unsigned short ) configMINIMAL_STACK_SIZE )
+#define priSLEEP_TIME ( ( TickType_t ) 50 )
+#define priLOOPS ( 5 )
+#define priMAX_COUNT ( ( unsigned long ) 0xff )
+#define priNO_BLOCK ( ( TickType_t ) 0 )
+#define priSUSPENDED_QUEUE_LENGTH ( 1 )
+
+/*-----------------------------------------------------------*/
+
+/* Handles to the two counter tasks. These could be passed in as parameters
+to the controller task to prevent them having to be file scope. */
+static TaskHandle_t xContinuousIncrementHandle, xLimitedIncrementHandle, xChangePriorityWhenSuspendedHandle;
+
+/* The shared counter variable. This is passed in as a parameter to the two
+counter variables for demonstration purposes. */
+static unsigned long ulCounter;
+
+/* Variable used in a similar way by the test that checks the raising and
+lowering of task priorities while the scheduler is suspended. */
+static unsigned long ulPrioritySetCounter;
+
+/* Variables used to check that the tasks are still operating without error.
+Each complete iteration of the controller task increments this variable
+provided no errors have been found. The variable maintaining the same value
+is therefore indication of an error. */
+static unsigned short usCheckVariable = ( unsigned short ) 0;
+static portBASE_TYPE xSuspendedQueueSendError = pdFALSE;
+static portBASE_TYPE xSuspendedQueueReceiveError = pdFALSE;
+static portBASE_TYPE xPriorityRaiseWhenSuspendedError = pdFALSE;
+
+/* Queue used by the second test. */
+QueueHandle_t xSuspendedTestQueue;
+
+/*-----------------------------------------------------------*/
+/*
+ * Start the seven tasks as described at the top of the file.
+ * Note that the limited count task is given a higher priority.
+ */
+void vStartDynamicPriorityTasks( void )
+{
+ xSuspendedTestQueue = xQueueCreate( priSUSPENDED_QUEUE_LENGTH, sizeof( unsigned long ) );
+ xTaskCreate( vContinuousIncrementTask, "CONT_INC", priSTACK_SIZE, ( void * ) &ulCounter, tskIDLE_PRIORITY, &xContinuousIncrementHandle );
+ xTaskCreate( vLimitedIncrementTask, "LIM_INC", priSTACK_SIZE, ( void * ) &ulCounter, tskIDLE_PRIORITY + 1, &xLimitedIncrementHandle );
+ xTaskCreate( vCounterControlTask, "C_CTRL", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
+ xTaskCreate( vQueueSendWhenSuspendedTask, "SUSP_SEND", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
+ xTaskCreate( vQueueReceiveWhenSuspendedTask, "SUSP_RECV", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
+ xTaskCreate( prvChangePriorityWhenSuspendedTask, "1st_P_CHANGE", priSTACK_SIZE, NULL, tskIDLE_PRIORITY + 1, NULL );
+ xTaskCreate( prvChangePriorityHelperTask, "2nd_P_CHANGE", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, &xChangePriorityWhenSuspendedHandle );
+}
+/*-----------------------------------------------------------*/
+
+/*
+ * Just loops around incrementing the shared variable until the limit has been
+ * reached. Once the limit has been reached it suspends itself.
+ */
+static void vLimitedIncrementTask( void * pvParameters )
+{
+unsigned long *pulCounter;
+
+ /* Take a pointer to the shared variable from the parameters passed into
+ the task. */
+ pulCounter = ( unsigned long * ) pvParameters;
+
+ /* This will run before the control task, so the first thing it does is
+ suspend - the control task will resume it when ready. */
+ vTaskSuspend( NULL );
+
+ for( ;; )
+ {
+ /* Just count up to a value then suspend. */
+ ( *pulCounter )++;
+
+ if( *pulCounter >= priMAX_COUNT )
+ {
+ vTaskSuspend( NULL );
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+/*
+ * Just keep counting the shared variable up. The control task will suspend
+ * this task when it wants.
+ */
+static void vContinuousIncrementTask( void * pvParameters )
+{
+unsigned long *pulCounter;
+unsigned portBASE_TYPE uxOurPriority;
+
+ /* Take a pointer to the shared variable from the parameters passed into
+ the task. */
+ pulCounter = ( unsigned long * ) pvParameters;
+
+ /* Query our priority so we can raise it when exclusive access to the
+ shared variable is required. */
+ uxOurPriority = uxTaskPriorityGet( NULL );
+
+ for( ;; )
+ {
+ /* Raise our priority above the controller task to ensure a context
+ switch does not occur while we are accessing this variable. */
+ vTaskPrioritySet( NULL, uxOurPriority + 1 );
+ ( *pulCounter )++;
+ vTaskPrioritySet( NULL, uxOurPriority );
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+ }
+}
+/*-----------------------------------------------------------*/
+
+/*
+ * Controller task as described above.
+ */
+static void vCounterControlTask( void * pvParameters )
+{
+unsigned long ulLastCounter;
+short sLoops;
+short sError = pdFALSE;
+const char * const pcTaskStartMsg = "Priority manipulation tasks started.\r\n";
+const char * const pcTaskFailMsg = "Priority manipulation Task Failed\r\n";
+
+ /* Just to stop warning messages. */
+ ( void ) pvParameters;
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ for( ;; )
+ {
+ /* Start with the counter at zero. */
+ ulCounter = ( unsigned long ) 0;
+
+ /* First section : */
+
+ /* Check the continuous count task is running. */
+ for( sLoops = 0; sLoops < priLOOPS; sLoops++ )
+ {
+ /* Suspend the continuous count task so we can take a mirror of the
+ shared variable without risk of corruption. */
+ vTaskSuspend( xContinuousIncrementHandle );
+ ulLastCounter = ulCounter;
+ vTaskResume( xContinuousIncrementHandle );
+
+ /* Now delay to ensure the other task has processor time. */
+ vTaskDelay( priSLEEP_TIME );
+
+ /* Check the shared variable again. This time to ensure mutual
+ exclusion the whole scheduler will be locked. This is just for
+ demo purposes! */
+ vTaskSuspendAll();
+ {
+ if( ulLastCounter == ulCounter )
+ {
+ /* The shared variable has not changed. There is a problem
+ with the continuous count task so flag an error. */
+ sError = pdTRUE;
+ xTaskResumeAll();
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ vTaskSuspendAll();
+ }
+ }
+ xTaskResumeAll();
+ }
+
+
+ /* Second section: */
+
+ /* Suspend the continuous counter task so it stops accessing the shared variable. */
+ vTaskSuspend( xContinuousIncrementHandle );
+
+ /* Reset the variable. */
+ ulCounter = ( unsigned long ) 0;
+
+ /* Resume the limited count task which has a higher priority than us.
+ We should therefore not return from this call until the limited count
+ task has suspended itself with a known value in the counter variable.
+ The scheduler suspension is not necessary but is included for test
+ purposes. */
+ vTaskSuspendAll();
+ vTaskResume( xLimitedIncrementHandle );
+ xTaskResumeAll();
+
+ /* Does the counter variable have the expected value? */
+ if( ulCounter != priMAX_COUNT )
+ {
+ sError = pdTRUE;
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ }
+
+ if( sError == pdFALSE )
+ {
+ /* If no errors have occurred then increment the check variable. */
+ portENTER_CRITICAL();
+ usCheckVariable++;
+ portEXIT_CRITICAL();
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* Resume the continuous count task and do it all again. */
+ vTaskResume( xContinuousIncrementHandle );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void vQueueSendWhenSuspendedTask( void *pvParameters )
+{
+static unsigned long ulValueToSend = ( unsigned long ) 0;
+const char * const pcTaskStartMsg = "Queue send while suspended task started.\r\n";
+const char * const pcTaskFailMsg = "Queue send while suspended failed.\r\n";
+
+ /* Just to stop warning messages. */
+ ( void ) pvParameters;
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ for( ;; )
+ {
+ vTaskSuspendAll();
+ {
+ /* We must not block while the scheduler is suspended! */
+ if( xQueueSend( xSuspendedTestQueue, ( void * ) &ulValueToSend, priNO_BLOCK ) != pdTRUE )
+ {
+ if( xSuspendedQueueSendError == pdFALSE )
+ {
+ xTaskResumeAll();
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ vTaskSuspendAll();
+ }
+
+ xSuspendedQueueSendError = pdTRUE;
+ }
+ }
+ xTaskResumeAll();
+
+ vTaskDelay( priSLEEP_TIME );
+
+ ++ulValueToSend;
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void vQueueReceiveWhenSuspendedTask( void *pvParameters )
+{
+static unsigned long ulExpectedValue = ( unsigned long ) 0, ulReceivedValue;
+const char * const pcTaskStartMsg = "Queue receive while suspended task started.\r\n";
+const char * const pcTaskFailMsg = "Queue receive while suspended failed.\r\n";
+portBASE_TYPE xGotValue;
+
+ /* Just to stop warning messages. */
+ ( void ) pvParameters;
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ for( ;; )
+ {
+ do
+ {
+ /* Suspending the scheduler here is fairly pointless and
+ undesirable for a normal application. It is done here purely
+ to test the scheduler. The inner xTaskResumeAll() should
+ never return pdTRUE as the scheduler is still locked by the
+ outer call. */
+ vTaskSuspendAll();
+ {
+ vTaskSuspendAll();
+ {
+ xGotValue = xQueueReceive( xSuspendedTestQueue, ( void * ) &ulReceivedValue, priNO_BLOCK );
+ }
+ if( xTaskResumeAll() )
+ {
+ xSuspendedQueueReceiveError = pdTRUE;
+ }
+ }
+ xTaskResumeAll();
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ } while( xGotValue == pdFALSE );
+
+ if( ulReceivedValue != ulExpectedValue )
+ {
+ if( xSuspendedQueueReceiveError == pdFALSE )
+ {
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ }
+ xSuspendedQueueReceiveError = pdTRUE;
+ }
+
+ ++ulExpectedValue;
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvChangePriorityWhenSuspendedTask( void *pvParameters )
+{
+const char * const pcTaskStartMsg = "Priority change when suspended task started.\r\n";
+const char * const pcTaskFailMsg = "Priority change when suspended task failed.\r\n";
+
+ /* Just to stop warning messages. */
+ ( void ) pvParameters;
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ for( ;; )
+ {
+ /* Start with the counter at 0 so we know what the counter should be
+ when we check it next. */
+ ulPrioritySetCounter = ( unsigned long ) 0;
+
+ /* Resume the helper task. At this time it has a priority lower than
+ ours so no context switch should occur. */
+ vTaskResume( xChangePriorityWhenSuspendedHandle );
+
+ /* Check to ensure the task just resumed has not executed. */
+ portENTER_CRITICAL();
+ {
+ if( ulPrioritySetCounter != ( unsigned long ) 0 )
+ {
+ xPriorityRaiseWhenSuspendedError = pdTRUE;
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ }
+ }
+ portEXIT_CRITICAL();
+
+ /* Now try raising the priority while the scheduler is suspended. */
+ vTaskSuspendAll();
+ {
+ vTaskPrioritySet( xChangePriorityWhenSuspendedHandle, ( configMAX_PRIORITIES - 1 ) );
+
+ /* Again, even though the helper task has a priority greater than
+ ours, it should not have executed yet because the scheduler is
+ suspended. */
+ portENTER_CRITICAL();
+ {
+ if( ulPrioritySetCounter != ( unsigned long ) 0 )
+ {
+ xPriorityRaiseWhenSuspendedError = pdTRUE;
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ }
+ }
+ portEXIT_CRITICAL();
+ }
+ xTaskResumeAll();
+
+ /* Now the scheduler has been resumed the helper task should
+ immediately preempt us and execute. When it executes it will increment
+ the ulPrioritySetCounter exactly once before suspending itself.
+
+ We should now always find the counter set to 1. */
+ portENTER_CRITICAL();
+ {
+ if( ulPrioritySetCounter != ( unsigned long ) 1 )
+ {
+ xPriorityRaiseWhenSuspendedError = pdTRUE;
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ }
+ }
+ portEXIT_CRITICAL();
+
+ /* Delay until we try this again. */
+ vTaskDelay( priSLEEP_TIME * 2 );
+
+ /* Set the priority of the helper task back ready for the next
+ execution of this task. */
+ vTaskSuspendAll();
+ vTaskPrioritySet( xChangePriorityWhenSuspendedHandle, tskIDLE_PRIORITY );
+ xTaskResumeAll();
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvChangePriorityHelperTask( void *pvParameters )
+{
+ /* Just to stop warning messages. */
+ ( void ) pvParameters;
+
+ for( ;; )
+ {
+ /* This is the helper task for prvChangePriorityWhenSuspendedTask().
+ It has it's priority raised and lowered. When it runs it simply
+ increments the counter then suspends itself again. This allows
+ prvChangePriorityWhenSuspendedTask() to know how many times it has
+ executed. */
+ ulPrioritySetCounter++;
+ vTaskSuspend( NULL );
+ }
+}
+/*-----------------------------------------------------------*/
+
+/* Called to check that all the created tasks are still running without error. */
+portBASE_TYPE xAreDynamicPriorityTasksStillRunning( void )
+{
+/* Keep a history of the check variables so we know if it has been incremented
+since the last call. */
+static unsigned short usLastTaskCheck = ( unsigned short ) 0;
+portBASE_TYPE xReturn = pdTRUE;
+
+ /* Check the tasks are still running by ensuring the check variable
+ is still incrementing. */
+
+ if( usCheckVariable == usLastTaskCheck )
+ {
+ /* The check has not incremented so an error exists. */
+ xReturn = pdFALSE;
+ }
+
+ if( xSuspendedQueueSendError == pdTRUE )
+ {
+ xReturn = pdFALSE;
+ }
+
+ if( xSuspendedQueueReceiveError == pdTRUE )
+ {
+ xReturn = pdFALSE;
+ }
+
+ if( xPriorityRaiseWhenSuspendedError == pdTRUE )
+ {
+ xReturn = pdFALSE;
+ }
+
+ usLastTaskCheck = usCheckVariable;
+ return xReturn;
+}
+
+
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Full/events.c b/src/FreeRTOS-Sim-master/Demo/Common/Full/events.c
new file mode 100644
index 0000000..807ae53
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Full/events.c
@@ -0,0 +1,410 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/**
+ * This file exercises the event mechanism whereby more than one task is
+ * blocked waiting for the same event.
+ *
+ * The demo creates five tasks - four 'event' tasks, and a controlling task.
+ * The event tasks have various different priorities and all block on reading
+ * the same queue. The controlling task writes data to the queue, then checks
+ * to see which of the event tasks read the data from the queue. The
+ * controlling task has the lowest priority of all the tasks so is guaranteed
+ * to always get preempted immediately upon writing to the queue.
+ *
+ * By selectively suspending and resuming the event tasks the controlling task
+ * can check that the highest priority task that is blocked on the queue is the
+ * task that reads the posted data from the queue.
+ *
+ * Two of the event tasks share the same priority. When neither of these tasks
+ * are suspended they should alternate - one reading one message from the queue,
+ * the other the next message, etc.
+ */
+
+/* Standard includes. */
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "queue.h"
+
+/* Demo program include files. */
+#include "mevents.h"
+#include "print.h"
+
+/* Demo specific constants. */
+#define evtSTACK_SIZE ( ( unsigned portBASE_TYPE ) configMINIMAL_STACK_SIZE )
+#define evtNUM_TASKS ( 4 )
+#define evtQUEUE_LENGTH ( ( unsigned portBASE_TYPE ) 3 )
+#define evtNO_DELAY 0
+
+/* Just indexes used to uniquely identify the tasks. Note that two tasks are
+'highest' priority. */
+#define evtHIGHEST_PRIORITY_INDEX_2 3
+#define evtHIGHEST_PRIORITY_INDEX_1 2
+#define evtMEDIUM_PRIORITY_INDEX 1
+#define evtLOWEST_PRIORITY_INDEX 0
+
+/* Each event task increments one of these counters each time it reads data
+from the queue. */
+static volatile portBASE_TYPE xTaskCounters[ evtNUM_TASKS ] = { 0, 0, 0, 0 };
+
+/* Each time the controlling task posts onto the queue it increments the
+expected count of the task that it expected to read the data from the queue
+(i.e. the task with the highest priority that should be blocked on the queue).
+
+xExpectedTaskCounters are incremented from the controlling task, and
+xTaskCounters are incremented from the individual event tasks - therefore
+comparing xTaskCounters to xExpectedTaskCounters shows whether or not the
+correct task was unblocked by the post. */
+static portBASE_TYPE xExpectedTaskCounters[ evtNUM_TASKS ] = { 0, 0, 0, 0 };
+
+/* Handles to the four event tasks. These are required to suspend and resume
+the tasks. */
+static TaskHandle_t xCreatedTasks[ evtNUM_TASKS ];
+
+/* The single queue onto which the controlling task posts, and the four event
+tasks block. */
+static QueueHandle_t xQueue;
+
+/* Flag used to indicate whether or not an error has occurred at any time.
+An error is either the queue being full when not expected, or an unexpected
+task reading data from the queue. */
+static portBASE_TYPE xHealthStatus = pdPASS;
+
+/*-----------------------------------------------------------*/
+
+/* Function that implements the event task. This is created four times. */
+static void prvMultiEventTask( void *pvParameters );
+
+/* Function that implements the controlling task. */
+static void prvEventControllerTask( void *pvParameters );
+
+/* This is a utility function that posts data to the queue, then compares
+xExpectedTaskCounters with xTaskCounters to ensure everything worked as
+expected.
+
+The event tasks all have higher priorities the controlling task. Therefore
+the controlling task will always get preempted between writhing to the queue
+and checking the task counters.
+
+@param xExpectedTask The index to the task that the controlling task thinks
+ should be the highest priority task waiting for data, and
+ therefore the task that will unblock.
+
+@param xIncrement The number of items that should be written to the queue.
+*/
+static void prvCheckTaskCounters( portBASE_TYPE xExpectedTask, portBASE_TYPE xIncrement );
+
+/* This is just incremented each cycle of the controlling tasks function so
+the main application can ensure the test is still running. */
+static portBASE_TYPE xCheckVariable = 0;
+
+/*-----------------------------------------------------------*/
+
+void vStartMultiEventTasks( void )
+{
+ /* Create the queue to be used for all the communications. */
+ xQueue = xQueueCreate( evtQUEUE_LENGTH, ( unsigned portBASE_TYPE ) sizeof( unsigned portBASE_TYPE ) );
+
+ /* Start the controlling task. This has the idle priority to ensure it is
+ always preempted by the event tasks. */
+ xTaskCreate( prvEventControllerTask, "EvntCTRL", evtSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
+
+ /* Start the four event tasks. Note that two have priority 3, one
+ priority 2 and the other priority 1. */
+ xTaskCreate( prvMultiEventTask, "Event0", evtSTACK_SIZE, ( void * ) &( xTaskCounters[ 0 ] ), 1, &( xCreatedTasks[ evtLOWEST_PRIORITY_INDEX ] ) );
+ xTaskCreate( prvMultiEventTask, "Event1", evtSTACK_SIZE, ( void * ) &( xTaskCounters[ 1 ] ), 2, &( xCreatedTasks[ evtMEDIUM_PRIORITY_INDEX ] ) );
+ xTaskCreate( prvMultiEventTask, "Event2", evtSTACK_SIZE, ( void * ) &( xTaskCounters[ 2 ] ), 3, &( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] ) );
+ xTaskCreate( prvMultiEventTask, "Event3", evtSTACK_SIZE, ( void * ) &( xTaskCounters[ 3 ] ), 3, &( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_2 ] ) );
+}
+/*-----------------------------------------------------------*/
+
+static void prvMultiEventTask( void *pvParameters )
+{
+portBASE_TYPE *pxCounter;
+unsigned portBASE_TYPE uxDummy;
+const char * const pcTaskStartMsg = "Multi event task started.\r\n";
+
+ /* The variable this task will increment is passed in as a parameter. */
+ pxCounter = ( portBASE_TYPE * ) pvParameters;
+
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ for( ;; )
+ {
+ /* Block on the queue. */
+ if( xQueueReceive( xQueue, &uxDummy, portMAX_DELAY ) )
+ {
+ /* We unblocked by reading the queue - so simply increment
+ the counter specific to this task instance. */
+ ( *pxCounter )++;
+ }
+ else
+ {
+ xHealthStatus = pdFAIL;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvEventControllerTask( void *pvParameters )
+{
+const char * const pcTaskStartMsg = "Multi event controller task started.\r\n";
+portBASE_TYPE xDummy = 0;
+
+ /* Just to stop warnings. */
+ ( void ) pvParameters;
+
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ for( ;; )
+ {
+ /* All tasks are blocked on the queue. When a message is posted one of
+ the two tasks that share the highest priority should unblock to read
+ the queue. The next message written should unblock the other task with
+ the same high priority, and so on in order. No other task should
+ unblock to read data as they have lower priorities. */
+
+ prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_1, 1 );
+ prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_2, 1 );
+ prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_1, 1 );
+ prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_2, 1 );
+ prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_1, 1 );
+
+ /* For the rest of these tests we don't need the second 'highest'
+ priority task - so it is suspended. */
+ vTaskSuspend( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_2 ] );
+
+
+
+ /* Now suspend the other highest priority task. The medium priority
+ task will then be the task with the highest priority that remains
+ blocked on the queue. */
+ vTaskSuspend( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
+
+ /* This time, when we post onto the queue we will expect the medium
+ priority task to unblock and preempt us. */
+ prvCheckTaskCounters( evtMEDIUM_PRIORITY_INDEX, 1 );
+
+ /* Now try resuming the highest priority task while the scheduler is
+ suspended. The task should start executing as soon as the scheduler
+ is resumed - therefore when we post to the queue again, the highest
+ priority task should again preempt us. */
+ vTaskSuspendAll();
+ vTaskResume( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
+ xTaskResumeAll();
+ prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_1, 1 );
+
+ /* Now we are going to suspend the high and medium priority tasks. The
+ low priority task should then preempt us. Again the task suspension is
+ done with the whole scheduler suspended just for test purposes. */
+ vTaskSuspendAll();
+ vTaskSuspend( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
+ vTaskSuspend( xCreatedTasks[ evtMEDIUM_PRIORITY_INDEX ] );
+ xTaskResumeAll();
+ prvCheckTaskCounters( evtLOWEST_PRIORITY_INDEX, 1 );
+
+ /* Do the same basic test another few times - selectively suspending
+ and resuming tasks and each time calling prvCheckTaskCounters() passing
+ to the function the number of the task we expected to be unblocked by
+ the post. */
+
+ vTaskResume( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
+ prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_1, 1 );
+
+ vTaskSuspendAll(); /* Just for test. */
+ vTaskSuspendAll(); /* Just for test. */
+ vTaskSuspendAll(); /* Just for even more test. */
+ vTaskSuspend( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
+ xTaskResumeAll();
+ xTaskResumeAll();
+ xTaskResumeAll();
+ prvCheckTaskCounters( evtLOWEST_PRIORITY_INDEX, 1 );
+
+ vTaskResume( xCreatedTasks[ evtMEDIUM_PRIORITY_INDEX ] );
+ prvCheckTaskCounters( evtMEDIUM_PRIORITY_INDEX, 1 );
+
+ vTaskResume( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
+ prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_1, 1 );
+
+ /* Now a slight change, first suspend all tasks. */
+ vTaskSuspend( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
+ vTaskSuspend( xCreatedTasks[ evtMEDIUM_PRIORITY_INDEX ] );
+ vTaskSuspend( xCreatedTasks[ evtLOWEST_PRIORITY_INDEX ] );
+
+ /* Now when we resume the low priority task and write to the queue 3
+ times. We expect the low priority task to service the queue three
+ times. */
+ vTaskResume( xCreatedTasks[ evtLOWEST_PRIORITY_INDEX ] );
+ prvCheckTaskCounters( evtLOWEST_PRIORITY_INDEX, evtQUEUE_LENGTH );
+
+ /* Again suspend all tasks (only the low priority task is not suspended
+ already). */
+ vTaskSuspend( xCreatedTasks[ evtLOWEST_PRIORITY_INDEX ] );
+
+ /* This time we are going to suspend the scheduler, resume the low
+ priority task, then resume the high priority task. In this state we
+ will write to the queue three times. When the scheduler is resumed
+ we expect the high priority task to service all three messages. */
+ vTaskSuspendAll();
+ {
+ vTaskResume( xCreatedTasks[ evtLOWEST_PRIORITY_INDEX ] );
+ vTaskResume( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
+
+ for( xDummy = 0; xDummy < evtQUEUE_LENGTH; xDummy++ )
+ {
+ if( xQueueSend( xQueue, &xDummy, evtNO_DELAY ) != pdTRUE )
+ {
+ xHealthStatus = pdFAIL;
+ }
+ }
+
+ /* The queue should not have been serviced yet!. The scheduler
+ is still suspended. */
+ if( memcmp( ( void * ) xExpectedTaskCounters, ( void * ) xTaskCounters, sizeof( xExpectedTaskCounters ) ) )
+ {
+ xHealthStatus = pdFAIL;
+ }
+ }
+ xTaskResumeAll();
+
+ /* We should have been preempted by resuming the scheduler - so by the
+ time we are running again we expect the high priority task to have
+ removed three items from the queue. */
+ xExpectedTaskCounters[ evtHIGHEST_PRIORITY_INDEX_1 ] += evtQUEUE_LENGTH;
+ if( memcmp( ( void * ) xExpectedTaskCounters, ( void * ) xTaskCounters, sizeof( xExpectedTaskCounters ) ) )
+ {
+ xHealthStatus = pdFAIL;
+ }
+
+ /* The medium priority and second high priority tasks are still
+ suspended. Make sure to resume them before starting again. */
+ vTaskResume( xCreatedTasks[ evtMEDIUM_PRIORITY_INDEX ] );
+ vTaskResume( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_2 ] );
+
+ /* Just keep incrementing to show the task is still executing. */
+ xCheckVariable++;
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvCheckTaskCounters( portBASE_TYPE xExpectedTask, portBASE_TYPE xIncrement )
+{
+portBASE_TYPE xDummy = 0;
+
+ /* Write to the queue the requested number of times. The data written is
+ not important. */
+ for( xDummy = 0; xDummy < xIncrement; xDummy++ )
+ {
+ if( xQueueSend( xQueue, &xDummy, evtNO_DELAY ) != pdTRUE )
+ {
+ /* Did not expect to ever find the queue full. */
+ xHealthStatus = pdFAIL;
+ }
+ }
+
+ /* All the tasks blocked on the queue have a priority higher than the
+ controlling task. Writing to the queue will therefore have caused this
+ task to be preempted. By the time this line executes the event task will
+ have executed and incremented its counter. Increment the expected counter
+ to the same value. */
+ ( xExpectedTaskCounters[ xExpectedTask ] ) += xIncrement;
+
+ /* Check the actual counts and expected counts really are the same. */
+ if( memcmp( ( void * ) xExpectedTaskCounters, ( void * ) xTaskCounters, sizeof( xExpectedTaskCounters ) ) )
+ {
+ /* The counters were not the same. This means a task we did not expect
+ to unblock actually did unblock. */
+ xHealthStatus = pdFAIL;
+ }
+}
+/*-----------------------------------------------------------*/
+
+portBASE_TYPE xAreMultiEventTasksStillRunning( void )
+{
+static portBASE_TYPE xPreviousCheckVariable = 0;
+
+ /* Called externally to periodically check that this test is still
+ operational. */
+
+ if( xPreviousCheckVariable == xCheckVariable )
+ {
+ xHealthStatus = pdFAIL;
+ }
+
+ xPreviousCheckVariable = xCheckVariable;
+
+ return xHealthStatus;
+}
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Full/flop.c b/src/FreeRTOS-Sim-master/Demo/Common/Full/flop.c
new file mode 100644
index 0000000..e714a40
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Full/flop.c
@@ -0,0 +1,373 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/*
+Changes from V1.2.3
+
+ + The created tasks now include calls to tskYIELD(), allowing them to be used
+ with the cooperative scheduler.
+*/
+
+/**
+ * Creates eight tasks, each of which loops continuously performing an (emulated)
+ * floating point calculation.
+ *
+ * All the tasks run at the idle priority and never block or yield. This causes
+ * all eight tasks to time slice with the idle task. Running at the idle priority
+ * means that these tasks will get pre-empted any time another task is ready to run
+ * or a time slice occurs. More often than not the pre-emption will occur mid
+ * calculation, creating a good test of the schedulers context switch mechanism - a
+ * calculation producing an unexpected result could be a symptom of a corruption in
+ * the context of a task.
+ *
+ * \page FlopC flop.c
+ * \ingroup DemoFiles
+ * <HR>
+ */
+
+#include <stdlib.h>
+#include <math.h>
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "print.h"
+
+/* Demo program include files. */
+#include "flop.h"
+
+#define mathSTACK_SIZE ( ( unsigned short ) 512 )
+#define mathNUMBER_OF_TASKS ( 8 )
+
+/* Four tasks, each of which performs a different floating point calculation.
+Each of the four is created twice. */
+static void vCompetingMathTask1( void *pvParameters );
+static void vCompetingMathTask2( void *pvParameters );
+static void vCompetingMathTask3( void *pvParameters );
+static void vCompetingMathTask4( void *pvParameters );
+
+/* These variables are used to check that all the tasks are still running. If a
+task gets a calculation wrong it will
+stop incrementing its check variable. */
+static volatile unsigned short usTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
+
+/*-----------------------------------------------------------*/
+
+void vStartMathTasks( unsigned portBASE_TYPE uxPriority )
+{
+ xTaskCreate( vCompetingMathTask1, "Math1", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
+ xTaskCreate( vCompetingMathTask2, "Math2", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
+ xTaskCreate( vCompetingMathTask3, "Math3", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
+ xTaskCreate( vCompetingMathTask4, "Math4", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
+ xTaskCreate( vCompetingMathTask1, "Math5", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 4 ] ), uxPriority, NULL );
+ xTaskCreate( vCompetingMathTask2, "Math6", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 5 ] ), uxPriority, NULL );
+ xTaskCreate( vCompetingMathTask3, "Math7", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 6 ] ), uxPriority, NULL );
+ xTaskCreate( vCompetingMathTask4, "Math8", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 7 ] ), uxPriority, NULL );
+}
+/*-----------------------------------------------------------*/
+
+static void vCompetingMathTask1( void *pvParameters )
+{
+portDOUBLE d1, d2, d3, d4;
+volatile unsigned short *pusTaskCheckVariable;
+const portDOUBLE dAnswer = ( 123.4567 + 2345.6789 ) * -918.222;
+const char * const pcTaskStartMsg = "Math task 1 started.\r\n";
+const char * const pcTaskFailMsg = "Math task 1 failed.\r\n";
+short sError = pdFALSE;
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ /* The variable this task increments to show it is still running is passed in
+ as the parameter. */
+ pusTaskCheckVariable = ( unsigned short * ) pvParameters;
+
+ /* Keep performing a calculation and checking the result against a constant. */
+ for(;;)
+ {
+ d1 = 123.4567;
+ d2 = 2345.6789;
+ d3 = -918.222;
+
+ d4 = ( d1 + d2 ) * d3;
+
+ taskYIELD();
+
+ /* If the calculation does not match the expected constant, stop the
+ increment of the check variable. */
+ if( fabs( d4 - dAnswer ) > 0.001 )
+ {
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ sError = pdTRUE;
+ }
+
+ if( sError == pdFALSE )
+ {
+ /* If the calculation has always been correct, increment the check
+ variable so we know this task is still running okay. */
+ ( *pusTaskCheckVariable )++;
+ }
+
+ taskYIELD();
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void vCompetingMathTask2( void *pvParameters )
+{
+portDOUBLE d1, d2, d3, d4;
+volatile unsigned short *pusTaskCheckVariable;
+const portDOUBLE dAnswer = ( -389.38 / 32498.2 ) * -2.0001;
+const char * const pcTaskStartMsg = "Math task 2 started.\r\n";
+const char * const pcTaskFailMsg = "Math task 2 failed.\r\n";
+short sError = pdFALSE;
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ /* The variable this task increments to show it is still running is passed in
+ as the parameter. */
+ pusTaskCheckVariable = ( unsigned short * ) pvParameters;
+
+ /* Keep performing a calculation and checking the result against a constant. */
+ for( ;; )
+ {
+ d1 = -389.38;
+ d2 = 32498.2;
+ d3 = -2.0001;
+
+ d4 = ( d1 / d2 ) * d3;
+
+ taskYIELD();
+
+ /* If the calculation does not match the expected constant, stop the
+ increment of the check variable. */
+ if( fabs( d4 - dAnswer ) > 0.001 )
+ {
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ sError = pdTRUE;
+ }
+
+ if( sError == pdFALSE )
+ {
+ /* If the calculation has always been correct, increment the check
+ variable so we know
+ this task is still running okay. */
+ ( *pusTaskCheckVariable )++;
+ }
+
+ taskYIELD();
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void vCompetingMathTask3( void *pvParameters )
+{
+portDOUBLE *pdArray, dTotal1, dTotal2, dDifference;
+volatile unsigned short *pusTaskCheckVariable;
+const unsigned short usArraySize = 250;
+unsigned short usPosition;
+const char * const pcTaskStartMsg = "Math task 3 started.\r\n";
+const char * const pcTaskFailMsg = "Math task 3 failed.\r\n";
+short sError = pdFALSE;
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ /* The variable this task increments to show it is still running is passed in
+ as the parameter. */
+ pusTaskCheckVariable = ( unsigned short * ) pvParameters;
+
+ pdArray = ( portDOUBLE * ) pvPortMalloc( ( size_t ) 250 * sizeof( portDOUBLE ) );
+
+ /* Keep filling an array, keeping a running total of the values placed in the
+ array. Then run through the array adding up all the values. If the two totals
+ do not match, stop the check variable from incrementing. */
+ for( ;; )
+ {
+ dTotal1 = 0.0;
+ dTotal2 = 0.0;
+
+ for( usPosition = 0; usPosition < usArraySize; usPosition++ )
+ {
+ pdArray[ usPosition ] = ( portDOUBLE ) usPosition + 5.5;
+ dTotal1 += ( portDOUBLE ) usPosition + 5.5;
+ }
+
+ taskYIELD();
+
+ for( usPosition = 0; usPosition < usArraySize; usPosition++ )
+ {
+ dTotal2 += pdArray[ usPosition ];
+ }
+
+ dDifference = dTotal1 - dTotal2;
+ if( fabs( dDifference ) > 0.001 )
+ {
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ sError = pdTRUE;
+ }
+
+ taskYIELD();
+
+ if( sError == pdFALSE )
+ {
+ /* If the calculation has always been correct, increment the check
+ variable so we know this task is still running okay. */
+ ( *pusTaskCheckVariable )++;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void vCompetingMathTask4( void *pvParameters )
+{
+portDOUBLE *pdArray, dTotal1, dTotal2, dDifference;
+volatile unsigned short *pusTaskCheckVariable;
+const unsigned short usArraySize = 250;
+unsigned short usPosition;
+const char * const pcTaskStartMsg = "Math task 4 started.\r\n";
+const char * const pcTaskFailMsg = "Math task 4 failed.\r\n";
+short sError = pdFALSE;
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ /* The variable this task increments to show it is still running is passed in
+ as the parameter. */
+ pusTaskCheckVariable = ( unsigned short * ) pvParameters;
+
+ pdArray = ( portDOUBLE * ) pvPortMalloc( ( size_t ) 250 * sizeof( portDOUBLE ) );
+
+ /* Keep filling an array, keeping a running total of the values placed in the
+ array. Then run through the array adding up all the values. If the two totals
+ do not match, stop the check variable from incrementing. */
+ for( ;; )
+ {
+ dTotal1 = 0.0;
+ dTotal2 = 0.0;
+
+ for( usPosition = 0; usPosition < usArraySize; usPosition++ )
+ {
+ pdArray[ usPosition ] = ( portDOUBLE ) usPosition * 12.123;
+ dTotal1 += ( portDOUBLE ) usPosition * 12.123;
+ }
+
+ taskYIELD();
+
+ for( usPosition = 0; usPosition < usArraySize; usPosition++ )
+ {
+ dTotal2 += pdArray[ usPosition ];
+ }
+
+ dDifference = dTotal1 - dTotal2;
+ if( fabs( dDifference ) > 0.001 )
+ {
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ sError = pdTRUE;
+ }
+
+ taskYIELD();
+
+ if( sError == pdFALSE )
+ {
+ /* If the calculation has always been correct, increment the check
+ variable so we know this task is still running okay. */
+ ( *pusTaskCheckVariable )++;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+/* This is called to check that all the created tasks are still running. */
+portBASE_TYPE xAreMathsTaskStillRunning( void )
+{
+/* Keep a history of the check variables so we know if they have been incremented
+since the last call. */
+static unsigned short usLastTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
+portBASE_TYPE xReturn = pdTRUE, xTask;
+
+ /* Check the maths tasks are still running by ensuring their check variables
+ are still incrementing. */
+ for( xTask = 0; xTask < mathNUMBER_OF_TASKS; xTask++ )
+ {
+ if( usTaskCheck[ xTask ] == usLastTaskCheck[ xTask ] )
+ {
+ /* The check has not incremented so an error exists. */
+ xReturn = pdFALSE;
+ }
+
+ usLastTaskCheck[ xTask ] = usTaskCheck[ xTask ];
+ }
+
+ return xReturn;
+}
+
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Full/integer.c b/src/FreeRTOS-Sim-master/Demo/Common/Full/integer.c
new file mode 100644
index 0000000..4b2da6e
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Full/integer.c
@@ -0,0 +1,369 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/*
+Changes from V1.2.3
+
+ + The created tasks now include calls to tskYIELD(), allowing them to be used
+ with the cooperative scheduler.
+*/
+
+/**
+ * This does the same as flop. c, but uses variables of type long instead of
+ * type double.
+ *
+ * As with flop. c, the tasks created in this file are a good test of the
+ * scheduler context switch mechanism. The processor has to access 32bit
+ * variables in two or four chunks (depending on the processor). The low
+ * priority of these tasks means there is a high probability that a context
+ * switch will occur mid calculation. See the flop. c documentation for
+ * more information.
+ *
+ * \page IntegerC integer.c
+ * \ingroup DemoFiles
+ * <HR>
+ */
+
+/*
+Changes from V1.2.1
+
+ + The constants used in the calculations are larger to ensure the
+ optimiser does not truncate them to 16 bits.
+*/
+
+#include <stdlib.h>
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "print.h"
+
+/* Demo program include files. */
+#include "integer.h"
+
+#define intgSTACK_SIZE ( ( unsigned short ) 256 )
+#define intgNUMBER_OF_TASKS ( 8 )
+
+/* Four tasks, each of which performs a different calculation on four byte
+variables. Each of the four is created twice. */
+static void vCompeteingIntMathTask1( void *pvParameters );
+static void vCompeteingIntMathTask2( void *pvParameters );
+static void vCompeteingIntMathTask3( void *pvParameters );
+static void vCompeteingIntMathTask4( void *pvParameters );
+
+/* These variables are used to check that all the tasks are still running. If a
+task gets a calculation wrong it will stop incrementing its check variable. */
+static volatile unsigned short usTaskCheck[ intgNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
+/*-----------------------------------------------------------*/
+
+void vStartIntegerMathTasks( unsigned portBASE_TYPE uxPriority )
+{
+ xTaskCreate( vCompeteingIntMathTask1, "IntMath1", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
+ xTaskCreate( vCompeteingIntMathTask2, "IntMath2", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
+ xTaskCreate( vCompeteingIntMathTask3, "IntMath3", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
+ xTaskCreate( vCompeteingIntMathTask4, "IntMath4", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
+ xTaskCreate( vCompeteingIntMathTask1, "IntMath5", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 4 ] ), uxPriority, NULL );
+ xTaskCreate( vCompeteingIntMathTask2, "IntMath6", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 5 ] ), uxPriority, NULL );
+ xTaskCreate( vCompeteingIntMathTask3, "IntMath7", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 6 ] ), uxPriority, NULL );
+ xTaskCreate( vCompeteingIntMathTask4, "IntMath8", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 7 ] ), uxPriority, NULL );
+}
+/*-----------------------------------------------------------*/
+
+static void vCompeteingIntMathTask1( void *pvParameters )
+{
+long l1, l2, l3, l4;
+short sError = pdFALSE;
+volatile unsigned short *pusTaskCheckVariable;
+const long lAnswer = ( ( long ) 74565L + ( long ) 1234567L ) * ( long ) -918L;
+const char * const pcTaskStartMsg = "Integer math task 1 started.\r\n";
+const char * const pcTaskFailMsg = "Integer math task 1 failed.\r\n";
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ /* The variable this task increments to show it is still running is passed in
+ as the parameter. */
+ pusTaskCheckVariable = ( unsigned short * ) pvParameters;
+
+ /* Keep performing a calculation and checking the result against a constant. */
+ for(;;)
+ {
+ l1 = ( long ) 74565L;
+ l2 = ( long ) 1234567L;
+ l3 = ( long ) -918L;
+
+ l4 = ( l1 + l2 ) * l3;
+
+ taskYIELD();
+
+ /* If the calculation does not match the expected constant, stop the
+ increment of the check variable. */
+ if( l4 != lAnswer )
+ {
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ sError = pdTRUE;
+ }
+
+ if( sError == pdFALSE )
+ {
+ /* If the calculation has always been correct, increment the check
+ variable so we know this task is still running okay. */
+ ( *pusTaskCheckVariable )++;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void vCompeteingIntMathTask2( void *pvParameters )
+{
+long l1, l2, l3, l4;
+short sError = pdFALSE;
+volatile unsigned short *pusTaskCheckVariable;
+const long lAnswer = ( ( long ) -389000L / ( long ) 329999L ) * ( long ) -89L;
+const char * const pcTaskStartMsg = "Integer math task 2 started.\r\n";
+const char * const pcTaskFailMsg = "Integer math task 2 failed.\r\n";
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ /* The variable this task increments to show it is still running is passed in
+ as the parameter. */
+ pusTaskCheckVariable = ( unsigned short * ) pvParameters;
+
+ /* Keep performing a calculation and checking the result against a constant. */
+ for( ;; )
+ {
+ l1 = -389000L;
+ l2 = 329999L;
+ l3 = -89L;
+
+ l4 = ( l1 / l2 ) * l3;
+
+ taskYIELD();
+
+ /* If the calculation does not match the expected constant, stop the
+ increment of the check variable. */
+ if( l4 != lAnswer )
+ {
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ sError = pdTRUE;
+ }
+
+ if( sError == pdFALSE )
+ {
+ /* If the calculation has always been correct, increment the check
+ variable so we know this task is still running okay. */
+ ( *pusTaskCheckVariable )++;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void vCompeteingIntMathTask3( void *pvParameters )
+{
+long *plArray, lTotal1, lTotal2;
+short sError = pdFALSE;
+volatile unsigned short *pusTaskCheckVariable;
+const unsigned short usArraySize = ( unsigned short ) 250;
+unsigned short usPosition;
+const char * const pcTaskStartMsg = "Integer math task 3 started.\r\n";
+const char * const pcTaskFailMsg = "Integer math task 3 failed.\r\n";
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ /* The variable this task increments to show it is still running is passed in
+ as the parameter. */
+ pusTaskCheckVariable = ( unsigned short * ) pvParameters;
+
+ /* Create the array we are going to use for our check calculation. */
+ plArray = ( long * ) pvPortMalloc( ( size_t ) 250 * sizeof( long ) );
+
+ /* Keep filling the array, keeping a running total of the values placed in the
+ array. Then run through the array adding up all the values. If the two totals
+ do not match, stop the check variable from incrementing. */
+ for( ;; )
+ {
+ lTotal1 = ( long ) 0;
+ lTotal2 = ( long ) 0;
+
+ for( usPosition = 0; usPosition < usArraySize; usPosition++ )
+ {
+ plArray[ usPosition ] = ( long ) usPosition + ( long ) 5;
+ lTotal1 += ( long ) usPosition + ( long ) 5;
+ }
+
+ taskYIELD();
+
+ for( usPosition = 0; usPosition < usArraySize; usPosition++ )
+ {
+ lTotal2 += plArray[ usPosition ];
+ }
+
+ if( lTotal1 != lTotal2 )
+ {
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ sError = pdTRUE;
+ }
+
+ taskYIELD();
+
+ if( sError == pdFALSE )
+ {
+ /* If the calculation has always been correct, increment the check
+ variable so we know this task is still running okay. */
+ ( *pusTaskCheckVariable )++;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void vCompeteingIntMathTask4( void *pvParameters )
+{
+long *plArray, lTotal1, lTotal2;
+short sError = pdFALSE;
+volatile unsigned short *pusTaskCheckVariable;
+const unsigned short usArraySize = 250;
+unsigned short usPosition;
+const char * const pcTaskStartMsg = "Integer math task 4 started.\r\n";
+const char * const pcTaskFailMsg = "Integer math task 4 failed.\r\n";
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+
+ /* The variable this task increments to show it is still running is passed in
+ as the parameter. */
+ pusTaskCheckVariable = ( unsigned short * ) pvParameters;
+
+ /* Create the array we are going to use for our check calculation. */
+ plArray = ( long * ) pvPortMalloc( ( size_t ) 250 * sizeof( long ) );
+
+ /* Keep filling the array, keeping a running total of the values placed in the
+ array. Then run through the array adding up all the values. If the two totals
+ do not match, stop the check variable from incrementing. */
+ for( ;; )
+ {
+ lTotal1 = ( long ) 0;
+ lTotal2 = ( long ) 0;
+
+ for( usPosition = 0; usPosition < usArraySize; usPosition++ )
+ {
+ plArray[ usPosition ] = ( long ) usPosition * ( long ) 12;
+ lTotal1 += ( long ) usPosition * ( long ) 12;
+ }
+
+ taskYIELD();
+
+ for( usPosition = 0; usPosition < usArraySize; usPosition++ )
+ {
+ lTotal2 += plArray[ usPosition ];
+ }
+
+
+ if( lTotal1 != lTotal2 )
+ {
+ vPrintDisplayMessage( &pcTaskFailMsg );
+ sError = pdTRUE;
+ }
+
+ taskYIELD();
+
+ if( sError == pdFALSE )
+ {
+ /* If the calculation has always been correct, increment the check
+ variable so we know this task is still running okay. */
+ ( *pusTaskCheckVariable )++;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+/* This is called to check that all the created tasks are still running. */
+portBASE_TYPE xAreIntegerMathsTaskStillRunning( void )
+{
+/* Keep a history of the check variables so we know if they have been incremented
+since the last call. */
+static unsigned short usLastTaskCheck[ intgNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
+portBASE_TYPE xReturn = pdTRUE, xTask;
+
+ /* Check the maths tasks are still running by ensuring their check variables
+ are still incrementing. */
+ for( xTask = 0; xTask < intgNUMBER_OF_TASKS; xTask++ )
+ {
+ if( usTaskCheck[ xTask ] == usLastTaskCheck[ xTask ] )
+ {
+ /* The check has not incremented so an error exists. */
+ xReturn = pdFALSE;
+ }
+
+ usLastTaskCheck[ xTask ] = usTaskCheck[ xTask ];
+ }
+
+ return xReturn;
+}
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Full/print.c b/src/FreeRTOS-Sim-master/Demo/Common/Full/print.c
new file mode 100644
index 0000000..16f8920
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Full/print.c
@@ -0,0 +1,148 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/**
+ * Manages a queue of strings that are waiting to be displayed. This is used to
+ * ensure mutual exclusion of console output.
+ *
+ * A task wishing to display a message will call vPrintDisplayMessage (), with a
+ * pointer to the string as the parameter. The pointer is posted onto the
+ * xPrintQueue queue.
+ *
+ * The task spawned in main. c blocks on xPrintQueue. When a message becomes
+ * available it calls pcPrintGetNextMessage () to obtain a pointer to the next
+ * string, then uses the functions defined in the portable layer FileIO. c to
+ * display the message.
+ *
+ * <b>NOTE:</b>
+ * Using console IO can disrupt real time performance - depending on the port.
+ * Standard C IO routines are not designed for real time applications. While
+ * standard IO is useful for demonstration and debugging an alternative method
+ * should be used if you actually require console IO as part of your application.
+ *
+ * \page PrintC print.c
+ * \ingroup DemoFiles
+ * <HR>
+ */
+
+/*
+Changes from V2.0.0
+
+ + Delay periods are now specified using variables and constants of
+ TickType_t rather than unsigned long.
+*/
+
+#include <stdlib.h>
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "queue.h"
+
+/* Demo program include files. */
+#include "print.h"
+
+static QueueHandle_t xPrintQueue;
+
+/*-----------------------------------------------------------*/
+
+void vPrintInitialise( void )
+{
+const unsigned portBASE_TYPE uxQueueSize = 20;
+
+ /* Create the queue on which errors will be reported. */
+ xPrintQueue = xQueueCreate( uxQueueSize, ( unsigned portBASE_TYPE ) sizeof( char * ) );
+}
+/*-----------------------------------------------------------*/
+
+void vPrintDisplayMessage( const char * const * ppcMessageToSend )
+{
+ #ifdef USE_STDIO
+ xQueueSend( xPrintQueue, ( void * ) ppcMessageToSend, ( TickType_t ) 0 );
+ #else
+ /* Stop warnings. */
+ ( void ) ppcMessageToSend;
+ #endif
+}
+/*-----------------------------------------------------------*/
+
+const char *pcPrintGetNextMessage( TickType_t xPrintRate )
+{
+char *pcMessage;
+
+ if( xQueueReceive( xPrintQueue, &pcMessage, xPrintRate ) == pdPASS )
+ {
+ return pcMessage;
+ }
+ else
+ {
+ return NULL;
+ }
+}
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Full/semtest.c b/src/FreeRTOS-Sim-master/Demo/Common/Full/semtest.c
new file mode 100644
index 0000000..bcd1e9a
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Full/semtest.c
@@ -0,0 +1,327 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/**
+ * Creates two sets of two tasks. The tasks within a set share a variable, access
+ * to which is guarded by a semaphore.
+ *
+ * Each task starts by attempting to obtain the semaphore. On obtaining a
+ * semaphore a task checks to ensure that the guarded variable has an expected
+ * value. It then clears the variable to zero before counting it back up to the
+ * expected value in increments of 1. After each increment the variable is checked
+ * to ensure it contains the value to which it was just set. When the starting
+ * value is again reached the task releases the semaphore giving the other task in
+ * the set a chance to do exactly the same thing. The starting value is high
+ * enough to ensure that a tick is likely to occur during the incrementing loop.
+ *
+ * An error is flagged if at any time during the process a shared variable is
+ * found to have a value other than that expected. Such an occurrence would
+ * suggest an error in the mutual exclusion mechanism by which access to the
+ * variable is restricted.
+ *
+ * The first set of two tasks poll their semaphore. The second set use blocking
+ * calls.
+ *
+ * \page SemTestC semtest.c
+ * \ingroup DemoFiles
+ * <HR>
+ */
+
+/*
+Changes from V1.2.0:
+
+ + The tasks that operate at the idle priority now use a lower expected
+ count than those running at a higher priority. This prevents the low
+ priority tasks from signaling an error because they have not been
+ scheduled enough time for each of them to count the shared variable to
+ the high value.
+
+Changes from V2.0.0
+
+ + Delay periods are now specified using variables and constants of
+ TickType_t rather than unsigned long.
+
+Changes from V2.1.1
+
+ + The stack size now uses configMINIMAL_STACK_SIZE.
+ + String constants made file scope to decrease stack depth on 8051 port.
+*/
+
+#include <stdlib.h>
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "semphr.h"
+
+/* Demo app include files. */
+#include "semtest.h"
+#include "print.h"
+
+/* The value to which the shared variables are counted. */
+#define semtstBLOCKING_EXPECTED_VALUE ( ( unsigned long ) 0xfff )
+#define semtstNON_BLOCKING_EXPECTED_VALUE ( ( unsigned long ) 0xff )
+
+#define semtstSTACK_SIZE configMINIMAL_STACK_SIZE
+
+#define semtstNUM_TASKS ( 4 )
+
+#define semtstDELAY_FACTOR ( ( TickType_t ) 10 )
+
+/* The task function as described at the top of the file. */
+static void prvSemaphoreTest( void *pvParameters );
+
+/* Structure used to pass parameters to each task. */
+typedef struct SEMAPHORE_PARAMETERS
+{
+ SemaphoreHandle_t xSemaphore;
+ volatile unsigned long *pulSharedVariable;
+ TickType_t xBlockTime;
+} xSemaphoreParameters;
+
+/* Variables used to check that all the tasks are still running without errors. */
+static volatile short sCheckVariables[ semtstNUM_TASKS ] = { 0 };
+static volatile short sNextCheckVariable = 0;
+
+/* Strings to print if USE_STDIO is defined. */
+const char * const pcPollingSemaphoreTaskError = "Guarded shared variable in unexpected state.\r\n";
+const char * const pcSemaphoreTaskStart = "Guarded shared variable task started.\r\n";
+
+/*-----------------------------------------------------------*/
+
+void vStartSemaphoreTasks( unsigned portBASE_TYPE uxPriority )
+{
+xSemaphoreParameters *pxFirstSemaphoreParameters, *pxSecondSemaphoreParameters;
+const TickType_t xBlockTime = ( TickType_t ) 100;
+
+ /* Create the structure used to pass parameters to the first two tasks. */
+ pxFirstSemaphoreParameters = ( xSemaphoreParameters * ) pvPortMalloc( sizeof( xSemaphoreParameters ) );
+
+ if( pxFirstSemaphoreParameters != NULL )
+ {
+ /* Create the semaphore used by the first two tasks. */
+ vSemaphoreCreateBinary( pxFirstSemaphoreParameters->xSemaphore );
+
+ if( pxFirstSemaphoreParameters->xSemaphore != NULL )
+ {
+ /* Create the variable which is to be shared by the first two tasks. */
+ pxFirstSemaphoreParameters->pulSharedVariable = ( unsigned long * ) pvPortMalloc( sizeof( unsigned long ) );
+
+ /* Initialise the share variable to the value the tasks expect. */
+ *( pxFirstSemaphoreParameters->pulSharedVariable ) = semtstNON_BLOCKING_EXPECTED_VALUE;
+
+ /* The first two tasks do not block on semaphore calls. */
+ pxFirstSemaphoreParameters->xBlockTime = ( TickType_t ) 0;
+
+ /* Spawn the first two tasks. As they poll they operate at the idle priority. */
+ xTaskCreate( prvSemaphoreTest, "PolSEM1", semtstSTACK_SIZE, ( void * ) pxFirstSemaphoreParameters, tskIDLE_PRIORITY, ( TaskHandle_t * ) NULL );
+ xTaskCreate( prvSemaphoreTest, "PolSEM2", semtstSTACK_SIZE, ( void * ) pxFirstSemaphoreParameters, tskIDLE_PRIORITY, ( TaskHandle_t * ) NULL );
+ }
+ }
+
+ /* Do exactly the same to create the second set of tasks, only this time
+ provide a block time for the semaphore calls. */
+ pxSecondSemaphoreParameters = ( xSemaphoreParameters * ) pvPortMalloc( sizeof( xSemaphoreParameters ) );
+ if( pxSecondSemaphoreParameters != NULL )
+ {
+ vSemaphoreCreateBinary( pxSecondSemaphoreParameters->xSemaphore );
+
+ if( pxSecondSemaphoreParameters->xSemaphore != NULL )
+ {
+ pxSecondSemaphoreParameters->pulSharedVariable = ( unsigned long * ) pvPortMalloc( sizeof( unsigned long ) );
+ *( pxSecondSemaphoreParameters->pulSharedVariable ) = semtstBLOCKING_EXPECTED_VALUE;
+ pxSecondSemaphoreParameters->xBlockTime = xBlockTime / portTICK_PERIOD_MS;
+
+ xTaskCreate( prvSemaphoreTest, "BlkSEM1", semtstSTACK_SIZE, ( void * ) pxSecondSemaphoreParameters, uxPriority, ( TaskHandle_t * ) NULL );
+ xTaskCreate( prvSemaphoreTest, "BlkSEM2", semtstSTACK_SIZE, ( void * ) pxSecondSemaphoreParameters, uxPriority, ( TaskHandle_t * ) NULL );
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvSemaphoreTest( void *pvParameters )
+{
+xSemaphoreParameters *pxParameters;
+volatile unsigned long *pulSharedVariable, ulExpectedValue;
+unsigned long ulCounter;
+short sError = pdFALSE, sCheckVariableToUse;
+
+ /* See which check variable to use. sNextCheckVariable is not semaphore
+ protected! */
+ portENTER_CRITICAL();
+ sCheckVariableToUse = sNextCheckVariable;
+ sNextCheckVariable++;
+ portEXIT_CRITICAL();
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcSemaphoreTaskStart );
+
+ /* A structure is passed in as the parameter. This contains the shared
+ variable being guarded. */
+ pxParameters = ( xSemaphoreParameters * ) pvParameters;
+ pulSharedVariable = pxParameters->pulSharedVariable;
+
+ /* If we are blocking we use a much higher count to ensure loads of context
+ switches occur during the count. */
+ if( pxParameters->xBlockTime > ( TickType_t ) 0 )
+ {
+ ulExpectedValue = semtstBLOCKING_EXPECTED_VALUE;
+ }
+ else
+ {
+ ulExpectedValue = semtstNON_BLOCKING_EXPECTED_VALUE;
+ }
+
+ for( ;; )
+ {
+ /* Try to obtain the semaphore. */
+ if( xSemaphoreTake( pxParameters->xSemaphore, pxParameters->xBlockTime ) == pdPASS )
+ {
+ /* We have the semaphore and so expect any other tasks using the
+ shared variable to have left it in the state we expect to find
+ it. */
+ if( *pulSharedVariable != ulExpectedValue )
+ {
+ vPrintDisplayMessage( &pcPollingSemaphoreTaskError );
+ sError = pdTRUE;
+ }
+
+ /* Clear the variable, then count it back up to the expected value
+ before releasing the semaphore. Would expect a context switch or
+ two during this time. */
+ for( ulCounter = ( unsigned long ) 0; ulCounter <= ulExpectedValue; ulCounter++ )
+ {
+ *pulSharedVariable = ulCounter;
+ if( *pulSharedVariable != ulCounter )
+ {
+ if( sError == pdFALSE )
+ {
+ vPrintDisplayMessage( &pcPollingSemaphoreTaskError );
+ }
+ sError = pdTRUE;
+ }
+ }
+
+ /* Release the semaphore, and if no errors have occurred increment the check
+ variable. */
+ if( xSemaphoreGive( pxParameters->xSemaphore ) == pdFALSE )
+ {
+ vPrintDisplayMessage( &pcPollingSemaphoreTaskError );
+ sError = pdTRUE;
+ }
+
+ if( sError == pdFALSE )
+ {
+ if( sCheckVariableToUse < semtstNUM_TASKS )
+ {
+ ( sCheckVariables[ sCheckVariableToUse ] )++;
+ }
+ }
+
+ /* If we have a block time then we are running at a priority higher
+ than the idle priority. This task takes a long time to complete
+ a cycle (deliberately so to test the guarding) so will be starving
+ out lower priority tasks. Block for some time to allow give lower
+ priority tasks some processor time. */
+ vTaskDelay( pxParameters->xBlockTime * semtstDELAY_FACTOR );
+ }
+ else
+ {
+ if( pxParameters->xBlockTime == ( TickType_t ) 0 )
+ {
+ /* We have not got the semaphore yet, so no point using the
+ processor. We are not blocking when attempting to obtain the
+ semaphore. */
+ taskYIELD();
+ }
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+/* This is called to check that all the created tasks are still running. */
+portBASE_TYPE xAreSemaphoreTasksStillRunning( void )
+{
+static short sLastCheckVariables[ semtstNUM_TASKS ] = { 0 };
+portBASE_TYPE xTask, xReturn = pdTRUE;
+
+ for( xTask = 0; xTask < semtstNUM_TASKS; xTask++ )
+ {
+ if( sLastCheckVariables[ xTask ] == sCheckVariables[ xTask ] )
+ {
+ xReturn = pdFALSE;
+ }
+
+ sLastCheckVariables[ xTask ] = sCheckVariables[ xTask ];
+ }
+
+ return xReturn;
+}
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Minimal/GenQTest.c b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/GenQTest.c
new file mode 100644
index 0000000..5fabb75
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/GenQTest.c
@@ -0,0 +1,783 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+
+/*
+ * Tests the extra queue functionality introduced in FreeRTOS.org V4.5.0 -
+ * including xQueueSendToFront(), xQueueSendToBack(), xQueuePeek() and
+ * mutex behaviour.
+ *
+ * See the comments above the prvSendFrontAndBackTest() and
+ * prvLowPriorityMutexTask() prototypes below for more information.
+ */
+
+
+#include <stdlib.h>
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "queue.h"
+#include "semphr.h"
+
+/* Demo program include files. */
+#include "GenQTest.h"
+
+#define genqQUEUE_LENGTH ( 5 )
+#define intsemNO_BLOCK ( 0 )
+
+#define genqMUTEX_LOW_PRIORITY ( tskIDLE_PRIORITY )
+#define genqMUTEX_TEST_PRIORITY ( tskIDLE_PRIORITY + 1 )
+#define genqMUTEX_MEDIUM_PRIORITY ( tskIDLE_PRIORITY + 2 )
+#define genqMUTEX_HIGH_PRIORITY ( tskIDLE_PRIORITY + 3 )
+
+/*-----------------------------------------------------------*/
+
+/*
+ * Tests the behaviour of the xQueueSendToFront() and xQueueSendToBack()
+ * macros by using both to fill a queue, then reading from the queue to
+ * check the resultant queue order is as expected. Queue data is also
+ * peeked.
+ */
+static void prvSendFrontAndBackTest( void *pvParameters );
+
+/*
+ * The following three tasks are used to demonstrate the mutex behaviour.
+ * Each task is given a different priority to demonstrate the priority
+ * inheritance mechanism.
+ *
+ * The low priority task obtains a mutex. After this a high priority task
+ * attempts to obtain the same mutex, causing its priority to be inherited
+ * by the low priority task. The task with the inherited high priority then
+ * resumes a medium priority task to ensure it is not blocked by the medium
+ * priority task while it holds the inherited high priority. Once the mutex
+ * is returned the task with the inherited priority returns to its original
+ * low priority, and is therefore immediately preempted by first the high
+ * priority task and then the medium prioroity task before it can continue.
+ */
+static void prvLowPriorityMutexTask( void *pvParameters );
+static void prvMediumPriorityMutexTask( void *pvParameters );
+static void prvHighPriorityMutexTask( void *pvParameters );
+
+/*-----------------------------------------------------------*/
+
+/* Flag that will be latched to pdTRUE should any unexpected behaviour be
+detected in any of the tasks. */
+static volatile BaseType_t xErrorDetected = pdFALSE;
+
+/* Counters that are incremented on each cycle of a test. This is used to
+detect a stalled task - a test that is no longer running. */
+static volatile uint32_t ulLoopCounter = 0;
+static volatile uint32_t ulLoopCounter2 = 0;
+
+/* The variable that is guarded by the mutex in the mutex demo tasks. */
+static volatile uint32_t ulGuardedVariable = 0;
+
+/* Handles used in the mutext test to suspend and resume the high and medium
+priority mutex test tasks. */
+static TaskHandle_t xHighPriorityMutexTask, xMediumPriorityMutexTask;
+
+/*-----------------------------------------------------------*/
+
+void vStartGenericQueueTasks( UBaseType_t uxPriority )
+{
+QueueHandle_t xQueue;
+SemaphoreHandle_t xMutex;
+
+
+ /* Create the queue that we are going to use for the
+ prvSendFrontAndBackTest demo. */
+ xQueue = xQueueCreate( genqQUEUE_LENGTH, sizeof( uint32_t ) );
+
+ /* vQueueAddToRegistry() adds the queue to the queue registry, if one is
+ in use. The queue registry is provided as a means for kernel aware
+ debuggers to locate queues and has no purpose if a kernel aware debugger
+ is not being used. The call to vQueueAddToRegistry() will be removed
+ by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
+ defined to be less than 1. */
+ vQueueAddToRegistry( xQueue, "Gen_Queue_Test" );
+
+ /* Create the demo task and pass it the queue just created. We are
+ passing the queue handle by value so it does not matter that it is
+ declared on the stack here. */
+ xTaskCreate( prvSendFrontAndBackTest, "GenQ", configMINIMAL_STACK_SIZE, ( void * ) xQueue, uxPriority, NULL );
+
+ /* Create the mutex used by the prvMutexTest task. */
+ xMutex = xSemaphoreCreateMutex();
+
+ /* vQueueAddToRegistry() adds the mutex to the registry, if one is
+ in use. The registry is provided as a means for kernel aware
+ debuggers to locate mutexes and has no purpose if a kernel aware debugger
+ is not being used. The call to vQueueAddToRegistry() will be removed
+ by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
+ defined to be less than 1. */
+ vQueueAddToRegistry( ( QueueHandle_t ) xMutex, "Gen_Queue_Mutex" );
+
+ /* Create the mutex demo tasks and pass it the mutex just created. We are
+ passing the mutex handle by value so it does not matter that it is declared
+ on the stack here. */
+ xTaskCreate( prvLowPriorityMutexTask, "MuLow", configMINIMAL_STACK_SIZE, ( void * ) xMutex, genqMUTEX_LOW_PRIORITY, NULL );
+ xTaskCreate( prvMediumPriorityMutexTask, "MuMed", configMINIMAL_STACK_SIZE, NULL, genqMUTEX_MEDIUM_PRIORITY, &xMediumPriorityMutexTask );
+ xTaskCreate( prvHighPriorityMutexTask, "MuHigh", configMINIMAL_STACK_SIZE, ( void * ) xMutex, genqMUTEX_HIGH_PRIORITY, &xHighPriorityMutexTask );
+}
+/*-----------------------------------------------------------*/
+
+static void prvSendFrontAndBackTest( void *pvParameters )
+{
+uint32_t ulData, ulData2;
+QueueHandle_t xQueue;
+
+ #ifdef USE_STDIO
+ void vPrintDisplayMessage( const char * const * ppcMessageToSend );
+
+ const char * const pcTaskStartMsg = "Queue SendToFront/SendToBack/Peek test started.\r\n";
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+ #endif
+
+ xQueue = ( QueueHandle_t ) pvParameters;
+
+ for( ;; )
+ {
+ /* The queue is empty, so sending an item to the back of the queue
+ should have the same efect as sending it to the front of the queue.
+
+ First send to the front and check everything is as expected. */
+ xQueueSendToFront( xQueue, ( void * ) &ulLoopCounter, intsemNO_BLOCK );
+
+ if( uxQueueMessagesWaiting( xQueue ) != 1 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( xQueueReceive( xQueue, ( void * ) &ulData, intsemNO_BLOCK ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* The data we sent to the queue should equal the data we just received
+ from the queue. */
+ if( ulLoopCounter != ulData )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Then do the same, sending the data to the back, checking everything
+ is as expected. */
+ if( uxQueueMessagesWaiting( xQueue ) != 0 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ xQueueSendToBack( xQueue, ( void * ) &ulLoopCounter, intsemNO_BLOCK );
+
+ if( uxQueueMessagesWaiting( xQueue ) != 1 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( xQueueReceive( xQueue, ( void * ) &ulData, intsemNO_BLOCK ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( uxQueueMessagesWaiting( xQueue ) != 0 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* The data we sent to the queue should equal the data we just received
+ from the queue. */
+ if( ulLoopCounter != ulData )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+
+
+ /* Place 2, 3, 4 into the queue, adding items to the back of the queue. */
+ for( ulData = 2; ulData < 5; ulData++ )
+ {
+ xQueueSendToBack( xQueue, ( void * ) &ulData, intsemNO_BLOCK );
+ }
+
+ /* Now the order in the queue should be 2, 3, 4, with 2 being the first
+ thing to be read out. Now add 1 then 0 to the front of the queue. */
+ if( uxQueueMessagesWaiting( xQueue ) != 3 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+ ulData = 1;
+ xQueueSendToFront( xQueue, ( void * ) &ulData, intsemNO_BLOCK );
+ ulData = 0;
+ xQueueSendToFront( xQueue, ( void * ) &ulData, intsemNO_BLOCK );
+
+ /* Now the queue should be full, and when we read the data out we
+ should receive 0, 1, 2, 3, 4. */
+ if( uxQueueMessagesWaiting( xQueue ) != 5 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( xQueueSendToFront( xQueue, ( void * ) &ulData, intsemNO_BLOCK ) != errQUEUE_FULL )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( xQueueSendToBack( xQueue, ( void * ) &ulData, intsemNO_BLOCK ) != errQUEUE_FULL )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* Check the data we read out is in the expected order. */
+ for( ulData = 0; ulData < genqQUEUE_LENGTH; ulData++ )
+ {
+ /* Try peeking the data first. */
+ if( xQueuePeek( xQueue, &ulData2, intsemNO_BLOCK ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( ulData != ulData2 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+
+ /* Now try receiving the data for real. The value should be the
+ same. Clobber the value first so we know we really received it. */
+ ulData2 = ~ulData2;
+ if( xQueueReceive( xQueue, &ulData2, intsemNO_BLOCK ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( ulData != ulData2 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+ }
+
+ /* The queue should now be empty again. */
+ if( uxQueueMessagesWaiting( xQueue ) != 0 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+
+ /* Our queue is empty once more, add 10, 11 to the back. */
+ ulData = 10;
+ if( xQueueSend( xQueue, &ulData, intsemNO_BLOCK ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+ ulData = 11;
+ if( xQueueSend( xQueue, &ulData, intsemNO_BLOCK ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( uxQueueMessagesWaiting( xQueue ) != 2 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Now we should have 10, 11 in the queue. Add 7, 8, 9 to the
+ front. */
+ for( ulData = 9; ulData >= 7; ulData-- )
+ {
+ if( xQueueSendToFront( xQueue, ( void * ) &ulData, intsemNO_BLOCK ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+ }
+
+ /* Now check that the queue is full, and that receiving data provides
+ the expected sequence of 7, 8, 9, 10, 11. */
+ if( uxQueueMessagesWaiting( xQueue ) != 5 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( xQueueSendToFront( xQueue, ( void * ) &ulData, intsemNO_BLOCK ) != errQUEUE_FULL )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( xQueueSendToBack( xQueue, ( void * ) &ulData, intsemNO_BLOCK ) != errQUEUE_FULL )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* Check the data we read out is in the expected order. */
+ for( ulData = 7; ulData < ( 7 + genqQUEUE_LENGTH ); ulData++ )
+ {
+ if( xQueueReceive( xQueue, &ulData2, intsemNO_BLOCK ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( ulData != ulData2 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+ }
+
+ if( uxQueueMessagesWaiting( xQueue ) != 0 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ ulLoopCounter++;
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvTakeTwoMutexesReturnInDifferentOrder( SemaphoreHandle_t xMutex, SemaphoreHandle_t xLocalMutex )
+{
+ /* Take the mutex. It should be available now. */
+ if( xSemaphoreTake( xMutex, intsemNO_BLOCK ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Set the guarded variable to a known start value. */
+ ulGuardedVariable = 0;
+
+ /* This task's priority should be as per that assigned when the task was
+ created. */
+ if( uxTaskPriorityGet( NULL ) != genqMUTEX_LOW_PRIORITY )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Now unsuspend the high priority task. This will attempt to take the
+ mutex, and block when it finds it cannot obtain it. */
+ vTaskResume( xHighPriorityMutexTask );
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* Ensure the task is reporting its priority as blocked and not
+ suspended (as it would have done in versions up to V7.5.3). */
+ #if( INCLUDE_eTaskGetState == 1 )
+ {
+ configASSERT( eTaskGetState( xHighPriorityMutexTask ) == eBlocked );
+ }
+ #endif /* INCLUDE_eTaskGetState */
+
+ /* The priority of the high priority task should now have been inherited
+ as by now it will have attempted to get the mutex. */
+ if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Attempt to set the priority of this task to the test priority -
+ between the idle priority and the medium/high test priorities, but the
+ actual priority should remain at the high priority. */
+ vTaskPrioritySet( NULL, genqMUTEX_TEST_PRIORITY );
+ if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Now unsuspend the medium priority task. This should not run as the
+ inherited priority of this task is above that of the medium priority
+ task. */
+ vTaskResume( xMediumPriorityMutexTask );
+
+ /* If the medium priority task did run then it will have incremented the
+ guarded variable. */
+ if( ulGuardedVariable != 0 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Take the local mutex too, so two mutexes are now held. */
+ if( xSemaphoreTake( xLocalMutex, intsemNO_BLOCK ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* When the semaphore is given back the priority of this task should not
+ yet be disinherited because the local mutex is still held. This is a
+ simplification to allow FreeRTOS to be integrated with middleware that
+ attempts to hold multiple mutexes without bloating the code with complex
+ algorithms. It is possible that the high priority mutex task will
+ execute as it shares a priority with this task. */
+ if( xSemaphoreGive( xMutex ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* The guarded variable is only incremented by the medium priority task,
+ which still should not have executed as this task should remain at the
+ higher priority, ensure this is the case. */
+ if( ulGuardedVariable != 0 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Now also give back the local mutex, taking the held count back to 0.
+ This time the priority of this task should be disinherited back to the
+ priority to which it was set while the mutex was held. This means
+ the medium priority task should execute and increment the guarded
+ variable. When this task next runs both the high and medium priority
+ tasks will have been suspended again. */
+ if( xSemaphoreGive( xLocalMutex ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* Check the guarded variable did indeed increment... */
+ if( ulGuardedVariable != 1 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* ... and that the priority of this task has been disinherited to
+ genqMUTEX_TEST_PRIORITY. */
+ if( uxTaskPriorityGet( NULL ) != genqMUTEX_TEST_PRIORITY )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Set the priority of this task back to its original value, ready for
+ the next loop around this test. */
+ vTaskPrioritySet( NULL, genqMUTEX_LOW_PRIORITY );
+}
+/*-----------------------------------------------------------*/
+
+static void prvTakeTwoMutexesReturnInSameOrder( SemaphoreHandle_t xMutex, SemaphoreHandle_t xLocalMutex )
+{
+ /* Take the mutex. It should be available now. */
+ if( xSemaphoreTake( xMutex, intsemNO_BLOCK ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Set the guarded variable to a known start value. */
+ ulGuardedVariable = 0;
+
+ /* This task's priority should be as per that assigned when the task was
+ created. */
+ if( uxTaskPriorityGet( NULL ) != genqMUTEX_LOW_PRIORITY )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Now unsuspend the high priority task. This will attempt to take the
+ mutex, and block when it finds it cannot obtain it. */
+ vTaskResume( xHighPriorityMutexTask );
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* Ensure the task is reporting its priority as blocked and not
+ suspended (as it would have done in versions up to V7.5.3). */
+ #if( INCLUDE_eTaskGetState == 1 )
+ {
+ configASSERT( eTaskGetState( xHighPriorityMutexTask ) == eBlocked );
+ }
+ #endif /* INCLUDE_eTaskGetState */
+
+ /* The priority of the high priority task should now have been inherited
+ as by now it will have attempted to get the mutex. */
+ if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Now unsuspend the medium priority task. This should not run as the
+ inherited priority of this task is above that of the medium priority
+ task. */
+ vTaskResume( xMediumPriorityMutexTask );
+
+ /* If the medium priority task did run then it will have incremented the
+ guarded variable. */
+ if( ulGuardedVariable != 0 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Take the local mutex too, so two mutexes are now held. */
+ if( xSemaphoreTake( xLocalMutex, intsemNO_BLOCK ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* When the local semaphore is given back the priority of this task should
+ not yet be disinherited because the shared mutex is still held. This is a
+ simplification to allow FreeRTOS to be integrated with middleware that
+ attempts to hold multiple mutexes without bloating the code with complex
+ algorithms. It is possible that the high priority mutex task will
+ execute as it shares a priority with this task. */
+ if( xSemaphoreGive( xLocalMutex ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* The guarded variable is only incremented by the medium priority task,
+ which still should not have executed as this task should remain at the
+ higher priority, ensure this is the case. */
+ if( ulGuardedVariable != 0 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Now also give back the shared mutex, taking the held count back to 0.
+ This time the priority of this task should be disinherited back to the
+ priority at which it was created. This means the medium priority task
+ should execute and increment the guarded variable. When this task next runs
+ both the high and medium priority tasks will have been suspended again. */
+ if( xSemaphoreGive( xMutex ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* Check the guarded variable did indeed increment... */
+ if( ulGuardedVariable != 1 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* ... and that the priority of this task has been disinherited to
+ genqMUTEX_LOW_PRIORITY. */
+ if( uxTaskPriorityGet( NULL ) != genqMUTEX_LOW_PRIORITY )
+ {
+ xErrorDetected = pdTRUE;
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvLowPriorityMutexTask( void *pvParameters )
+{
+SemaphoreHandle_t xMutex = ( SemaphoreHandle_t ) pvParameters, xLocalMutex;
+
+ #ifdef USE_STDIO
+ void vPrintDisplayMessage( const char * const * ppcMessageToSend );
+
+ const char * const pcTaskStartMsg = "Mutex with priority inheritance test started.\r\n";
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+ #endif
+
+ /* The local mutex is used to check the 'mutexs held' count. */
+ xLocalMutex = xSemaphoreCreateMutex();
+ configASSERT( xLocalMutex );
+
+ for( ;; )
+ {
+ /* The first tests exercise the priority inheritance when two mutexes
+ are taken then returned in a different order to which they were
+ taken. */
+ prvTakeTwoMutexesReturnInDifferentOrder( xMutex, xLocalMutex );
+
+ /* Just to show this task is still running. */
+ ulLoopCounter2++;
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* The second tests exercise the priority inheritance when two mutexes
+ are taken then returned in the same order in which they were taken. */
+ prvTakeTwoMutexesReturnInSameOrder( xMutex, xLocalMutex );
+
+ /* Just to show this task is still running. */
+ ulLoopCounter2++;
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvMediumPriorityMutexTask( void *pvParameters )
+{
+ ( void ) pvParameters;
+
+ for( ;; )
+ {
+ /* The medium priority task starts by suspending itself. The low
+ priority task will unsuspend this task when required. */
+ vTaskSuspend( NULL );
+
+ /* When this task unsuspends all it does is increment the guarded
+ variable, this is so the low priority task knows that it has
+ executed. */
+ ulGuardedVariable++;
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvHighPriorityMutexTask( void *pvParameters )
+{
+SemaphoreHandle_t xMutex = ( SemaphoreHandle_t ) pvParameters;
+
+ for( ;; )
+ {
+ /* The high priority task starts by suspending itself. The low
+ priority task will unsuspend this task when required. */
+ vTaskSuspend( NULL );
+
+ /* When this task unsuspends all it does is attempt to obtain
+ the mutex. It should find the mutex is not available so a
+ block time is specified. */
+ if( xSemaphoreTake( xMutex, portMAX_DELAY ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* When the mutex is eventually obtained it is just given back before
+ returning to suspend ready for the next cycle. */
+ if( xSemaphoreGive( xMutex ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+
+/* This is called to check that all the created tasks are still running. */
+BaseType_t xAreGenericQueueTasksStillRunning( void )
+{
+static uint32_t ulLastLoopCounter = 0, ulLastLoopCounter2 = 0;
+
+ /* If the demo task is still running then we expect the loop counters to
+ have incremented since this function was last called. */
+ if( ulLastLoopCounter == ulLoopCounter )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( ulLastLoopCounter2 == ulLoopCounter2 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ ulLastLoopCounter = ulLoopCounter;
+ ulLastLoopCounter2 = ulLoopCounter2;
+
+ /* Errors detected in the task itself will have latched xErrorDetected
+ to true. */
+
+ return ( BaseType_t ) !xErrorDetected;
+}
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Minimal/QPeek.c b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/QPeek.c
new file mode 100644
index 0000000..5c47517
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/QPeek.c
@@ -0,0 +1,478 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+
+/*
+ * Tests the behaviour when data is peeked from a queue when there are
+ * multiple tasks blocked on the queue.
+ */
+
+
+#include <stdlib.h>
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "queue.h"
+#include "semphr.h"
+
+/* Demo program include files. */
+#include "QPeek.h"
+
+#define qpeekQUEUE_LENGTH ( 5 )
+#define qpeekNO_BLOCK ( 0 )
+#define qpeekSHORT_DELAY ( 10 )
+
+#define qpeekLOW_PRIORITY ( tskIDLE_PRIORITY + 0 )
+#define qpeekMEDIUM_PRIORITY ( tskIDLE_PRIORITY + 1 )
+#define qpeekHIGH_PRIORITY ( tskIDLE_PRIORITY + 2 )
+#define qpeekHIGHEST_PRIORITY ( tskIDLE_PRIORITY + 3 )
+
+/*-----------------------------------------------------------*/
+
+/*
+ * The following three tasks are used to demonstrate the peeking behaviour.
+ * Each task is given a different priority to demonstrate the order in which
+ * tasks are woken as data is peeked from a queue.
+ */
+static void prvLowPriorityPeekTask( void *pvParameters );
+static void prvMediumPriorityPeekTask( void *pvParameters );
+static void prvHighPriorityPeekTask( void *pvParameters );
+static void prvHighestPriorityPeekTask( void *pvParameters );
+
+/*-----------------------------------------------------------*/
+
+/* Flag that will be latched to pdTRUE should any unexpected behaviour be
+detected in any of the tasks. */
+static volatile BaseType_t xErrorDetected = pdFALSE;
+
+/* Counter that is incremented on each cycle of a test. This is used to
+detect a stalled task - a test that is no longer running. */
+static volatile uint32_t ulLoopCounter = 0;
+
+/* Handles to the test tasks. */
+TaskHandle_t xMediumPriorityTask, xHighPriorityTask, xHighestPriorityTask;
+/*-----------------------------------------------------------*/
+
+void vStartQueuePeekTasks( void )
+{
+QueueHandle_t xQueue;
+
+ /* Create the queue that we are going to use for the test/demo. */
+ xQueue = xQueueCreate( qpeekQUEUE_LENGTH, sizeof( uint32_t ) );
+
+ /* vQueueAddToRegistry() adds the queue to the queue registry, if one is
+ in use. The queue registry is provided as a means for kernel aware
+ debuggers to locate queues and has no purpose if a kernel aware debugger
+ is not being used. The call to vQueueAddToRegistry() will be removed
+ by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
+ defined to be less than 1. */
+ vQueueAddToRegistry( xQueue, "QPeek_Test_Queue" );
+
+ /* Create the demo tasks and pass it the queue just created. We are
+ passing the queue handle by value so it does not matter that it is declared
+ on the stack here. */
+ xTaskCreate( prvLowPriorityPeekTask, "PeekL", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekLOW_PRIORITY, NULL );
+ xTaskCreate( prvMediumPriorityPeekTask, "PeekM", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekMEDIUM_PRIORITY, &xMediumPriorityTask );
+ xTaskCreate( prvHighPriorityPeekTask, "PeekH1", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekHIGH_PRIORITY, &xHighPriorityTask );
+ xTaskCreate( prvHighestPriorityPeekTask, "PeekH2", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekHIGHEST_PRIORITY, &xHighestPriorityTask );
+}
+/*-----------------------------------------------------------*/
+
+static void prvHighestPriorityPeekTask( void *pvParameters )
+{
+QueueHandle_t xQueue = ( QueueHandle_t ) pvParameters;
+uint32_t ulValue;
+
+ #ifdef USE_STDIO
+ {
+ void vPrintDisplayMessage( const char * const * ppcMessageToSend );
+
+ const char * const pcTaskStartMsg = "Queue peek test started.\r\n";
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+ }
+ #endif
+
+ for( ;; )
+ {
+ /* Try peeking from the queue. The queue should be empty so we will
+ block, allowing the high priority task to execute. */
+ if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
+ {
+ /* We expected to have received something by the time we unblock. */
+ xErrorDetected = pdTRUE;
+ }
+
+ /* When we reach here the high and medium priority tasks should still
+ be blocked on the queue. We unblocked because the low priority task
+ wrote a value to the queue, which we should have peeked. Peeking the
+ data (rather than receiving it) will leave the data on the queue, so
+ the high priority task should then have also been unblocked, but not
+ yet executed. */
+ if( ulValue != 0x11223344 )
+ {
+ /* We did not receive the expected value. */
+ xErrorDetected = pdTRUE;
+ }
+
+ if( uxQueueMessagesWaiting( xQueue ) != 1 )
+ {
+ /* The message should have been left on the queue. */
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Now we are going to actually receive the data, so when the high
+ priority task runs it will find the queue empty and return to the
+ blocked state. */
+ ulValue = 0;
+ if( xQueueReceive( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
+ {
+ /* We expected to receive the value. */
+ xErrorDetected = pdTRUE;
+ }
+
+ if( ulValue != 0x11223344 )
+ {
+ /* We did not receive the expected value - which should have been
+ the same value as was peeked. */
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Now we will block again as the queue is once more empty. The low
+ priority task can then execute again. */
+ if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
+ {
+ /* We expected to have received something by the time we unblock. */
+ xErrorDetected = pdTRUE;
+ }
+
+ /* When we get here the low priority task should have again written to the
+ queue. */
+ if( ulValue != 0x01234567 )
+ {
+ /* We did not receive the expected value. */
+ xErrorDetected = pdTRUE;
+ }
+
+ if( uxQueueMessagesWaiting( xQueue ) != 1 )
+ {
+ /* The message should have been left on the queue. */
+ xErrorDetected = pdTRUE;
+ }
+
+ /* We only peeked the data, so suspending ourselves now should enable
+ the high priority task to also peek the data. The high priority task
+ will have been unblocked when we peeked the data as we left the data
+ in the queue. */
+ vTaskSuspend( NULL );
+
+
+
+ /* This time we are going to do the same as the above test, but the
+ high priority task is going to receive the data, rather than peek it.
+ This means that the medium priority task should never peek the value. */
+ if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( ulValue != 0xaabbaabb )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ vTaskSuspend( NULL );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvHighPriorityPeekTask( void *pvParameters )
+{
+QueueHandle_t xQueue = ( QueueHandle_t ) pvParameters;
+uint32_t ulValue;
+
+ for( ;; )
+ {
+ /* Try peeking from the queue. The queue should be empty so we will
+ block, allowing the medium priority task to execute. Both the high
+ and highest priority tasks will then be blocked on the queue. */
+ if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
+ {
+ /* We expected to have received something by the time we unblock. */
+ xErrorDetected = pdTRUE;
+ }
+
+ /* When we get here the highest priority task should have peeked the data
+ (unblocking this task) then suspended (allowing this task to also peek
+ the data). */
+ if( ulValue != 0x01234567 )
+ {
+ /* We did not receive the expected value. */
+ xErrorDetected = pdTRUE;
+ }
+
+ if( uxQueueMessagesWaiting( xQueue ) != 1 )
+ {
+ /* The message should have been left on the queue. */
+ xErrorDetected = pdTRUE;
+ }
+
+ /* We only peeked the data, so suspending ourselves now should enable
+ the medium priority task to also peek the data. The medium priority task
+ will have been unblocked when we peeked the data as we left the data
+ in the queue. */
+ vTaskSuspend( NULL );
+
+
+ /* This time we are going actually receive the value, so the medium
+ priority task will never peek the data - we removed it from the queue. */
+ if( xQueueReceive( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ if( ulValue != 0xaabbaabb )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ vTaskSuspend( NULL );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvMediumPriorityPeekTask( void *pvParameters )
+{
+QueueHandle_t xQueue = ( QueueHandle_t ) pvParameters;
+uint32_t ulValue;
+
+ for( ;; )
+ {
+ /* Try peeking from the queue. The queue should be empty so we will
+ block, allowing the low priority task to execute. The highest, high
+ and medium priority tasks will then all be blocked on the queue. */
+ if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
+ {
+ /* We expected to have received something by the time we unblock. */
+ xErrorDetected = pdTRUE;
+ }
+
+ /* When we get here the high priority task should have peeked the data
+ (unblocking this task) then suspended (allowing this task to also peek
+ the data). */
+ if( ulValue != 0x01234567 )
+ {
+ /* We did not receive the expected value. */
+ xErrorDetected = pdTRUE;
+ }
+
+ if( uxQueueMessagesWaiting( xQueue ) != 1 )
+ {
+ /* The message should have been left on the queue. */
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Just so we know the test is still running. */
+ ulLoopCounter++;
+
+ /* Now we can suspend ourselves so the low priority task can execute
+ again. */
+ vTaskSuspend( NULL );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvLowPriorityPeekTask( void *pvParameters )
+{
+QueueHandle_t xQueue = ( QueueHandle_t ) pvParameters;
+uint32_t ulValue;
+
+ for( ;; )
+ {
+ /* Write some data to the queue. This should unblock the highest
+ priority task that is waiting to peek data from the queue. */
+ ulValue = 0x11223344;
+ if( xQueueSendToBack( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
+ {
+ /* We were expecting the queue to be empty so we should not of
+ had a problem writing to the queue. */
+ xErrorDetected = pdTRUE;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* By the time we get here the data should have been removed from
+ the queue. */
+ if( uxQueueMessagesWaiting( xQueue ) != 0 )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Write another value to the queue, again waking the highest priority
+ task that is blocked on the queue. */
+ ulValue = 0x01234567;
+ if( xQueueSendToBack( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
+ {
+ /* We were expecting the queue to be empty so we should not of
+ had a problem writing to the queue. */
+ xErrorDetected = pdTRUE;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* All the other tasks should now have successfully peeked the data.
+ The data is still in the queue so we should be able to receive it. */
+ ulValue = 0;
+ if( xQueueReceive( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
+ {
+ /* We expected to receive the data. */
+ xErrorDetected = pdTRUE;
+ }
+
+ if( ulValue != 0x01234567 )
+ {
+ /* We did not receive the expected value. */
+ }
+
+ /* Lets just delay a while as this is an intensive test as we don't
+ want to starve other tests of processing time. */
+ vTaskDelay( qpeekSHORT_DELAY );
+
+ /* Unsuspend the other tasks so we can repeat the test - this time
+ however not all the other tasks will peek the data as the high
+ priority task is actually going to remove it from the queue. Send
+ to front is used just to be different. As the queue is empty it
+ makes no difference to the result. */
+ vTaskResume( xMediumPriorityTask );
+ vTaskResume( xHighPriorityTask );
+ vTaskResume( xHighestPriorityTask );
+
+ #if( configUSE_PREEMPTION == 0 )
+ taskYIELD();
+ #endif
+
+ ulValue = 0xaabbaabb;
+ if( xQueueSendToFront( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
+ {
+ /* We were expecting the queue to be empty so we should not of
+ had a problem writing to the queue. */
+ xErrorDetected = pdTRUE;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* This time we should find that the queue is empty. The high priority
+ task actually removed the data rather than just peeking it. */
+ if( xQueuePeek( xQueue, &ulValue, qpeekNO_BLOCK ) != errQUEUE_EMPTY )
+ {
+ /* We expected to receive the data. */
+ xErrorDetected = pdTRUE;
+ }
+
+ /* Unsuspend the highest and high priority tasks so we can go back
+ and repeat the whole thing. The medium priority task should not be
+ suspended as it was not able to peek the data in this last case. */
+ vTaskResume( xHighPriorityTask );
+ vTaskResume( xHighestPriorityTask );
+
+ /* Lets just delay a while as this is an intensive test as we don't
+ want to starve other tests of processing time. */
+ vTaskDelay( qpeekSHORT_DELAY );
+ }
+}
+/*-----------------------------------------------------------*/
+
+/* This is called to check that all the created tasks are still running. */
+BaseType_t xAreQueuePeekTasksStillRunning( void )
+{
+static uint32_t ulLastLoopCounter = 0;
+
+ /* If the demo task is still running then we expect the loopcounter to
+ have incremented since this function was last called. */
+ if( ulLastLoopCounter == ulLoopCounter )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ ulLastLoopCounter = ulLoopCounter;
+
+ /* Errors detected in the task itself will have latched xErrorDetected
+ to true. */
+
+ return ( BaseType_t ) !xErrorDetected;
+}
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Minimal/blocktim.c b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/blocktim.c
new file mode 100644
index 0000000..068ea59
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/blocktim.c
@@ -0,0 +1,509 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/*
+ * This file contains some test scenarios that ensure tasks do not exit queue
+ * send or receive functions prematurely. A description of the tests is
+ * included within the code.
+ */
+
+/* Kernel includes. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "queue.h"
+
+/* Demo includes. */
+#include "blocktim.h"
+
+/* Task priorities. Allow these to be overridden. */
+#ifndef bktPRIMARY_PRIORITY
+ #define bktPRIMARY_PRIORITY ( configMAX_PRIORITIES - 3 )
+#endif
+
+#ifndef bktSECONDARY_PRIORITY
+ #define bktSECONDARY_PRIORITY ( configMAX_PRIORITIES - 4 )
+#endif
+
+/* Task behaviour. */
+#define bktQUEUE_LENGTH ( 5 )
+#define bktSHORT_WAIT ( ( ( TickType_t ) 20 ) / portTICK_PERIOD_MS )
+#define bktPRIMARY_BLOCK_TIME ( 10 )
+#define bktALLOWABLE_MARGIN ( 15 )
+#define bktTIME_TO_BLOCK ( 175 )
+#define bktDONT_BLOCK ( ( TickType_t ) 0 )
+#define bktRUN_INDICATOR ( ( UBaseType_t ) 0x55 )
+
+/* The queue on which the tasks block. */
+static QueueHandle_t xTestQueue;
+
+/* Handle to the secondary task is required by the primary task for calls
+to vTaskSuspend/Resume(). */
+static TaskHandle_t xSecondary;
+
+/* Used to ensure that tasks are still executing without error. */
+static volatile BaseType_t xPrimaryCycles = 0, xSecondaryCycles = 0;
+static volatile BaseType_t xErrorOccurred = pdFALSE;
+
+/* Provides a simple mechanism for the primary task to know when the
+secondary task has executed. */
+static volatile UBaseType_t xRunIndicator;
+
+/* The two test tasks. Their behaviour is commented within the files. */
+static void vPrimaryBlockTimeTestTask( void *pvParameters );
+static void vSecondaryBlockTimeTestTask( void *pvParameters );
+
+/*-----------------------------------------------------------*/
+
+void vCreateBlockTimeTasks( void )
+{
+ /* Create the queue on which the two tasks block. */
+ xTestQueue = xQueueCreate( bktQUEUE_LENGTH, sizeof( BaseType_t ) );
+
+ /* vQueueAddToRegistry() adds the queue to the queue registry, if one is
+ in use. The queue registry is provided as a means for kernel aware
+ debuggers to locate queues and has no purpose if a kernel aware debugger
+ is not being used. The call to vQueueAddToRegistry() will be removed
+ by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
+ defined to be less than 1. */
+ vQueueAddToRegistry( xTestQueue, "Block_Time_Queue" );
+
+ /* Create the two test tasks. */
+ xTaskCreate( vPrimaryBlockTimeTestTask, "BTest1", configMINIMAL_STACK_SIZE, NULL, bktPRIMARY_PRIORITY, NULL );
+ xTaskCreate( vSecondaryBlockTimeTestTask, "BTest2", configMINIMAL_STACK_SIZE, NULL, bktSECONDARY_PRIORITY, &xSecondary );
+}
+/*-----------------------------------------------------------*/
+
+static void vPrimaryBlockTimeTestTask( void *pvParameters )
+{
+BaseType_t xItem, xData;
+TickType_t xTimeWhenBlocking;
+TickType_t xTimeToBlock, xBlockedTime;
+
+ ( void ) pvParameters;
+
+ for( ;; )
+ {
+ /*********************************************************************
+ Test 1
+
+ Simple block time wakeup test on queue receives. */
+ for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
+ {
+ /* The queue is empty. Attempt to read from the queue using a block
+ time. When we wake, ensure the delta in time is as expected. */
+ xTimeToBlock = ( TickType_t ) ( bktPRIMARY_BLOCK_TIME << xItem );
+
+ xTimeWhenBlocking = xTaskGetTickCount();
+
+ /* We should unblock after xTimeToBlock having not received
+ anything on the queue. */
+ if( xQueueReceive( xTestQueue, &xData, xTimeToBlock ) != errQUEUE_EMPTY )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* How long were we blocked for? */
+ xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
+
+ if( xBlockedTime < xTimeToBlock )
+ {
+ /* Should not have blocked for less than we requested. */
+ xErrorOccurred = pdTRUE;
+ }
+
+ if( xBlockedTime > ( xTimeToBlock + bktALLOWABLE_MARGIN ) )
+ {
+ /* Should not have blocked for longer than we requested,
+ although we would not necessarily run as soon as we were
+ unblocked so a margin is allowed. */
+ xErrorOccurred = pdTRUE;
+ }
+ }
+
+ /*********************************************************************
+ Test 2
+
+ Simple block time wakeup test on queue sends.
+
+ First fill the queue. It should be empty so all sends should pass. */
+ for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
+ {
+ if( xQueueSend( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+ }
+
+ for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
+ {
+ /* The queue is full. Attempt to write to the queue using a block
+ time. When we wake, ensure the delta in time is as expected. */
+ xTimeToBlock = ( TickType_t ) ( bktPRIMARY_BLOCK_TIME << xItem );
+
+ xTimeWhenBlocking = xTaskGetTickCount();
+
+ /* We should unblock after xTimeToBlock having not received
+ anything on the queue. */
+ if( xQueueSend( xTestQueue, &xItem, xTimeToBlock ) != errQUEUE_FULL )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* How long were we blocked for? */
+ xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
+
+ if( xBlockedTime < xTimeToBlock )
+ {
+ /* Should not have blocked for less than we requested. */
+ xErrorOccurred = pdTRUE;
+ }
+
+ if( xBlockedTime > ( xTimeToBlock + bktALLOWABLE_MARGIN ) )
+ {
+ /* Should not have blocked for longer than we requested,
+ although we would not necessarily run as soon as we were
+ unblocked so a margin is allowed. */
+ xErrorOccurred = pdTRUE;
+ }
+ }
+
+ /*********************************************************************
+ Test 3
+
+ Wake the other task, it will block attempting to post to the queue.
+ When we read from the queue the other task will wake, but before it
+ can run we will post to the queue again. When the other task runs it
+ will find the queue still full, even though it was woken. It should
+ recognise that its block time has not expired and return to block for
+ the remains of its block time.
+
+ Wake the other task so it blocks attempting to post to the already
+ full queue. */
+ xRunIndicator = 0;
+ vTaskResume( xSecondary );
+
+ /* We need to wait a little to ensure the other task executes. */
+ while( xRunIndicator != bktRUN_INDICATOR )
+ {
+ /* The other task has not yet executed. */
+ vTaskDelay( bktSHORT_WAIT );
+ }
+ /* Make sure the other task is blocked on the queue. */
+ vTaskDelay( bktSHORT_WAIT );
+ xRunIndicator = 0;
+
+ for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
+ {
+ /* Now when we make space on the queue the other task should wake
+ but not execute as this task has higher priority. */
+ if( xQueueReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* Now fill the queue again before the other task gets a chance to
+ execute. If the other task had executed we would find the queue
+ full ourselves, and the other task have set xRunIndicator. */
+ if( xQueueSend( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ if( xRunIndicator == bktRUN_INDICATOR )
+ {
+ /* The other task should not have executed. */
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* Raise the priority of the other task so it executes and blocks
+ on the queue again. */
+ vTaskPrioritySet( xSecondary, bktPRIMARY_PRIORITY + 2 );
+
+ /* The other task should now have re-blocked without exiting the
+ queue function. */
+ if( xRunIndicator == bktRUN_INDICATOR )
+ {
+ /* The other task should not have executed outside of the
+ queue function. */
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* Set the priority back down. */
+ vTaskPrioritySet( xSecondary, bktSECONDARY_PRIORITY );
+ }
+
+ /* Let the other task timeout. When it unblockes it will check that it
+ unblocked at the correct time, then suspend itself. */
+ while( xRunIndicator != bktRUN_INDICATOR )
+ {
+ vTaskDelay( bktSHORT_WAIT );
+ }
+ vTaskDelay( bktSHORT_WAIT );
+ xRunIndicator = 0;
+
+
+ /*********************************************************************
+ Test 4
+
+ As per test 3 - but with the send and receive the other way around.
+ The other task blocks attempting to read from the queue.
+
+ Empty the queue. We should find that it is full. */
+ for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
+ {
+ if( xQueueReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+ }
+
+ /* Wake the other task so it blocks attempting to read from the
+ already empty queue. */
+ vTaskResume( xSecondary );
+
+ /* We need to wait a little to ensure the other task executes. */
+ while( xRunIndicator != bktRUN_INDICATOR )
+ {
+ vTaskDelay( bktSHORT_WAIT );
+ }
+ vTaskDelay( bktSHORT_WAIT );
+ xRunIndicator = 0;
+
+ for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
+ {
+ /* Now when we place an item on the queue the other task should
+ wake but not execute as this task has higher priority. */
+ if( xQueueSend( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* Now empty the queue again before the other task gets a chance to
+ execute. If the other task had executed we would find the queue
+ empty ourselves, and the other task would be suspended. */
+ if( xQueueReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ if( xRunIndicator == bktRUN_INDICATOR )
+ {
+ /* The other task should not have executed. */
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* Raise the priority of the other task so it executes and blocks
+ on the queue again. */
+ vTaskPrioritySet( xSecondary, bktPRIMARY_PRIORITY + 2 );
+
+ /* The other task should now have re-blocked without exiting the
+ queue function. */
+ if( xRunIndicator == bktRUN_INDICATOR )
+ {
+ /* The other task should not have executed outside of the
+ queue function. */
+ xErrorOccurred = pdTRUE;
+ }
+ vTaskPrioritySet( xSecondary, bktSECONDARY_PRIORITY );
+ }
+
+ /* Let the other task timeout. When it unblockes it will check that it
+ unblocked at the correct time, then suspend itself. */
+ while( xRunIndicator != bktRUN_INDICATOR )
+ {
+ vTaskDelay( bktSHORT_WAIT );
+ }
+ vTaskDelay( bktSHORT_WAIT );
+
+ xPrimaryCycles++;
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void vSecondaryBlockTimeTestTask( void *pvParameters )
+{
+TickType_t xTimeWhenBlocking, xBlockedTime;
+BaseType_t xData;
+
+ ( void ) pvParameters;
+
+ for( ;; )
+ {
+ /*********************************************************************
+ Test 1 and 2
+
+ This task does does not participate in these tests. */
+ vTaskSuspend( NULL );
+
+ /*********************************************************************
+ Test 3
+
+ The first thing we do is attempt to read from the queue. It should be
+ full so we block. Note the time before we block so we can check the
+ wake time is as per that expected. */
+ xTimeWhenBlocking = xTaskGetTickCount();
+
+ /* We should unblock after bktTIME_TO_BLOCK having not sent
+ anything to the queue. */
+ xData = 0;
+ xRunIndicator = bktRUN_INDICATOR;
+ if( xQueueSend( xTestQueue, &xData, bktTIME_TO_BLOCK ) != errQUEUE_FULL )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* How long were we inside the send function? */
+ xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
+
+ /* We should not have blocked for less time than bktTIME_TO_BLOCK. */
+ if( xBlockedTime < bktTIME_TO_BLOCK )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* We should of not blocked for much longer than bktALLOWABLE_MARGIN
+ either. A margin is permitted as we would not necessarily run as
+ soon as we unblocked. */
+ if( xBlockedTime > ( bktTIME_TO_BLOCK + bktALLOWABLE_MARGIN ) )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* Suspend ready for test 3. */
+ xRunIndicator = bktRUN_INDICATOR;
+ vTaskSuspend( NULL );
+
+ /*********************************************************************
+ Test 4
+
+ As per test three, but with the send and receive reversed. */
+ xTimeWhenBlocking = xTaskGetTickCount();
+
+ /* We should unblock after bktTIME_TO_BLOCK having not received
+ anything on the queue. */
+ xRunIndicator = bktRUN_INDICATOR;
+ if( xQueueReceive( xTestQueue, &xData, bktTIME_TO_BLOCK ) != errQUEUE_EMPTY )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
+
+ /* We should not have blocked for less time than bktTIME_TO_BLOCK. */
+ if( xBlockedTime < bktTIME_TO_BLOCK )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* We should of not blocked for much longer than bktALLOWABLE_MARGIN
+ either. A margin is permitted as we would not necessarily run as soon
+ as we unblocked. */
+ if( xBlockedTime > ( bktTIME_TO_BLOCK + bktALLOWABLE_MARGIN ) )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ xRunIndicator = bktRUN_INDICATOR;
+
+ xSecondaryCycles++;
+ }
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xAreBlockTimeTestTasksStillRunning( void )
+{
+static BaseType_t xLastPrimaryCycleCount = 0, xLastSecondaryCycleCount = 0;
+BaseType_t xReturn = pdPASS;
+
+ /* Have both tasks performed at least one cycle since this function was
+ last called? */
+ if( xPrimaryCycles == xLastPrimaryCycleCount )
+ {
+ xReturn = pdFAIL;
+ }
+
+ if( xSecondaryCycles == xLastSecondaryCycleCount )
+ {
+ xReturn = pdFAIL;
+ }
+
+ if( xErrorOccurred == pdTRUE )
+ {
+ xReturn = pdFAIL;
+ }
+
+ xLastSecondaryCycleCount = xSecondaryCycles;
+ xLastPrimaryCycleCount = xPrimaryCycles;
+
+ return xReturn;
+}
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Minimal/countsem.c b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/countsem.c
new file mode 100644
index 0000000..2b45fb0
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/countsem.c
@@ -0,0 +1,326 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+
+/*
+ * Simple demonstration of the usage of counting semaphore.
+ */
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "semphr.h"
+
+/* Demo program include files. */
+#include "countsem.h"
+
+/* The maximum count value that the semaphore used for the demo can hold. */
+#define countMAX_COUNT_VALUE ( 200 )
+
+/* Constants used to indicate whether or not the semaphore should have been
+created with its maximum count value, or its minimum count value. These
+numbers are used to ensure that the pointers passed in as the task parameters
+are valid. */
+#define countSTART_AT_MAX_COUNT ( 0xaa )
+#define countSTART_AT_ZERO ( 0x55 )
+
+/* Two tasks are created for the test. One uses a semaphore created with its
+count value set to the maximum, and one with the count value set to zero. */
+#define countNUM_TEST_TASKS ( 2 )
+#define countDONT_BLOCK ( 0 )
+
+/*-----------------------------------------------------------*/
+
+/* Flag that will be latched to pdTRUE should any unexpected behaviour be
+detected in any of the tasks. */
+static volatile BaseType_t xErrorDetected = pdFALSE;
+
+/*-----------------------------------------------------------*/
+
+/*
+ * The demo task. This simply counts the semaphore up to its maximum value,
+ * the counts it back down again. The result of each semaphore 'give' and
+ * 'take' is inspected, with an error being flagged if it is found not to be
+ * the expected result.
+ */
+static void prvCountingSemaphoreTask( void *pvParameters );
+
+/*
+ * Utility function to increment the semaphore count value up from zero to
+ * countMAX_COUNT_VALUE.
+ */
+static void prvIncrementSemaphoreCount( SemaphoreHandle_t xSemaphore, UBaseType_t *puxLoopCounter );
+
+/*
+ * Utility function to decrement the semaphore count value up from
+ * countMAX_COUNT_VALUE to zero.
+ */
+static void prvDecrementSemaphoreCount( SemaphoreHandle_t xSemaphore, UBaseType_t *puxLoopCounter );
+
+/*-----------------------------------------------------------*/
+
+/* The structure that is passed into the task as the task parameter. */
+typedef struct COUNT_SEM_STRUCT
+{
+ /* The semaphore to be used for the demo. */
+ SemaphoreHandle_t xSemaphore;
+
+ /* Set to countSTART_AT_MAX_COUNT if the semaphore should be created with
+ its count value set to its max count value, or countSTART_AT_ZERO if it
+ should have been created with its count value set to 0. */
+ UBaseType_t uxExpectedStartCount;
+
+ /* Incremented on each cycle of the demo task. Used to detect a stalled
+ task. */
+ UBaseType_t uxLoopCounter;
+} xCountSemStruct;
+
+/* Two structures are defined, one is passed to each test task. */
+static volatile xCountSemStruct xParameters[ countNUM_TEST_TASKS ];
+
+/*-----------------------------------------------------------*/
+
+void vStartCountingSemaphoreTasks( void )
+{
+ /* Create the semaphores that we are going to use for the test/demo. The
+ first should be created such that it starts at its maximum count value,
+ the second should be created such that it starts with a count value of zero. */
+ xParameters[ 0 ].xSemaphore = xSemaphoreCreateCounting( countMAX_COUNT_VALUE, countMAX_COUNT_VALUE );
+ xParameters[ 0 ].uxExpectedStartCount = countSTART_AT_MAX_COUNT;
+ xParameters[ 0 ].uxLoopCounter = 0;
+
+ xParameters[ 1 ].xSemaphore = xSemaphoreCreateCounting( countMAX_COUNT_VALUE, 0 );
+ xParameters[ 1 ].uxExpectedStartCount = 0;
+ xParameters[ 1 ].uxLoopCounter = 0;
+
+ /* vQueueAddToRegistry() adds the semaphore to the registry, if one is
+ in use. The registry is provided as a means for kernel aware
+ debuggers to locate semaphores and has no purpose if a kernel aware debugger
+ is not being used. The call to vQueueAddToRegistry() will be removed
+ by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
+ defined to be less than 1. */
+ vQueueAddToRegistry( ( QueueHandle_t ) xParameters[ 0 ].xSemaphore, "Counting_Sem_1" );
+ vQueueAddToRegistry( ( QueueHandle_t ) xParameters[ 1 ].xSemaphore, "Counting_Sem_2" );
+
+
+ /* Were the semaphores created? */
+ if( ( xParameters[ 0 ].xSemaphore != NULL ) || ( xParameters[ 1 ].xSemaphore != NULL ) )
+ {
+ /* Create the demo tasks, passing in the semaphore to use as the parameter. */
+ xTaskCreate( prvCountingSemaphoreTask, "CNT1", configMINIMAL_STACK_SIZE, ( void * ) &( xParameters[ 0 ] ), tskIDLE_PRIORITY, NULL );
+ xTaskCreate( prvCountingSemaphoreTask, "CNT2", configMINIMAL_STACK_SIZE, ( void * ) &( xParameters[ 1 ] ), tskIDLE_PRIORITY, NULL );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvDecrementSemaphoreCount( SemaphoreHandle_t xSemaphore, UBaseType_t *puxLoopCounter )
+{
+UBaseType_t ux;
+
+ /* If the semaphore count is at its maximum then we should not be able to
+ 'give' the semaphore. */
+ if( xSemaphoreGive( xSemaphore ) == pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* We should be able to 'take' the semaphore countMAX_COUNT_VALUE times. */
+ for( ux = 0; ux < countMAX_COUNT_VALUE; ux++ )
+ {
+ if( xSemaphoreTake( xSemaphore, countDONT_BLOCK ) != pdPASS )
+ {
+ /* We expected to be able to take the semaphore. */
+ xErrorDetected = pdTRUE;
+ }
+
+ ( *puxLoopCounter )++;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* If the semaphore count is zero then we should not be able to 'take'
+ the semaphore. */
+ if( xSemaphoreTake( xSemaphore, countDONT_BLOCK ) == pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvIncrementSemaphoreCount( SemaphoreHandle_t xSemaphore, UBaseType_t *puxLoopCounter )
+{
+UBaseType_t ux;
+
+ /* If the semaphore count is zero then we should not be able to 'take'
+ the semaphore. */
+ if( xSemaphoreTake( xSemaphore, countDONT_BLOCK ) == pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ /* We should be able to 'give' the semaphore countMAX_COUNT_VALUE times. */
+ for( ux = 0; ux < countMAX_COUNT_VALUE; ux++ )
+ {
+ if( xSemaphoreGive( xSemaphore ) != pdPASS )
+ {
+ /* We expected to be able to take the semaphore. */
+ xErrorDetected = pdTRUE;
+ }
+
+ ( *puxLoopCounter )++;
+ }
+
+ #if configUSE_PREEMPTION == 0
+ taskYIELD();
+ #endif
+
+ /* If the semaphore count is at its maximum then we should not be able to
+ 'give' the semaphore. */
+ if( xSemaphoreGive( xSemaphore ) == pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvCountingSemaphoreTask( void *pvParameters )
+{
+xCountSemStruct *pxParameter;
+
+ #ifdef USE_STDIO
+ void vPrintDisplayMessage( const char * const * ppcMessageToSend );
+
+ const char * const pcTaskStartMsg = "Counting semaphore demo started.\r\n";
+
+ /* Queue a message for printing to say the task has started. */
+ vPrintDisplayMessage( &pcTaskStartMsg );
+ #endif
+
+ /* The semaphore to be used was passed as the parameter. */
+ pxParameter = ( xCountSemStruct * ) pvParameters;
+
+ /* Did we expect to find the semaphore already at its max count value, or
+ at zero? */
+ if( pxParameter->uxExpectedStartCount == countSTART_AT_MAX_COUNT )
+ {
+ prvDecrementSemaphoreCount( pxParameter->xSemaphore, &( pxParameter->uxLoopCounter ) );
+ }
+
+ /* Now we expect the semaphore count to be 0, so this time there is an
+ error if we can take the semaphore. */
+ if( xSemaphoreTake( pxParameter->xSemaphore, 0 ) == pdPASS )
+ {
+ xErrorDetected = pdTRUE;
+ }
+
+ for( ;; )
+ {
+ prvIncrementSemaphoreCount( pxParameter->xSemaphore, &( pxParameter->uxLoopCounter ) );
+ prvDecrementSemaphoreCount( pxParameter->xSemaphore, &( pxParameter->uxLoopCounter ) );
+ }
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xAreCountingSemaphoreTasksStillRunning( void )
+{
+static UBaseType_t uxLastCount0 = 0, uxLastCount1 = 0;
+BaseType_t xReturn = pdPASS;
+
+ /* Return fail if any 'give' or 'take' did not result in the expected
+ behaviour. */
+ if( xErrorDetected != pdFALSE )
+ {
+ xReturn = pdFAIL;
+ }
+
+ /* Return fail if either task is not still incrementing its loop counter. */
+ if( uxLastCount0 == xParameters[ 0 ].uxLoopCounter )
+ {
+ xReturn = pdFAIL;
+ }
+ else
+ {
+ uxLastCount0 = xParameters[ 0 ].uxLoopCounter;
+ }
+
+ if( uxLastCount1 == xParameters[ 1 ].uxLoopCounter )
+ {
+ xReturn = pdFAIL;
+ }
+ else
+ {
+ uxLastCount1 = xParameters[ 1 ].uxLoopCounter;
+ }
+
+ return xReturn;
+}
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Minimal/crflash.c b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/crflash.c
new file mode 100644
index 0000000..14431ad
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/crflash.c
@@ -0,0 +1,250 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/*
+ * This demo application file demonstrates the use of queues to pass data
+ * between co-routines.
+ *
+ * N represents the number of 'fixed delay' co-routines that are created and
+ * is set during initialisation.
+ *
+ * N 'fixed delay' co-routines are created that just block for a fixed
+ * period then post the number of an LED onto a queue. Each such co-routine
+ * uses a different block period. A single 'flash' co-routine is also created
+ * that blocks on the same queue, waiting for the number of the next LED it
+ * should flash. Upon receiving a number it simply toggle the instructed LED
+ * then blocks on the queue once more. In this manner each LED from LED 0 to
+ * LED N-1 is caused to flash at a different rate.
+ *
+ * The 'fixed delay' co-routines are created with co-routine priority 0. The
+ * flash co-routine is created with co-routine priority 1. This means that
+ * the queue should never contain more than a single item. This is because
+ * posting to the queue will unblock the 'flash' co-routine, and as this has
+ * a priority greater than the tasks posting to the queue it is guaranteed to
+ * have emptied the queue and blocked once again before the queue can contain
+ * any more date. An error is indicated if an attempt to post data to the
+ * queue fails - indicating that the queue is already full.
+ *
+ */
+
+/* Scheduler includes. */
+#include "FreeRTOS.h"
+#include "croutine.h"
+#include "queue.h"
+
+/* Demo application includes. */
+#include "partest.h"
+#include "crflash.h"
+
+/* The queue should only need to be of length 1. See the description at the
+top of the file. */
+#define crfQUEUE_LENGTH 1
+
+#define crfFIXED_DELAY_PRIORITY 0
+#define crfFLASH_PRIORITY 1
+
+/* Only one flash co-routine is created so the index is not significant. */
+#define crfFLASH_INDEX 0
+
+/* Don't allow more than crfMAX_FLASH_TASKS 'fixed delay' co-routines to be
+created. */
+#define crfMAX_FLASH_TASKS 8
+
+/* We don't want to block when posting to the queue. */
+#define crfPOSTING_BLOCK_TIME 0
+
+/*
+ * The 'fixed delay' co-routine as described at the top of the file.
+ */
+static void prvFixedDelayCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex );
+
+/*
+ * The 'flash' co-routine as described at the top of the file.
+ */
+static void prvFlashCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex );
+
+/* The queue used to pass data between the 'fixed delay' co-routines and the
+'flash' co-routine. */
+static QueueHandle_t xFlashQueue;
+
+/* This will be set to pdFALSE if we detect an error. */
+static BaseType_t xCoRoutineFlashStatus = pdPASS;
+
+/*-----------------------------------------------------------*/
+
+/*
+ * See the header file for details.
+ */
+void vStartFlashCoRoutines( UBaseType_t uxNumberToCreate )
+{
+UBaseType_t uxIndex;
+
+ if( uxNumberToCreate > crfMAX_FLASH_TASKS )
+ {
+ uxNumberToCreate = crfMAX_FLASH_TASKS;
+ }
+
+ /* Create the queue used to pass data between the co-routines. */
+ xFlashQueue = xQueueCreate( crfQUEUE_LENGTH, sizeof( UBaseType_t ) );
+
+ if( xFlashQueue )
+ {
+ /* Create uxNumberToCreate 'fixed delay' co-routines. */
+ for( uxIndex = 0; uxIndex < uxNumberToCreate; uxIndex++ )
+ {
+ xCoRoutineCreate( prvFixedDelayCoRoutine, crfFIXED_DELAY_PRIORITY, uxIndex );
+ }
+
+ /* Create the 'flash' co-routine. */
+ xCoRoutineCreate( prvFlashCoRoutine, crfFLASH_PRIORITY, crfFLASH_INDEX );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvFixedDelayCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
+{
+/* Even though this is a co-routine the xResult variable does not need to be
+static as we do not need it to maintain its state between blocks. */
+BaseType_t xResult;
+/* The uxIndex parameter of the co-routine function is used as an index into
+the xFlashRates array to obtain the delay period to use. */
+static const TickType_t xFlashRates[ crfMAX_FLASH_TASKS ] = { 150 / portTICK_PERIOD_MS,
+ 200 / portTICK_PERIOD_MS,
+ 250 / portTICK_PERIOD_MS,
+ 300 / portTICK_PERIOD_MS,
+ 350 / portTICK_PERIOD_MS,
+ 400 / portTICK_PERIOD_MS,
+ 450 / portTICK_PERIOD_MS,
+ 500 / portTICK_PERIOD_MS };
+
+ /* Co-routines MUST start with a call to crSTART. */
+ crSTART( xHandle );
+
+ for( ;; )
+ {
+ /* Post our uxIndex value onto the queue. This is used as the LED to
+ flash. */
+ crQUEUE_SEND( xHandle, xFlashQueue, ( void * ) &uxIndex, crfPOSTING_BLOCK_TIME, &xResult );
+
+ if( xResult != pdPASS )
+ {
+ /* For the reasons stated at the top of the file we should always
+ find that we can post to the queue. If we could not then an error
+ has occurred. */
+ xCoRoutineFlashStatus = pdFAIL;
+ }
+
+ crDELAY( xHandle, xFlashRates[ uxIndex ] );
+ }
+
+ /* Co-routines MUST end with a call to crEND. */
+ crEND();
+}
+/*-----------------------------------------------------------*/
+
+static void prvFlashCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
+{
+/* Even though this is a co-routine the variable do not need to be
+static as we do not need it to maintain their state between blocks. */
+BaseType_t xResult;
+UBaseType_t uxLEDToFlash;
+
+ /* Co-routines MUST start with a call to crSTART. */
+ crSTART( xHandle );
+ ( void ) uxIndex;
+
+ for( ;; )
+ {
+ /* Block to wait for the number of the LED to flash. */
+ crQUEUE_RECEIVE( xHandle, xFlashQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
+
+ if( xResult != pdPASS )
+ {
+ /* We would not expect to wake unless we received something. */
+ xCoRoutineFlashStatus = pdFAIL;
+ }
+ else
+ {
+ /* We received the number of an LED to flash - flash it! */
+ vParTestToggleLED( uxLEDToFlash );
+ }
+ }
+
+ /* Co-routines MUST end with a call to crEND. */
+ crEND();
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xAreFlashCoRoutinesStillRunning( void )
+{
+ /* Return pdPASS or pdFAIL depending on whether an error has been detected
+ or not. */
+ return xCoRoutineFlashStatus;
+}
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Minimal/crhook.c b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/crhook.c
new file mode 100644
index 0000000..1f2718f
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/crhook.c
@@ -0,0 +1,274 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/*
+ * This demo file demonstrates how to send data between an ISR and a
+ * co-routine. A tick hook function is used to periodically pass data between
+ * the RTOS tick and a set of 'hook' co-routines.
+ *
+ * hookNUM_HOOK_CO_ROUTINES co-routines are created. Each co-routine blocks
+ * to wait for a character to be received on a queue from the tick ISR, checks
+ * to ensure the character received was that expected, then sends the number
+ * back to the tick ISR on a different queue.
+ *
+ * The tick ISR checks the numbers received back from the 'hook' co-routines
+ * matches the number previously sent.
+ *
+ * If at any time a queue function returns unexpectedly, or an incorrect value
+ * is received either by the tick hook or a co-routine then an error is
+ * latched.
+ *
+ * This demo relies on each 'hook' co-routine to execute between each
+ * hookTICK_CALLS_BEFORE_POST tick interrupts. This and the heavy use of
+ * queues from within an interrupt may result in an error being detected on
+ * slower targets simply due to timing.
+ */
+
+/* Scheduler includes. */
+#include "FreeRTOS.h"
+#include "croutine.h"
+#include "queue.h"
+
+/* Demo application includes. */
+#include "crhook.h"
+
+/* The number of 'hook' co-routines that are to be created. */
+#define hookNUM_HOOK_CO_ROUTINES ( 4 )
+
+/* The number of times the tick hook should be called before a character is
+posted to the 'hook' co-routines. */
+#define hookTICK_CALLS_BEFORE_POST ( 500 )
+
+/* There should never be more than one item in any queue at any time. */
+#define hookHOOK_QUEUE_LENGTH ( 1 )
+
+/* Don't block when initially posting to the queue. */
+#define hookNO_BLOCK_TIME ( 0 )
+
+/* The priority relative to other co-routines (rather than tasks) that the
+'hook' co-routines should take. */
+#define mainHOOK_CR_PRIORITY ( 1 )
+/*-----------------------------------------------------------*/
+
+/*
+ * The co-routine function itself.
+ */
+static void prvHookCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex );
+
+
+/*
+ * The tick hook function. This receives a number from each 'hook' co-routine
+ * then sends a number to each co-routine. An error is flagged if a send or
+ * receive fails, or an unexpected number is received.
+ */
+void vApplicationTickHook( void );
+
+/*-----------------------------------------------------------*/
+
+/* Queues used to send data FROM a co-routine TO the tick hook function.
+The hook functions received (Rx's) on these queues. One queue per
+'hook' co-routine. */
+static QueueHandle_t xHookRxQueues[ hookNUM_HOOK_CO_ROUTINES ];
+
+/* Queues used to send data FROM the tick hook TO a co-routine function.
+The hood function transmits (Tx's) on these queues. One queue per
+'hook' co-routine. */
+static QueueHandle_t xHookTxQueues[ hookNUM_HOOK_CO_ROUTINES ];
+
+/* Set to true if an error is detected at any time. */
+static BaseType_t xCoRoutineErrorDetected = pdFALSE;
+
+/*-----------------------------------------------------------*/
+
+void vStartHookCoRoutines( void )
+{
+UBaseType_t uxIndex, uxValueToPost = 0;
+
+ for( uxIndex = 0; uxIndex < hookNUM_HOOK_CO_ROUTINES; uxIndex++ )
+ {
+ /* Create a queue to transmit to and receive from each 'hook'
+ co-routine. */
+ xHookRxQueues[ uxIndex ] = xQueueCreate( hookHOOK_QUEUE_LENGTH, sizeof( UBaseType_t ) );
+ xHookTxQueues[ uxIndex ] = xQueueCreate( hookHOOK_QUEUE_LENGTH, sizeof( UBaseType_t ) );
+
+ /* To start things off the tick hook function expects the queue it
+ uses to receive data to contain a value. */
+ xQueueSend( xHookRxQueues[ uxIndex ], &uxValueToPost, hookNO_BLOCK_TIME );
+
+ /* Create the 'hook' co-routine itself. */
+ xCoRoutineCreate( prvHookCoRoutine, mainHOOK_CR_PRIORITY, uxIndex );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static UBaseType_t uxCallCounter = 0, uxNumberToPost = 0;
+void vApplicationTickHook( void )
+{
+UBaseType_t uxReceivedNumber;
+BaseType_t xIndex, xCoRoutineWoken;
+
+ /* Is it time to talk to the 'hook' co-routines again? */
+ uxCallCounter++;
+ if( uxCallCounter >= hookTICK_CALLS_BEFORE_POST )
+ {
+ uxCallCounter = 0;
+
+ for( xIndex = 0; xIndex < hookNUM_HOOK_CO_ROUTINES; xIndex++ )
+ {
+ xCoRoutineWoken = pdFALSE;
+ if( crQUEUE_RECEIVE_FROM_ISR( xHookRxQueues[ xIndex ], &uxReceivedNumber, &xCoRoutineWoken ) != pdPASS )
+ {
+ /* There is no reason why we would not expect the queue to
+ contain a value. */
+ xCoRoutineErrorDetected = pdTRUE;
+ }
+ else
+ {
+ /* Each queue used to receive data from the 'hook' co-routines
+ should contain the number we last posted to the same co-routine. */
+ if( uxReceivedNumber != uxNumberToPost )
+ {
+ xCoRoutineErrorDetected = pdTRUE;
+ }
+
+ /* Nothing should be blocked waiting to post to the queue. */
+ if( xCoRoutineWoken != pdFALSE )
+ {
+ xCoRoutineErrorDetected = pdTRUE;
+ }
+ }
+ }
+
+ /* Start the next cycle by posting the next number onto each Tx queue. */
+ uxNumberToPost++;
+
+ for( xIndex = 0; xIndex < hookNUM_HOOK_CO_ROUTINES; xIndex++ )
+ {
+ if( crQUEUE_SEND_FROM_ISR( xHookTxQueues[ xIndex ], &uxNumberToPost, pdFALSE ) != pdTRUE )
+ {
+ /* Posting to the queue should have woken the co-routine that
+ was blocked on the queue. */
+ xCoRoutineErrorDetected = pdTRUE;
+ }
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvHookCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
+{
+static UBaseType_t uxReceivedValue[ hookNUM_HOOK_CO_ROUTINES ];
+BaseType_t xResult;
+
+ /* Each co-routine MUST start with a call to crSTART(); */
+ crSTART( xHandle );
+
+ for( ;; )
+ {
+ /* Wait to receive a value from the tick hook. */
+ xResult = pdFAIL;
+ crQUEUE_RECEIVE( xHandle, xHookTxQueues[ uxIndex ], &( uxReceivedValue[ uxIndex ] ), portMAX_DELAY, &xResult );
+
+ /* There is no reason why we should not have received something on
+ the queue. */
+ if( xResult != pdPASS )
+ {
+ xCoRoutineErrorDetected = pdTRUE;
+ }
+
+ /* Send the same number back to the idle hook so it can verify it. */
+ xResult = pdFAIL;
+ crQUEUE_SEND( xHandle, xHookRxQueues[ uxIndex ], &( uxReceivedValue[ uxIndex ] ), hookNO_BLOCK_TIME, &xResult );
+ if( xResult != pdPASS )
+ {
+ /* There is no reason why we should not have been able to post to
+ the queue. */
+ xCoRoutineErrorDetected = pdTRUE;
+ }
+ }
+
+ /* Each co-routine MUST end with a call to crEND(). */
+ crEND();
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xAreHookCoRoutinesStillRunning( void )
+{
+ if( xCoRoutineErrorDetected )
+ {
+ return pdFALSE;
+ }
+ else
+ {
+ return pdTRUE;
+ }
+}
+
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/Minimal/recmutex.c b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/recmutex.c
new file mode 100644
index 0000000..f59d360
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/Minimal/recmutex.c
@@ -0,0 +1,444 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/*
+ The tasks defined on this page demonstrate the use of recursive mutexes.
+
+ For recursive mutex functionality the created mutex should be created using
+ xSemaphoreCreateRecursiveMutex(), then be manipulated
+ using the xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() API
+ functions.
+
+ This demo creates three tasks all of which access the same recursive mutex:
+
+ prvRecursiveMutexControllingTask() has the highest priority so executes
+ first and grabs the mutex. It then performs some recursive accesses -
+ between each of which it sleeps for a short period to let the lower
+ priority tasks execute. When it has completed its demo functionality
+ it gives the mutex back before suspending itself.
+
+ prvRecursiveMutexBlockingTask() attempts to access the mutex by performing
+ a blocking 'take'. The blocking task has a lower priority than the
+ controlling task so by the time it executes the mutex has already been
+ taken by the controlling task, causing the blocking task to block. It
+ does not unblock until the controlling task has given the mutex back,
+ and it does not actually run until the controlling task has suspended
+ itself (due to the relative priorities). When it eventually does obtain
+ the mutex all it does is give the mutex back prior to also suspending
+ itself. At this point both the controlling task and the blocking task are
+ suspended.
+
+ prvRecursiveMutexPollingTask() runs at the idle priority. It spins round
+ a tight loop attempting to obtain the mutex with a non-blocking call. As
+ the lowest priority task it will not successfully obtain the mutex until
+ both the controlling and blocking tasks are suspended. Once it eventually
+ does obtain the mutex it first unsuspends both the controlling task and
+ blocking task prior to giving the mutex back - resulting in the polling
+ task temporarily inheriting the controlling tasks priority.
+*/
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "semphr.h"
+
+/* Demo app include files. */
+#include "recmutex.h"
+
+/* Priorities assigned to the three tasks. recmuCONTROLLING_TASK_PRIORITY can
+be overridden by a definition in FreeRTOSConfig.h. */
+#ifndef recmuCONTROLLING_TASK_PRIORITY
+ #define recmuCONTROLLING_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 )
+#endif
+#define recmuBLOCKING_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 )
+#define recmuPOLLING_TASK_PRIORITY ( tskIDLE_PRIORITY + 0 )
+
+/* The recursive call depth. */
+#define recmuMAX_COUNT ( 10 )
+
+/* Misc. */
+#define recmuSHORT_DELAY ( 20 / portTICK_PERIOD_MS )
+#define recmuNO_DELAY ( ( TickType_t ) 0 )
+#define recmuEIGHT_TICK_DELAY ( ( TickType_t ) 8 )
+
+/* The three tasks as described at the top of this file. */
+static void prvRecursiveMutexControllingTask( void *pvParameters );
+static void prvRecursiveMutexBlockingTask( void *pvParameters );
+static void prvRecursiveMutexPollingTask( void *pvParameters );
+
+/* The mutex used by the demo. */
+static SemaphoreHandle_t xMutex;
+
+/* Variables used to detect and latch errors. */
+static volatile BaseType_t xErrorOccurred = pdFALSE, xControllingIsSuspended = pdFALSE, xBlockingIsSuspended = pdFALSE;
+static volatile UBaseType_t uxControllingCycles = 0, uxBlockingCycles = 0, uxPollingCycles = 0;
+
+/* Handles of the two higher priority tasks, required so they can be resumed
+(unsuspended). */
+static TaskHandle_t xControllingTaskHandle, xBlockingTaskHandle;
+
+/*-----------------------------------------------------------*/
+
+void vStartRecursiveMutexTasks( void )
+{
+ /* Just creates the mutex and the three tasks. */
+
+ xMutex = xSemaphoreCreateRecursiveMutex();
+
+ /* vQueueAddToRegistry() adds the mutex to the registry, if one is
+ in use. The registry is provided as a means for kernel aware
+ debuggers to locate mutex and has no purpose if a kernel aware debugger
+ is not being used. The call to vQueueAddToRegistry() will be removed
+ by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
+ defined to be less than 1. */
+ vQueueAddToRegistry( ( QueueHandle_t ) xMutex, "Recursive_Mutex" );
+
+
+ if( xMutex != NULL )
+ {
+ xTaskCreate( prvRecursiveMutexControllingTask, "Rec1", configMINIMAL_STACK_SIZE, NULL, recmuCONTROLLING_TASK_PRIORITY, &xControllingTaskHandle );
+ xTaskCreate( prvRecursiveMutexBlockingTask, "Rec2", configMINIMAL_STACK_SIZE, NULL, recmuBLOCKING_TASK_PRIORITY, &xBlockingTaskHandle );
+ xTaskCreate( prvRecursiveMutexPollingTask, "Rec3", configMINIMAL_STACK_SIZE, NULL, recmuPOLLING_TASK_PRIORITY, NULL );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvRecursiveMutexControllingTask( void *pvParameters )
+{
+UBaseType_t ux;
+
+ /* Just to remove compiler warning. */
+ ( void ) pvParameters;
+
+ for( ;; )
+ {
+ /* Should not be able to 'give' the mutex, as we have not yet 'taken'
+ it. The first time through, the mutex will not have been used yet,
+ subsequent times through, at this point the mutex will be held by the
+ polling task. */
+ if( xSemaphoreGiveRecursive( xMutex ) == pdPASS )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ for( ux = 0; ux < recmuMAX_COUNT; ux++ )
+ {
+ /* We should now be able to take the mutex as many times as
+ we like.
+
+ The first time through the mutex will be immediately available, on
+ subsequent times through the mutex will be held by the polling task
+ at this point and this Take will cause the polling task to inherit
+ the priority of this task. In this case the block time must be
+ long enough to ensure the polling task will execute again before the
+ block time expires. If the block time does expire then the error
+ flag will be set here. */
+ if( xSemaphoreTakeRecursive( xMutex, recmuEIGHT_TICK_DELAY ) != pdPASS )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* Ensure the other task attempting to access the mutex (and the
+ other demo tasks) are able to execute to ensure they either block
+ (where a block time is specified) or return an error (where no
+ block time is specified) as the mutex is held by this task. */
+ vTaskDelay( recmuSHORT_DELAY );
+ }
+
+ /* For each time we took the mutex, give it back. */
+ for( ux = 0; ux < recmuMAX_COUNT; ux++ )
+ {
+ /* Ensure the other task attempting to access the mutex (and the
+ other demo tasks) are able to execute. */
+ vTaskDelay( recmuSHORT_DELAY );
+
+ /* We should now be able to give the mutex as many times as we
+ took it. When the mutex is available again the Blocking task
+ should be unblocked but not run because it has a lower priority
+ than this task. The polling task should also not run at this point
+ as it too has a lower priority than this task. */
+ if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+ }
+
+ /* Having given it back the same number of times as it was taken, we
+ should no longer be the mutex owner, so the next give should fail. */
+ if( xSemaphoreGiveRecursive( xMutex ) == pdPASS )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* Keep count of the number of cycles this task has performed so a
+ stall can be detected. */
+ uxControllingCycles++;
+
+ /* Suspend ourselves so the blocking task can execute. */
+ xControllingIsSuspended = pdTRUE;
+ vTaskSuspend( NULL );
+ xControllingIsSuspended = pdFALSE;
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvRecursiveMutexBlockingTask( void *pvParameters )
+{
+ /* Just to remove compiler warning. */
+ ( void ) pvParameters;
+
+ for( ;; )
+ {
+ /* This task will run while the controlling task is blocked, and the
+ controlling task will block only once it has the mutex - therefore
+ this call should block until the controlling task has given up the
+ mutex, and not actually execute past this call until the controlling
+ task is suspended. portMAX_DELAY - 1 is used instead of portMAX_DELAY
+ to ensure the task's state is reported as Blocked and not Suspended in
+ a later call to configASSERT() (within the polling task). */
+ if( xSemaphoreTakeRecursive( xMutex, ( portMAX_DELAY - 1 ) ) == pdPASS )
+ {
+ if( xControllingIsSuspended != pdTRUE )
+ {
+ /* Did not expect to execute until the controlling task was
+ suspended. */
+ xErrorOccurred = pdTRUE;
+ }
+ else
+ {
+ /* Give the mutex back before suspending ourselves to allow
+ the polling task to obtain the mutex. */
+ if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ xBlockingIsSuspended = pdTRUE;
+ vTaskSuspend( NULL );
+ xBlockingIsSuspended = pdFALSE;
+ }
+ }
+ else
+ {
+ /* We should not leave the xSemaphoreTakeRecursive() function
+ until the mutex was obtained. */
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* The controlling and blocking tasks should be in lock step. */
+ if( uxControllingCycles != ( uxBlockingCycles + 1 ) )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ /* Keep count of the number of cycles this task has performed so a
+ stall can be detected. */
+ uxBlockingCycles++;
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvRecursiveMutexPollingTask( void *pvParameters )
+{
+ /* Just to remove compiler warning. */
+ ( void ) pvParameters;
+
+ for( ;; )
+ {
+ /* Keep attempting to obtain the mutex. We should only obtain it when
+ the blocking task has suspended itself, which in turn should only
+ happen when the controlling task is also suspended. */
+ if( xSemaphoreTakeRecursive( xMutex, recmuNO_DELAY ) == pdPASS )
+ {
+ #if( INCLUDE_eTaskGetState == 1 )
+ {
+ configASSERT( eTaskGetState( xControllingTaskHandle ) == eSuspended );
+ configASSERT( eTaskGetState( xBlockingTaskHandle ) == eSuspended );
+ }
+ #endif /* INCLUDE_eTaskGetState */
+
+ /* Is the blocking task suspended? */
+ if( ( xBlockingIsSuspended != pdTRUE ) || ( xControllingIsSuspended != pdTRUE ) )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+ else
+ {
+ /* Keep count of the number of cycles this task has performed
+ so a stall can be detected. */
+ uxPollingCycles++;
+
+ /* We can resume the other tasks here even though they have a
+ higher priority than the polling task. When they execute they
+ will attempt to obtain the mutex but fail because the polling
+ task is still the mutex holder. The polling task (this task)
+ will then inherit the higher priority. The Blocking task will
+ block indefinitely when it attempts to obtain the mutex, the
+ Controlling task will only block for a fixed period and an
+ error will be latched if the polling task has not returned the
+ mutex by the time this fixed period has expired. */
+ vTaskResume( xBlockingTaskHandle );
+ vTaskResume( xControllingTaskHandle );
+
+ /* The other two tasks should now have executed and no longer
+ be suspended. */
+ if( ( xBlockingIsSuspended == pdTRUE ) || ( xControllingIsSuspended == pdTRUE ) )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ #if( INCLUDE_uxTaskPriorityGet == 1 )
+ {
+ /* Check priority inherited. */
+ configASSERT( uxTaskPriorityGet( NULL ) == recmuCONTROLLING_TASK_PRIORITY );
+ }
+ #endif /* INCLUDE_uxTaskPriorityGet */
+
+ #if( INCLUDE_eTaskGetState == 1 )
+ {
+ configASSERT( eTaskGetState( xControllingTaskHandle ) == eBlocked );
+ configASSERT( eTaskGetState( xBlockingTaskHandle ) == eBlocked );
+ }
+ #endif /* INCLUDE_eTaskGetState */
+
+ /* Release the mutex, disinheriting the higher priority again. */
+ if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+
+ #if( INCLUDE_uxTaskPriorityGet == 1 )
+ {
+ /* Check priority disinherited. */
+ configASSERT( uxTaskPriorityGet( NULL ) == recmuPOLLING_TASK_PRIORITY );
+ }
+ #endif /* INCLUDE_uxTaskPriorityGet */
+ }
+ }
+
+ #if configUSE_PREEMPTION == 0
+ {
+ taskYIELD();
+ }
+ #endif
+ }
+}
+/*-----------------------------------------------------------*/
+
+/* This is called to check that all the created tasks are still running. */
+BaseType_t xAreRecursiveMutexTasksStillRunning( void )
+{
+BaseType_t xReturn;
+static UBaseType_t uxLastControllingCycles = 0, uxLastBlockingCycles = 0, uxLastPollingCycles = 0;
+
+ /* Is the controlling task still cycling? */
+ if( uxLastControllingCycles == uxControllingCycles )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+ else
+ {
+ uxLastControllingCycles = uxControllingCycles;
+ }
+
+ /* Is the blocking task still cycling? */
+ if( uxLastBlockingCycles == uxBlockingCycles )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+ else
+ {
+ uxLastBlockingCycles = uxBlockingCycles;
+ }
+
+ /* Is the polling task still cycling? */
+ if( uxLastPollingCycles == uxPollingCycles )
+ {
+ xErrorOccurred = pdTRUE;
+ }
+ else
+ {
+ uxLastPollingCycles = uxPollingCycles;
+ }
+
+ if( xErrorOccurred == pdTRUE )
+ {
+ xReturn = pdFAIL;
+ }
+ else
+ {
+ xReturn = pdTRUE;
+ }
+
+ return xReturn;
+}
+
+
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/BlockQ.h b/src/FreeRTOS-Sim-master/Demo/Common/include/BlockQ.h
new file mode 100644
index 0000000..7c2bdda
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/BlockQ.h
@@ -0,0 +1,78 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef BLOCK_Q_H
+#define BLOCK_Q_H
+
+void vStartBlockingQueueTasks( UBaseType_t uxPriority );
+BaseType_t xAreBlockingQueuesStillRunning( void );
+
+#endif
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/GenQTest.h b/src/FreeRTOS-Sim-master/Demo/Common/include/GenQTest.h
new file mode 100644
index 0000000..071305d
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/GenQTest.h
@@ -0,0 +1,80 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef GEN_Q_TEST_H
+#define GEN_Q_TEST_H
+
+void vStartGenericQueueTasks( UBaseType_t uxPriority );
+BaseType_t xAreGenericQueueTasksStillRunning( void );
+void vMutexISRInteractionTest( void );
+
+#endif /* GEN_Q_TEST_H */
+
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/PollQ.h b/src/FreeRTOS-Sim-master/Demo/Common/include/PollQ.h
new file mode 100644
index 0000000..041c648
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/PollQ.h
@@ -0,0 +1,78 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef POLLED_Q_H
+#define POLLED_Q_H
+
+void vStartPolledQueueTasks( UBaseType_t uxPriority );
+BaseType_t xArePollingQueuesStillRunning( void );
+
+#endif
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/QPeek.h b/src/FreeRTOS-Sim-master/Demo/Common/include/QPeek.h
new file mode 100644
index 0000000..27e04cc
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/QPeek.h
@@ -0,0 +1,79 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef Q_PEEK_TEST_H
+#define Q_PEEK_TEST_H
+
+void vStartQueuePeekTasks( void );
+BaseType_t xAreQueuePeekTasksStillRunning( void );
+
+#endif /* Q_PEEK_TEST_H */
+
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/blocktim.h b/src/FreeRTOS-Sim-master/Demo/Common/include/blocktim.h
new file mode 100644
index 0000000..14ba5a1
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/blocktim.h
@@ -0,0 +1,78 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef BLOCK_TIME_TEST_H
+#define BLOCK_TIME_TEST_H
+
+void vCreateBlockTimeTasks( void );
+BaseType_t xAreBlockTimeTestTasksStillRunning( void );
+
+#endif
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/countsem.h b/src/FreeRTOS-Sim-master/Demo/Common/include/countsem.h
new file mode 100644
index 0000000..61ce201
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/countsem.h
@@ -0,0 +1,77 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef COUNT_SEMAPHORE_TEST_H
+#define COUNT_SEMAPHORE_TEST_H
+
+void vStartCountingSemaphoreTasks( void );
+BaseType_t xAreCountingSemaphoreTasksStillRunning( void );
+
+#endif
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/crflash.h b/src/FreeRTOS-Sim-master/Demo/Common/include/crflash.h
new file mode 100644
index 0000000..3034405
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/crflash.h
@@ -0,0 +1,89 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef CRFLASH_LED_H
+#define CRFLASH_LED_H
+
+/*
+ * Create the co-routines used to flash the LED's at different rates.
+ *
+ * @param uxPriority The number of 'fixed delay' co-routines to create. This
+ * also effects the number of LED's that will be utilised. For example,
+ * passing in 3 will cause LED's 0 to 2 to be utilised.
+ */
+void vStartFlashCoRoutines( UBaseType_t uxPriority );
+
+/*
+ * Return pdPASS or pdFAIL depending on whether an error has been detected
+ * or not.
+ */
+BaseType_t xAreFlashCoRoutinesStillRunning( void );
+
+#endif
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/crhook.h b/src/FreeRTOS-Sim-master/Demo/Common/include/crhook.h
new file mode 100644
index 0000000..8a21e68
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/crhook.h
@@ -0,0 +1,85 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef CRHOOK_H
+#define CRHOOK_H
+
+/*
+ * Create the co-routines used to communicate wit the tick hook.
+ */
+void vStartHookCoRoutines( void );
+
+/*
+ * Return pdPASS or pdFAIL depending on whether an error has been detected
+ * or not.
+ */
+BaseType_t xAreHookCoRoutinesStillRunning( void );
+
+#endif
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/death.h b/src/FreeRTOS-Sim-master/Demo/Common/include/death.h
new file mode 100644
index 0000000..d705a33
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/death.h
@@ -0,0 +1,78 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef SUICIDE_TASK_H
+#define SUICIDE_TASK_H
+
+void vCreateSuicidalTasks( UBaseType_t uxPriority );
+BaseType_t xIsCreateTaskStillRunning( void );
+
+#endif
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/dynamic.h b/src/FreeRTOS-Sim-master/Demo/Common/include/dynamic.h
new file mode 100644
index 0000000..0249406
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/dynamic.h
@@ -0,0 +1,78 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef DYNAMIC_MANIPULATION_H
+#define DYNAMIC_MANIPULATION_H
+
+void vStartDynamicPriorityTasks( void );
+BaseType_t xAreDynamicPriorityTasksStillRunning( void );
+
+#endif
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/fileIO.h b/src/FreeRTOS-Sim-master/Demo/Common/include/fileIO.h
new file mode 100644
index 0000000..4feb795
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/fileIO.h
@@ -0,0 +1,78 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef FILE_IO_H
+#define FILE_IO_H
+
+void vDisplayMessage( const char * const pcMessageToPrint );
+void vWriteMessageToDisk( const char * const pcMessage );
+void vWriteBufferToDisk( const char * const pcBuffer, uint32_t ulBufferLength );
+
+#endif
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/flop.h b/src/FreeRTOS-Sim-master/Demo/Common/include/flop.h
new file mode 100644
index 0000000..097d432
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/flop.h
@@ -0,0 +1,78 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef FLOP_TASKS_H
+#define FLOP_TASKS_H
+
+void vStartMathTasks( UBaseType_t uxPriority );
+BaseType_t xAreMathsTaskStillRunning( void );
+
+#endif
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/integer.h b/src/FreeRTOS-Sim-master/Demo/Common/include/integer.h
new file mode 100644
index 0000000..8b74a56
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/integer.h
@@ -0,0 +1,78 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef INTEGER_TASKS_H
+#define INTEGER_TASKS_H
+
+void vStartIntegerMathTasks( UBaseType_t uxPriority );
+BaseType_t xAreIntegerMathsTaskStillRunning( void );
+
+#endif
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/mevents.h b/src/FreeRTOS-Sim-master/Demo/Common/include/mevents.h
new file mode 100644
index 0000000..c0ed997
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/mevents.h
@@ -0,0 +1,78 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef EVENTS_TEST_H
+#define EVENTS_TEST_H
+
+void vStartMultiEventTasks( void );
+BaseType_t xAreMultiEventTasksStillRunning( void );
+
+#endif
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/partest.h b/src/FreeRTOS-Sim-master/Demo/Common/include/partest.h
new file mode 100644
index 0000000..02db404
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/partest.h
@@ -0,0 +1,80 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef PARTEST_H
+#define PARTEST_H
+
+#define partstDEFAULT_PORT_ADDRESS ( ( uint16_t ) 0x378 )
+
+void vParTestInitialise( void );
+void vParTestSetLED( UBaseType_t uxLED, BaseType_t xValue );
+void vParTestToggleLED( UBaseType_t uxLED );
+
+#endif
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/print.h b/src/FreeRTOS-Sim-master/Demo/Common/include/print.h
new file mode 100644
index 0000000..1e78780
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/print.h
@@ -0,0 +1,79 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef PRINT_H
+#define PRINT_H
+
+void vPrintInitialise( void );
+void vPrintDisplayMessage( const char * const * pcMessageToSend );
+const char *pcPrintGetNextMessage( TickType_t xPrintRate );
+
+#endif
+
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/recmutex.h b/src/FreeRTOS-Sim-master/Demo/Common/include/recmutex.h
new file mode 100644
index 0000000..52a4eb2
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/recmutex.h
@@ -0,0 +1,77 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef RECURSIVE_MUTEX_TEST_H
+#define RECURSIVE_MUTEX_TEST_H
+
+void vStartRecursiveMutexTasks( void );
+BaseType_t xAreRecursiveMutexTasksStillRunning( void );
+
+#endif
+
diff --git a/src/FreeRTOS-Sim-master/Demo/Common/include/semtest.h b/src/FreeRTOS-Sim-master/Demo/Common/include/semtest.h
new file mode 100644
index 0000000..ecfeede
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Demo/Common/include/semtest.h
@@ -0,0 +1,77 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef SEMAPHORE_TEST_H
+#define SEMAPHORE_TEST_H
+
+void vStartSemaphoreTasks( UBaseType_t uxPriority );
+BaseType_t xAreSemaphoreTasksStillRunning( void );
+
+#endif
+
diff --git a/src/FreeRTOS-Sim-master/LICENSE b/src/FreeRTOS-Sim-master/LICENSE
new file mode 100644
index 0000000..8cdb845
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/LICENSE
@@ -0,0 +1,340 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 2, June 1991
+
+ Copyright (C) 1989, 1991 Free Software Foundation, Inc., <http://fsf.org/>
+ 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The licenses for most software are designed to take away your
+freedom to share and change it. By contrast, the GNU General Public
+License is intended to guarantee your freedom to share and change free
+software--to make sure the software is free for all its users. This
+General Public License applies to most of the Free Software
+Foundation's software and to any other program whose authors commit to
+using it. (Some other Free Software Foundation software is covered by
+the GNU Lesser General Public License instead.) You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+this service if you wish), that you receive source code or can get it
+if you want it, that you can change the software or use pieces of it
+in new free programs; and that you know you can do these things.
+
+ To protect your rights, we need to make restrictions that forbid
+anyone to deny you these rights or to ask you to surrender the rights.
+These restrictions translate to certain responsibilities for you if you
+distribute copies of the software, or if you modify it.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must give the recipients all the rights that
+you have. You must make sure that they, too, receive or can get the
+source code. And you must show them these terms so they know their
+rights.
+
+ We protect your rights with two steps: (1) copyright the software, and
+(2) offer you this license which gives you legal permission to copy,
+distribute and/or modify the software.
+
+ Also, for each author's protection and ours, we want to make certain
+that everyone understands that there is no warranty for this free
+software. If the software is modified by someone else and passed on, we
+want its recipients to know that what they have is not the original, so
+that any problems introduced by others will not reflect on the original
+authors' reputations.
+
+ Finally, any free program is threatened constantly by software
+patents. We wish to avoid the danger that redistributors of a free
+program will individually obtain patent licenses, in effect making the
+program proprietary. To prevent this, we have made it clear that any
+patent must be licensed for everyone's free use or not licensed at all.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ GNU GENERAL PUBLIC LICENSE
+ TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
+
+ 0. This License applies to any program or other work which contains
+a notice placed by the copyright holder saying it may be distributed
+under the terms of this General Public License. The "Program", below,
+refers to any such program or work, and a "work based on the Program"
+means either the Program or any derivative work under copyright law:
+that is to say, a work containing the Program or a portion of it,
+either verbatim or with modifications and/or translated into another
+language. (Hereinafter, translation is included without limitation in
+the term "modification".) Each licensee is addressed as "you".
+
+Activities other than copying, distribution and modification are not
+covered by this License; they are outside its scope. The act of
+running the Program is not restricted, and the output from the Program
+is covered only if its contents constitute a work based on the
+Program (independent of having been made by running the Program).
+Whether that is true depends on what the Program does.
+
+ 1. You may copy and distribute verbatim copies of the Program's
+source code as you receive it, in any medium, provided that you
+conspicuously and appropriately publish on each copy an appropriate
+copyright notice and disclaimer of warranty; keep intact all the
+notices that refer to this License and to the absence of any warranty;
+and give any other recipients of the Program a copy of this License
+along with the Program.
+
+You may charge a fee for the physical act of transferring a copy, and
+you may at your option offer warranty protection in exchange for a fee.
+
+ 2. You may modify your copy or copies of the Program or any portion
+of it, thus forming a work based on the Program, and copy and
+distribute such modifications or work under the terms of Section 1
+above, provided that you also meet all of these conditions:
+
+ a) You must cause the modified files to carry prominent notices
+ stating that you changed the files and the date of any change.
+
+ b) You must cause any work that you distribute or publish, that in
+ whole or in part contains or is derived from the Program or any
+ part thereof, to be licensed as a whole at no charge to all third
+ parties under the terms of this License.
+
+ c) If the modified program normally reads commands interactively
+ when run, you must cause it, when started running for such
+ interactive use in the most ordinary way, to print or display an
+ announcement including an appropriate copyright notice and a
+ notice that there is no warranty (or else, saying that you provide
+ a warranty) and that users may redistribute the program under
+ these conditions, and telling the user how to view a copy of this
+ License. (Exception: if the Program itself is interactive but
+ does not normally print such an announcement, your work based on
+ the Program is not required to print an announcement.)
+
+These requirements apply to the modified work as a whole. If
+identifiable sections of that work are not derived from the Program,
+and can be reasonably considered independent and separate works in
+themselves, then this License, and its terms, do not apply to those
+sections when you distribute them as separate works. But when you
+distribute the same sections as part of a whole which is a work based
+on the Program, the distribution of the whole must be on the terms of
+this License, whose permissions for other licensees extend to the
+entire whole, and thus to each and every part regardless of who wrote it.
+
+Thus, it is not the intent of this section to claim rights or contest
+your rights to work written entirely by you; rather, the intent is to
+exercise the right to control the distribution of derivative or
+collective works based on the Program.
+
+In addition, mere aggregation of another work not based on the Program
+with the Program (or with a work based on the Program) on a volume of
+a storage or distribution medium does not bring the other work under
+the scope of this License.
+
+ 3. You may copy and distribute the Program (or a work based on it,
+under Section 2) in object code or executable form under the terms of
+Sections 1 and 2 above provided that you also do one of the following:
+
+ a) Accompany it with the complete corresponding machine-readable
+ source code, which must be distributed under the terms of Sections
+ 1 and 2 above on a medium customarily used for software interchange; or,
+
+ b) Accompany it with a written offer, valid for at least three
+ years, to give any third party, for a charge no more than your
+ cost of physically performing source distribution, a complete
+ machine-readable copy of the corresponding source code, to be
+ distributed under the terms of Sections 1 and 2 above on a medium
+ customarily used for software interchange; or,
+
+ c) Accompany it with the information you received as to the offer
+ to distribute corresponding source code. (This alternative is
+ allowed only for noncommercial distribution and only if you
+ received the program in object code or executable form with such
+ an offer, in accord with Subsection b above.)
+
+The source code for a work means the preferred form of the work for
+making modifications to it. For an executable work, complete source
+code means all the source code for all modules it contains, plus any
+associated interface definition files, plus the scripts used to
+control compilation and installation of the executable. However, as a
+special exception, the source code distributed need not include
+anything that is normally distributed (in either source or binary
+form) with the major components (compiler, kernel, and so on) of the
+operating system on which the executable runs, unless that component
+itself accompanies the executable.
+
+If distribution of executable or object code is made by offering
+access to copy from a designated place, then offering equivalent
+access to copy the source code from the same place counts as
+distribution of the source code, even though third parties are not
+compelled to copy the source along with the object code.
+
+ 4. You may not copy, modify, sublicense, or distribute the Program
+except as expressly provided under this License. Any attempt
+otherwise to copy, modify, sublicense or distribute the Program is
+void, and will automatically terminate your rights under this License.
+However, parties who have received copies, or rights, from you under
+this License will not have their licenses terminated so long as such
+parties remain in full compliance.
+
+ 5. You are not required to accept this License, since you have not
+signed it. However, nothing else grants you permission to modify or
+distribute the Program or its derivative works. These actions are
+prohibited by law if you do not accept this License. Therefore, by
+modifying or distributing the Program (or any work based on the
+Program), you indicate your acceptance of this License to do so, and
+all its terms and conditions for copying, distributing or modifying
+the Program or works based on it.
+
+ 6. Each time you redistribute the Program (or any work based on the
+Program), the recipient automatically receives a license from the
+original licensor to copy, distribute or modify the Program subject to
+these terms and conditions. You may not impose any further
+restrictions on the recipients' exercise of the rights granted herein.
+You are not responsible for enforcing compliance by third parties to
+this License.
+
+ 7. If, as a consequence of a court judgment or allegation of patent
+infringement or for any other reason (not limited to patent issues),
+conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot
+distribute so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you
+may not distribute the Program at all. For example, if a patent
+license would not permit royalty-free redistribution of the Program by
+all those who receive copies directly or indirectly through you, then
+the only way you could satisfy both it and this License would be to
+refrain entirely from distribution of the Program.
+
+If any portion of this section is held invalid or unenforceable under
+any particular circumstance, the balance of the section is intended to
+apply and the section as a whole is intended to apply in other
+circumstances.
+
+It is not the purpose of this section to induce you to infringe any
+patents or other property right claims or to contest validity of any
+such claims; this section has the sole purpose of protecting the
+integrity of the free software distribution system, which is
+implemented by public license practices. Many people have made
+generous contributions to the wide range of software distributed
+through that system in reliance on consistent application of that
+system; it is up to the author/donor to decide if he or she is willing
+to distribute software through any other system and a licensee cannot
+impose that choice.
+
+This section is intended to make thoroughly clear what is believed to
+be a consequence of the rest of this License.
+
+ 8. If the distribution and/or use of the Program is restricted in
+certain countries either by patents or by copyrighted interfaces, the
+original copyright holder who places the Program under this License
+may add an explicit geographical distribution limitation excluding
+those countries, so that distribution is permitted only in or among
+countries not thus excluded. In such case, this License incorporates
+the limitation as if written in the body of this License.
+
+ 9. The Free Software Foundation may publish revised and/or new versions
+of the General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+Each version is given a distinguishing version number. If the Program
+specifies a version number of this License which applies to it and "any
+later version", you have the option of following the terms and conditions
+either of that version or of any later version published by the Free
+Software Foundation. If the Program does not specify a version number of
+this License, you may choose any version ever published by the Free Software
+Foundation.
+
+ 10. If you wish to incorporate parts of the Program into other free
+programs whose distribution conditions are different, write to the author
+to ask for permission. For software which is copyrighted by the Free
+Software Foundation, write to the Free Software Foundation; we sometimes
+make exceptions for this. Our decision will be guided by the two goals
+of preserving the free status of all derivatives of our free software and
+of promoting the sharing and reuse of software generally.
+
+ NO WARRANTY
+
+ 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
+FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
+OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
+PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
+OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
+TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
+PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
+REPAIR OR CORRECTION.
+
+ 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
+REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
+INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
+OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
+TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
+YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
+PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGES.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+convey the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+ {description}
+ Copyright (C) {year} {fullname}
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License along
+ with this program; if not, write to the Free Software Foundation, Inc.,
+ 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+
+Also add information on how to contact you by electronic and paper mail.
+
+If the program is interactive, make it output a short notice like this
+when it starts in an interactive mode:
+
+ Gnomovision version 69, Copyright (C) year name of author
+ Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, the commands you use may
+be called something other than `show w' and `show c'; they could even be
+mouse-clicks or menu items--whatever suits your program.
+
+You should also get your employer (if you work as a programmer) or your
+school, if any, to sign a "copyright disclaimer" for the program, if
+necessary. Here is a sample; alter the names:
+
+ Yoyodyne, Inc., hereby disclaims all copyright interest in the program
+ `Gnomovision' (which makes passes at compilers) written by James Hacker.
+
+ {signature of Ty Coon}, 1 April 1989
+ Ty Coon, President of Vice
+
+This General Public License does not permit incorporating your program into
+proprietary programs. If your program is a subroutine library, you may
+consider it more useful to permit linking proprietary applications with the
+library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License.
+
diff --git a/src/FreeRTOS-Sim-master/Makefile b/src/FreeRTOS-Sim-master/Makefile
new file mode 100644
index 0000000..fcd1364
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Makefile
@@ -0,0 +1,148 @@
+######## Build options ########
+
+verbose = 0
+
+######## Build setup ########
+
+# SRCROOT should always be the current directory
+SRCROOT = $(CURDIR)
+
+# .o directory
+ODIR = obj
+
+# Source VPATHS
+VPATH += $(SRCROOT)/Source
+VPATH += $(SRCROOT)/Source/portable/MemMang
+VPATH += $(SRCROOT)/Source/portable/GCC/POSIX
+VPATH += $(SRCROOT)/Demo/Common/Full
+VPATH += $(SRCROOT)/Demo/Common/Minimal
+VPATH += $(SRCROOT)/POSIX/FileIO
+VPATH += $(SRCROOT)/POSIX/ParTest
+VPATH += $(SRCROOT)/POSIX
+
+# FreeRTOS Objects
+C_FILES += croutine.c
+C_FILES += event_groups.c
+C_FILES += list.c
+C_FILES += queue.c
+C_FILES += tasks.c
+C_FILES += timers.c
+
+# portable Objects
+C_FILES += heap_3.c
+C_FILES += port.c
+
+# Minimal Demo Objects
+C_FILES += blocktim.c
+C_FILES += countsem.c
+C_FILES += crflash.c
+C_FILES += crhook.c
+C_FILES += GenQTest.c
+C_FILES += QPeek.c
+C_FILES += recmutex.c
+
+# Full Demo Objects
+C_FILES += BlockQ.c
+C_FILES += death.c
+C_FILES += dynamic.c
+C_FILES += events.c
+C_FILES += flop.c
+C_FILES += integer.c
+C_FILES += PollQ.c
+C_FILES += print.c
+C_FILES += semtest.c
+
+# IO objects
+C_FILES += fileIO.c
+C_FILES += ParTest.c
+
+# Main Object
+C_FILES += main.c
+
+# Include Paths
+INCLUDES += -I$(SRCROOT)/Source/include
+INCLUDES += -I$(SRCROOT)/Source/portable/GCC/POSIX/
+INCLUDES += -I$(SRCROOT)/Demo/Common/include
+INCLUDES += -I$(SRCROOT)/POSIX
+
+# Generate OBJS names
+OBJS = $(patsubst %.c,%.o,$(C_FILES))
+
+######## C Flags ########
+
+# Warnings
+CWARNS += -W
+CWARNS += -Wall
+CWARNS += -Werror
+CWARNS += -Wextra
+CWARNS += -Wformat
+CWARNS += -Wmissing-braces
+CWARNS += -Wno-cast-align
+CWARNS += -Wparentheses
+CWARNS += -Wshadow
+CWARNS += -Wno-sign-compare
+CWARNS += -Wswitch
+CWARNS += -Wuninitialized
+CWARNS += -Wunknown-pragmas
+CWARNS += -Wunused-function
+CWARNS += -Wunused-label
+CWARNS += -Wunused-parameter
+CWARNS += -Wunused-value
+CWARNS += -Wunused-variable
+CWARNS += -Wmissing-prototypes
+
+CFLAGS += -m32
+CFLAGS += -DDEBUG=1
+CFLAGS += -g -DUSE_STDIO=1 -D__GCC_POSIX__=1
+ifneq ($(shell uname), Darwin)
+CFLAGS += -pthread
+endif
+
+# MAX_NUMBER_OF_TASKS = max pthreads used in the POSIX port.
+# Default value is 64 (_POSIX_THREAD_THREADS_MAX), the minimum number required by POSIX.
+CFLAGS += -DMAX_NUMBER_OF_TASKS=300
+
+CFLAGS += $(INCLUDES) $(CWARNS) -O2
+
+######## Makefile targets ########
+
+# Rules
+.PHONY : all
+all: setup FreeRTOS-Sim
+
+.PHONY : setup
+setup:
+# Make obj directory
+ @mkdir -p $(ODIR)
+
+# Fix to place .o files in ODIR
+_OBJS = $(patsubst %,$(ODIR)/%,$(OBJS))
+
+$(ODIR)/%.o: %.c
+# If verbose, print gcc execution, else hide
+ifeq ($(verbose),1)
+ @echo ">> Compiling $<"
+ $(CC) $(CFLAGS) -c -o $@ $<
+else
+ @echo ">> Compiling $(notdir $<)"
+ @$(CC) $(CFLAGS) -c -o $@ $<
+endif
+
+FreeRTOS-Sim: $(_OBJS)
+ @echo ">> Linking $@..."
+ifeq ($(verbose),1)
+ $(CC) $(CFLAGS) $^ $(LINKFLAGS) $(LIBS) -o $@
+else
+ @$(CC) $(CFLAGS) $^ $(LINKFLAGS) $(LIBS) -o $@
+endif
+
+ @echo "-------------------------"
+ @echo "BUILD COMPLETE: $@"
+ @echo "-------------------------"
+
+.PHONY : clean
+clean:
+ @-rm -rf $(ODIR) FreeRTOS-Sim
+ @echo "--------------"
+ @echo "CLEAN COMPLETE"
+ @echo "--------------"
diff --git a/src/FreeRTOS-Sim-master/POSIX/FileIO/fileIO.c b/src/FreeRTOS-Sim-master/POSIX/FileIO/fileIO.c
new file mode 100644
index 0000000..9f22300
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/POSIX/FileIO/fileIO.c
@@ -0,0 +1,127 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#include <stdio.h>
+#include <string.h>
+
+/* Scheduler include files. */
+#include "FreeRTOS.h"
+#include "task.h"
+
+/* Demo program include files. */
+#include "fileIO.h"
+
+void vDisplayMessage( const char * const pcMessageToPrint )
+{
+ vTaskSuspendAll();
+ {
+ printf( "%s", pcMessageToPrint );
+ fflush( stdout );
+ }
+ xTaskResumeAll();
+}
+/*-----------------------------------------------------------*/
+
+void vWriteMessageToDisk( const char * const pcMessage )
+{
+const portCHAR * const pcFileName = "RTOSlog.txt";
+const portCHAR * const pcSeparator = "\r\n-----------------------\r\n";
+FILE *pf;
+
+ vTaskSuspendAll();
+ {
+ pf = fopen( pcFileName, "a" );
+ if( pf != NULL )
+ {
+ fwrite( pcMessage, strlen( pcMessage ), ( unsigned portSHORT ) 1, pf );
+ fwrite( pcSeparator, strlen( pcSeparator ), ( unsigned portSHORT ) 1, pf );
+ fclose( pf );
+ }
+ }
+ xTaskResumeAll();
+}
+/*-----------------------------------------------------------*/
+
+void vWriteBufferToDisk( const char * const pcBuffer, uint32_t ulBufferLength )
+{
+const portCHAR * const pcFileName = "trace.bin";
+FILE *pf;
+
+ vTaskSuspendAll();
+ {
+ pf = fopen( pcFileName, "wb" );
+ if( pf )
+ {
+ fwrite( pcBuffer, ( size_t ) ulBufferLength, ( unsigned portSHORT ) 1, pf );
+ fclose( pf );
+ }
+ }
+ xTaskResumeAll();
+}
+
diff --git a/src/FreeRTOS-Sim-master/POSIX/FileIO/fileIO.h b/src/FreeRTOS-Sim-master/POSIX/FileIO/fileIO.h
new file mode 100644
index 0000000..4feb795
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/POSIX/FileIO/fileIO.h
@@ -0,0 +1,78 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef FILE_IO_H
+#define FILE_IO_H
+
+void vDisplayMessage( const char * const pcMessageToPrint );
+void vWriteMessageToDisk( const char * const pcMessage );
+void vWriteBufferToDisk( const char * const pcBuffer, uint32_t ulBufferLength );
+
+#endif
+
diff --git a/src/FreeRTOS-Sim-master/POSIX/FreeRTOSConfig.h b/src/FreeRTOS-Sim-master/POSIX/FreeRTOSConfig.h
new file mode 100644
index 0000000..a4f2e47
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/POSIX/FreeRTOSConfig.h
@@ -0,0 +1,82 @@
+#ifndef FREERTOS_CONFIG_H
+#define FREERTOS_CONFIG_H
+
+/*-----------------------------------------------------------
+ * Application specific definitions.
+ *
+ * These definitions should be adjusted for your particular hardware and
+ * application requirements.
+ *
+ * THESE PARAMETERS ARE DESCRIBED WITHIN THE 'CONFIGURATION' SECTION OF THE
+ * FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.
+ *
+ * See http://www.freertos.org/a00110.html.
+ *----------------------------------------------------------*/
+
+#define configUSE_PREEMPTION 1
+#define configUSE_IDLE_HOOK 0
+#define configUSE_TICK_HOOK 0
+#define configTICK_RATE_HZ ( ( portTickType ) 1000 )
+#define configMINIMAL_STACK_SIZE ( ( unsigned portSHORT ) 4 ) /* This can be made smaller if required. */
+#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 32 * 1024 ) )
+#define configMAX_TASK_NAME_LEN ( 16 )
+#define configUSE_TRACE_FACILITY 0
+#define configUSE_16_BIT_TICKS 0
+#define configIDLE_SHOULD_YIELD 1
+#define configUSE_MUTEXES 1
+#define configCHECK_FOR_STACK_OVERFLOW 0 /* Do not use this option on the PC port. */
+#define configUSE_RECURSIVE_MUTEXES 1
+//#define configQUEUE_REGISTRY_SIZE 0
+#define configQUEUE_REGISTRY_SIZE 20
+#define configUSE_MALLOC_FAILED_HOOK 0
+
+#define configUSE_APPLICATION_TASK_TAG 1
+#define configUSE_COUNTING_SEMAPHORES 1
+#define configUSE_ALTERNATIVE_API 0
+#define configMAX_SYSCALL_INTERRUPT_PRIORITY 1
+
+#define configUSE_QUEUE_SETS 1
+#define configUSE_TASK_NOTIFICATIONS 1
+
+/* Software timer related configuration options. */
+#define configUSE_TIMERS 1
+#define configTIMER_TASK_PRIORITY ( configMAX_PRIORITIES - 1 )
+#define configTIMER_QUEUE_LENGTH 20
+#define configTIMER_TASK_STACK_DEPTH ( configMINIMAL_STACK_SIZE * 2 )
+
+#define configMAX_PRIORITIES ( 10 )
+
+#define configGENERATE_RUN_TIME_STATS 1
+
+/* Co-routine related configuration options. */
+#define configUSE_CO_ROUTINES 1
+#define configMAX_CO_ROUTINE_PRIORITIES ( 2 )
+
+
+/* Set the following definitions to 1 to include the API function, or zero
+to exclude the API function. */
+
+/* Set the following definitions to 1 to include the API function, or zero
+to exclude the API function. In most cases the linker will remove unused
+functions anyway. */
+#define INCLUDE_vTaskPrioritySet 1
+#define INCLUDE_uxTaskPriorityGet 1
+#define INCLUDE_vTaskDelete 1
+#define INCLUDE_vTaskCleanUpResources 1
+#define INCLUDE_vTaskSuspend 1
+#define INCLUDE_vTaskDelayUntil 1
+#define INCLUDE_vTaskDelay 1
+#define INCLUDE_uxTaskGetStackHighWaterMark 0 /* Do not use this option on the PC port. */
+#define INCLUDE_xTaskGetSchedulerState 1
+
+#define INCLUDE_xTimerGetTimerDaemonTaskHandle 1
+#define INCLUDE_xTaskGetIdleTaskHandle 1
+#define INCLUDE_pcTaskGetTaskName 1
+#define INCLUDE_eTaskGetState 1
+#define INCLUDE_xSemaphoreGetMutexHolder 1
+#define INCLUDE_xTimerPendFunctionCall 1
+
+/* An example "task switched in" hook macro definition. */
+#define traceTASK_SWITCHED_IN() xTaskCallApplicationTaskHook( NULL, ( void * ) 0xabcd )
+
+#endif /* FREERTOS_CONFIG_H */
diff --git a/src/FreeRTOS-Sim-master/POSIX/ParTest/ParTest.c b/src/FreeRTOS-Sim-master/POSIX/ParTest/ParTest.c
new file mode 100644
index 0000000..a1fc77b
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/POSIX/ParTest/ParTest.c
@@ -0,0 +1,158 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/*
+Changes from V1.01:
+
+ + Types used updated.
+ + Add vParTestToggleLED();
+
+
+Changes from V2.0.0
+
+ + Use scheduler suspends in place of critical sections.
+*/
+
+#include "FreeRTOS.h"
+#include "partest.h"
+#include "task.h"
+
+#define partstALL_OUTPUTS_OFF ( ( unsigned portCHAR ) 0x00 )
+#define partstMAX_OUTPUT_LED ( ( unsigned portCHAR ) 7 )
+
+/*lint -e956 File scope parameters okay here. */
+//static unsigned portSHORT usPortAddress = partstDEFAULT_PORT_ADDRESS;
+static volatile unsigned portCHAR ucCurrentOutputValue = partstALL_OUTPUTS_OFF;
+/*lint +e956 */
+
+
+/*-----------------------------------------------------------
+ * Simple parallel port IO routines
+ *-----------------------------------------------------------*/
+
+void vParTestInitialise( void )
+{
+ ucCurrentOutputValue = partstALL_OUTPUTS_OFF;
+
+ portOUTPUT_BYTE( usPortAddress, ( unsigned ) partstALL_OUTPUTS_OFF );
+}
+/*-----------------------------------------------------------*/
+
+void vParTestSetLED( unsigned portBASE_TYPE uxLED, portBASE_TYPE xValue )
+{
+unsigned portCHAR ucBit = ( unsigned portCHAR ) 1;
+
+ if( uxLED <= partstMAX_OUTPUT_LED )
+ {
+ ucBit <<= uxLED;
+ }
+
+ vTaskSuspendAll();
+ {
+ if( xValue == pdTRUE )
+ {
+ ucBit ^= ( unsigned portCHAR ) 0xff;
+ ucCurrentOutputValue &= ucBit;
+ }
+ else
+ {
+ ucCurrentOutputValue |= ucBit;
+ }
+
+ portOUTPUT_BYTE( usPortAddress, ( unsigned ) ucCurrentOutputValue );
+ }
+ xTaskResumeAll();
+}
+/*-----------------------------------------------------------*/
+
+void vParTestToggleLED( unsigned portBASE_TYPE uxLED )
+{
+unsigned portCHAR ucBit;
+
+ if( uxLED <= partstMAX_OUTPUT_LED )
+ {
+ ucBit = ( ( unsigned portCHAR ) 1 ) << uxLED;
+
+ vTaskSuspendAll();
+ {
+ if( ucCurrentOutputValue & ucBit )
+ {
+ ucCurrentOutputValue &= ~ucBit;
+ }
+ else
+ {
+ ucCurrentOutputValue |= ucBit;
+ }
+
+ portOUTPUT_BYTE( usPortAddress, ( unsigned ) ucCurrentOutputValue );
+ }
+ xTaskResumeAll();
+ }
+}
+
diff --git a/src/FreeRTOS-Sim-master/POSIX/ParTest/partest.h b/src/FreeRTOS-Sim-master/POSIX/ParTest/partest.h
new file mode 100644
index 0000000..02db404
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/POSIX/ParTest/partest.h
@@ -0,0 +1,80 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef PARTEST_H
+#define PARTEST_H
+
+#define partstDEFAULT_PORT_ADDRESS ( ( uint16_t ) 0x378 )
+
+void vParTestInitialise( void );
+void vParTestSetLED( UBaseType_t uxLED, BaseType_t xValue );
+void vParTestToggleLED( UBaseType_t uxLED );
+
+#endif
+
diff --git a/src/FreeRTOS-Sim-master/POSIX/main.c b/src/FreeRTOS-Sim-master/POSIX/main.c
new file mode 100644
index 0000000..ba9e2d6
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/POSIX/main.c
@@ -0,0 +1,132 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/**
+ * Creates all the demo application tasks and co-routines, then starts the
+ * scheduler.
+ *
+ * Main. c also creates a task called "Print". This only executes every
+ * five seconds but has the highest priority so is guaranteed to get
+ * processor time. Its main function is to check that all the other tasks
+ * are still operational. Nearly all the tasks in the demo application
+ * maintain a unique count that is incremented each time the task successfully
+ * completes its function. Should any error occur within the task the count is
+ * permanently halted. The print task checks the count of each task to ensure
+ * it has changed since the last time the print task executed. If any count is
+ * found not to have changed the print task displays an appropriate message.
+ * If all the tasks are still incrementing their unique counts the print task
+ * displays an "OK" message.
+ *
+ * The LED flash tasks do not maintain a count as they already provide visual
+ * feedback of their status.
+ *
+ * The print task blocks on the queue into which messages that require
+ * displaying are posted. It will therefore only block for the full 5 seconds
+ * if no messages are posted onto the queue.
+ *
+ * \page MainC main.c
+ * \ingroup DemoFiles
+ * <HR>
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+
+#include "FreeRTOS.h"
+#include "task.h"
+#include "croutine.h"
+/* #include "partest.h" */
+
+
+
+void launcher_task(void *);
+
+void launcher_task(void * pouet) {
+ printf("Test\n");
+}
+
+int main( void )
+{
+
+ TaskHandle_t task_handle;
+ xTaskCreate(
+ launcher_task,
+ "TaskLauncher",
+ configMINIMAL_STACK_SIZE,
+ (void*) NULL,
+ tskIDLE_PRIORITY + 2UL,
+ &task_handle);
+
+ /* Start the RTOS Scheduler */
+ vTaskStartScheduler();
+
+ /* HALT */
+ while(1);
+}
+
diff --git a/src/FreeRTOS-Sim-master/README.md b/src/FreeRTOS-Sim-master/README.md
new file mode 100644
index 0000000..81519e7
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/README.md
@@ -0,0 +1,9 @@
+# FreeRTOS-Sim
+FreeRTOS simulator for POSIX (Linux, OS X or maybe other POSIX OS with pthread & signal support)
+
+This work is based on the original simulator developed by William Davy for FreeRTOS v5.3 extracted from the official FreeRTOS release. The goal of the work is to make FreeRTOS simulator a seperate package that is easy to build & use and also to keep the simulator updated with newer FreeRTOS releases (v8.2.2 is the latest kernel tested and included in the repo).
+
+Directory description
+- Source: FreeRTOS kernel and POSIX simulator source files
+- POSIX: the project directory that includes main() and FreeRTOS settings for the POSIX port
+- Demo: tested builtin demo tasks from the official FreeRTOS release
diff --git a/src/FreeRTOS-Sim-master/Source/croutine.c b/src/FreeRTOS-Sim-master/Source/croutine.c
new file mode 100644
index 0000000..5cbe415
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/croutine.c
@@ -0,0 +1,395 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#include "FreeRTOS.h"
+#include "task.h"
+#include "croutine.h"
+
+/* Remove the whole file is co-routines are not being used. */
+#if( configUSE_CO_ROUTINES != 0 )
+
+/*
+ * Some kernel aware debuggers require data to be viewed to be global, rather
+ * than file scope.
+ */
+#ifdef portREMOVE_STATIC_QUALIFIER
+ #define static
+#endif
+
+
+/* Lists for ready and blocked co-routines. --------------------*/
+static List_t pxReadyCoRoutineLists[ configMAX_CO_ROUTINE_PRIORITIES ]; /*< Prioritised ready co-routines. */
+static List_t xDelayedCoRoutineList1; /*< Delayed co-routines. */
+static List_t xDelayedCoRoutineList2; /*< Delayed co-routines (two lists are used - one for delays that have overflowed the current tick count. */
+static List_t * pxDelayedCoRoutineList; /*< Points to the delayed co-routine list currently being used. */
+static List_t * pxOverflowDelayedCoRoutineList; /*< Points to the delayed co-routine list currently being used to hold co-routines that have overflowed the current tick count. */
+static List_t xPendingReadyCoRoutineList; /*< Holds co-routines that have been readied by an external event. They cannot be added directly to the ready lists as the ready lists cannot be accessed by interrupts. */
+
+/* Other file private variables. --------------------------------*/
+CRCB_t * pxCurrentCoRoutine = NULL;
+static UBaseType_t uxTopCoRoutineReadyPriority = 0;
+static TickType_t xCoRoutineTickCount = 0, xLastTickCount = 0, xPassedTicks = 0;
+
+/* The initial state of the co-routine when it is created. */
+#define corINITIAL_STATE ( 0 )
+
+/*
+ * Place the co-routine represented by pxCRCB into the appropriate ready queue
+ * for the priority. It is inserted at the end of the list.
+ *
+ * This macro accesses the co-routine ready lists and therefore must not be
+ * used from within an ISR.
+ */
+#define prvAddCoRoutineToReadyQueue( pxCRCB ) \
+{ \
+ if( pxCRCB->uxPriority > uxTopCoRoutineReadyPriority ) \
+ { \
+ uxTopCoRoutineReadyPriority = pxCRCB->uxPriority; \
+ } \
+ vListInsertEnd( ( List_t * ) &( pxReadyCoRoutineLists[ pxCRCB->uxPriority ] ), &( pxCRCB->xGenericListItem ) ); \
+}
+
+/*
+ * Utility to ready all the lists used by the scheduler. This is called
+ * automatically upon the creation of the first co-routine.
+ */
+static void prvInitialiseCoRoutineLists( void );
+
+/*
+ * Co-routines that are readied by an interrupt cannot be placed directly into
+ * the ready lists (there is no mutual exclusion). Instead they are placed in
+ * in the pending ready list in order that they can later be moved to the ready
+ * list by the co-routine scheduler.
+ */
+static void prvCheckPendingReadyList( void );
+
+/*
+ * Macro that looks at the list of co-routines that are currently delayed to
+ * see if any require waking.
+ *
+ * Co-routines are stored in the queue in the order of their wake time -
+ * meaning once one co-routine has been found whose timer has not expired
+ * we need not look any further down the list.
+ */
+static void prvCheckDelayedList( void );
+
+/*-----------------------------------------------------------*/
+
+BaseType_t xCoRoutineCreate( crCOROUTINE_CODE pxCoRoutineCode, UBaseType_t uxPriority, UBaseType_t uxIndex )
+{
+BaseType_t xReturn;
+CRCB_t *pxCoRoutine;
+
+ /* Allocate the memory that will store the co-routine control block. */
+ pxCoRoutine = ( CRCB_t * ) pvPortMalloc( sizeof( CRCB_t ) );
+ if( pxCoRoutine )
+ {
+ /* If pxCurrentCoRoutine is NULL then this is the first co-routine to
+ be created and the co-routine data structures need initialising. */
+ if( pxCurrentCoRoutine == NULL )
+ {
+ pxCurrentCoRoutine = pxCoRoutine;
+ prvInitialiseCoRoutineLists();
+ }
+
+ /* Check the priority is within limits. */
+ if( uxPriority >= configMAX_CO_ROUTINE_PRIORITIES )
+ {
+ uxPriority = configMAX_CO_ROUTINE_PRIORITIES - 1;
+ }
+
+ /* Fill out the co-routine control block from the function parameters. */
+ pxCoRoutine->uxState = corINITIAL_STATE;
+ pxCoRoutine->uxPriority = uxPriority;
+ pxCoRoutine->uxIndex = uxIndex;
+ pxCoRoutine->pxCoRoutineFunction = pxCoRoutineCode;
+
+ /* Initialise all the other co-routine control block parameters. */
+ vListInitialiseItem( &( pxCoRoutine->xGenericListItem ) );
+ vListInitialiseItem( &( pxCoRoutine->xEventListItem ) );
+
+ /* Set the co-routine control block as a link back from the ListItem_t.
+ This is so we can get back to the containing CRCB from a generic item
+ in a list. */
+ listSET_LIST_ITEM_OWNER( &( pxCoRoutine->xGenericListItem ), pxCoRoutine );
+ listSET_LIST_ITEM_OWNER( &( pxCoRoutine->xEventListItem ), pxCoRoutine );
+
+ /* Event lists are always in priority order. */
+ listSET_LIST_ITEM_VALUE( &( pxCoRoutine->xEventListItem ), ( ( TickType_t ) configMAX_CO_ROUTINE_PRIORITIES - ( TickType_t ) uxPriority ) );
+
+ /* Now the co-routine has been initialised it can be added to the ready
+ list at the correct priority. */
+ prvAddCoRoutineToReadyQueue( pxCoRoutine );
+
+ xReturn = pdPASS;
+ }
+ else
+ {
+ xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
+ }
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+void vCoRoutineAddToDelayedList( TickType_t xTicksToDelay, List_t *pxEventList )
+{
+TickType_t xTimeToWake;
+
+ /* Calculate the time to wake - this may overflow but this is
+ not a problem. */
+ xTimeToWake = xCoRoutineTickCount + xTicksToDelay;
+
+ /* We must remove ourselves from the ready list before adding
+ ourselves to the blocked list as the same list item is used for
+ both lists. */
+ ( void ) uxListRemove( ( ListItem_t * ) &( pxCurrentCoRoutine->xGenericListItem ) );
+
+ /* The list item will be inserted in wake time order. */
+ listSET_LIST_ITEM_VALUE( &( pxCurrentCoRoutine->xGenericListItem ), xTimeToWake );
+
+ if( xTimeToWake < xCoRoutineTickCount )
+ {
+ /* Wake time has overflowed. Place this item in the
+ overflow list. */
+ vListInsert( ( List_t * ) pxOverflowDelayedCoRoutineList, ( ListItem_t * ) &( pxCurrentCoRoutine->xGenericListItem ) );
+ }
+ else
+ {
+ /* The wake time has not overflowed, so we can use the
+ current block list. */
+ vListInsert( ( List_t * ) pxDelayedCoRoutineList, ( ListItem_t * ) &( pxCurrentCoRoutine->xGenericListItem ) );
+ }
+
+ if( pxEventList )
+ {
+ /* Also add the co-routine to an event list. If this is done then the
+ function must be called with interrupts disabled. */
+ vListInsert( pxEventList, &( pxCurrentCoRoutine->xEventListItem ) );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvCheckPendingReadyList( void )
+{
+ /* Are there any co-routines waiting to get moved to the ready list? These
+ are co-routines that have been readied by an ISR. The ISR cannot access
+ the ready lists itself. */
+ while( listLIST_IS_EMPTY( &xPendingReadyCoRoutineList ) == pdFALSE )
+ {
+ CRCB_t *pxUnblockedCRCB;
+
+ /* The pending ready list can be accessed by an ISR. */
+ portDISABLE_INTERRUPTS();
+ {
+ pxUnblockedCRCB = ( CRCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( (&xPendingReadyCoRoutineList) );
+ ( void ) uxListRemove( &( pxUnblockedCRCB->xEventListItem ) );
+ }
+ portENABLE_INTERRUPTS();
+
+ ( void ) uxListRemove( &( pxUnblockedCRCB->xGenericListItem ) );
+ prvAddCoRoutineToReadyQueue( pxUnblockedCRCB );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvCheckDelayedList( void )
+{
+CRCB_t *pxCRCB;
+
+ xPassedTicks = xTaskGetTickCount() - xLastTickCount;
+ while( xPassedTicks )
+ {
+ xCoRoutineTickCount++;
+ xPassedTicks--;
+
+ /* If the tick count has overflowed we need to swap the ready lists. */
+ if( xCoRoutineTickCount == 0 )
+ {
+ List_t * pxTemp;
+
+ /* Tick count has overflowed so we need to swap the delay lists. If there are
+ any items in pxDelayedCoRoutineList here then there is an error! */
+ pxTemp = pxDelayedCoRoutineList;
+ pxDelayedCoRoutineList = pxOverflowDelayedCoRoutineList;
+ pxOverflowDelayedCoRoutineList = pxTemp;
+ }
+
+ /* See if this tick has made a timeout expire. */
+ while( listLIST_IS_EMPTY( pxDelayedCoRoutineList ) == pdFALSE )
+ {
+ pxCRCB = ( CRCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedCoRoutineList );
+
+ if( xCoRoutineTickCount < listGET_LIST_ITEM_VALUE( &( pxCRCB->xGenericListItem ) ) )
+ {
+ /* Timeout not yet expired. */
+ break;
+ }
+
+ portDISABLE_INTERRUPTS();
+ {
+ /* The event could have occurred just before this critical
+ section. If this is the case then the generic list item will
+ have been moved to the pending ready list and the following
+ line is still valid. Also the pvContainer parameter will have
+ been set to NULL so the following lines are also valid. */
+ ( void ) uxListRemove( &( pxCRCB->xGenericListItem ) );
+
+ /* Is the co-routine waiting on an event also? */
+ if( pxCRCB->xEventListItem.pvContainer )
+ {
+ ( void ) uxListRemove( &( pxCRCB->xEventListItem ) );
+ }
+ }
+ portENABLE_INTERRUPTS();
+
+ prvAddCoRoutineToReadyQueue( pxCRCB );
+ }
+ }
+
+ xLastTickCount = xCoRoutineTickCount;
+}
+/*-----------------------------------------------------------*/
+
+void vCoRoutineSchedule( void )
+{
+ /* See if any co-routines readied by events need moving to the ready lists. */
+ prvCheckPendingReadyList();
+
+ /* See if any delayed co-routines have timed out. */
+ prvCheckDelayedList();
+
+ /* Find the highest priority queue that contains ready co-routines. */
+ while( listLIST_IS_EMPTY( &( pxReadyCoRoutineLists[ uxTopCoRoutineReadyPriority ] ) ) )
+ {
+ if( uxTopCoRoutineReadyPriority == 0 )
+ {
+ /* No more co-routines to check. */
+ return;
+ }
+ --uxTopCoRoutineReadyPriority;
+ }
+
+ /* listGET_OWNER_OF_NEXT_ENTRY walks through the list, so the co-routines
+ of the same priority get an equal share of the processor time. */
+ listGET_OWNER_OF_NEXT_ENTRY( pxCurrentCoRoutine, &( pxReadyCoRoutineLists[ uxTopCoRoutineReadyPriority ] ) );
+
+ /* Call the co-routine. */
+ ( pxCurrentCoRoutine->pxCoRoutineFunction )( pxCurrentCoRoutine, pxCurrentCoRoutine->uxIndex );
+
+ return;
+}
+/*-----------------------------------------------------------*/
+
+static void prvInitialiseCoRoutineLists( void )
+{
+UBaseType_t uxPriority;
+
+ for( uxPriority = 0; uxPriority < configMAX_CO_ROUTINE_PRIORITIES; uxPriority++ )
+ {
+ vListInitialise( ( List_t * ) &( pxReadyCoRoutineLists[ uxPriority ] ) );
+ }
+
+ vListInitialise( ( List_t * ) &xDelayedCoRoutineList1 );
+ vListInitialise( ( List_t * ) &xDelayedCoRoutineList2 );
+ vListInitialise( ( List_t * ) &xPendingReadyCoRoutineList );
+
+ /* Start with pxDelayedCoRoutineList using list1 and the
+ pxOverflowDelayedCoRoutineList using list2. */
+ pxDelayedCoRoutineList = &xDelayedCoRoutineList1;
+ pxOverflowDelayedCoRoutineList = &xDelayedCoRoutineList2;
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xCoRoutineRemoveFromEventList( const List_t *pxEventList )
+{
+CRCB_t *pxUnblockedCRCB;
+BaseType_t xReturn;
+
+ /* This function is called from within an interrupt. It can only access
+ event lists and the pending ready list. This function assumes that a
+ check has already been made to ensure pxEventList is not empty. */
+ pxUnblockedCRCB = ( CRCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
+ ( void ) uxListRemove( &( pxUnblockedCRCB->xEventListItem ) );
+ vListInsertEnd( ( List_t * ) &( xPendingReadyCoRoutineList ), &( pxUnblockedCRCB->xEventListItem ) );
+
+ if( pxUnblockedCRCB->uxPriority >= pxCurrentCoRoutine->uxPriority )
+ {
+ xReturn = pdTRUE;
+ }
+ else
+ {
+ xReturn = pdFALSE;
+ }
+
+ return xReturn;
+}
+
+#endif /* configUSE_CO_ROUTINES == 0 */
+
diff --git a/src/FreeRTOS-Sim-master/Source/event_groups.c b/src/FreeRTOS-Sim-master/Source/event_groups.c
new file mode 100644
index 0000000..484e840
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/event_groups.c
@@ -0,0 +1,683 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/* Standard includes. */
+#include <stdlib.h>
+
+/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
+all the API functions to use the MPU wrappers. That should only be done when
+task.h is included from an application file. */
+#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+/* FreeRTOS includes. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "timers.h"
+#include "event_groups.h"
+
+/* Lint e961 and e750 are suppressed as a MISRA exception justified because the
+MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
+header files above, but not in this file, in order to generate the correct
+privileged Vs unprivileged linkage and placement. */
+#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
+
+#if ( INCLUDE_xEventGroupSetBitFromISR == 1 ) && ( configUSE_TIMERS == 0 )
+ #error configUSE_TIMERS must be set to 1 to make the xEventGroupSetBitFromISR() function available.
+#endif
+
+#if ( INCLUDE_xEventGroupSetBitFromISR == 1 ) && ( INCLUDE_xTimerPendFunctionCall == 0 )
+ #error INCLUDE_xTimerPendFunctionCall must also be set to one to make the xEventGroupSetBitFromISR() function available.
+#endif
+
+/* The following bit fields convey control information in a task's event list
+item value. It is important they don't clash with the
+taskEVENT_LIST_ITEM_VALUE_IN_USE definition. */
+#if configUSE_16_BIT_TICKS == 1
+ #define eventCLEAR_EVENTS_ON_EXIT_BIT 0x0100U
+ #define eventUNBLOCKED_DUE_TO_BIT_SET 0x0200U
+ #define eventWAIT_FOR_ALL_BITS 0x0400U
+ #define eventEVENT_BITS_CONTROL_BYTES 0xff00U
+#else
+ #define eventCLEAR_EVENTS_ON_EXIT_BIT 0x01000000UL
+ #define eventUNBLOCKED_DUE_TO_BIT_SET 0x02000000UL
+ #define eventWAIT_FOR_ALL_BITS 0x04000000UL
+ #define eventEVENT_BITS_CONTROL_BYTES 0xff000000UL
+#endif
+
+typedef struct xEventGroupDefinition
+{
+ EventBits_t uxEventBits;
+ List_t xTasksWaitingForBits; /*< List of tasks waiting for a bit to be set. */
+
+ #if( configUSE_TRACE_FACILITY == 1 )
+ UBaseType_t uxEventGroupNumber;
+ #endif
+
+} EventGroup_t;
+
+/*-----------------------------------------------------------*/
+
+/*
+ * Test the bits set in uxCurrentEventBits to see if the wait condition is met.
+ * The wait condition is defined by xWaitForAllBits. If xWaitForAllBits is
+ * pdTRUE then the wait condition is met if all the bits set in uxBitsToWaitFor
+ * are also set in uxCurrentEventBits. If xWaitForAllBits is pdFALSE then the
+ * wait condition is met if any of the bits set in uxBitsToWait for are also set
+ * in uxCurrentEventBits.
+ */
+static BaseType_t prvTestWaitCondition( const EventBits_t uxCurrentEventBits, const EventBits_t uxBitsToWaitFor, const BaseType_t xWaitForAllBits );
+
+/*-----------------------------------------------------------*/
+
+EventGroupHandle_t xEventGroupCreate( void )
+{
+EventGroup_t *pxEventBits;
+
+ pxEventBits = ( EventGroup_t * ) pvPortMalloc( sizeof( EventGroup_t ) );
+ if( pxEventBits != NULL )
+ {
+ pxEventBits->uxEventBits = 0;
+ vListInitialise( &( pxEventBits->xTasksWaitingForBits ) );
+ traceEVENT_GROUP_CREATE( pxEventBits );
+ }
+ else
+ {
+ traceEVENT_GROUP_CREATE_FAILED();
+ }
+
+ return ( EventGroupHandle_t ) pxEventBits;
+}
+/*-----------------------------------------------------------*/
+
+EventBits_t xEventGroupSync( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, const EventBits_t uxBitsToWaitFor, TickType_t xTicksToWait )
+{
+EventBits_t uxOriginalBitValue, uxReturn;
+EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
+BaseType_t xAlreadyYielded;
+BaseType_t xTimeoutOccurred = pdFALSE;
+
+ configASSERT( ( uxBitsToWaitFor & eventEVENT_BITS_CONTROL_BYTES ) == 0 );
+ configASSERT( uxBitsToWaitFor != 0 );
+ #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
+ {
+ configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
+ }
+ #endif
+
+ vTaskSuspendAll();
+ {
+ uxOriginalBitValue = pxEventBits->uxEventBits;
+
+ ( void ) xEventGroupSetBits( xEventGroup, uxBitsToSet );
+
+ if( ( ( uxOriginalBitValue | uxBitsToSet ) & uxBitsToWaitFor ) == uxBitsToWaitFor )
+ {
+ /* All the rendezvous bits are now set - no need to block. */
+ uxReturn = ( uxOriginalBitValue | uxBitsToSet );
+
+ /* Rendezvous always clear the bits. They will have been cleared
+ already unless this is the only task in the rendezvous. */
+ pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
+
+ xTicksToWait = 0;
+ }
+ else
+ {
+ if( xTicksToWait != ( TickType_t ) 0 )
+ {
+ traceEVENT_GROUP_SYNC_BLOCK( xEventGroup, uxBitsToSet, uxBitsToWaitFor );
+
+ /* Store the bits that the calling task is waiting for in the
+ task's event list item so the kernel knows when a match is
+ found. Then enter the blocked state. */
+ vTaskPlaceOnUnorderedEventList( &( pxEventBits->xTasksWaitingForBits ), ( uxBitsToWaitFor | eventCLEAR_EVENTS_ON_EXIT_BIT | eventWAIT_FOR_ALL_BITS ), xTicksToWait );
+
+ /* This assignment is obsolete as uxReturn will get set after
+ the task unblocks, but some compilers mistakenly generate a
+ warning about uxReturn being returned without being set if the
+ assignment is omitted. */
+ uxReturn = 0;
+ }
+ else
+ {
+ /* The rendezvous bits were not set, but no block time was
+ specified - just return the current event bit value. */
+ uxReturn = pxEventBits->uxEventBits;
+ }
+ }
+ }
+ xAlreadyYielded = xTaskResumeAll();
+
+ if( xTicksToWait != ( TickType_t ) 0 )
+ {
+ if( xAlreadyYielded == pdFALSE )
+ {
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* The task blocked to wait for its required bits to be set - at this
+ point either the required bits were set or the block time expired. If
+ the required bits were set they will have been stored in the task's
+ event list item, and they should now be retrieved then cleared. */
+ uxReturn = uxTaskResetEventItemValue();
+
+ if( ( uxReturn & eventUNBLOCKED_DUE_TO_BIT_SET ) == ( EventBits_t ) 0 )
+ {
+ /* The task timed out, just return the current event bit value. */
+ taskENTER_CRITICAL();
+ {
+ uxReturn = pxEventBits->uxEventBits;
+
+ /* Although the task got here because it timed out before the
+ bits it was waiting for were set, it is possible that since it
+ unblocked another task has set the bits. If this is the case
+ then it needs to clear the bits before exiting. */
+ if( ( uxReturn & uxBitsToWaitFor ) == uxBitsToWaitFor )
+ {
+ pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ xTimeoutOccurred = pdTRUE;
+ }
+ else
+ {
+ /* The task unblocked because the bits were set. */
+ }
+
+ /* Control bits might be set as the task had blocked should not be
+ returned. */
+ uxReturn &= ~eventEVENT_BITS_CONTROL_BYTES;
+ }
+
+ traceEVENT_GROUP_SYNC_END( xEventGroup, uxBitsToSet, uxBitsToWaitFor, xTimeoutOccurred );
+
+ return uxReturn;
+}
+/*-----------------------------------------------------------*/
+
+EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToWaitFor, const BaseType_t xClearOnExit, const BaseType_t xWaitForAllBits, TickType_t xTicksToWait )
+{
+EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
+EventBits_t uxReturn, uxControlBits = 0;
+BaseType_t xWaitConditionMet, xAlreadyYielded;
+BaseType_t xTimeoutOccurred = pdFALSE;
+
+ /* Check the user is not attempting to wait on the bits used by the kernel
+ itself, and that at least one bit is being requested. */
+ configASSERT( xEventGroup );
+ configASSERT( ( uxBitsToWaitFor & eventEVENT_BITS_CONTROL_BYTES ) == 0 );
+ configASSERT( uxBitsToWaitFor != 0 );
+ #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
+ {
+ configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
+ }
+ #endif
+
+ vTaskSuspendAll();
+ {
+ const EventBits_t uxCurrentEventBits = pxEventBits->uxEventBits;
+
+ /* Check to see if the wait condition is already met or not. */
+ xWaitConditionMet = prvTestWaitCondition( uxCurrentEventBits, uxBitsToWaitFor, xWaitForAllBits );
+
+ if( xWaitConditionMet != pdFALSE )
+ {
+ /* The wait condition has already been met so there is no need to
+ block. */
+ uxReturn = uxCurrentEventBits;
+ xTicksToWait = ( TickType_t ) 0;
+
+ /* Clear the wait bits if requested to do so. */
+ if( xClearOnExit != pdFALSE )
+ {
+ pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else if( xTicksToWait == ( TickType_t ) 0 )
+ {
+ /* The wait condition has not been met, but no block time was
+ specified, so just return the current value. */
+ uxReturn = uxCurrentEventBits;
+ }
+ else
+ {
+ /* The task is going to block to wait for its required bits to be
+ set. uxControlBits are used to remember the specified behaviour of
+ this call to xEventGroupWaitBits() - for use when the event bits
+ unblock the task. */
+ if( xClearOnExit != pdFALSE )
+ {
+ uxControlBits |= eventCLEAR_EVENTS_ON_EXIT_BIT;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ if( xWaitForAllBits != pdFALSE )
+ {
+ uxControlBits |= eventWAIT_FOR_ALL_BITS;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Store the bits that the calling task is waiting for in the
+ task's event list item so the kernel knows when a match is
+ found. Then enter the blocked state. */
+ vTaskPlaceOnUnorderedEventList( &( pxEventBits->xTasksWaitingForBits ), ( uxBitsToWaitFor | uxControlBits ), xTicksToWait );
+
+ /* This is obsolete as it will get set after the task unblocks, but
+ some compilers mistakenly generate a warning about the variable
+ being returned without being set if it is not done. */
+ uxReturn = 0;
+
+ traceEVENT_GROUP_WAIT_BITS_BLOCK( xEventGroup, uxBitsToWaitFor );
+ }
+ }
+ xAlreadyYielded = xTaskResumeAll();
+
+ if( xTicksToWait != ( TickType_t ) 0 )
+ {
+ if( xAlreadyYielded == pdFALSE )
+ {
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* The task blocked to wait for its required bits to be set - at this
+ point either the required bits were set or the block time expired. If
+ the required bits were set they will have been stored in the task's
+ event list item, and they should now be retrieved then cleared. */
+ uxReturn = uxTaskResetEventItemValue();
+
+ if( ( uxReturn & eventUNBLOCKED_DUE_TO_BIT_SET ) == ( EventBits_t ) 0 )
+ {
+ taskENTER_CRITICAL();
+ {
+ /* The task timed out, just return the current event bit value. */
+ uxReturn = pxEventBits->uxEventBits;
+
+ /* It is possible that the event bits were updated between this
+ task leaving the Blocked state and running again. */
+ if( prvTestWaitCondition( uxReturn, uxBitsToWaitFor, xWaitForAllBits ) != pdFALSE )
+ {
+ if( xClearOnExit != pdFALSE )
+ {
+ pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ /* Prevent compiler warnings when trace macros are not used. */
+ xTimeoutOccurred = pdFALSE;
+ }
+ else
+ {
+ /* The task unblocked because the bits were set. */
+ }
+
+ /* The task blocked so control bits may have been set. */
+ uxReturn &= ~eventEVENT_BITS_CONTROL_BYTES;
+ }
+ traceEVENT_GROUP_WAIT_BITS_END( xEventGroup, uxBitsToWaitFor, xTimeoutOccurred );
+
+ return uxReturn;
+}
+/*-----------------------------------------------------------*/
+
+EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear )
+{
+EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
+EventBits_t uxReturn;
+
+ /* Check the user is not attempting to clear the bits used by the kernel
+ itself. */
+ configASSERT( xEventGroup );
+ configASSERT( ( uxBitsToClear & eventEVENT_BITS_CONTROL_BYTES ) == 0 );
+
+ taskENTER_CRITICAL();
+ {
+ traceEVENT_GROUP_CLEAR_BITS( xEventGroup, uxBitsToClear );
+
+ /* The value returned is the event group value prior to the bits being
+ cleared. */
+ uxReturn = pxEventBits->uxEventBits;
+
+ /* Clear the bits. */
+ pxEventBits->uxEventBits &= ~uxBitsToClear;
+ }
+ taskEXIT_CRITICAL();
+
+ return uxReturn;
+}
+/*-----------------------------------------------------------*/
+
+#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( INCLUDE_xTimerPendFunctionCall == 1 ) && ( configUSE_TIMERS == 1 ) )
+
+ BaseType_t xEventGroupClearBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear )
+ {
+ BaseType_t xReturn;
+
+ traceEVENT_GROUP_CLEAR_BITS_FROM_ISR( xEventGroup, uxBitsToClear );
+ xReturn = xTimerPendFunctionCallFromISR( vEventGroupClearBitsCallback, ( void * ) xEventGroup, ( uint32_t ) uxBitsToClear, NULL );
+
+ return xReturn;
+ }
+
+#endif
+/*-----------------------------------------------------------*/
+
+EventBits_t xEventGroupGetBitsFromISR( EventGroupHandle_t xEventGroup )
+{
+UBaseType_t uxSavedInterruptStatus;
+EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
+EventBits_t uxReturn;
+
+ uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
+ {
+ uxReturn = pxEventBits->uxEventBits;
+ }
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
+
+ return uxReturn;
+}
+/*-----------------------------------------------------------*/
+
+EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet )
+{
+ListItem_t *pxListItem, *pxNext;
+ListItem_t const *pxListEnd;
+List_t *pxList;
+EventBits_t uxBitsToClear = 0, uxBitsWaitedFor, uxControlBits;
+EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
+BaseType_t xMatchFound = pdFALSE;
+
+ /* Check the user is not attempting to set the bits used by the kernel
+ itself. */
+ configASSERT( xEventGroup );
+ configASSERT( ( uxBitsToSet & eventEVENT_BITS_CONTROL_BYTES ) == 0 );
+
+ pxList = &( pxEventBits->xTasksWaitingForBits );
+ pxListEnd = listGET_END_MARKER( pxList ); /*lint !e826 !e740 The mini list structure is used as the list end to save RAM. This is checked and valid. */
+ vTaskSuspendAll();
+ {
+ traceEVENT_GROUP_SET_BITS( xEventGroup, uxBitsToSet );
+
+ pxListItem = listGET_HEAD_ENTRY( pxList );
+
+ /* Set the bits. */
+ pxEventBits->uxEventBits |= uxBitsToSet;
+
+ /* See if the new bit value should unblock any tasks. */
+ while( pxListItem != pxListEnd )
+ {
+ pxNext = listGET_NEXT( pxListItem );
+ uxBitsWaitedFor = listGET_LIST_ITEM_VALUE( pxListItem );
+ xMatchFound = pdFALSE;
+
+ /* Split the bits waited for from the control bits. */
+ uxControlBits = uxBitsWaitedFor & eventEVENT_BITS_CONTROL_BYTES;
+ uxBitsWaitedFor &= ~eventEVENT_BITS_CONTROL_BYTES;
+
+ if( ( uxControlBits & eventWAIT_FOR_ALL_BITS ) == ( EventBits_t ) 0 )
+ {
+ /* Just looking for single bit being set. */
+ if( ( uxBitsWaitedFor & pxEventBits->uxEventBits ) != ( EventBits_t ) 0 )
+ {
+ xMatchFound = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else if( ( uxBitsWaitedFor & pxEventBits->uxEventBits ) == uxBitsWaitedFor )
+ {
+ /* All bits are set. */
+ xMatchFound = pdTRUE;
+ }
+ else
+ {
+ /* Need all bits to be set, but not all the bits were set. */
+ }
+
+ if( xMatchFound != pdFALSE )
+ {
+ /* The bits match. Should the bits be cleared on exit? */
+ if( ( uxControlBits & eventCLEAR_EVENTS_ON_EXIT_BIT ) != ( EventBits_t ) 0 )
+ {
+ uxBitsToClear |= uxBitsWaitedFor;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Store the actual event flag value in the task's event list
+ item before removing the task from the event list. The
+ eventUNBLOCKED_DUE_TO_BIT_SET bit is set so the task knows
+ that is was unblocked due to its required bits matching, rather
+ than because it timed out. */
+ ( void ) xTaskRemoveFromUnorderedEventList( pxListItem, pxEventBits->uxEventBits | eventUNBLOCKED_DUE_TO_BIT_SET );
+ }
+
+ /* Move onto the next list item. Note pxListItem->pxNext is not
+ used here as the list item may have been removed from the event list
+ and inserted into the ready/pending reading list. */
+ pxListItem = pxNext;
+ }
+
+ /* Clear any bits that matched when the eventCLEAR_EVENTS_ON_EXIT_BIT
+ bit was set in the control word. */
+ pxEventBits->uxEventBits &= ~uxBitsToClear;
+ }
+ ( void ) xTaskResumeAll();
+
+ return pxEventBits->uxEventBits;
+}
+/*-----------------------------------------------------------*/
+
+void vEventGroupDelete( EventGroupHandle_t xEventGroup )
+{
+EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
+const List_t *pxTasksWaitingForBits = &( pxEventBits->xTasksWaitingForBits );
+
+ vTaskSuspendAll();
+ {
+ traceEVENT_GROUP_DELETE( xEventGroup );
+
+ while( listCURRENT_LIST_LENGTH( pxTasksWaitingForBits ) > ( UBaseType_t ) 0 )
+ {
+ /* Unblock the task, returning 0 as the event list is being deleted
+ and cannot therefore have any bits set. */
+ configASSERT( pxTasksWaitingForBits->xListEnd.pxNext != ( ListItem_t * ) &( pxTasksWaitingForBits->xListEnd ) );
+ ( void ) xTaskRemoveFromUnorderedEventList( pxTasksWaitingForBits->xListEnd.pxNext, eventUNBLOCKED_DUE_TO_BIT_SET );
+ }
+
+ vPortFree( pxEventBits );
+ }
+ ( void ) xTaskResumeAll();
+}
+/*-----------------------------------------------------------*/
+
+/* For internal use only - execute a 'set bits' command that was pended from
+an interrupt. */
+void vEventGroupSetBitsCallback( void *pvEventGroup, const uint32_t ulBitsToSet )
+{
+ ( void ) xEventGroupSetBits( pvEventGroup, ( EventBits_t ) ulBitsToSet );
+}
+/*-----------------------------------------------------------*/
+
+/* For internal use only - execute a 'clear bits' command that was pended from
+an interrupt. */
+void vEventGroupClearBitsCallback( void *pvEventGroup, const uint32_t ulBitsToClear )
+{
+ ( void ) xEventGroupClearBits( pvEventGroup, ( EventBits_t ) ulBitsToClear );
+}
+/*-----------------------------------------------------------*/
+
+static BaseType_t prvTestWaitCondition( const EventBits_t uxCurrentEventBits, const EventBits_t uxBitsToWaitFor, const BaseType_t xWaitForAllBits )
+{
+BaseType_t xWaitConditionMet = pdFALSE;
+
+ if( xWaitForAllBits == pdFALSE )
+ {
+ /* Task only has to wait for one bit within uxBitsToWaitFor to be
+ set. Is one already set? */
+ if( ( uxCurrentEventBits & uxBitsToWaitFor ) != ( EventBits_t ) 0 )
+ {
+ xWaitConditionMet = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ /* Task has to wait for all the bits in uxBitsToWaitFor to be set.
+ Are they set already? */
+ if( ( uxCurrentEventBits & uxBitsToWaitFor ) == uxBitsToWaitFor )
+ {
+ xWaitConditionMet = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+ return xWaitConditionMet;
+}
+/*-----------------------------------------------------------*/
+
+#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( INCLUDE_xTimerPendFunctionCall == 1 ) && ( configUSE_TIMERS == 1 ) )
+
+ BaseType_t xEventGroupSetBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, BaseType_t *pxHigherPriorityTaskWoken )
+ {
+ BaseType_t xReturn;
+
+ traceEVENT_GROUP_SET_BITS_FROM_ISR( xEventGroup, uxBitsToSet );
+ xReturn = xTimerPendFunctionCallFromISR( vEventGroupSetBitsCallback, ( void * ) xEventGroup, ( uint32_t ) uxBitsToSet, pxHigherPriorityTaskWoken );
+
+ return xReturn;
+ }
+
+#endif
+/*-----------------------------------------------------------*/
+
+#if (configUSE_TRACE_FACILITY == 1)
+
+ UBaseType_t uxEventGroupGetNumber( void* xEventGroup )
+ {
+ UBaseType_t xReturn;
+ EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
+
+ if( xEventGroup == NULL )
+ {
+ xReturn = 0;
+ }
+ else
+ {
+ xReturn = pxEventBits->uxEventGroupNumber;
+ }
+
+ return xReturn;
+ }
+
+#endif
+
diff --git a/src/FreeRTOS-Sim-master/Source/include/FreeRTOS.h b/src/FreeRTOS-Sim-master/Source/include/FreeRTOS.h
new file mode 100644
index 0000000..c8ee6c2
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/FreeRTOS.h
@@ -0,0 +1,831 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef INC_FREERTOS_H
+#define INC_FREERTOS_H
+
+/*
+ * Include the generic headers required for the FreeRTOS port being used.
+ */
+#include <stddef.h>
+
+/*
+ * If stdint.h cannot be located then:
+ * + If using GCC ensure the -nostdint options is *not* being used.
+ * + Ensure the project's include path includes the directory in which your
+ * compiler stores stdint.h.
+ * + Set any compiler options necessary for it to support C99, as technically
+ * stdint.h is only mandatory with C99 (FreeRTOS does not require C99 in any
+ * other way).
+ * + The FreeRTOS download includes a simple stdint.h definition that can be
+ * used in cases where none is provided by the compiler. The files only
+ * contains the typedefs required to build FreeRTOS. Read the instructions
+ * in FreeRTOS/source/stdint.readme for more information.
+ */
+#include <stdint.h> /* READ COMMENT ABOVE. */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Application specific configuration options. */
+#include "FreeRTOSConfig.h"
+
+/* Basic FreeRTOS definitions. */
+#include "projdefs.h"
+
+/* Definitions specific to the port being used. */
+#include "portable.h"
+
+/*
+ * Check all the required application specific macros have been defined.
+ * These macros are application specific and (as downloaded) are defined
+ * within FreeRTOSConfig.h.
+ */
+
+#ifndef configMINIMAL_STACK_SIZE
+ #error Missing definition: configMINIMAL_STACK_SIZE must be defined in FreeRTOSConfig.h. configMINIMAL_STACK_SIZE defines the size (in words) of the stack allocated to the idle task. Refer to the demo project provided for your port for a suitable value.
+#endif
+
+#ifndef configMAX_PRIORITIES
+ #error Missing definition: configMAX_PRIORITIES must be defined in FreeRTOSConfig.h. See the Configuration section of the FreeRTOS API documentation for details.
+#endif
+
+#ifndef configUSE_PREEMPTION
+ #error Missing definition: configUSE_PREEMPTION must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+#endif
+
+#ifndef configUSE_IDLE_HOOK
+ #error Missing definition: configUSE_IDLE_HOOK must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+#endif
+
+#ifndef configUSE_TICK_HOOK
+ #error Missing definition: configUSE_TICK_HOOK must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+#endif
+
+#ifndef INCLUDE_vTaskPrioritySet
+ #error Missing definition: INCLUDE_vTaskPrioritySet must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+#endif
+
+#ifndef INCLUDE_uxTaskPriorityGet
+ #error Missing definition: INCLUDE_uxTaskPriorityGet must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+#endif
+
+#ifndef INCLUDE_vTaskDelete
+ #error Missing definition: INCLUDE_vTaskDelete must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+#endif
+
+#ifndef INCLUDE_vTaskSuspend
+ #error Missing definition: INCLUDE_vTaskSuspend must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+#endif
+
+#ifndef INCLUDE_vTaskDelayUntil
+ #error Missing definition: INCLUDE_vTaskDelayUntil must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+#endif
+
+#ifndef INCLUDE_vTaskDelay
+ #error Missing definition: INCLUDE_vTaskDelay must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+#endif
+
+#ifndef configUSE_16_BIT_TICKS
+ #error Missing definition: configUSE_16_BIT_TICKS must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+#endif
+
+#ifndef configMAX_PRIORITIES
+ #error configMAX_PRIORITIES must be defined to be greater than or equal to 1.
+#endif
+
+#ifndef configUSE_CO_ROUTINES
+ #define configUSE_CO_ROUTINES 0
+#endif
+
+#if configUSE_CO_ROUTINES != 0
+ #ifndef configMAX_CO_ROUTINE_PRIORITIES
+ #error configMAX_CO_ROUTINE_PRIORITIES must be greater than or equal to 1.
+ #endif
+#endif
+
+#ifndef INCLUDE_xTaskGetIdleTaskHandle
+ #define INCLUDE_xTaskGetIdleTaskHandle 0
+#endif
+
+#ifndef INCLUDE_xTimerGetTimerDaemonTaskHandle
+ #define INCLUDE_xTimerGetTimerDaemonTaskHandle 0
+#endif
+
+#ifndef INCLUDE_xQueueGetMutexHolder
+ #define INCLUDE_xQueueGetMutexHolder 0
+#endif
+
+#ifndef INCLUDE_xSemaphoreGetMutexHolder
+ #define INCLUDE_xSemaphoreGetMutexHolder INCLUDE_xQueueGetMutexHolder
+#endif
+
+#ifndef INCLUDE_pcTaskGetTaskName
+ #define INCLUDE_pcTaskGetTaskName 0
+#endif
+
+#ifndef configUSE_APPLICATION_TASK_TAG
+ #define configUSE_APPLICATION_TASK_TAG 0
+#endif
+
+#ifndef configNUM_THREAD_LOCAL_STORAGE_POINTERS
+ #define configNUM_THREAD_LOCAL_STORAGE_POINTERS 0
+#endif
+
+#ifndef INCLUDE_uxTaskGetStackHighWaterMark
+ #define INCLUDE_uxTaskGetStackHighWaterMark 0
+#endif
+
+#ifndef INCLUDE_eTaskGetState
+ #define INCLUDE_eTaskGetState 0
+#endif
+
+#ifndef configUSE_RECURSIVE_MUTEXES
+ #define configUSE_RECURSIVE_MUTEXES 0
+#endif
+
+#ifndef configUSE_MUTEXES
+ #define configUSE_MUTEXES 0
+#endif
+
+#ifndef configUSE_TIMERS
+ #define configUSE_TIMERS 0
+#endif
+
+#ifndef configUSE_COUNTING_SEMAPHORES
+ #define configUSE_COUNTING_SEMAPHORES 0
+#endif
+
+#ifndef configUSE_ALTERNATIVE_API
+ #define configUSE_ALTERNATIVE_API 0
+#endif
+
+#ifndef portCRITICAL_NESTING_IN_TCB
+ #define portCRITICAL_NESTING_IN_TCB 0
+#endif
+
+#ifndef configMAX_TASK_NAME_LEN
+ #define configMAX_TASK_NAME_LEN 16
+#endif
+
+#ifndef configIDLE_SHOULD_YIELD
+ #define configIDLE_SHOULD_YIELD 1
+#endif
+
+#if configMAX_TASK_NAME_LEN < 1
+ #error configMAX_TASK_NAME_LEN must be set to a minimum of 1 in FreeRTOSConfig.h
+#endif
+
+#ifndef INCLUDE_xTaskResumeFromISR
+ #define INCLUDE_xTaskResumeFromISR 1
+#endif
+
+#ifndef INCLUDE_xEventGroupSetBitFromISR
+ #define INCLUDE_xEventGroupSetBitFromISR 0
+#endif
+
+#ifndef INCLUDE_xTimerPendFunctionCall
+ #define INCLUDE_xTimerPendFunctionCall 0
+#endif
+
+#ifndef configASSERT
+ #define configASSERT( x )
+ #define configASSERT_DEFINED 0
+#else
+ #define configASSERT_DEFINED 1
+#endif
+
+/* The timers module relies on xTaskGetSchedulerState(). */
+#if configUSE_TIMERS == 1
+
+ #ifndef configTIMER_TASK_PRIORITY
+ #error If configUSE_TIMERS is set to 1 then configTIMER_TASK_PRIORITY must also be defined.
+ #endif /* configTIMER_TASK_PRIORITY */
+
+ #ifndef configTIMER_QUEUE_LENGTH
+ #error If configUSE_TIMERS is set to 1 then configTIMER_QUEUE_LENGTH must also be defined.
+ #endif /* configTIMER_QUEUE_LENGTH */
+
+ #ifndef configTIMER_TASK_STACK_DEPTH
+ #error If configUSE_TIMERS is set to 1 then configTIMER_TASK_STACK_DEPTH must also be defined.
+ #endif /* configTIMER_TASK_STACK_DEPTH */
+
+#endif /* configUSE_TIMERS */
+
+#ifndef INCLUDE_xTaskGetSchedulerState
+ #define INCLUDE_xTaskGetSchedulerState 0
+#endif
+
+#ifndef INCLUDE_xTaskGetCurrentTaskHandle
+ #define INCLUDE_xTaskGetCurrentTaskHandle 0
+#endif
+
+
+#ifndef portSET_INTERRUPT_MASK_FROM_ISR
+ #define portSET_INTERRUPT_MASK_FROM_ISR() 0
+#endif
+
+#ifndef portCLEAR_INTERRUPT_MASK_FROM_ISR
+ #define portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedStatusValue ) ( void ) uxSavedStatusValue
+#endif
+
+#ifndef portCLEAN_UP_TCB
+ #define portCLEAN_UP_TCB( pxTCB ) ( void ) pxTCB
+#endif
+
+#ifndef portPRE_TASK_DELETE_HOOK
+ #define portPRE_TASK_DELETE_HOOK( pvTaskToDelete, pxYieldPending )
+#endif
+
+#ifndef portSETUP_TCB
+ #define portSETUP_TCB( pxTCB ) ( void ) pxTCB
+#endif
+
+#ifndef configQUEUE_REGISTRY_SIZE
+ #define configQUEUE_REGISTRY_SIZE 0U
+#endif
+
+#if ( configQUEUE_REGISTRY_SIZE < 1 )
+ #define vQueueAddToRegistry( xQueue, pcName )
+ #define vQueueUnregisterQueue( xQueue )
+#endif
+
+#ifndef portPOINTER_SIZE_TYPE
+ #define portPOINTER_SIZE_TYPE uint32_t
+#endif
+
+/* Remove any unused trace macros. */
+#ifndef traceSTART
+ /* Used to perform any necessary initialisation - for example, open a file
+ into which trace is to be written. */
+ #define traceSTART()
+#endif
+
+#ifndef traceEND
+ /* Use to close a trace, for example close a file into which trace has been
+ written. */
+ #define traceEND()
+#endif
+
+#ifndef traceTASK_SWITCHED_IN
+ /* Called after a task has been selected to run. pxCurrentTCB holds a pointer
+ to the task control block of the selected task. */
+ #define traceTASK_SWITCHED_IN()
+#endif
+
+#ifndef traceINCREASE_TICK_COUNT
+ /* Called before stepping the tick count after waking from tickless idle
+ sleep. */
+ #define traceINCREASE_TICK_COUNT( x )
+#endif
+
+#ifndef traceLOW_POWER_IDLE_BEGIN
+ /* Called immediately before entering tickless idle. */
+ #define traceLOW_POWER_IDLE_BEGIN()
+#endif
+
+#ifndef traceLOW_POWER_IDLE_END
+ /* Called when returning to the Idle task after a tickless idle. */
+ #define traceLOW_POWER_IDLE_END()
+#endif
+
+#ifndef traceTASK_SWITCHED_OUT
+ /* Called before a task has been selected to run. pxCurrentTCB holds a pointer
+ to the task control block of the task being switched out. */
+ #define traceTASK_SWITCHED_OUT()
+#endif
+
+#ifndef traceTASK_PRIORITY_INHERIT
+ /* Called when a task attempts to take a mutex that is already held by a
+ lower priority task. pxTCBOfMutexHolder is a pointer to the TCB of the task
+ that holds the mutex. uxInheritedPriority is the priority the mutex holder
+ will inherit (the priority of the task that is attempting to obtain the
+ muted. */
+ #define traceTASK_PRIORITY_INHERIT( pxTCBOfMutexHolder, uxInheritedPriority )
+#endif
+
+#ifndef traceTASK_PRIORITY_DISINHERIT
+ /* Called when a task releases a mutex, the holding of which had resulted in
+ the task inheriting the priority of a higher priority task.
+ pxTCBOfMutexHolder is a pointer to the TCB of the task that is releasing the
+ mutex. uxOriginalPriority is the task's configured (base) priority. */
+ #define traceTASK_PRIORITY_DISINHERIT( pxTCBOfMutexHolder, uxOriginalPriority )
+#endif
+
+#ifndef traceBLOCKING_ON_QUEUE_RECEIVE
+ /* Task is about to block because it cannot read from a
+ queue/mutex/semaphore. pxQueue is a pointer to the queue/mutex/semaphore
+ upon which the read was attempted. pxCurrentTCB points to the TCB of the
+ task that attempted the read. */
+ #define traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue )
+#endif
+
+#ifndef traceBLOCKING_ON_QUEUE_SEND
+ /* Task is about to block because it cannot write to a
+ queue/mutex/semaphore. pxQueue is a pointer to the queue/mutex/semaphore
+ upon which the write was attempted. pxCurrentTCB points to the TCB of the
+ task that attempted the write. */
+ #define traceBLOCKING_ON_QUEUE_SEND( pxQueue )
+#endif
+
+#ifndef configCHECK_FOR_STACK_OVERFLOW
+ #define configCHECK_FOR_STACK_OVERFLOW 0
+#endif
+
+/* The following event macros are embedded in the kernel API calls. */
+
+#ifndef traceMOVED_TASK_TO_READY_STATE
+ #define traceMOVED_TASK_TO_READY_STATE( pxTCB )
+#endif
+
+#ifndef traceQUEUE_CREATE
+ #define traceQUEUE_CREATE( pxNewQueue )
+#endif
+
+#ifndef traceQUEUE_CREATE_FAILED
+ #define traceQUEUE_CREATE_FAILED( ucQueueType )
+#endif
+
+#ifndef traceCREATE_MUTEX
+ #define traceCREATE_MUTEX( pxNewQueue )
+#endif
+
+#ifndef traceCREATE_MUTEX_FAILED
+ #define traceCREATE_MUTEX_FAILED()
+#endif
+
+#ifndef traceGIVE_MUTEX_RECURSIVE
+ #define traceGIVE_MUTEX_RECURSIVE( pxMutex )
+#endif
+
+#ifndef traceGIVE_MUTEX_RECURSIVE_FAILED
+ #define traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex )
+#endif
+
+#ifndef traceTAKE_MUTEX_RECURSIVE
+ #define traceTAKE_MUTEX_RECURSIVE( pxMutex )
+#endif
+
+#ifndef traceTAKE_MUTEX_RECURSIVE_FAILED
+ #define traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex )
+#endif
+
+#ifndef traceCREATE_COUNTING_SEMAPHORE
+ #define traceCREATE_COUNTING_SEMAPHORE()
+#endif
+
+#ifndef traceCREATE_COUNTING_SEMAPHORE_FAILED
+ #define traceCREATE_COUNTING_SEMAPHORE_FAILED()
+#endif
+
+#ifndef traceQUEUE_SEND
+ #define traceQUEUE_SEND( pxQueue )
+#endif
+
+#ifndef traceQUEUE_SEND_FAILED
+ #define traceQUEUE_SEND_FAILED( pxQueue )
+#endif
+
+#ifndef traceQUEUE_RECEIVE
+ #define traceQUEUE_RECEIVE( pxQueue )
+#endif
+
+#ifndef traceQUEUE_PEEK
+ #define traceQUEUE_PEEK( pxQueue )
+#endif
+
+#ifndef traceQUEUE_PEEK_FROM_ISR
+ #define traceQUEUE_PEEK_FROM_ISR( pxQueue )
+#endif
+
+#ifndef traceQUEUE_RECEIVE_FAILED
+ #define traceQUEUE_RECEIVE_FAILED( pxQueue )
+#endif
+
+#ifndef traceQUEUE_SEND_FROM_ISR
+ #define traceQUEUE_SEND_FROM_ISR( pxQueue )
+#endif
+
+#ifndef traceQUEUE_SEND_FROM_ISR_FAILED
+ #define traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue )
+#endif
+
+#ifndef traceQUEUE_RECEIVE_FROM_ISR
+ #define traceQUEUE_RECEIVE_FROM_ISR( pxQueue )
+#endif
+
+#ifndef traceQUEUE_RECEIVE_FROM_ISR_FAILED
+ #define traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue )
+#endif
+
+#ifndef traceQUEUE_PEEK_FROM_ISR_FAILED
+ #define traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue )
+#endif
+
+#ifndef traceQUEUE_DELETE
+ #define traceQUEUE_DELETE( pxQueue )
+#endif
+
+#ifndef traceTASK_CREATE
+ #define traceTASK_CREATE( pxNewTCB )
+#endif
+
+#ifndef traceTASK_CREATE_FAILED
+ #define traceTASK_CREATE_FAILED()
+#endif
+
+#ifndef traceTASK_DELETE
+ #define traceTASK_DELETE( pxTaskToDelete )
+#endif
+
+#ifndef traceTASK_DELAY_UNTIL
+ #define traceTASK_DELAY_UNTIL()
+#endif
+
+#ifndef traceTASK_DELAY
+ #define traceTASK_DELAY()
+#endif
+
+#ifndef traceTASK_PRIORITY_SET
+ #define traceTASK_PRIORITY_SET( pxTask, uxNewPriority )
+#endif
+
+#ifndef traceTASK_SUSPEND
+ #define traceTASK_SUSPEND( pxTaskToSuspend )
+#endif
+
+#ifndef traceTASK_RESUME
+ #define traceTASK_RESUME( pxTaskToResume )
+#endif
+
+#ifndef traceTASK_RESUME_FROM_ISR
+ #define traceTASK_RESUME_FROM_ISR( pxTaskToResume )
+#endif
+
+#ifndef traceTASK_INCREMENT_TICK
+ #define traceTASK_INCREMENT_TICK( xTickCount )
+#endif
+
+#ifndef traceTIMER_CREATE
+ #define traceTIMER_CREATE( pxNewTimer )
+#endif
+
+#ifndef traceTIMER_CREATE_FAILED
+ #define traceTIMER_CREATE_FAILED()
+#endif
+
+#ifndef traceTIMER_COMMAND_SEND
+ #define traceTIMER_COMMAND_SEND( xTimer, xMessageID, xMessageValueValue, xReturn )
+#endif
+
+#ifndef traceTIMER_EXPIRED
+ #define traceTIMER_EXPIRED( pxTimer )
+#endif
+
+#ifndef traceTIMER_COMMAND_RECEIVED
+ #define traceTIMER_COMMAND_RECEIVED( pxTimer, xMessageID, xMessageValue )
+#endif
+
+#ifndef traceMALLOC
+ #define traceMALLOC( pvAddress, uiSize )
+#endif
+
+#ifndef traceFREE
+ #define traceFREE( pvAddress, uiSize )
+#endif
+
+#ifndef traceEVENT_GROUP_CREATE
+ #define traceEVENT_GROUP_CREATE( xEventGroup )
+#endif
+
+#ifndef traceEVENT_GROUP_CREATE_FAILED
+ #define traceEVENT_GROUP_CREATE_FAILED()
+#endif
+
+#ifndef traceEVENT_GROUP_SYNC_BLOCK
+ #define traceEVENT_GROUP_SYNC_BLOCK( xEventGroup, uxBitsToSet, uxBitsToWaitFor )
+#endif
+
+#ifndef traceEVENT_GROUP_SYNC_END
+ #define traceEVENT_GROUP_SYNC_END( xEventGroup, uxBitsToSet, uxBitsToWaitFor, xTimeoutOccurred ) ( void ) xTimeoutOccurred
+#endif
+
+#ifndef traceEVENT_GROUP_WAIT_BITS_BLOCK
+ #define traceEVENT_GROUP_WAIT_BITS_BLOCK( xEventGroup, uxBitsToWaitFor )
+#endif
+
+#ifndef traceEVENT_GROUP_WAIT_BITS_END
+ #define traceEVENT_GROUP_WAIT_BITS_END( xEventGroup, uxBitsToWaitFor, xTimeoutOccurred ) ( void ) xTimeoutOccurred
+#endif
+
+#ifndef traceEVENT_GROUP_CLEAR_BITS
+ #define traceEVENT_GROUP_CLEAR_BITS( xEventGroup, uxBitsToClear )
+#endif
+
+#ifndef traceEVENT_GROUP_CLEAR_BITS_FROM_ISR
+ #define traceEVENT_GROUP_CLEAR_BITS_FROM_ISR( xEventGroup, uxBitsToClear )
+#endif
+
+#ifndef traceEVENT_GROUP_SET_BITS
+ #define traceEVENT_GROUP_SET_BITS( xEventGroup, uxBitsToSet )
+#endif
+
+#ifndef traceEVENT_GROUP_SET_BITS_FROM_ISR
+ #define traceEVENT_GROUP_SET_BITS_FROM_ISR( xEventGroup, uxBitsToSet )
+#endif
+
+#ifndef traceEVENT_GROUP_DELETE
+ #define traceEVENT_GROUP_DELETE( xEventGroup )
+#endif
+
+#ifndef tracePEND_FUNC_CALL
+ #define tracePEND_FUNC_CALL(xFunctionToPend, pvParameter1, ulParameter2, ret)
+#endif
+
+#ifndef tracePEND_FUNC_CALL_FROM_ISR
+ #define tracePEND_FUNC_CALL_FROM_ISR(xFunctionToPend, pvParameter1, ulParameter2, ret)
+#endif
+
+#ifndef traceQUEUE_REGISTRY_ADD
+ #define traceQUEUE_REGISTRY_ADD(xQueue, pcQueueName)
+#endif
+
+#ifndef traceTASK_NOTIFY_TAKE_BLOCK
+ #define traceTASK_NOTIFY_TAKE_BLOCK()
+#endif
+
+#ifndef traceTASK_NOTIFY_TAKE
+ #define traceTASK_NOTIFY_TAKE()
+#endif
+
+#ifndef traceTASK_NOTIFY_WAIT_BLOCK
+ #define traceTASK_NOTIFY_WAIT_BLOCK()
+#endif
+
+#ifndef traceTASK_NOTIFY_WAIT
+ #define traceTASK_NOTIFY_WAIT()
+#endif
+
+#ifndef traceTASK_NOTIFY
+ #define traceTASK_NOTIFY()
+#endif
+
+#ifndef traceTASK_NOTIFY_FROM_ISR
+ #define traceTASK_NOTIFY_FROM_ISR()
+#endif
+
+#ifndef traceTASK_NOTIFY_GIVE_FROM_ISR
+ #define traceTASK_NOTIFY_GIVE_FROM_ISR()
+#endif
+
+#ifndef traceTASK_DELAY_SUSPEND
+ #define traceTASK_DELAY_SUSPEND( pxCurrentTCB )
+#endif
+
+#ifndef configGENERATE_RUN_TIME_STATS
+ #define configGENERATE_RUN_TIME_STATS 0
+#endif
+
+#if ( configGENERATE_RUN_TIME_STATS == 1 )
+
+ #ifndef portCONFIGURE_TIMER_FOR_RUN_TIME_STATS
+ #error If configGENERATE_RUN_TIME_STATS is defined then portCONFIGURE_TIMER_FOR_RUN_TIME_STATS must also be defined. portCONFIGURE_TIMER_FOR_RUN_TIME_STATS should call a port layer function to setup a peripheral timer/counter that can then be used as the run time counter time base.
+ #endif /* portCONFIGURE_TIMER_FOR_RUN_TIME_STATS */
+
+ #ifndef portGET_RUN_TIME_COUNTER_VALUE
+ #ifndef portALT_GET_RUN_TIME_COUNTER_VALUE
+ #error If configGENERATE_RUN_TIME_STATS is defined then either portGET_RUN_TIME_COUNTER_VALUE or portALT_GET_RUN_TIME_COUNTER_VALUE must also be defined. See the examples provided and the FreeRTOS web site for more information.
+ #endif /* portALT_GET_RUN_TIME_COUNTER_VALUE */
+ #endif /* portGET_RUN_TIME_COUNTER_VALUE */
+
+#endif /* configGENERATE_RUN_TIME_STATS */
+
+#ifndef portCONFIGURE_TIMER_FOR_RUN_TIME_STATS
+ #define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS()
+#endif
+
+#ifndef configUSE_MALLOC_FAILED_HOOK
+ #define configUSE_MALLOC_FAILED_HOOK 0
+#endif
+
+#ifndef portPRIVILEGE_BIT
+ #define portPRIVILEGE_BIT ( ( UBaseType_t ) 0x00 )
+#endif
+
+#ifndef portYIELD_WITHIN_API
+ #define portYIELD_WITHIN_API portYIELD
+#endif
+
+#ifndef pvPortMallocAligned
+ #define pvPortMallocAligned( x, puxStackBuffer ) ( ( ( puxStackBuffer ) == NULL ) ? ( pvPortMalloc( ( x ) ) ) : ( puxStackBuffer ) )
+#endif
+
+#ifndef vPortFreeAligned
+ #define vPortFreeAligned( pvBlockToFree ) vPortFree( pvBlockToFree )
+#endif
+
+#ifndef portSUPPRESS_TICKS_AND_SLEEP
+ #define portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime )
+#endif
+
+#ifndef configEXPECTED_IDLE_TIME_BEFORE_SLEEP
+ #define configEXPECTED_IDLE_TIME_BEFORE_SLEEP 2
+#endif
+
+#if configEXPECTED_IDLE_TIME_BEFORE_SLEEP < 2
+ #error configEXPECTED_IDLE_TIME_BEFORE_SLEEP must not be less than 2
+#endif
+
+#ifndef configUSE_TICKLESS_IDLE
+ #define configUSE_TICKLESS_IDLE 0
+#endif
+
+#ifndef configPRE_SLEEP_PROCESSING
+ #define configPRE_SLEEP_PROCESSING( x )
+#endif
+
+#ifndef configPOST_SLEEP_PROCESSING
+ #define configPOST_SLEEP_PROCESSING( x )
+#endif
+
+#ifndef configUSE_QUEUE_SETS
+ #define configUSE_QUEUE_SETS 0
+#endif
+
+#ifndef portTASK_USES_FLOATING_POINT
+ #define portTASK_USES_FLOATING_POINT()
+#endif
+
+#ifndef configUSE_TIME_SLICING
+ #define configUSE_TIME_SLICING 1
+#endif
+
+#ifndef configINCLUDE_APPLICATION_DEFINED_PRIVILEGED_FUNCTIONS
+ #define configINCLUDE_APPLICATION_DEFINED_PRIVILEGED_FUNCTIONS 0
+#endif
+
+#ifndef configUSE_NEWLIB_REENTRANT
+ #define configUSE_NEWLIB_REENTRANT 0
+#endif
+
+#ifndef configUSE_STATS_FORMATTING_FUNCTIONS
+ #define configUSE_STATS_FORMATTING_FUNCTIONS 0
+#endif
+
+#ifndef portASSERT_IF_INTERRUPT_PRIORITY_INVALID
+ #define portASSERT_IF_INTERRUPT_PRIORITY_INVALID()
+#endif
+
+#ifndef configUSE_TRACE_FACILITY
+ #define configUSE_TRACE_FACILITY 0
+#endif
+
+#ifndef mtCOVERAGE_TEST_MARKER
+ #define mtCOVERAGE_TEST_MARKER()
+#endif
+
+#ifndef mtCOVERAGE_TEST_DELAY
+ #define mtCOVERAGE_TEST_DELAY()
+#endif
+
+#ifndef portASSERT_IF_IN_ISR
+ #define portASSERT_IF_IN_ISR()
+#endif
+
+#ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION
+ #define configUSE_PORT_OPTIMISED_TASK_SELECTION 0
+#endif
+
+#ifndef configAPPLICATION_ALLOCATED_HEAP
+ #define configAPPLICATION_ALLOCATED_HEAP 0
+#endif
+
+#ifndef configUSE_TASK_NOTIFICATIONS
+ #define configUSE_TASK_NOTIFICATIONS 1
+#endif
+
+#ifndef portTICK_TYPE_IS_ATOMIC
+ #define portTICK_TYPE_IS_ATOMIC 0
+#endif
+
+#if( portTICK_TYPE_IS_ATOMIC == 0 )
+ /* Either variables of tick type cannot be read atomically, or
+ portTICK_TYPE_IS_ATOMIC was not set - map the critical sections used when
+ the tick count is returned to the standard critical section macros. */
+ #define portTICK_TYPE_ENTER_CRITICAL() portENTER_CRITICAL()
+ #define portTICK_TYPE_EXIT_CRITICAL() portEXIT_CRITICAL()
+ #define portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR() portSET_INTERRUPT_MASK_FROM_ISR()
+ #define portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( x ) portCLEAR_INTERRUPT_MASK_FROM_ISR( ( x ) )
+#else
+ /* The tick type can be read atomically, so critical sections used when the
+ tick count is returned can be defined away. */
+ #define portTICK_TYPE_ENTER_CRITICAL()
+ #define portTICK_TYPE_EXIT_CRITICAL()
+ #define portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR() 0
+ #define portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( x ) ( void ) x
+#endif
+
+/* Definitions to allow backward compatibility with FreeRTOS versions prior to
+V8 if desired. */
+#ifndef configENABLE_BACKWARD_COMPATIBILITY
+ #define configENABLE_BACKWARD_COMPATIBILITY 1
+#endif
+
+#if configENABLE_BACKWARD_COMPATIBILITY == 1
+ #define eTaskStateGet eTaskGetState
+ #define portTickType TickType_t
+ #define xTaskHandle TaskHandle_t
+ #define xQueueHandle QueueHandle_t
+ #define xSemaphoreHandle SemaphoreHandle_t
+ #define xQueueSetHandle QueueSetHandle_t
+ #define xQueueSetMemberHandle QueueSetMemberHandle_t
+ #define xTimeOutType TimeOut_t
+ #define xMemoryRegion MemoryRegion_t
+ #define xTaskParameters TaskParameters_t
+ #define xTaskStatusType TaskStatus_t
+ #define xTimerHandle TimerHandle_t
+ #define xCoRoutineHandle CoRoutineHandle_t
+ #define pdTASK_HOOK_CODE TaskHookFunction_t
+ #define portTICK_RATE_MS portTICK_PERIOD_MS
+
+ /* Backward compatibility within the scheduler code only - these definitions
+ are not really required but are included for completeness. */
+ #define tmrTIMER_CALLBACK TimerCallbackFunction_t
+ #define pdTASK_CODE TaskFunction_t
+ #define xListItem ListItem_t
+ #define xList List_t
+#endif /* configENABLE_BACKWARD_COMPATIBILITY */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* INC_FREERTOS_H */
+
diff --git a/src/FreeRTOS-Sim-master/Source/include/StackMacros.h b/src/FreeRTOS-Sim-master/Source/include/StackMacros.h
new file mode 100644
index 0000000..8a71156
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/StackMacros.h
@@ -0,0 +1,184 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef STACK_MACROS_H
+#define STACK_MACROS_H
+
+/*
+ * Call the stack overflow hook function if the stack of the task being swapped
+ * out is currently overflowed, or looks like it might have overflowed in the
+ * past.
+ *
+ * Setting configCHECK_FOR_STACK_OVERFLOW to 1 will cause the macro to check
+ * the current stack state only - comparing the current top of stack value to
+ * the stack limit. Setting configCHECK_FOR_STACK_OVERFLOW to greater than 1
+ * will also cause the last few stack bytes to be checked to ensure the value
+ * to which the bytes were set when the task was created have not been
+ * overwritten. Note this second test does not guarantee that an overflowed
+ * stack will always be recognised.
+ */
+
+/*-----------------------------------------------------------*/
+
+#if( configCHECK_FOR_STACK_OVERFLOW == 0 )
+
+ /* FreeRTOSConfig.h is not set to check for stack overflows. */
+ #define taskFIRST_CHECK_FOR_STACK_OVERFLOW()
+ #define taskSECOND_CHECK_FOR_STACK_OVERFLOW()
+
+#endif /* configCHECK_FOR_STACK_OVERFLOW == 0 */
+/*-----------------------------------------------------------*/
+
+#if( configCHECK_FOR_STACK_OVERFLOW == 1 )
+
+ /* FreeRTOSConfig.h is only set to use the first method of
+ overflow checking. */
+ #define taskSECOND_CHECK_FOR_STACK_OVERFLOW()
+
+#endif
+/*-----------------------------------------------------------*/
+
+#if( ( configCHECK_FOR_STACK_OVERFLOW > 0 ) && ( portSTACK_GROWTH < 0 ) )
+
+ /* Only the current stack state is to be checked. */
+ #define taskFIRST_CHECK_FOR_STACK_OVERFLOW() \
+ { \
+ /* Is the currently saved stack pointer within the stack limit? */ \
+ if( pxCurrentTCB->pxTopOfStack <= pxCurrentTCB->pxStack ) \
+ { \
+ vApplicationStackOverflowHook( ( TaskHandle_t ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
+ } \
+ }
+
+#endif /* configCHECK_FOR_STACK_OVERFLOW > 0 */
+/*-----------------------------------------------------------*/
+
+#if( ( configCHECK_FOR_STACK_OVERFLOW > 0 ) && ( portSTACK_GROWTH > 0 ) )
+
+ /* Only the current stack state is to be checked. */
+ #define taskFIRST_CHECK_FOR_STACK_OVERFLOW() \
+ { \
+ \
+ /* Is the currently saved stack pointer within the stack limit? */ \
+ if( pxCurrentTCB->pxTopOfStack >= pxCurrentTCB->pxEndOfStack ) \
+ { \
+ vApplicationStackOverflowHook( ( TaskHandle_t ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
+ } \
+ }
+
+#endif /* configCHECK_FOR_STACK_OVERFLOW == 1 */
+/*-----------------------------------------------------------*/
+
+#if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) && ( portSTACK_GROWTH < 0 ) )
+
+ #define taskSECOND_CHECK_FOR_STACK_OVERFLOW() \
+ { \
+ static const uint8_t ucExpectedStackBytes[] = { tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
+ tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
+ tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
+ tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
+ tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE }; \
+ \
+ \
+ /* Has the extremity of the task stack ever been written over? */ \
+ if( memcmp( ( void * ) pxCurrentTCB->pxStack, ( void * ) ucExpectedStackBytes, sizeof( ucExpectedStackBytes ) ) != 0 ) \
+ { \
+ vApplicationStackOverflowHook( ( TaskHandle_t ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
+ } \
+ }
+
+#endif /* #if( configCHECK_FOR_STACK_OVERFLOW > 1 ) */
+/*-----------------------------------------------------------*/
+
+#if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) && ( portSTACK_GROWTH > 0 ) )
+
+ #define taskSECOND_CHECK_FOR_STACK_OVERFLOW() \
+ { \
+ int8_t *pcEndOfStack = ( int8_t * ) pxCurrentTCB->pxEndOfStack; \
+ static const uint8_t ucExpectedStackBytes[] = { tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
+ tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
+ tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
+ tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
+ tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE }; \
+ \
+ \
+ pcEndOfStack -= sizeof( ucExpectedStackBytes ); \
+ \
+ /* Has the extremity of the task stack ever been written over? */ \
+ if( memcmp( ( void * ) pcEndOfStack, ( void * ) ucExpectedStackBytes, sizeof( ucExpectedStackBytes ) ) != 0 ) \
+ { \
+ vApplicationStackOverflowHook( ( TaskHandle_t ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
+ } \
+ }
+
+#endif /* #if( configCHECK_FOR_STACK_OVERFLOW > 1 ) */
+/*-----------------------------------------------------------*/
+
+#endif /* STACK_MACROS_H */
+
diff --git a/src/FreeRTOS-Sim-master/Source/include/croutine.h b/src/FreeRTOS-Sim-master/Source/include/croutine.h
new file mode 100644
index 0000000..5579ec4
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/croutine.h
@@ -0,0 +1,762 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef CO_ROUTINE_H
+#define CO_ROUTINE_H
+
+#ifndef INC_FREERTOS_H
+ #error "include FreeRTOS.h must appear in source files before include croutine.h"
+#endif
+
+#include "list.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Used to hide the implementation of the co-routine control block. The
+control block structure however has to be included in the header due to
+the macro implementation of the co-routine functionality. */
+typedef void * CoRoutineHandle_t;
+
+/* Defines the prototype to which co-routine functions must conform. */
+typedef void (*crCOROUTINE_CODE)( CoRoutineHandle_t, UBaseType_t );
+
+typedef struct corCoRoutineControlBlock
+{
+ crCOROUTINE_CODE pxCoRoutineFunction;
+ ListItem_t xGenericListItem; /*< List item used to place the CRCB in ready and blocked queues. */
+ ListItem_t xEventListItem; /*< List item used to place the CRCB in event lists. */
+ UBaseType_t uxPriority; /*< The priority of the co-routine in relation to other co-routines. */
+ UBaseType_t uxIndex; /*< Used to distinguish between co-routines when multiple co-routines use the same co-routine function. */
+ uint16_t uxState; /*< Used internally by the co-routine implementation. */
+} CRCB_t; /* Co-routine control block. Note must be identical in size down to uxPriority with TCB_t. */
+
+/**
+ * croutine. h
+ *<pre>
+ BaseType_t xCoRoutineCreate(
+ crCOROUTINE_CODE pxCoRoutineCode,
+ UBaseType_t uxPriority,
+ UBaseType_t uxIndex
+ );</pre>
+ *
+ * Create a new co-routine and add it to the list of co-routines that are
+ * ready to run.
+ *
+ * @param pxCoRoutineCode Pointer to the co-routine function. Co-routine
+ * functions require special syntax - see the co-routine section of the WEB
+ * documentation for more information.
+ *
+ * @param uxPriority The priority with respect to other co-routines at which
+ * the co-routine will run.
+ *
+ * @param uxIndex Used to distinguish between different co-routines that
+ * execute the same function. See the example below and the co-routine section
+ * of the WEB documentation for further information.
+ *
+ * @return pdPASS if the co-routine was successfully created and added to a ready
+ * list, otherwise an error code defined with ProjDefs.h.
+ *
+ * Example usage:
+ <pre>
+ // Co-routine to be created.
+ void vFlashCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
+ {
+ // Variables in co-routines must be declared static if they must maintain value across a blocking call.
+ // This may not be necessary for const variables.
+ static const char cLedToFlash[ 2 ] = { 5, 6 };
+ static const TickType_t uxFlashRates[ 2 ] = { 200, 400 };
+
+ // Must start every co-routine with a call to crSTART();
+ crSTART( xHandle );
+
+ for( ;; )
+ {
+ // This co-routine just delays for a fixed period, then toggles
+ // an LED. Two co-routines are created using this function, so
+ // the uxIndex parameter is used to tell the co-routine which
+ // LED to flash and how int32_t to delay. This assumes xQueue has
+ // already been created.
+ vParTestToggleLED( cLedToFlash[ uxIndex ] );
+ crDELAY( xHandle, uxFlashRates[ uxIndex ] );
+ }
+
+ // Must end every co-routine with a call to crEND();
+ crEND();
+ }
+
+ // Function that creates two co-routines.
+ void vOtherFunction( void )
+ {
+ uint8_t ucParameterToPass;
+ TaskHandle_t xHandle;
+
+ // Create two co-routines at priority 0. The first is given index 0
+ // so (from the code above) toggles LED 5 every 200 ticks. The second
+ // is given index 1 so toggles LED 6 every 400 ticks.
+ for( uxIndex = 0; uxIndex < 2; uxIndex++ )
+ {
+ xCoRoutineCreate( vFlashCoRoutine, 0, uxIndex );
+ }
+ }
+ </pre>
+ * \defgroup xCoRoutineCreate xCoRoutineCreate
+ * \ingroup Tasks
+ */
+BaseType_t xCoRoutineCreate( crCOROUTINE_CODE pxCoRoutineCode, UBaseType_t uxPriority, UBaseType_t uxIndex );
+
+
+/**
+ * croutine. h
+ *<pre>
+ void vCoRoutineSchedule( void );</pre>
+ *
+ * Run a co-routine.
+ *
+ * vCoRoutineSchedule() executes the highest priority co-routine that is able
+ * to run. The co-routine will execute until it either blocks, yields or is
+ * preempted by a task. Co-routines execute cooperatively so one
+ * co-routine cannot be preempted by another, but can be preempted by a task.
+ *
+ * If an application comprises of both tasks and co-routines then
+ * vCoRoutineSchedule should be called from the idle task (in an idle task
+ * hook).
+ *
+ * Example usage:
+ <pre>
+ // This idle task hook will schedule a co-routine each time it is called.
+ // The rest of the idle task will execute between co-routine calls.
+ void vApplicationIdleHook( void )
+ {
+ vCoRoutineSchedule();
+ }
+
+ // Alternatively, if you do not require any other part of the idle task to
+ // execute, the idle task hook can call vCoRoutineScheduler() within an
+ // infinite loop.
+ void vApplicationIdleHook( void )
+ {
+ for( ;; )
+ {
+ vCoRoutineSchedule();
+ }
+ }
+ </pre>
+ * \defgroup vCoRoutineSchedule vCoRoutineSchedule
+ * \ingroup Tasks
+ */
+void vCoRoutineSchedule( void );
+
+/**
+ * croutine. h
+ * <pre>
+ crSTART( CoRoutineHandle_t xHandle );</pre>
+ *
+ * This macro MUST always be called at the start of a co-routine function.
+ *
+ * Example usage:
+ <pre>
+ // Co-routine to be created.
+ void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
+ {
+ // Variables in co-routines must be declared static if they must maintain value across a blocking call.
+ static int32_t ulAVariable;
+
+ // Must start every co-routine with a call to crSTART();
+ crSTART( xHandle );
+
+ for( ;; )
+ {
+ // Co-routine functionality goes here.
+ }
+
+ // Must end every co-routine with a call to crEND();
+ crEND();
+ }</pre>
+ * \defgroup crSTART crSTART
+ * \ingroup Tasks
+ */
+#define crSTART( pxCRCB ) switch( ( ( CRCB_t * )( pxCRCB ) )->uxState ) { case 0:
+
+/**
+ * croutine. h
+ * <pre>
+ crEND();</pre>
+ *
+ * This macro MUST always be called at the end of a co-routine function.
+ *
+ * Example usage:
+ <pre>
+ // Co-routine to be created.
+ void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
+ {
+ // Variables in co-routines must be declared static if they must maintain value across a blocking call.
+ static int32_t ulAVariable;
+
+ // Must start every co-routine with a call to crSTART();
+ crSTART( xHandle );
+
+ for( ;; )
+ {
+ // Co-routine functionality goes here.
+ }
+
+ // Must end every co-routine with a call to crEND();
+ crEND();
+ }</pre>
+ * \defgroup crSTART crSTART
+ * \ingroup Tasks
+ */
+#define crEND() }
+
+/*
+ * These macros are intended for internal use by the co-routine implementation
+ * only. The macros should not be used directly by application writers.
+ */
+#define crSET_STATE0( xHandle ) ( ( CRCB_t * )( xHandle ) )->uxState = (__LINE__ * 2); return; case (__LINE__ * 2):
+#define crSET_STATE1( xHandle ) ( ( CRCB_t * )( xHandle ) )->uxState = ((__LINE__ * 2)+1); return; case ((__LINE__ * 2)+1):
+
+/**
+ * croutine. h
+ *<pre>
+ crDELAY( CoRoutineHandle_t xHandle, TickType_t xTicksToDelay );</pre>
+ *
+ * Delay a co-routine for a fixed period of time.
+ *
+ * crDELAY can only be called from the co-routine function itself - not
+ * from within a function called by the co-routine function. This is because
+ * co-routines do not maintain their own stack.
+ *
+ * @param xHandle The handle of the co-routine to delay. This is the xHandle
+ * parameter of the co-routine function.
+ *
+ * @param xTickToDelay The number of ticks that the co-routine should delay
+ * for. The actual amount of time this equates to is defined by
+ * configTICK_RATE_HZ (set in FreeRTOSConfig.h). The constant portTICK_PERIOD_MS
+ * can be used to convert ticks to milliseconds.
+ *
+ * Example usage:
+ <pre>
+ // Co-routine to be created.
+ void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
+ {
+ // Variables in co-routines must be declared static if they must maintain value across a blocking call.
+ // This may not be necessary for const variables.
+ // We are to delay for 200ms.
+ static const xTickType xDelayTime = 200 / portTICK_PERIOD_MS;
+
+ // Must start every co-routine with a call to crSTART();
+ crSTART( xHandle );
+
+ for( ;; )
+ {
+ // Delay for 200ms.
+ crDELAY( xHandle, xDelayTime );
+
+ // Do something here.
+ }
+
+ // Must end every co-routine with a call to crEND();
+ crEND();
+ }</pre>
+ * \defgroup crDELAY crDELAY
+ * \ingroup Tasks
+ */
+#define crDELAY( xHandle, xTicksToDelay ) \
+ if( ( xTicksToDelay ) > 0 ) \
+ { \
+ vCoRoutineAddToDelayedList( ( xTicksToDelay ), NULL ); \
+ } \
+ crSET_STATE0( ( xHandle ) );
+
+/**
+ * <pre>
+ crQUEUE_SEND(
+ CoRoutineHandle_t xHandle,
+ QueueHandle_t pxQueue,
+ void *pvItemToQueue,
+ TickType_t xTicksToWait,
+ BaseType_t *pxResult
+ )</pre>
+ *
+ * The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine
+ * equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.
+ *
+ * crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas
+ * xQueueSend() and xQueueReceive() can only be used from tasks.
+ *
+ * crQUEUE_SEND can only be called from the co-routine function itself - not
+ * from within a function called by the co-routine function. This is because
+ * co-routines do not maintain their own stack.
+ *
+ * See the co-routine section of the WEB documentation for information on
+ * passing data between tasks and co-routines and between ISR's and
+ * co-routines.
+ *
+ * @param xHandle The handle of the calling co-routine. This is the xHandle
+ * parameter of the co-routine function.
+ *
+ * @param pxQueue The handle of the queue on which the data will be posted.
+ * The handle is obtained as the return value when the queue is created using
+ * the xQueueCreate() API function.
+ *
+ * @param pvItemToQueue A pointer to the data being posted onto the queue.
+ * The number of bytes of each queued item is specified when the queue is
+ * created. This number of bytes is copied from pvItemToQueue into the queue
+ * itself.
+ *
+ * @param xTickToDelay The number of ticks that the co-routine should block
+ * to wait for space to become available on the queue, should space not be
+ * available immediately. The actual amount of time this equates to is defined
+ * by configTICK_RATE_HZ (set in FreeRTOSConfig.h). The constant
+ * portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see example
+ * below).
+ *
+ * @param pxResult The variable pointed to by pxResult will be set to pdPASS if
+ * data was successfully posted onto the queue, otherwise it will be set to an
+ * error defined within ProjDefs.h.
+ *
+ * Example usage:
+ <pre>
+ // Co-routine function that blocks for a fixed period then posts a number onto
+ // a queue.
+ static void prvCoRoutineFlashTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
+ {
+ // Variables in co-routines must be declared static if they must maintain value across a blocking call.
+ static BaseType_t xNumberToPost = 0;
+ static BaseType_t xResult;
+
+ // Co-routines must begin with a call to crSTART().
+ crSTART( xHandle );
+
+ for( ;; )
+ {
+ // This assumes the queue has already been created.
+ crQUEUE_SEND( xHandle, xCoRoutineQueue, &xNumberToPost, NO_DELAY, &xResult );
+
+ if( xResult != pdPASS )
+ {
+ // The message was not posted!
+ }
+
+ // Increment the number to be posted onto the queue.
+ xNumberToPost++;
+
+ // Delay for 100 ticks.
+ crDELAY( xHandle, 100 );
+ }
+
+ // Co-routines must end with a call to crEND().
+ crEND();
+ }</pre>
+ * \defgroup crQUEUE_SEND crQUEUE_SEND
+ * \ingroup Tasks
+ */
+#define crQUEUE_SEND( xHandle, pxQueue, pvItemToQueue, xTicksToWait, pxResult ) \
+{ \
+ *( pxResult ) = xQueueCRSend( ( pxQueue) , ( pvItemToQueue) , ( xTicksToWait ) ); \
+ if( *( pxResult ) == errQUEUE_BLOCKED ) \
+ { \
+ crSET_STATE0( ( xHandle ) ); \
+ *pxResult = xQueueCRSend( ( pxQueue ), ( pvItemToQueue ), 0 ); \
+ } \
+ if( *pxResult == errQUEUE_YIELD ) \
+ { \
+ crSET_STATE1( ( xHandle ) ); \
+ *pxResult = pdPASS; \
+ } \
+}
+
+/**
+ * croutine. h
+ * <pre>
+ crQUEUE_RECEIVE(
+ CoRoutineHandle_t xHandle,
+ QueueHandle_t pxQueue,
+ void *pvBuffer,
+ TickType_t xTicksToWait,
+ BaseType_t *pxResult
+ )</pre>
+ *
+ * The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine
+ * equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.
+ *
+ * crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas
+ * xQueueSend() and xQueueReceive() can only be used from tasks.
+ *
+ * crQUEUE_RECEIVE can only be called from the co-routine function itself - not
+ * from within a function called by the co-routine function. This is because
+ * co-routines do not maintain their own stack.
+ *
+ * See the co-routine section of the WEB documentation for information on
+ * passing data between tasks and co-routines and between ISR's and
+ * co-routines.
+ *
+ * @param xHandle The handle of the calling co-routine. This is the xHandle
+ * parameter of the co-routine function.
+ *
+ * @param pxQueue The handle of the queue from which the data will be received.
+ * The handle is obtained as the return value when the queue is created using
+ * the xQueueCreate() API function.
+ *
+ * @param pvBuffer The buffer into which the received item is to be copied.
+ * The number of bytes of each queued item is specified when the queue is
+ * created. This number of bytes is copied into pvBuffer.
+ *
+ * @param xTickToDelay The number of ticks that the co-routine should block
+ * to wait for data to become available from the queue, should data not be
+ * available immediately. The actual amount of time this equates to is defined
+ * by configTICK_RATE_HZ (set in FreeRTOSConfig.h). The constant
+ * portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see the
+ * crQUEUE_SEND example).
+ *
+ * @param pxResult The variable pointed to by pxResult will be set to pdPASS if
+ * data was successfully retrieved from the queue, otherwise it will be set to
+ * an error code as defined within ProjDefs.h.
+ *
+ * Example usage:
+ <pre>
+ // A co-routine receives the number of an LED to flash from a queue. It
+ // blocks on the queue until the number is received.
+ static void prvCoRoutineFlashWorkTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
+ {
+ // Variables in co-routines must be declared static if they must maintain value across a blocking call.
+ static BaseType_t xResult;
+ static UBaseType_t uxLEDToFlash;
+
+ // All co-routines must start with a call to crSTART().
+ crSTART( xHandle );
+
+ for( ;; )
+ {
+ // Wait for data to become available on the queue.
+ crQUEUE_RECEIVE( xHandle, xCoRoutineQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
+
+ if( xResult == pdPASS )
+ {
+ // We received the LED to flash - flash it!
+ vParTestToggleLED( uxLEDToFlash );
+ }
+ }
+
+ crEND();
+ }</pre>
+ * \defgroup crQUEUE_RECEIVE crQUEUE_RECEIVE
+ * \ingroup Tasks
+ */
+#define crQUEUE_RECEIVE( xHandle, pxQueue, pvBuffer, xTicksToWait, pxResult ) \
+{ \
+ *( pxResult ) = xQueueCRReceive( ( pxQueue) , ( pvBuffer ), ( xTicksToWait ) ); \
+ if( *( pxResult ) == errQUEUE_BLOCKED ) \
+ { \
+ crSET_STATE0( ( xHandle ) ); \
+ *( pxResult ) = xQueueCRReceive( ( pxQueue) , ( pvBuffer ), 0 ); \
+ } \
+ if( *( pxResult ) == errQUEUE_YIELD ) \
+ { \
+ crSET_STATE1( ( xHandle ) ); \
+ *( pxResult ) = pdPASS; \
+ } \
+}
+
+/**
+ * croutine. h
+ * <pre>
+ crQUEUE_SEND_FROM_ISR(
+ QueueHandle_t pxQueue,
+ void *pvItemToQueue,
+ BaseType_t xCoRoutinePreviouslyWoken
+ )</pre>
+ *
+ * The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the
+ * co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR()
+ * functions used by tasks.
+ *
+ * crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to
+ * pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and
+ * xQueueReceiveFromISR() can only be used to pass data between a task and and
+ * ISR.
+ *
+ * crQUEUE_SEND_FROM_ISR can only be called from an ISR to send data to a queue
+ * that is being used from within a co-routine.
+ *
+ * See the co-routine section of the WEB documentation for information on
+ * passing data between tasks and co-routines and between ISR's and
+ * co-routines.
+ *
+ * @param xQueue The handle to the queue on which the item is to be posted.
+ *
+ * @param pvItemToQueue A pointer to the item that is to be placed on the
+ * queue. The size of the items the queue will hold was defined when the
+ * queue was created, so this many bytes will be copied from pvItemToQueue
+ * into the queue storage area.
+ *
+ * @param xCoRoutinePreviouslyWoken This is included so an ISR can post onto
+ * the same queue multiple times from a single interrupt. The first call
+ * should always pass in pdFALSE. Subsequent calls should pass in
+ * the value returned from the previous call.
+ *
+ * @return pdTRUE if a co-routine was woken by posting onto the queue. This is
+ * used by the ISR to determine if a context switch may be required following
+ * the ISR.
+ *
+ * Example usage:
+ <pre>
+ // A co-routine that blocks on a queue waiting for characters to be received.
+ static void vReceivingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
+ {
+ char cRxedChar;
+ BaseType_t xResult;
+
+ // All co-routines must start with a call to crSTART().
+ crSTART( xHandle );
+
+ for( ;; )
+ {
+ // Wait for data to become available on the queue. This assumes the
+ // queue xCommsRxQueue has already been created!
+ crQUEUE_RECEIVE( xHandle, xCommsRxQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
+
+ // Was a character received?
+ if( xResult == pdPASS )
+ {
+ // Process the character here.
+ }
+ }
+
+ // All co-routines must end with a call to crEND().
+ crEND();
+ }
+
+ // An ISR that uses a queue to send characters received on a serial port to
+ // a co-routine.
+ void vUART_ISR( void )
+ {
+ char cRxedChar;
+ BaseType_t xCRWokenByPost = pdFALSE;
+
+ // We loop around reading characters until there are none left in the UART.
+ while( UART_RX_REG_NOT_EMPTY() )
+ {
+ // Obtain the character from the UART.
+ cRxedChar = UART_RX_REG;
+
+ // Post the character onto a queue. xCRWokenByPost will be pdFALSE
+ // the first time around the loop. If the post causes a co-routine
+ // to be woken (unblocked) then xCRWokenByPost will be set to pdTRUE.
+ // In this manner we can ensure that if more than one co-routine is
+ // blocked on the queue only one is woken by this ISR no matter how
+ // many characters are posted to the queue.
+ xCRWokenByPost = crQUEUE_SEND_FROM_ISR( xCommsRxQueue, &cRxedChar, xCRWokenByPost );
+ }
+ }</pre>
+ * \defgroup crQUEUE_SEND_FROM_ISR crQUEUE_SEND_FROM_ISR
+ * \ingroup Tasks
+ */
+#define crQUEUE_SEND_FROM_ISR( pxQueue, pvItemToQueue, xCoRoutinePreviouslyWoken ) xQueueCRSendFromISR( ( pxQueue ), ( pvItemToQueue ), ( xCoRoutinePreviouslyWoken ) )
+
+
+/**
+ * croutine. h
+ * <pre>
+ crQUEUE_SEND_FROM_ISR(
+ QueueHandle_t pxQueue,
+ void *pvBuffer,
+ BaseType_t * pxCoRoutineWoken
+ )</pre>
+ *
+ * The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the
+ * co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR()
+ * functions used by tasks.
+ *
+ * crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to
+ * pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and
+ * xQueueReceiveFromISR() can only be used to pass data between a task and and
+ * ISR.
+ *
+ * crQUEUE_RECEIVE_FROM_ISR can only be called from an ISR to receive data
+ * from a queue that is being used from within a co-routine (a co-routine
+ * posted to the queue).
+ *
+ * See the co-routine section of the WEB documentation for information on
+ * passing data between tasks and co-routines and between ISR's and
+ * co-routines.
+ *
+ * @param xQueue The handle to the queue on which the item is to be posted.
+ *
+ * @param pvBuffer A pointer to a buffer into which the received item will be
+ * placed. The size of the items the queue will hold was defined when the
+ * queue was created, so this many bytes will be copied from the queue into
+ * pvBuffer.
+ *
+ * @param pxCoRoutineWoken A co-routine may be blocked waiting for space to become
+ * available on the queue. If crQUEUE_RECEIVE_FROM_ISR causes such a
+ * co-routine to unblock *pxCoRoutineWoken will get set to pdTRUE, otherwise
+ * *pxCoRoutineWoken will remain unchanged.
+ *
+ * @return pdTRUE an item was successfully received from the queue, otherwise
+ * pdFALSE.
+ *
+ * Example usage:
+ <pre>
+ // A co-routine that posts a character to a queue then blocks for a fixed
+ // period. The character is incremented each time.
+ static void vSendingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
+ {
+ // cChar holds its value while this co-routine is blocked and must therefore
+ // be declared static.
+ static char cCharToTx = 'a';
+ BaseType_t xResult;
+
+ // All co-routines must start with a call to crSTART().
+ crSTART( xHandle );
+
+ for( ;; )
+ {
+ // Send the next character to the queue.
+ crQUEUE_SEND( xHandle, xCoRoutineQueue, &cCharToTx, NO_DELAY, &xResult );
+
+ if( xResult == pdPASS )
+ {
+ // The character was successfully posted to the queue.
+ }
+ else
+ {
+ // Could not post the character to the queue.
+ }
+
+ // Enable the UART Tx interrupt to cause an interrupt in this
+ // hypothetical UART. The interrupt will obtain the character
+ // from the queue and send it.
+ ENABLE_RX_INTERRUPT();
+
+ // Increment to the next character then block for a fixed period.
+ // cCharToTx will maintain its value across the delay as it is
+ // declared static.
+ cCharToTx++;
+ if( cCharToTx > 'x' )
+ {
+ cCharToTx = 'a';
+ }
+ crDELAY( 100 );
+ }
+
+ // All co-routines must end with a call to crEND().
+ crEND();
+ }
+
+ // An ISR that uses a queue to receive characters to send on a UART.
+ void vUART_ISR( void )
+ {
+ char cCharToTx;
+ BaseType_t xCRWokenByPost = pdFALSE;
+
+ while( UART_TX_REG_EMPTY() )
+ {
+ // Are there any characters in the queue waiting to be sent?
+ // xCRWokenByPost will automatically be set to pdTRUE if a co-routine
+ // is woken by the post - ensuring that only a single co-routine is
+ // woken no matter how many times we go around this loop.
+ if( crQUEUE_RECEIVE_FROM_ISR( pxQueue, &cCharToTx, &xCRWokenByPost ) )
+ {
+ SEND_CHARACTER( cCharToTx );
+ }
+ }
+ }</pre>
+ * \defgroup crQUEUE_RECEIVE_FROM_ISR crQUEUE_RECEIVE_FROM_ISR
+ * \ingroup Tasks
+ */
+#define crQUEUE_RECEIVE_FROM_ISR( pxQueue, pvBuffer, pxCoRoutineWoken ) xQueueCRReceiveFromISR( ( pxQueue ), ( pvBuffer ), ( pxCoRoutineWoken ) )
+
+/*
+ * This function is intended for internal use by the co-routine macros only.
+ * The macro nature of the co-routine implementation requires that the
+ * prototype appears here. The function should not be used by application
+ * writers.
+ *
+ * Removes the current co-routine from its ready list and places it in the
+ * appropriate delayed list.
+ */
+void vCoRoutineAddToDelayedList( TickType_t xTicksToDelay, List_t *pxEventList );
+
+/*
+ * This function is intended for internal use by the queue implementation only.
+ * The function should not be used by application writers.
+ *
+ * Removes the highest priority co-routine from the event list and places it in
+ * the pending ready list.
+ */
+BaseType_t xCoRoutineRemoveFromEventList( const List_t *pxEventList );
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* CO_ROUTINE_H */
diff --git a/src/FreeRTOS-Sim-master/Source/include/deprecated_definitions.h b/src/FreeRTOS-Sim-master/Source/include/deprecated_definitions.h
new file mode 100644
index 0000000..d904a2e
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/deprecated_definitions.h
@@ -0,0 +1,321 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef DEPRECATED_DEFINITIONS_H
+#define DEPRECATED_DEFINITIONS_H
+
+
+/* Each FreeRTOS port has a unique portmacro.h header file. Originally a
+pre-processor definition was used to ensure the pre-processor found the correct
+portmacro.h file for the port being used. That scheme was deprecated in favour
+of setting the compiler's include path such that it found the correct
+portmacro.h file - removing the need for the constant and allowing the
+portmacro.h file to be located anywhere in relation to the port being used. The
+definitions below remain in the code for backward compatibility only. New
+projects should not use them. */
+
+#ifdef OPEN_WATCOM_INDUSTRIAL_PC_PORT
+ #include "..\..\Source\portable\owatcom\16bitdos\pc\portmacro.h"
+ typedef void ( __interrupt __far *pxISR )();
+#endif
+
+#ifdef OPEN_WATCOM_FLASH_LITE_186_PORT
+ #include "..\..\Source\portable\owatcom\16bitdos\flsh186\portmacro.h"
+ typedef void ( __interrupt __far *pxISR )();
+#endif
+
+#ifdef GCC_MEGA_AVR
+ #include "../portable/GCC/ATMega323/portmacro.h"
+#endif
+
+#ifdef IAR_MEGA_AVR
+ #include "../portable/IAR/ATMega323/portmacro.h"
+#endif
+
+#ifdef MPLAB_PIC24_PORT
+ #include "../../Source/portable/MPLAB/PIC24_dsPIC/portmacro.h"
+#endif
+
+#ifdef MPLAB_DSPIC_PORT
+ #include "../../Source/portable/MPLAB/PIC24_dsPIC/portmacro.h"
+#endif
+
+#ifdef MPLAB_PIC18F_PORT
+ #include "../../Source/portable/MPLAB/PIC18F/portmacro.h"
+#endif
+
+#ifdef MPLAB_PIC32MX_PORT
+ #include "../../Source/portable/MPLAB/PIC32MX/portmacro.h"
+#endif
+
+#ifdef _FEDPICC
+ #include "libFreeRTOS/Include/portmacro.h"
+#endif
+
+#ifdef SDCC_CYGNAL
+ #include "../../Source/portable/SDCC/Cygnal/portmacro.h"
+#endif
+
+#ifdef GCC_ARM7
+ #include "../../Source/portable/GCC/ARM7_LPC2000/portmacro.h"
+#endif
+
+#ifdef GCC_ARM7_ECLIPSE
+ #include "portmacro.h"
+#endif
+
+#ifdef ROWLEY_LPC23xx
+ #include "../../Source/portable/GCC/ARM7_LPC23xx/portmacro.h"
+#endif
+
+#ifdef IAR_MSP430
+ #include "..\..\Source\portable\IAR\MSP430\portmacro.h"
+#endif
+
+#ifdef GCC_MSP430
+ #include "../../Source/portable/GCC/MSP430F449/portmacro.h"
+#endif
+
+#ifdef ROWLEY_MSP430
+ #include "../../Source/portable/Rowley/MSP430F449/portmacro.h"
+#endif
+
+#ifdef ARM7_LPC21xx_KEIL_RVDS
+ #include "..\..\Source\portable\RVDS\ARM7_LPC21xx\portmacro.h"
+#endif
+
+#ifdef SAM7_GCC
+ #include "../../Source/portable/GCC/ARM7_AT91SAM7S/portmacro.h"
+#endif
+
+#ifdef SAM7_IAR
+ #include "..\..\Source\portable\IAR\AtmelSAM7S64\portmacro.h"
+#endif
+
+#ifdef SAM9XE_IAR
+ #include "..\..\Source\portable\IAR\AtmelSAM9XE\portmacro.h"
+#endif
+
+#ifdef LPC2000_IAR
+ #include "..\..\Source\portable\IAR\LPC2000\portmacro.h"
+#endif
+
+#ifdef STR71X_IAR
+ #include "..\..\Source\portable\IAR\STR71x\portmacro.h"
+#endif
+
+#ifdef STR75X_IAR
+ #include "..\..\Source\portable\IAR\STR75x\portmacro.h"
+#endif
+
+#ifdef STR75X_GCC
+ #include "..\..\Source\portable\GCC\STR75x\portmacro.h"
+#endif
+
+#ifdef STR91X_IAR
+ #include "..\..\Source\portable\IAR\STR91x\portmacro.h"
+#endif
+
+#ifdef GCC_H8S
+ #include "../../Source/portable/GCC/H8S2329/portmacro.h"
+#endif
+
+#ifdef GCC_AT91FR40008
+ #include "../../Source/portable/GCC/ARM7_AT91FR40008/portmacro.h"
+#endif
+
+#ifdef RVDS_ARMCM3_LM3S102
+ #include "../../Source/portable/RVDS/ARM_CM3/portmacro.h"
+#endif
+
+#ifdef GCC_ARMCM3_LM3S102
+ #include "../../Source/portable/GCC/ARM_CM3/portmacro.h"
+#endif
+
+#ifdef GCC_ARMCM3
+ #include "../../Source/portable/GCC/ARM_CM3/portmacro.h"
+#endif
+
+#ifdef IAR_ARM_CM3
+ #include "../../Source/portable/IAR/ARM_CM3/portmacro.h"
+#endif
+
+#ifdef IAR_ARMCM3_LM
+ #include "../../Source/portable/IAR/ARM_CM3/portmacro.h"
+#endif
+
+#ifdef HCS12_CODE_WARRIOR
+ #include "../../Source/portable/CodeWarrior/HCS12/portmacro.h"
+#endif
+
+#ifdef MICROBLAZE_GCC
+ #include "../../Source/portable/GCC/MicroBlaze/portmacro.h"
+#endif
+
+#ifdef TERN_EE
+ #include "..\..\Source\portable\Paradigm\Tern_EE\small\portmacro.h"
+#endif
+
+#ifdef GCC_HCS12
+ #include "../../Source/portable/GCC/HCS12/portmacro.h"
+#endif
+
+#ifdef GCC_MCF5235
+ #include "../../Source/portable/GCC/MCF5235/portmacro.h"
+#endif
+
+#ifdef COLDFIRE_V2_GCC
+ #include "../../../Source/portable/GCC/ColdFire_V2/portmacro.h"
+#endif
+
+#ifdef COLDFIRE_V2_CODEWARRIOR
+ #include "../../Source/portable/CodeWarrior/ColdFire_V2/portmacro.h"
+#endif
+
+#ifdef GCC_PPC405
+ #include "../../Source/portable/GCC/PPC405_Xilinx/portmacro.h"
+#endif
+
+#ifdef GCC_PPC440
+ #include "../../Source/portable/GCC/PPC440_Xilinx/portmacro.h"
+#endif
+
+#ifdef _16FX_SOFTUNE
+ #include "..\..\Source\portable\Softune\MB96340\portmacro.h"
+#endif
+
+#ifdef BCC_INDUSTRIAL_PC_PORT
+ /* A short file name has to be used in place of the normal
+ FreeRTOSConfig.h when using the Borland compiler. */
+ #include "frconfig.h"
+ #include "..\portable\BCC\16BitDOS\PC\prtmacro.h"
+ typedef void ( __interrupt __far *pxISR )();
+#endif
+
+#ifdef BCC_FLASH_LITE_186_PORT
+ /* A short file name has to be used in place of the normal
+ FreeRTOSConfig.h when using the Borland compiler. */
+ #include "frconfig.h"
+ #include "..\portable\BCC\16BitDOS\flsh186\prtmacro.h"
+ typedef void ( __interrupt __far *pxISR )();
+#endif
+
+#ifdef __GNUC__
+ #ifdef __AVR32_AVR32A__
+ #include "portmacro.h"
+ #endif
+#endif
+
+#ifdef __ICCAVR32__
+ #ifdef __CORE__
+ #if __CORE__ == __AVR32A__
+ #include "portmacro.h"
+ #endif
+ #endif
+#endif
+
+#ifdef __91467D
+ #include "portmacro.h"
+#endif
+
+#ifdef __96340
+ #include "portmacro.h"
+#endif
+
+
+#ifdef __IAR_V850ES_Fx3__
+ #include "../../Source/portable/IAR/V850ES/portmacro.h"
+#endif
+
+#ifdef __IAR_V850ES_Jx3__
+ #include "../../Source/portable/IAR/V850ES/portmacro.h"
+#endif
+
+#ifdef __IAR_V850ES_Jx3_L__
+ #include "../../Source/portable/IAR/V850ES/portmacro.h"
+#endif
+
+#ifdef __IAR_V850ES_Jx2__
+ #include "../../Source/portable/IAR/V850ES/portmacro.h"
+#endif
+
+#ifdef __IAR_V850ES_Hx2__
+ #include "../../Source/portable/IAR/V850ES/portmacro.h"
+#endif
+
+#ifdef __IAR_78K0R_Kx3__
+ #include "../../Source/portable/IAR/78K0R/portmacro.h"
+#endif
+
+#ifdef __IAR_78K0R_Kx3L__
+ #include "../../Source/portable/IAR/78K0R/portmacro.h"
+#endif
+
+#endif /* DEPRECATED_DEFINITIONS_H */
+
diff --git a/src/FreeRTOS-Sim-master/Source/include/event_groups.h b/src/FreeRTOS-Sim-master/Source/include/event_groups.h
new file mode 100644
index 0000000..106ed60
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/event_groups.h
@@ -0,0 +1,730 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef EVENT_GROUPS_H
+#define EVENT_GROUPS_H
+
+#ifndef INC_FREERTOS_H
+ #error "include FreeRTOS.h" must appear in source files before "include event_groups.h"
+#endif
+
+#include "timers.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ * An event group is a collection of bits to which an application can assign a
+ * meaning. For example, an application may create an event group to convey
+ * the status of various CAN bus related events in which bit 0 might mean "A CAN
+ * message has been received and is ready for processing", bit 1 might mean "The
+ * application has queued a message that is ready for sending onto the CAN
+ * network", and bit 2 might mean "It is time to send a SYNC message onto the
+ * CAN network" etc. A task can then test the bit values to see which events
+ * are active, and optionally enter the Blocked state to wait for a specified
+ * bit or a group of specified bits to be active. To continue the CAN bus
+ * example, a CAN controlling task can enter the Blocked state (and therefore
+ * not consume any processing time) until either bit 0, bit 1 or bit 2 are
+ * active, at which time the bit that was actually active would inform the task
+ * which action it had to take (process a received message, send a message, or
+ * send a SYNC).
+ *
+ * The event groups implementation contains intelligence to avoid race
+ * conditions that would otherwise occur were an application to use a simple
+ * variable for the same purpose. This is particularly important with respect
+ * to when a bit within an event group is to be cleared, and when bits have to
+ * be set and then tested atomically - as is the case where event groups are
+ * used to create a synchronisation point between multiple tasks (a
+ * 'rendezvous').
+ *
+ * \defgroup EventGroup
+ */
+
+
+
+/**
+ * event_groups.h
+ *
+ * Type by which event groups are referenced. For example, a call to
+ * xEventGroupCreate() returns an EventGroupHandle_t variable that can then
+ * be used as a parameter to other event group functions.
+ *
+ * \defgroup EventGroupHandle_t EventGroupHandle_t
+ * \ingroup EventGroup
+ */
+typedef void * EventGroupHandle_t;
+
+/*
+ * The type that holds event bits always matches TickType_t - therefore the
+ * number of bits it holds is set by configUSE_16_BIT_TICKS (16 bits if set to 1,
+ * 32 bits if set to 0.
+ *
+ * \defgroup EventBits_t EventBits_t
+ * \ingroup EventGroup
+ */
+typedef TickType_t EventBits_t;
+
+/**
+ * event_groups.h
+ *<pre>
+ EventGroupHandle_t xEventGroupCreate( void );
+ </pre>
+ *
+ * Create a new event group. This function cannot be called from an interrupt.
+ *
+ * Although event groups are not related to ticks, for internal implementation
+ * reasons the number of bits available for use in an event group is dependent
+ * on the configUSE_16_BIT_TICKS setting in FreeRTOSConfig.h. If
+ * configUSE_16_BIT_TICKS is 1 then each event group contains 8 usable bits (bit
+ * 0 to bit 7). If configUSE_16_BIT_TICKS is set to 0 then each event group has
+ * 24 usable bits (bit 0 to bit 23). The EventBits_t type is used to store
+ * event bits within an event group.
+ *
+ * @return If the event group was created then a handle to the event group is
+ * returned. If there was insufficient FreeRTOS heap available to create the
+ * event group then NULL is returned. See http://www.freertos.org/a00111.html
+ *
+ * Example usage:
+ <pre>
+ // Declare a variable to hold the created event group.
+ EventGroupHandle_t xCreatedEventGroup;
+
+ // Attempt to create the event group.
+ xCreatedEventGroup = xEventGroupCreate();
+
+ // Was the event group created successfully?
+ if( xCreatedEventGroup == NULL )
+ {
+ // The event group was not created because there was insufficient
+ // FreeRTOS heap available.
+ }
+ else
+ {
+ // The event group was created.
+ }
+ </pre>
+ * \defgroup xEventGroupCreate xEventGroupCreate
+ * \ingroup EventGroup
+ */
+EventGroupHandle_t xEventGroupCreate( void ) PRIVILEGED_FUNCTION;
+
+/**
+ * event_groups.h
+ *<pre>
+ EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup,
+ const EventBits_t uxBitsToWaitFor,
+ const BaseType_t xClearOnExit,
+ const BaseType_t xWaitForAllBits,
+ const TickType_t xTicksToWait );
+ </pre>
+ *
+ * [Potentially] block to wait for one or more bits to be set within a
+ * previously created event group.
+ *
+ * This function cannot be called from an interrupt.
+ *
+ * @param xEventGroup The event group in which the bits are being tested. The
+ * event group must have previously been created using a call to
+ * xEventGroupCreate().
+ *
+ * @param uxBitsToWaitFor A bitwise value that indicates the bit or bits to test
+ * inside the event group. For example, to wait for bit 0 and/or bit 2 set
+ * uxBitsToWaitFor to 0x05. To wait for bits 0 and/or bit 1 and/or bit 2 set
+ * uxBitsToWaitFor to 0x07. Etc.
+ *
+ * @param xClearOnExit If xClearOnExit is set to pdTRUE then any bits within
+ * uxBitsToWaitFor that are set within the event group will be cleared before
+ * xEventGroupWaitBits() returns if the wait condition was met (if the function
+ * returns for a reason other than a timeout). If xClearOnExit is set to
+ * pdFALSE then the bits set in the event group are not altered when the call to
+ * xEventGroupWaitBits() returns.
+ *
+ * @param xWaitForAllBits If xWaitForAllBits is set to pdTRUE then
+ * xEventGroupWaitBits() will return when either all the bits in uxBitsToWaitFor
+ * are set or the specified block time expires. If xWaitForAllBits is set to
+ * pdFALSE then xEventGroupWaitBits() will return when any one of the bits set
+ * in uxBitsToWaitFor is set or the specified block time expires. The block
+ * time is specified by the xTicksToWait parameter.
+ *
+ * @param xTicksToWait The maximum amount of time (specified in 'ticks') to wait
+ * for one/all (depending on the xWaitForAllBits value) of the bits specified by
+ * uxBitsToWaitFor to become set.
+ *
+ * @return The value of the event group at the time either the bits being waited
+ * for became set, or the block time expired. Test the return value to know
+ * which bits were set. If xEventGroupWaitBits() returned because its timeout
+ * expired then not all the bits being waited for will be set. If
+ * xEventGroupWaitBits() returned because the bits it was waiting for were set
+ * then the returned value is the event group value before any bits were
+ * automatically cleared in the case that xClearOnExit parameter was set to
+ * pdTRUE.
+ *
+ * Example usage:
+ <pre>
+ #define BIT_0 ( 1 << 0 )
+ #define BIT_4 ( 1 << 4 )
+
+ void aFunction( EventGroupHandle_t xEventGroup )
+ {
+ EventBits_t uxBits;
+ const TickType_t xTicksToWait = 100 / portTICK_PERIOD_MS;
+
+ // Wait a maximum of 100ms for either bit 0 or bit 4 to be set within
+ // the event group. Clear the bits before exiting.
+ uxBits = xEventGroupWaitBits(
+ xEventGroup, // The event group being tested.
+ BIT_0 | BIT_4, // The bits within the event group to wait for.
+ pdTRUE, // BIT_0 and BIT_4 should be cleared before returning.
+ pdFALSE, // Don't wait for both bits, either bit will do.
+ xTicksToWait ); // Wait a maximum of 100ms for either bit to be set.
+
+ if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
+ {
+ // xEventGroupWaitBits() returned because both bits were set.
+ }
+ else if( ( uxBits & BIT_0 ) != 0 )
+ {
+ // xEventGroupWaitBits() returned because just BIT_0 was set.
+ }
+ else if( ( uxBits & BIT_4 ) != 0 )
+ {
+ // xEventGroupWaitBits() returned because just BIT_4 was set.
+ }
+ else
+ {
+ // xEventGroupWaitBits() returned because xTicksToWait ticks passed
+ // without either BIT_0 or BIT_4 becoming set.
+ }
+ }
+ </pre>
+ * \defgroup xEventGroupWaitBits xEventGroupWaitBits
+ * \ingroup EventGroup
+ */
+EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToWaitFor, const BaseType_t xClearOnExit, const BaseType_t xWaitForAllBits, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+
+/**
+ * event_groups.h
+ *<pre>
+ EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear );
+ </pre>
+ *
+ * Clear bits within an event group. This function cannot be called from an
+ * interrupt.
+ *
+ * @param xEventGroup The event group in which the bits are to be cleared.
+ *
+ * @param uxBitsToClear A bitwise value that indicates the bit or bits to clear
+ * in the event group. For example, to clear bit 3 only, set uxBitsToClear to
+ * 0x08. To clear bit 3 and bit 0 set uxBitsToClear to 0x09.
+ *
+ * @return The value of the event group before the specified bits were cleared.
+ *
+ * Example usage:
+ <pre>
+ #define BIT_0 ( 1 << 0 )
+ #define BIT_4 ( 1 << 4 )
+
+ void aFunction( EventGroupHandle_t xEventGroup )
+ {
+ EventBits_t uxBits;
+
+ // Clear bit 0 and bit 4 in xEventGroup.
+ uxBits = xEventGroupClearBits(
+ xEventGroup, // The event group being updated.
+ BIT_0 | BIT_4 );// The bits being cleared.
+
+ if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
+ {
+ // Both bit 0 and bit 4 were set before xEventGroupClearBits() was
+ // called. Both will now be clear (not set).
+ }
+ else if( ( uxBits & BIT_0 ) != 0 )
+ {
+ // Bit 0 was set before xEventGroupClearBits() was called. It will
+ // now be clear.
+ }
+ else if( ( uxBits & BIT_4 ) != 0 )
+ {
+ // Bit 4 was set before xEventGroupClearBits() was called. It will
+ // now be clear.
+ }
+ else
+ {
+ // Neither bit 0 nor bit 4 were set in the first place.
+ }
+ }
+ </pre>
+ * \defgroup xEventGroupClearBits xEventGroupClearBits
+ * \ingroup EventGroup
+ */
+EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear ) PRIVILEGED_FUNCTION;
+
+/**
+ * event_groups.h
+ *<pre>
+ BaseType_t xEventGroupClearBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet );
+ </pre>
+ *
+ * A version of xEventGroupClearBits() that can be called from an interrupt.
+ *
+ * Setting bits in an event group is not a deterministic operation because there
+ * are an unknown number of tasks that may be waiting for the bit or bits being
+ * set. FreeRTOS does not allow nondeterministic operations to be performed
+ * while interrupts are disabled, so protects event groups that are accessed
+ * from tasks by suspending the scheduler rather than disabling interrupts. As
+ * a result event groups cannot be accessed directly from an interrupt service
+ * routine. Therefore xEventGroupClearBitsFromISR() sends a message to the
+ * timer task to have the clear operation performed in the context of the timer
+ * task.
+ *
+ * @param xEventGroup The event group in which the bits are to be cleared.
+ *
+ * @param uxBitsToClear A bitwise value that indicates the bit or bits to clear.
+ * For example, to clear bit 3 only, set uxBitsToClear to 0x08. To clear bit 3
+ * and bit 0 set uxBitsToClear to 0x09.
+ *
+ * @return If the request to execute the function was posted successfully then
+ * pdPASS is returned, otherwise pdFALSE is returned. pdFALSE will be returned
+ * if the timer service queue was full.
+ *
+ * Example usage:
+ <pre>
+ #define BIT_0 ( 1 << 0 )
+ #define BIT_4 ( 1 << 4 )
+
+ // An event group which it is assumed has already been created by a call to
+ // xEventGroupCreate().
+ EventGroupHandle_t xEventGroup;
+
+ void anInterruptHandler( void )
+ {
+ // Clear bit 0 and bit 4 in xEventGroup.
+ xResult = xEventGroupClearBitsFromISR(
+ xEventGroup, // The event group being updated.
+ BIT_0 | BIT_4 ); // The bits being set.
+
+ if( xResult == pdPASS )
+ {
+ // The message was posted successfully.
+ }
+ }
+ </pre>
+ * \defgroup xEventGroupSetBitsFromISR xEventGroupSetBitsFromISR
+ * \ingroup EventGroup
+ */
+#if( configUSE_TRACE_FACILITY == 1 )
+ BaseType_t xEventGroupClearBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet ) PRIVILEGED_FUNCTION;
+#else
+ #define xEventGroupClearBitsFromISR( xEventGroup, uxBitsToClear ) xTimerPendFunctionCallFromISR( vEventGroupClearBitsCallback, ( void * ) xEventGroup, ( uint32_t ) uxBitsToClear, NULL )
+#endif
+
+/**
+ * event_groups.h
+ *<pre>
+ EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet );
+ </pre>
+ *
+ * Set bits within an event group.
+ * This function cannot be called from an interrupt. xEventGroupSetBitsFromISR()
+ * is a version that can be called from an interrupt.
+ *
+ * Setting bits in an event group will automatically unblock tasks that are
+ * blocked waiting for the bits.
+ *
+ * @param xEventGroup The event group in which the bits are to be set.
+ *
+ * @param uxBitsToSet A bitwise value that indicates the bit or bits to set.
+ * For example, to set bit 3 only, set uxBitsToSet to 0x08. To set bit 3
+ * and bit 0 set uxBitsToSet to 0x09.
+ *
+ * @return The value of the event group at the time the call to
+ * xEventGroupSetBits() returns. There are two reasons why the returned value
+ * might have the bits specified by the uxBitsToSet parameter cleared. First,
+ * if setting a bit results in a task that was waiting for the bit leaving the
+ * blocked state then it is possible the bit will be cleared automatically
+ * (see the xClearBitOnExit parameter of xEventGroupWaitBits()). Second, any
+ * unblocked (or otherwise Ready state) task that has a priority above that of
+ * the task that called xEventGroupSetBits() will execute and may change the
+ * event group value before the call to xEventGroupSetBits() returns.
+ *
+ * Example usage:
+ <pre>
+ #define BIT_0 ( 1 << 0 )
+ #define BIT_4 ( 1 << 4 )
+
+ void aFunction( EventGroupHandle_t xEventGroup )
+ {
+ EventBits_t uxBits;
+
+ // Set bit 0 and bit 4 in xEventGroup.
+ uxBits = xEventGroupSetBits(
+ xEventGroup, // The event group being updated.
+ BIT_0 | BIT_4 );// The bits being set.
+
+ if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
+ {
+ // Both bit 0 and bit 4 remained set when the function returned.
+ }
+ else if( ( uxBits & BIT_0 ) != 0 )
+ {
+ // Bit 0 remained set when the function returned, but bit 4 was
+ // cleared. It might be that bit 4 was cleared automatically as a
+ // task that was waiting for bit 4 was removed from the Blocked
+ // state.
+ }
+ else if( ( uxBits & BIT_4 ) != 0 )
+ {
+ // Bit 4 remained set when the function returned, but bit 0 was
+ // cleared. It might be that bit 0 was cleared automatically as a
+ // task that was waiting for bit 0 was removed from the Blocked
+ // state.
+ }
+ else
+ {
+ // Neither bit 0 nor bit 4 remained set. It might be that a task
+ // was waiting for both of the bits to be set, and the bits were
+ // cleared as the task left the Blocked state.
+ }
+ }
+ </pre>
+ * \defgroup xEventGroupSetBits xEventGroupSetBits
+ * \ingroup EventGroup
+ */
+EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet ) PRIVILEGED_FUNCTION;
+
+/**
+ * event_groups.h
+ *<pre>
+ BaseType_t xEventGroupSetBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, BaseType_t *pxHigherPriorityTaskWoken );
+ </pre>
+ *
+ * A version of xEventGroupSetBits() that can be called from an interrupt.
+ *
+ * Setting bits in an event group is not a deterministic operation because there
+ * are an unknown number of tasks that may be waiting for the bit or bits being
+ * set. FreeRTOS does not allow nondeterministic operations to be performed in
+ * interrupts or from critical sections. Therefore xEventGroupSetBitFromISR()
+ * sends a message to the timer task to have the set operation performed in the
+ * context of the timer task - where a scheduler lock is used in place of a
+ * critical section.
+ *
+ * @param xEventGroup The event group in which the bits are to be set.
+ *
+ * @param uxBitsToSet A bitwise value that indicates the bit or bits to set.
+ * For example, to set bit 3 only, set uxBitsToSet to 0x08. To set bit 3
+ * and bit 0 set uxBitsToSet to 0x09.
+ *
+ * @param pxHigherPriorityTaskWoken As mentioned above, calling this function
+ * will result in a message being sent to the timer daemon task. If the
+ * priority of the timer daemon task is higher than the priority of the
+ * currently running task (the task the interrupt interrupted) then
+ * *pxHigherPriorityTaskWoken will be set to pdTRUE by
+ * xEventGroupSetBitsFromISR(), indicating that a context switch should be
+ * requested before the interrupt exits. For that reason
+ * *pxHigherPriorityTaskWoken must be initialised to pdFALSE. See the
+ * example code below.
+ *
+ * @return If the request to execute the function was posted successfully then
+ * pdPASS is returned, otherwise pdFALSE is returned. pdFALSE will be returned
+ * if the timer service queue was full.
+ *
+ * Example usage:
+ <pre>
+ #define BIT_0 ( 1 << 0 )
+ #define BIT_4 ( 1 << 4 )
+
+ // An event group which it is assumed has already been created by a call to
+ // xEventGroupCreate().
+ EventGroupHandle_t xEventGroup;
+
+ void anInterruptHandler( void )
+ {
+ BaseType_t xHigherPriorityTaskWoken, xResult;
+
+ // xHigherPriorityTaskWoken must be initialised to pdFALSE.
+ xHigherPriorityTaskWoken = pdFALSE;
+
+ // Set bit 0 and bit 4 in xEventGroup.
+ xResult = xEventGroupSetBitsFromISR(
+ xEventGroup, // The event group being updated.
+ BIT_0 | BIT_4 // The bits being set.
+ &xHigherPriorityTaskWoken );
+
+ // Was the message posted successfully?
+ if( xResult == pdPASS )
+ {
+ // If xHigherPriorityTaskWoken is now set to pdTRUE then a context
+ // switch should be requested. The macro used is port specific and
+ // will be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() -
+ // refer to the documentation page for the port being used.
+ portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
+ }
+ }
+ </pre>
+ * \defgroup xEventGroupSetBitsFromISR xEventGroupSetBitsFromISR
+ * \ingroup EventGroup
+ */
+#if( configUSE_TRACE_FACILITY == 1 )
+ BaseType_t xEventGroupSetBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, BaseType_t *pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
+#else
+ #define xEventGroupSetBitsFromISR( xEventGroup, uxBitsToSet, pxHigherPriorityTaskWoken ) xTimerPendFunctionCallFromISR( vEventGroupSetBitsCallback, ( void * ) xEventGroup, ( uint32_t ) uxBitsToSet, pxHigherPriorityTaskWoken )
+#endif
+
+/**
+ * event_groups.h
+ *<pre>
+ EventBits_t xEventGroupSync( EventGroupHandle_t xEventGroup,
+ const EventBits_t uxBitsToSet,
+ const EventBits_t uxBitsToWaitFor,
+ TickType_t xTicksToWait );
+ </pre>
+ *
+ * Atomically set bits within an event group, then wait for a combination of
+ * bits to be set within the same event group. This functionality is typically
+ * used to synchronise multiple tasks, where each task has to wait for the other
+ * tasks to reach a synchronisation point before proceeding.
+ *
+ * This function cannot be used from an interrupt.
+ *
+ * The function will return before its block time expires if the bits specified
+ * by the uxBitsToWait parameter are set, or become set within that time. In
+ * this case all the bits specified by uxBitsToWait will be automatically
+ * cleared before the function returns.
+ *
+ * @param xEventGroup The event group in which the bits are being tested. The
+ * event group must have previously been created using a call to
+ * xEventGroupCreate().
+ *
+ * @param uxBitsToSet The bits to set in the event group before determining
+ * if, and possibly waiting for, all the bits specified by the uxBitsToWait
+ * parameter are set.
+ *
+ * @param uxBitsToWaitFor A bitwise value that indicates the bit or bits to test
+ * inside the event group. For example, to wait for bit 0 and bit 2 set
+ * uxBitsToWaitFor to 0x05. To wait for bits 0 and bit 1 and bit 2 set
+ * uxBitsToWaitFor to 0x07. Etc.
+ *
+ * @param xTicksToWait The maximum amount of time (specified in 'ticks') to wait
+ * for all of the bits specified by uxBitsToWaitFor to become set.
+ *
+ * @return The value of the event group at the time either the bits being waited
+ * for became set, or the block time expired. Test the return value to know
+ * which bits were set. If xEventGroupSync() returned because its timeout
+ * expired then not all the bits being waited for will be set. If
+ * xEventGroupSync() returned because all the bits it was waiting for were
+ * set then the returned value is the event group value before any bits were
+ * automatically cleared.
+ *
+ * Example usage:
+ <pre>
+ // Bits used by the three tasks.
+ #define TASK_0_BIT ( 1 << 0 )
+ #define TASK_1_BIT ( 1 << 1 )
+ #define TASK_2_BIT ( 1 << 2 )
+
+ #define ALL_SYNC_BITS ( TASK_0_BIT | TASK_1_BIT | TASK_2_BIT )
+
+ // Use an event group to synchronise three tasks. It is assumed this event
+ // group has already been created elsewhere.
+ EventGroupHandle_t xEventBits;
+
+ void vTask0( void *pvParameters )
+ {
+ EventBits_t uxReturn;
+ TickType_t xTicksToWait = 100 / portTICK_PERIOD_MS;
+
+ for( ;; )
+ {
+ // Perform task functionality here.
+
+ // Set bit 0 in the event flag to note this task has reached the
+ // sync point. The other two tasks will set the other two bits defined
+ // by ALL_SYNC_BITS. All three tasks have reached the synchronisation
+ // point when all the ALL_SYNC_BITS are set. Wait a maximum of 100ms
+ // for this to happen.
+ uxReturn = xEventGroupSync( xEventBits, TASK_0_BIT, ALL_SYNC_BITS, xTicksToWait );
+
+ if( ( uxReturn & ALL_SYNC_BITS ) == ALL_SYNC_BITS )
+ {
+ // All three tasks reached the synchronisation point before the call
+ // to xEventGroupSync() timed out.
+ }
+ }
+ }
+
+ void vTask1( void *pvParameters )
+ {
+ for( ;; )
+ {
+ // Perform task functionality here.
+
+ // Set bit 1 in the event flag to note this task has reached the
+ // synchronisation point. The other two tasks will set the other two
+ // bits defined by ALL_SYNC_BITS. All three tasks have reached the
+ // synchronisation point when all the ALL_SYNC_BITS are set. Wait
+ // indefinitely for this to happen.
+ xEventGroupSync( xEventBits, TASK_1_BIT, ALL_SYNC_BITS, portMAX_DELAY );
+
+ // xEventGroupSync() was called with an indefinite block time, so
+ // this task will only reach here if the syncrhonisation was made by all
+ // three tasks, so there is no need to test the return value.
+ }
+ }
+
+ void vTask2( void *pvParameters )
+ {
+ for( ;; )
+ {
+ // Perform task functionality here.
+
+ // Set bit 2 in the event flag to note this task has reached the
+ // synchronisation point. The other two tasks will set the other two
+ // bits defined by ALL_SYNC_BITS. All three tasks have reached the
+ // synchronisation point when all the ALL_SYNC_BITS are set. Wait
+ // indefinitely for this to happen.
+ xEventGroupSync( xEventBits, TASK_2_BIT, ALL_SYNC_BITS, portMAX_DELAY );
+
+ // xEventGroupSync() was called with an indefinite block time, so
+ // this task will only reach here if the syncrhonisation was made by all
+ // three tasks, so there is no need to test the return value.
+ }
+ }
+
+ </pre>
+ * \defgroup xEventGroupSync xEventGroupSync
+ * \ingroup EventGroup
+ */
+EventBits_t xEventGroupSync( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, const EventBits_t uxBitsToWaitFor, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+
+
+/**
+ * event_groups.h
+ *<pre>
+ EventBits_t xEventGroupGetBits( EventGroupHandle_t xEventGroup );
+ </pre>
+ *
+ * Returns the current value of the bits in an event group. This function
+ * cannot be used from an interrupt.
+ *
+ * @param xEventGroup The event group being queried.
+ *
+ * @return The event group bits at the time xEventGroupGetBits() was called.
+ *
+ * \defgroup xEventGroupGetBits xEventGroupGetBits
+ * \ingroup EventGroup
+ */
+#define xEventGroupGetBits( xEventGroup ) xEventGroupClearBits( xEventGroup, 0 )
+
+/**
+ * event_groups.h
+ *<pre>
+ EventBits_t xEventGroupGetBitsFromISR( EventGroupHandle_t xEventGroup );
+ </pre>
+ *
+ * A version of xEventGroupGetBits() that can be called from an ISR.
+ *
+ * @param xEventGroup The event group being queried.
+ *
+ * @return The event group bits at the time xEventGroupGetBitsFromISR() was called.
+ *
+ * \defgroup xEventGroupGetBitsFromISR xEventGroupGetBitsFromISR
+ * \ingroup EventGroup
+ */
+EventBits_t xEventGroupGetBitsFromISR( EventGroupHandle_t xEventGroup ) PRIVILEGED_FUNCTION;
+
+/**
+ * event_groups.h
+ *<pre>
+ void xEventGroupDelete( EventGroupHandle_t xEventGroup );
+ </pre>
+ *
+ * Delete an event group that was previously created by a call to
+ * xEventGroupCreate(). Tasks that are blocked on the event group will be
+ * unblocked and obtain 0 as the event group's value.
+ *
+ * @param xEventGroup The event group being deleted.
+ */
+void vEventGroupDelete( EventGroupHandle_t xEventGroup ) PRIVILEGED_FUNCTION;
+
+/* For internal use only. */
+void vEventGroupSetBitsCallback( void *pvEventGroup, const uint32_t ulBitsToSet ) PRIVILEGED_FUNCTION;
+void vEventGroupClearBitsCallback( void *pvEventGroup, const uint32_t ulBitsToClear ) PRIVILEGED_FUNCTION;
+
+#if (configUSE_TRACE_FACILITY == 1)
+ UBaseType_t uxEventGroupGetNumber( void* xEventGroup ) PRIVILEGED_FUNCTION;
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* EVENT_GROUPS_H */
+
+
diff --git a/src/FreeRTOS-Sim-master/Source/include/list.h b/src/FreeRTOS-Sim-master/Source/include/list.h
new file mode 100644
index 0000000..140e56c
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/list.h
@@ -0,0 +1,453 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/*
+ * This is the list implementation used by the scheduler. While it is tailored
+ * heavily for the schedulers needs, it is also available for use by
+ * application code.
+ *
+ * list_ts can only store pointers to list_item_ts. Each ListItem_t contains a
+ * numeric value (xItemValue). Most of the time the lists are sorted in
+ * descending item value order.
+ *
+ * Lists are created already containing one list item. The value of this
+ * item is the maximum possible that can be stored, it is therefore always at
+ * the end of the list and acts as a marker. The list member pxHead always
+ * points to this marker - even though it is at the tail of the list. This
+ * is because the tail contains a wrap back pointer to the true head of
+ * the list.
+ *
+ * In addition to it's value, each list item contains a pointer to the next
+ * item in the list (pxNext), a pointer to the list it is in (pxContainer)
+ * and a pointer to back to the object that contains it. These later two
+ * pointers are included for efficiency of list manipulation. There is
+ * effectively a two way link between the object containing the list item and
+ * the list item itself.
+ *
+ *
+ * \page ListIntroduction List Implementation
+ * \ingroup FreeRTOSIntro
+ */
+
+#ifndef INC_FREERTOS_H
+ #error FreeRTOS.h must be included before list.h
+#endif
+
+#ifndef LIST_H
+#define LIST_H
+
+/*
+ * The list structure members are modified from within interrupts, and therefore
+ * by rights should be declared volatile. However, they are only modified in a
+ * functionally atomic way (within critical sections of with the scheduler
+ * suspended) and are either passed by reference into a function or indexed via
+ * a volatile variable. Therefore, in all use cases tested so far, the volatile
+ * qualifier can be omitted in order to provide a moderate performance
+ * improvement without adversely affecting functional behaviour. The assembly
+ * instructions generated by the IAR, ARM and GCC compilers when the respective
+ * compiler's options were set for maximum optimisation has been inspected and
+ * deemed to be as intended. That said, as compiler technology advances, and
+ * especially if aggressive cross module optimisation is used (a use case that
+ * has not been exercised to any great extend) then it is feasible that the
+ * volatile qualifier will be needed for correct optimisation. It is expected
+ * that a compiler removing essential code because, without the volatile
+ * qualifier on the list structure members and with aggressive cross module
+ * optimisation, the compiler deemed the code unnecessary will result in
+ * complete and obvious failure of the scheduler. If this is ever experienced
+ * then the volatile qualifier can be inserted in the relevant places within the
+ * list structures by simply defining configLIST_VOLATILE to volatile in
+ * FreeRTOSConfig.h (as per the example at the bottom of this comment block).
+ * If configLIST_VOLATILE is not defined then the preprocessor directives below
+ * will simply #define configLIST_VOLATILE away completely.
+ *
+ * To use volatile list structure members then add the following line to
+ * FreeRTOSConfig.h (without the quotes):
+ * "#define configLIST_VOLATILE volatile"
+ */
+#ifndef configLIST_VOLATILE
+ #define configLIST_VOLATILE
+#endif /* configSUPPORT_CROSS_MODULE_OPTIMISATION */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Macros that can be used to place known values within the list structures,
+then check that the known values do not get corrupted during the execution of
+the application. These may catch the list data structures being overwritten in
+memory. They will not catch data errors caused by incorrect configuration or
+use of FreeRTOS.*/
+#if( configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES == 0 )
+ /* Define the macros to do nothing. */
+ #define listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE
+ #define listSECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE
+ #define listFIRST_LIST_INTEGRITY_CHECK_VALUE
+ #define listSECOND_LIST_INTEGRITY_CHECK_VALUE
+ #define listSET_FIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem )
+ #define listSET_SECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem )
+ #define listSET_LIST_INTEGRITY_CHECK_1_VALUE( pxList )
+ #define listSET_LIST_INTEGRITY_CHECK_2_VALUE( pxList )
+ #define listTEST_LIST_ITEM_INTEGRITY( pxItem )
+ #define listTEST_LIST_INTEGRITY( pxList )
+#else
+ /* Define macros that add new members into the list structures. */
+ #define listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE TickType_t xListItemIntegrityValue1;
+ #define listSECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE TickType_t xListItemIntegrityValue2;
+ #define listFIRST_LIST_INTEGRITY_CHECK_VALUE TickType_t xListIntegrityValue1;
+ #define listSECOND_LIST_INTEGRITY_CHECK_VALUE TickType_t xListIntegrityValue2;
+
+ /* Define macros that set the new structure members to known values. */
+ #define listSET_FIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem ) ( pxItem )->xListItemIntegrityValue1 = pdINTEGRITY_CHECK_VALUE
+ #define listSET_SECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem ) ( pxItem )->xListItemIntegrityValue2 = pdINTEGRITY_CHECK_VALUE
+ #define listSET_LIST_INTEGRITY_CHECK_1_VALUE( pxList ) ( pxList )->xListIntegrityValue1 = pdINTEGRITY_CHECK_VALUE
+ #define listSET_LIST_INTEGRITY_CHECK_2_VALUE( pxList ) ( pxList )->xListIntegrityValue2 = pdINTEGRITY_CHECK_VALUE
+
+ /* Define macros that will assert if one of the structure members does not
+ contain its expected value. */
+ #define listTEST_LIST_ITEM_INTEGRITY( pxItem ) configASSERT( ( ( pxItem )->xListItemIntegrityValue1 == pdINTEGRITY_CHECK_VALUE ) && ( ( pxItem )->xListItemIntegrityValue2 == pdINTEGRITY_CHECK_VALUE ) )
+ #define listTEST_LIST_INTEGRITY( pxList ) configASSERT( ( ( pxList )->xListIntegrityValue1 == pdINTEGRITY_CHECK_VALUE ) && ( ( pxList )->xListIntegrityValue2 == pdINTEGRITY_CHECK_VALUE ) )
+#endif /* configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES */
+
+
+/*
+ * Definition of the only type of object that a list can contain.
+ */
+struct xLIST_ITEM
+{
+ listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
+ configLIST_VOLATILE TickType_t xItemValue; /*< The value being listed. In most cases this is used to sort the list in descending order. */
+ struct xLIST_ITEM * configLIST_VOLATILE pxNext; /*< Pointer to the next ListItem_t in the list. */
+ struct xLIST_ITEM * configLIST_VOLATILE pxPrevious; /*< Pointer to the previous ListItem_t in the list. */
+ void * pvOwner; /*< Pointer to the object (normally a TCB) that contains the list item. There is therefore a two way link between the object containing the list item and the list item itself. */
+ void * configLIST_VOLATILE pvContainer; /*< Pointer to the list in which this list item is placed (if any). */
+ listSECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
+};
+typedef struct xLIST_ITEM ListItem_t; /* For some reason lint wants this as two separate definitions. */
+
+struct xMINI_LIST_ITEM
+{
+ listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
+ configLIST_VOLATILE TickType_t xItemValue;
+ struct xLIST_ITEM * configLIST_VOLATILE pxNext;
+ struct xLIST_ITEM * configLIST_VOLATILE pxPrevious;
+};
+typedef struct xMINI_LIST_ITEM MiniListItem_t;
+
+/*
+ * Definition of the type of queue used by the scheduler.
+ */
+typedef struct xLIST
+{
+ listFIRST_LIST_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
+ configLIST_VOLATILE UBaseType_t uxNumberOfItems;
+ ListItem_t * configLIST_VOLATILE pxIndex; /*< Used to walk through the list. Points to the last item returned by a call to listGET_OWNER_OF_NEXT_ENTRY (). */
+ MiniListItem_t xListEnd; /*< List item that contains the maximum possible item value meaning it is always at the end of the list and is therefore used as a marker. */
+ listSECOND_LIST_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
+} List_t;
+
+/*
+ * Access macro to set the owner of a list item. The owner of a list item
+ * is the object (usually a TCB) that contains the list item.
+ *
+ * \page listSET_LIST_ITEM_OWNER listSET_LIST_ITEM_OWNER
+ * \ingroup LinkedList
+ */
+#define listSET_LIST_ITEM_OWNER( pxListItem, pxOwner ) ( ( pxListItem )->pvOwner = ( void * ) ( pxOwner ) )
+
+/*
+ * Access macro to get the owner of a list item. The owner of a list item
+ * is the object (usually a TCB) that contains the list item.
+ *
+ * \page listSET_LIST_ITEM_OWNER listSET_LIST_ITEM_OWNER
+ * \ingroup LinkedList
+ */
+#define listGET_LIST_ITEM_OWNER( pxListItem ) ( ( pxListItem )->pvOwner )
+
+/*
+ * Access macro to set the value of the list item. In most cases the value is
+ * used to sort the list in descending order.
+ *
+ * \page listSET_LIST_ITEM_VALUE listSET_LIST_ITEM_VALUE
+ * \ingroup LinkedList
+ */
+#define listSET_LIST_ITEM_VALUE( pxListItem, xValue ) ( ( pxListItem )->xItemValue = ( xValue ) )
+
+/*
+ * Access macro to retrieve the value of the list item. The value can
+ * represent anything - for example the priority of a task, or the time at
+ * which a task should be unblocked.
+ *
+ * \page listGET_LIST_ITEM_VALUE listGET_LIST_ITEM_VALUE
+ * \ingroup LinkedList
+ */
+#define listGET_LIST_ITEM_VALUE( pxListItem ) ( ( pxListItem )->xItemValue )
+
+/*
+ * Access macro to retrieve the value of the list item at the head of a given
+ * list.
+ *
+ * \page listGET_LIST_ITEM_VALUE listGET_LIST_ITEM_VALUE
+ * \ingroup LinkedList
+ */
+#define listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxList ) ( ( ( pxList )->xListEnd ).pxNext->xItemValue )
+
+/*
+ * Return the list item at the head of the list.
+ *
+ * \page listGET_HEAD_ENTRY listGET_HEAD_ENTRY
+ * \ingroup LinkedList
+ */
+#define listGET_HEAD_ENTRY( pxList ) ( ( ( pxList )->xListEnd ).pxNext )
+
+/*
+ * Return the list item at the head of the list.
+ *
+ * \page listGET_NEXT listGET_NEXT
+ * \ingroup LinkedList
+ */
+#define listGET_NEXT( pxListItem ) ( ( pxListItem )->pxNext )
+
+/*
+ * Return the list item that marks the end of the list
+ *
+ * \page listGET_END_MARKER listGET_END_MARKER
+ * \ingroup LinkedList
+ */
+#define listGET_END_MARKER( pxList ) ( ( ListItem_t const * ) ( &( ( pxList )->xListEnd ) ) )
+
+/*
+ * Access macro to determine if a list contains any items. The macro will
+ * only have the value true if the list is empty.
+ *
+ * \page listLIST_IS_EMPTY listLIST_IS_EMPTY
+ * \ingroup LinkedList
+ */
+#define listLIST_IS_EMPTY( pxList ) ( ( BaseType_t ) ( ( pxList )->uxNumberOfItems == ( UBaseType_t ) 0 ) )
+
+/*
+ * Access macro to return the number of items in the list.
+ */
+#define listCURRENT_LIST_LENGTH( pxList ) ( ( pxList )->uxNumberOfItems )
+
+/*
+ * Access function to obtain the owner of the next entry in a list.
+ *
+ * The list member pxIndex is used to walk through a list. Calling
+ * listGET_OWNER_OF_NEXT_ENTRY increments pxIndex to the next item in the list
+ * and returns that entry's pxOwner parameter. Using multiple calls to this
+ * function it is therefore possible to move through every item contained in
+ * a list.
+ *
+ * The pxOwner parameter of a list item is a pointer to the object that owns
+ * the list item. In the scheduler this is normally a task control block.
+ * The pxOwner parameter effectively creates a two way link between the list
+ * item and its owner.
+ *
+ * @param pxTCB pxTCB is set to the address of the owner of the next list item.
+ * @param pxList The list from which the next item owner is to be returned.
+ *
+ * \page listGET_OWNER_OF_NEXT_ENTRY listGET_OWNER_OF_NEXT_ENTRY
+ * \ingroup LinkedList
+ */
+#define listGET_OWNER_OF_NEXT_ENTRY( pxTCB, pxList ) \
+{ \
+List_t * const pxConstList = ( pxList ); \
+ /* Increment the index to the next item and return the item, ensuring */ \
+ /* we don't return the marker used at the end of the list. */ \
+ ( pxConstList )->pxIndex = ( pxConstList )->pxIndex->pxNext; \
+ if( ( void * ) ( pxConstList )->pxIndex == ( void * ) &( ( pxConstList )->xListEnd ) ) \
+ { \
+ ( pxConstList )->pxIndex = ( pxConstList )->pxIndex->pxNext; \
+ } \
+ ( pxTCB ) = ( pxConstList )->pxIndex->pvOwner; \
+}
+
+
+/*
+ * Access function to obtain the owner of the first entry in a list. Lists
+ * are normally sorted in ascending item value order.
+ *
+ * This function returns the pxOwner member of the first item in the list.
+ * The pxOwner parameter of a list item is a pointer to the object that owns
+ * the list item. In the scheduler this is normally a task control block.
+ * The pxOwner parameter effectively creates a two way link between the list
+ * item and its owner.
+ *
+ * @param pxList The list from which the owner of the head item is to be
+ * returned.
+ *
+ * \page listGET_OWNER_OF_HEAD_ENTRY listGET_OWNER_OF_HEAD_ENTRY
+ * \ingroup LinkedList
+ */
+#define listGET_OWNER_OF_HEAD_ENTRY( pxList ) ( (&( ( pxList )->xListEnd ))->pxNext->pvOwner )
+
+/*
+ * Check to see if a list item is within a list. The list item maintains a
+ * "container" pointer that points to the list it is in. All this macro does
+ * is check to see if the container and the list match.
+ *
+ * @param pxList The list we want to know if the list item is within.
+ * @param pxListItem The list item we want to know if is in the list.
+ * @return pdTRUE if the list item is in the list, otherwise pdFALSE.
+ */
+#define listIS_CONTAINED_WITHIN( pxList, pxListItem ) ( ( BaseType_t ) ( ( pxListItem )->pvContainer == ( void * ) ( pxList ) ) )
+
+/*
+ * Return the list a list item is contained within (referenced from).
+ *
+ * @param pxListItem The list item being queried.
+ * @return A pointer to the List_t object that references the pxListItem
+ */
+#define listLIST_ITEM_CONTAINER( pxListItem ) ( ( pxListItem )->pvContainer )
+
+/*
+ * This provides a crude means of knowing if a list has been initialised, as
+ * pxList->xListEnd.xItemValue is set to portMAX_DELAY by the vListInitialise()
+ * function.
+ */
+#define listLIST_IS_INITIALISED( pxList ) ( ( pxList )->xListEnd.xItemValue == portMAX_DELAY )
+
+/*
+ * Must be called before a list is used! This initialises all the members
+ * of the list structure and inserts the xListEnd item into the list as a
+ * marker to the back of the list.
+ *
+ * @param pxList Pointer to the list being initialised.
+ *
+ * \page vListInitialise vListInitialise
+ * \ingroup LinkedList
+ */
+void vListInitialise( List_t * const pxList ) PRIVILEGED_FUNCTION;
+
+/*
+ * Must be called before a list item is used. This sets the list container to
+ * null so the item does not think that it is already contained in a list.
+ *
+ * @param pxItem Pointer to the list item being initialised.
+ *
+ * \page vListInitialiseItem vListInitialiseItem
+ * \ingroup LinkedList
+ */
+void vListInitialiseItem( ListItem_t * const pxItem ) PRIVILEGED_FUNCTION;
+
+/*
+ * Insert a list item into a list. The item will be inserted into the list in
+ * a position determined by its item value (descending item value order).
+ *
+ * @param pxList The list into which the item is to be inserted.
+ *
+ * @param pxNewListItem The item that is to be placed in the list.
+ *
+ * \page vListInsert vListInsert
+ * \ingroup LinkedList
+ */
+void vListInsert( List_t * const pxList, ListItem_t * const pxNewListItem ) PRIVILEGED_FUNCTION;
+
+/*
+ * Insert a list item into a list. The item will be inserted in a position
+ * such that it will be the last item within the list returned by multiple
+ * calls to listGET_OWNER_OF_NEXT_ENTRY.
+ *
+ * The list member pvIndex is used to walk through a list. Calling
+ * listGET_OWNER_OF_NEXT_ENTRY increments pvIndex to the next item in the list.
+ * Placing an item in a list using vListInsertEnd effectively places the item
+ * in the list position pointed to by pvIndex. This means that every other
+ * item within the list will be returned by listGET_OWNER_OF_NEXT_ENTRY before
+ * the pvIndex parameter again points to the item being inserted.
+ *
+ * @param pxList The list into which the item is to be inserted.
+ *
+ * @param pxNewListItem The list item to be inserted into the list.
+ *
+ * \page vListInsertEnd vListInsertEnd
+ * \ingroup LinkedList
+ */
+void vListInsertEnd( List_t * const pxList, ListItem_t * const pxNewListItem ) PRIVILEGED_FUNCTION;
+
+/*
+ * Remove an item from a list. The list item has a pointer to the list that
+ * it is in, so only the list item need be passed into the function.
+ *
+ * @param uxListRemove The item to be removed. The item will remove itself from
+ * the list pointed to by it's pxContainer parameter.
+ *
+ * @return The number of items that remain in the list after the list item has
+ * been removed.
+ *
+ * \page uxListRemove uxListRemove
+ * \ingroup LinkedList
+ */
+UBaseType_t uxListRemove( ListItem_t * const pxItemToRemove ) PRIVILEGED_FUNCTION;
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
+
diff --git a/src/FreeRTOS-Sim-master/Source/include/mpu_wrappers.h b/src/FreeRTOS-Sim-master/Source/include/mpu_wrappers.h
new file mode 100644
index 0000000..8706003
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/mpu_wrappers.h
@@ -0,0 +1,177 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef MPU_WRAPPERS_H
+#define MPU_WRAPPERS_H
+
+/* This file redefines API functions to be called through a wrapper macro, but
+only for ports that are using the MPU. */
+#ifdef portUSING_MPU_WRAPPERS
+
+ /* MPU_WRAPPERS_INCLUDED_FROM_API_FILE will be defined when this file is
+ included from queue.c or task.c to prevent it from having an effect within
+ those files. */
+ #ifndef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+ #define xTaskGenericCreate MPU_xTaskGenericCreate
+ #define vTaskAllocateMPURegions MPU_vTaskAllocateMPURegions
+ #define vTaskDelete MPU_vTaskDelete
+ #define vTaskDelayUntil MPU_vTaskDelayUntil
+ #define vTaskDelay MPU_vTaskDelay
+ #define uxTaskPriorityGet MPU_uxTaskPriorityGet
+ #define vTaskPrioritySet MPU_vTaskPrioritySet
+ #define eTaskGetState MPU_eTaskGetState
+ #define vTaskSuspend MPU_vTaskSuspend
+ #define vTaskResume MPU_vTaskResume
+ #define vTaskSuspendAll MPU_vTaskSuspendAll
+ #define xTaskResumeAll MPU_xTaskResumeAll
+ #define xTaskGetTickCount MPU_xTaskGetTickCount
+ #define uxTaskGetNumberOfTasks MPU_uxTaskGetNumberOfTasks
+ #define vTaskList MPU_vTaskList
+ #define vTaskGetRunTimeStats MPU_vTaskGetRunTimeStats
+ #define vTaskSetApplicationTaskTag MPU_vTaskSetApplicationTaskTag
+ #define xTaskGetApplicationTaskTag MPU_xTaskGetApplicationTaskTag
+ #define xTaskCallApplicationTaskHook MPU_xTaskCallApplicationTaskHook
+ #define uxTaskGetStackHighWaterMark MPU_uxTaskGetStackHighWaterMark
+ #define xTaskGetCurrentTaskHandle MPU_xTaskGetCurrentTaskHandle
+ #define xTaskGetSchedulerState MPU_xTaskGetSchedulerState
+ #define xTaskGetIdleTaskHandle MPU_xTaskGetIdleTaskHandle
+ #define uxTaskGetSystemState MPU_uxTaskGetSystemState
+ #define xTaskGenericNotify MPU_xTaskGenericNotify
+ #define xTaskNotifyWait MPU_xTaskNotifyWait
+ #define ulTaskNotifyTake MPU_ulTaskNotifyTake
+
+ #define xQueueGenericCreate MPU_xQueueGenericCreate
+ #define xQueueCreateMutex MPU_xQueueCreateMutex
+ #define xQueueGiveMutexRecursive MPU_xQueueGiveMutexRecursive
+ #define xQueueTakeMutexRecursive MPU_xQueueTakeMutexRecursive
+ #define xQueueCreateCountingSemaphore MPU_xQueueCreateCountingSemaphore
+ #define xQueueGenericSend MPU_xQueueGenericSend
+ #define xQueueAltGenericSend MPU_xQueueAltGenericSend
+ #define xQueueAltGenericReceive MPU_xQueueAltGenericReceive
+ #define xQueueGenericReceive MPU_xQueueGenericReceive
+ #define uxQueueMessagesWaiting MPU_uxQueueMessagesWaiting
+ #define vQueueDelete MPU_vQueueDelete
+ #define xQueueGenericReset MPU_xQueueGenericReset
+ #define xQueueCreateSet MPU_xQueueCreateSet
+ #define xQueueSelectFromSet MPU_xQueueSelectFromSet
+ #define xQueueAddToSet MPU_xQueueAddToSet
+ #define xQueueRemoveFromSet MPU_xQueueRemoveFromSet
+ #define xQueueGetMutexHolder MPU_xQueueGetMutexHolder
+ #define xQueueGetMutexHolder MPU_xQueueGetMutexHolder
+
+ #define pvPortMalloc MPU_pvPortMalloc
+ #define vPortFree MPU_vPortFree
+ #define xPortGetFreeHeapSize MPU_xPortGetFreeHeapSize
+ #define vPortInitialiseBlocks MPU_vPortInitialiseBlocks
+ #define xPortGetMinimumEverFreeHeapSize MPU_xPortGetMinimumEverFreeHeapSize
+
+ #if configQUEUE_REGISTRY_SIZE > 0
+ #define vQueueAddToRegistry MPU_vQueueAddToRegistry
+ #define vQueueUnregisterQueue MPU_vQueueUnregisterQueue
+ #endif
+
+ #define xTimerCreate MPU_xTimerCreate
+ #define pvTimerGetTimerID MPU_pvTimerGetTimerID
+ #define vTimerSetTimerID MPU_vTimerSetTimerID
+ #define xTimerIsTimerActive MPU_xTimerIsTimerActive
+ #define xTimerGetTimerDaemonTaskHandle MPU_xTimerGetTimerDaemonTaskHandle
+ #define xTimerPendFunctionCall MPU_xTimerPendFunctionCall
+ #define pcTimerGetTimerName MPU_pcTimerGetTimerName
+ #define xTimerGenericCommand MPU_xTimerGenericCommand
+
+ #define xEventGroupCreate MPU_xEventGroupCreate
+ #define xEventGroupWaitBits MPU_xEventGroupWaitBits
+ #define xEventGroupClearBits MPU_xEventGroupClearBits
+ #define xEventGroupSetBits MPU_xEventGroupSetBits
+ #define xEventGroupSync MPU_xEventGroupSync
+ #define vEventGroupDelete MPU_vEventGroupDelete
+
+ /* Remove the privileged function macro. */
+ #define PRIVILEGED_FUNCTION
+
+ #else /* MPU_WRAPPERS_INCLUDED_FROM_API_FILE */
+
+ /* Ensure API functions go in the privileged execution section. */
+ #define PRIVILEGED_FUNCTION __attribute__((section("privileged_functions")))
+ #define PRIVILEGED_DATA __attribute__((section("privileged_data")))
+
+ #endif /* MPU_WRAPPERS_INCLUDED_FROM_API_FILE */
+
+#else /* portUSING_MPU_WRAPPERS */
+
+ #define PRIVILEGED_FUNCTION
+ #define PRIVILEGED_DATA
+ #define portUSING_MPU_WRAPPERS 0
+
+#endif /* portUSING_MPU_WRAPPERS */
+
+
+#endif /* MPU_WRAPPERS_H */
+
diff --git a/src/FreeRTOS-Sim-master/Source/include/portable.h b/src/FreeRTOS-Sim-master/Source/include/portable.h
new file mode 100644
index 0000000..fd9be79
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/portable.h
@@ -0,0 +1,207 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/*-----------------------------------------------------------
+ * Portable layer API. Each function must be defined for each port.
+ *----------------------------------------------------------*/
+
+#ifndef PORTABLE_H
+#define PORTABLE_H
+
+/* Each FreeRTOS port has a unique portmacro.h header file. Originally a
+pre-processor definition was used to ensure the pre-processor found the correct
+portmacro.h file for the port being used. That scheme was deprecated in favour
+of setting the compiler's include path such that it found the correct
+portmacro.h file - removing the need for the constant and allowing the
+portmacro.h file to be located anywhere in relation to the port being used.
+Purely for reasons of backward compatibility the old method is still valid, but
+to make it clear that new projects should not use it, support for the port
+specific constants has been moved into the deprecated_definitions.h header
+file. */
+#include "deprecated_definitions.h"
+
+/* If portENTER_CRITICAL is not defined then including deprecated_definitions.h
+did not result in a portmacro.h header file being included - and it should be
+included here. In this case the path to the correct portmacro.h header file
+must be set in the compiler's include path. */
+#ifndef portENTER_CRITICAL
+ #include "portmacro.h"
+#endif
+
+#if portBYTE_ALIGNMENT == 32
+ #define portBYTE_ALIGNMENT_MASK ( 0x001f )
+#endif
+
+#if portBYTE_ALIGNMENT == 16
+ #define portBYTE_ALIGNMENT_MASK ( 0x000f )
+#endif
+
+#if portBYTE_ALIGNMENT == 8
+ #define portBYTE_ALIGNMENT_MASK ( 0x0007 )
+#endif
+
+#if portBYTE_ALIGNMENT == 4
+ #define portBYTE_ALIGNMENT_MASK ( 0x0003 )
+#endif
+
+#if portBYTE_ALIGNMENT == 2
+ #define portBYTE_ALIGNMENT_MASK ( 0x0001 )
+#endif
+
+#if portBYTE_ALIGNMENT == 1
+ #define portBYTE_ALIGNMENT_MASK ( 0x0000 )
+#endif
+
+#ifndef portBYTE_ALIGNMENT_MASK
+ #error "Invalid portBYTE_ALIGNMENT definition"
+#endif
+
+#ifndef portNUM_CONFIGURABLE_REGIONS
+ #define portNUM_CONFIGURABLE_REGIONS 1
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "mpu_wrappers.h"
+
+/*
+ * Setup the stack of a new task so it is ready to be placed under the
+ * scheduler control. The registers have to be placed on the stack in
+ * the order that the port expects to find them.
+ *
+ */
+#if( portUSING_MPU_WRAPPERS == 1 )
+ StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters, BaseType_t xRunPrivileged ) PRIVILEGED_FUNCTION;
+#else
+ StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters ) PRIVILEGED_FUNCTION;
+#endif
+
+/* Used by heap_5.c. */
+typedef struct HeapRegion
+{
+ uint8_t *pucStartAddress;
+ size_t xSizeInBytes;
+} HeapRegion_t;
+
+/*
+ * Used to define multiple heap regions for use by heap_5.c. This function
+ * must be called before any calls to pvPortMalloc() - not creating a task,
+ * queue, semaphore, mutex, software timer, event group, etc. will result in
+ * pvPortMalloc being called.
+ *
+ * pxHeapRegions passes in an array of HeapRegion_t structures - each of which
+ * defines a region of memory that can be used as the heap. The array is
+ * terminated by a HeapRegions_t structure that has a size of 0. The region
+ * with the lowest start address must appear first in the array.
+ */
+void vPortDefineHeapRegions( const HeapRegion_t * const pxHeapRegions ) PRIVILEGED_FUNCTION;
+
+
+/*
+ * Map to the memory management routines required for the port.
+ */
+void *pvPortMalloc( size_t xSize ) PRIVILEGED_FUNCTION;
+void vPortFree( void *pv ) PRIVILEGED_FUNCTION;
+void vPortInitialiseBlocks( void ) PRIVILEGED_FUNCTION;
+size_t xPortGetFreeHeapSize( void ) PRIVILEGED_FUNCTION;
+size_t xPortGetMinimumEverFreeHeapSize( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * Setup the hardware ready for the scheduler to take control. This generally
+ * sets up a tick interrupt and sets timers for the correct tick frequency.
+ */
+BaseType_t xPortStartScheduler( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * Undo any hardware/ISR setup that was performed by xPortStartScheduler() so
+ * the hardware is left in its original condition after the scheduler stops
+ * executing.
+ */
+void vPortEndScheduler( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * The structures and methods of manipulating the MPU are contained within the
+ * port layer.
+ *
+ * Fills the xMPUSettings structure with the memory region information
+ * contained in xRegions.
+ */
+#if( portUSING_MPU_WRAPPERS == 1 )
+ struct xMEMORY_REGION;
+ void vPortStoreTaskMPUSettings( xMPU_SETTINGS *xMPUSettings, const struct xMEMORY_REGION * const xRegions, StackType_t *pxBottomOfStack, uint16_t usStackDepth ) PRIVILEGED_FUNCTION;
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* PORTABLE_H */
+
diff --git a/src/FreeRTOS-Sim-master/Source/include/projdefs.h b/src/FreeRTOS-Sim-master/Source/include/projdefs.h
new file mode 100644
index 0000000..fe51999
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/projdefs.h
@@ -0,0 +1,156 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef PROJDEFS_H
+#define PROJDEFS_H
+
+/*
+ * Defines the prototype to which task functions must conform. Defined in this
+ * file to ensure the type is known before portable.h is included.
+ */
+typedef void (*TaskFunction_t)( void * );
+
+/* Converts a time in milliseconds to a time in ticks. */
+#define pdMS_TO_TICKS( xTimeInMs ) ( ( TickType_t ) ( ( ( TickType_t ) ( xTimeInMs ) * ( TickType_t ) configTICK_RATE_HZ ) / ( TickType_t ) 1000 ) )
+
+#define pdFALSE ( ( BaseType_t ) 0 )
+#define pdTRUE ( ( BaseType_t ) 1 )
+
+#define pdPASS ( pdTRUE )
+#define pdFAIL ( pdFALSE )
+#define errQUEUE_EMPTY ( ( BaseType_t ) 0 )
+#define errQUEUE_FULL ( ( BaseType_t ) 0 )
+
+/* FreeRTOS error definitions. */
+#define errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY ( -1 )
+#define errQUEUE_BLOCKED ( -4 )
+#define errQUEUE_YIELD ( -5 )
+
+/* Macros used for basic data corruption checks. */
+#ifndef configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES
+ #define configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES 0
+#endif
+
+#if( configUSE_16_BIT_TICKS == 1 )
+ #define pdINTEGRITY_CHECK_VALUE 0x5a5a
+#else
+ #define pdINTEGRITY_CHECK_VALUE 0x5a5a5a5aUL
+#endif
+
+/* The following errno values are used by FreeRTOS+ components, not FreeRTOS
+itself. */
+#define pdFREERTOS_ERRNO_NONE 0 /* No errors */
+#define pdFREERTOS_ERRNO_ENOENT 2 /* No such file or directory */
+#define pdFREERTOS_ERRNO_EIO 5 /* I/O error */
+#define pdFREERTOS_ERRNO_ENXIO 6 /* No such device or address */
+#define pdFREERTOS_ERRNO_EBADF 9 /* Bad file number */
+#define pdFREERTOS_ERRNO_EAGAIN 11 /* No more processes */
+#define pdFREERTOS_ERRNO_EWOULDBLOCK 11 /* Operation would block */
+#define pdFREERTOS_ERRNO_ENOMEM 12 /* Not enough memory */
+#define pdFREERTOS_ERRNO_EACCES 13 /* Permission denied */
+#define pdFREERTOS_ERRNO_EFAULT 14 /* Bad address */
+#define pdFREERTOS_ERRNO_EBUSY 16 /* Mount device busy */
+#define pdFREERTOS_ERRNO_EEXIST 17 /* File exists */
+#define pdFREERTOS_ERRNO_EXDEV 18 /* Cross-device link */
+#define pdFREERTOS_ERRNO_ENODEV 19 /* No such device */
+#define pdFREERTOS_ERRNO_ENOTDIR 20 /* Not a directory */
+#define pdFREERTOS_ERRNO_EISDIR 21 /* Is a directory */
+#define pdFREERTOS_ERRNO_EINVAL 22 /* Invalid argument */
+#define pdFREERTOS_ERRNO_ENOSPC 28 /* No space left on device */
+#define pdFREERTOS_ERRNO_ESPIPE 29 /* Illegal seek */
+#define pdFREERTOS_ERRNO_EROFS 30 /* Read only file system */
+#define pdFREERTOS_ERRNO_EUNATCH 42 /* Protocol driver not attached */
+#define pdFREERTOS_ERRNO_EBADE 50 /* Invalid exchange */
+#define pdFREERTOS_ERRNO_EFTYPE 79 /* Inappropriate file type or format */
+#define pdFREERTOS_ERRNO_ENMFILE 89 /* No more files */
+#define pdFREERTOS_ERRNO_ENOTEMPTY 90 /* Directory not empty */
+#define pdFREERTOS_ERRNO_ENAMETOOLONG 91 /* File or path name too long */
+#define pdFREERTOS_ERRNO_EOPNOTSUPP 95 /* Operation not supported on transport endpoint */
+#define pdFREERTOS_ERRNO_ENOBUFS 105 /* No buffer space available */
+#define pdFREERTOS_ERRNO_ENOPROTOOPT 109 /* Protocol not available */
+#define pdFREERTOS_ERRNO_EADDRINUSE 112 /* Address already in use */
+#define pdFREERTOS_ERRNO_ETIMEDOUT 116 /* Connection timed out */
+#define pdFREERTOS_ERRNO_EINPROGRESS 119 /* Connection already in progress */
+#define pdFREERTOS_ERRNO_EALREADY 120 /* Socket already connected */
+#define pdFREERTOS_ERRNO_EADDRNOTAVAIL 125 /* Address not available */
+#define pdFREERTOS_ERRNO_EISCONN 127 /* Socket is already connected */
+#define pdFREERTOS_ERRNO_ENOTCONN 128 /* Socket is not connected */
+#define pdFREERTOS_ERRNO_ENOMEDIUM 135 /* No medium inserted */
+#define pdFREERTOS_ERRNO_EILSEQ 138 /* An invalid UTF-16 sequence was encountered. */
+#define pdFREERTOS_ERRNO_ECANCELED 140 /* Operation canceled. */
+
+/* The following endian values are used by FreeRTOS+ components, not FreeRTOS
+itself. */
+#define pdFREERTOS_LITTLE_ENDIAN 0
+#define pdFREERTOS_BIG_ENDIAN 1
+
+#endif /* PROJDEFS_H */
+
+
+
diff --git a/src/FreeRTOS-Sim-master/Source/include/queue.h b/src/FreeRTOS-Sim-master/Source/include/queue.h
new file mode 100644
index 0000000..4ab7fd9
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/queue.h
@@ -0,0 +1,1691 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+
+#ifndef QUEUE_H
+#define QUEUE_H
+
+#ifndef INC_FREERTOS_H
+ #error "include FreeRTOS.h" must appear in source files before "include queue.h"
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+/**
+ * Type by which queues are referenced. For example, a call to xQueueCreate()
+ * returns an QueueHandle_t variable that can then be used as a parameter to
+ * xQueueSend(), xQueueReceive(), etc.
+ */
+typedef void * QueueHandle_t;
+
+/**
+ * Type by which queue sets are referenced. For example, a call to
+ * xQueueCreateSet() returns an xQueueSet variable that can then be used as a
+ * parameter to xQueueSelectFromSet(), xQueueAddToSet(), etc.
+ */
+typedef void * QueueSetHandle_t;
+
+/**
+ * Queue sets can contain both queues and semaphores, so the
+ * QueueSetMemberHandle_t is defined as a type to be used where a parameter or
+ * return value can be either an QueueHandle_t or an SemaphoreHandle_t.
+ */
+typedef void * QueueSetMemberHandle_t;
+
+/* For internal use only. */
+#define queueSEND_TO_BACK ( ( BaseType_t ) 0 )
+#define queueSEND_TO_FRONT ( ( BaseType_t ) 1 )
+#define queueOVERWRITE ( ( BaseType_t ) 2 )
+
+/* For internal use only. These definitions *must* match those in queue.c. */
+#define queueQUEUE_TYPE_BASE ( ( uint8_t ) 0U )
+#define queueQUEUE_TYPE_SET ( ( uint8_t ) 0U )
+#define queueQUEUE_TYPE_MUTEX ( ( uint8_t ) 1U )
+#define queueQUEUE_TYPE_COUNTING_SEMAPHORE ( ( uint8_t ) 2U )
+#define queueQUEUE_TYPE_BINARY_SEMAPHORE ( ( uint8_t ) 3U )
+#define queueQUEUE_TYPE_RECURSIVE_MUTEX ( ( uint8_t ) 4U )
+
+/**
+ * queue. h
+ * <pre>
+ QueueHandle_t xQueueCreate(
+ UBaseType_t uxQueueLength,
+ UBaseType_t uxItemSize
+ );
+ * </pre>
+ *
+ * Creates a new queue instance. This allocates the storage required by the
+ * new queue and returns a handle for the queue.
+ *
+ * @param uxQueueLength The maximum number of items that the queue can contain.
+ *
+ * @param uxItemSize The number of bytes each item in the queue will require.
+ * Items are queued by copy, not by reference, so this is the number of bytes
+ * that will be copied for each posted item. Each item on the queue must be
+ * the same size.
+ *
+ * @return If the queue is successfully create then a handle to the newly
+ * created queue is returned. If the queue cannot be created then 0 is
+ * returned.
+ *
+ * Example usage:
+ <pre>
+ struct AMessage
+ {
+ char ucMessageID;
+ char ucData[ 20 ];
+ };
+
+ void vATask( void *pvParameters )
+ {
+ QueueHandle_t xQueue1, xQueue2;
+
+ // Create a queue capable of containing 10 uint32_t values.
+ xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
+ if( xQueue1 == 0 )
+ {
+ // Queue was not created and must not be used.
+ }
+
+ // Create a queue capable of containing 10 pointers to AMessage structures.
+ // These should be passed by pointer as they contain a lot of data.
+ xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
+ if( xQueue2 == 0 )
+ {
+ // Queue was not created and must not be used.
+ }
+
+ // ... Rest of task code.
+ }
+ </pre>
+ * \defgroup xQueueCreate xQueueCreate
+ * \ingroup QueueManagement
+ */
+#define xQueueCreate( uxQueueLength, uxItemSize ) xQueueGenericCreate( uxQueueLength, uxItemSize, queueQUEUE_TYPE_BASE )
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueSendToToFront(
+ QueueHandle_t xQueue,
+ const void *pvItemToQueue,
+ TickType_t xTicksToWait
+ );
+ * </pre>
+ *
+ * This is a macro that calls xQueueGenericSend().
+ *
+ * Post an item to the front of a queue. The item is queued by copy, not by
+ * reference. This function must not be called from an interrupt service
+ * routine. See xQueueSendFromISR () for an alternative which may be used
+ * in an ISR.
+ *
+ * @param xQueue The handle to the queue on which the item is to be posted.
+ *
+ * @param pvItemToQueue A pointer to the item that is to be placed on the
+ * queue. The size of the items the queue will hold was defined when the
+ * queue was created, so this many bytes will be copied from pvItemToQueue
+ * into the queue storage area.
+ *
+ * @param xTicksToWait The maximum amount of time the task should block
+ * waiting for space to become available on the queue, should it already
+ * be full. The call will return immediately if this is set to 0 and the
+ * queue is full. The time is defined in tick periods so the constant
+ * portTICK_PERIOD_MS should be used to convert to real time if this is required.
+ *
+ * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
+ *
+ * Example usage:
+ <pre>
+ struct AMessage
+ {
+ char ucMessageID;
+ char ucData[ 20 ];
+ } xMessage;
+
+ uint32_t ulVar = 10UL;
+
+ void vATask( void *pvParameters )
+ {
+ QueueHandle_t xQueue1, xQueue2;
+ struct AMessage *pxMessage;
+
+ // Create a queue capable of containing 10 uint32_t values.
+ xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
+
+ // Create a queue capable of containing 10 pointers to AMessage structures.
+ // These should be passed by pointer as they contain a lot of data.
+ xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
+
+ // ...
+
+ if( xQueue1 != 0 )
+ {
+ // Send an uint32_t. Wait for 10 ticks for space to become
+ // available if necessary.
+ if( xQueueSendToFront( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
+ {
+ // Failed to post the message, even after 10 ticks.
+ }
+ }
+
+ if( xQueue2 != 0 )
+ {
+ // Send a pointer to a struct AMessage object. Don't block if the
+ // queue is already full.
+ pxMessage = & xMessage;
+ xQueueSendToFront( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
+ }
+
+ // ... Rest of task code.
+ }
+ </pre>
+ * \defgroup xQueueSend xQueueSend
+ * \ingroup QueueManagement
+ */
+#define xQueueSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueSendToBack(
+ QueueHandle_t xQueue,
+ const void *pvItemToQueue,
+ TickType_t xTicksToWait
+ );
+ * </pre>
+ *
+ * This is a macro that calls xQueueGenericSend().
+ *
+ * Post an item to the back of a queue. The item is queued by copy, not by
+ * reference. This function must not be called from an interrupt service
+ * routine. See xQueueSendFromISR () for an alternative which may be used
+ * in an ISR.
+ *
+ * @param xQueue The handle to the queue on which the item is to be posted.
+ *
+ * @param pvItemToQueue A pointer to the item that is to be placed on the
+ * queue. The size of the items the queue will hold was defined when the
+ * queue was created, so this many bytes will be copied from pvItemToQueue
+ * into the queue storage area.
+ *
+ * @param xTicksToWait The maximum amount of time the task should block
+ * waiting for space to become available on the queue, should it already
+ * be full. The call will return immediately if this is set to 0 and the queue
+ * is full. The time is defined in tick periods so the constant
+ * portTICK_PERIOD_MS should be used to convert to real time if this is required.
+ *
+ * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
+ *
+ * Example usage:
+ <pre>
+ struct AMessage
+ {
+ char ucMessageID;
+ char ucData[ 20 ];
+ } xMessage;
+
+ uint32_t ulVar = 10UL;
+
+ void vATask( void *pvParameters )
+ {
+ QueueHandle_t xQueue1, xQueue2;
+ struct AMessage *pxMessage;
+
+ // Create a queue capable of containing 10 uint32_t values.
+ xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
+
+ // Create a queue capable of containing 10 pointers to AMessage structures.
+ // These should be passed by pointer as they contain a lot of data.
+ xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
+
+ // ...
+
+ if( xQueue1 != 0 )
+ {
+ // Send an uint32_t. Wait for 10 ticks for space to become
+ // available if necessary.
+ if( xQueueSendToBack( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
+ {
+ // Failed to post the message, even after 10 ticks.
+ }
+ }
+
+ if( xQueue2 != 0 )
+ {
+ // Send a pointer to a struct AMessage object. Don't block if the
+ // queue is already full.
+ pxMessage = & xMessage;
+ xQueueSendToBack( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
+ }
+
+ // ... Rest of task code.
+ }
+ </pre>
+ * \defgroup xQueueSend xQueueSend
+ * \ingroup QueueManagement
+ */
+#define xQueueSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueSend(
+ QueueHandle_t xQueue,
+ const void * pvItemToQueue,
+ TickType_t xTicksToWait
+ );
+ * </pre>
+ *
+ * This is a macro that calls xQueueGenericSend(). It is included for
+ * backward compatibility with versions of FreeRTOS.org that did not
+ * include the xQueueSendToFront() and xQueueSendToBack() macros. It is
+ * equivalent to xQueueSendToBack().
+ *
+ * Post an item on a queue. The item is queued by copy, not by reference.
+ * This function must not be called from an interrupt service routine.
+ * See xQueueSendFromISR () for an alternative which may be used in an ISR.
+ *
+ * @param xQueue The handle to the queue on which the item is to be posted.
+ *
+ * @param pvItemToQueue A pointer to the item that is to be placed on the
+ * queue. The size of the items the queue will hold was defined when the
+ * queue was created, so this many bytes will be copied from pvItemToQueue
+ * into the queue storage area.
+ *
+ * @param xTicksToWait The maximum amount of time the task should block
+ * waiting for space to become available on the queue, should it already
+ * be full. The call will return immediately if this is set to 0 and the
+ * queue is full. The time is defined in tick periods so the constant
+ * portTICK_PERIOD_MS should be used to convert to real time if this is required.
+ *
+ * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
+ *
+ * Example usage:
+ <pre>
+ struct AMessage
+ {
+ char ucMessageID;
+ char ucData[ 20 ];
+ } xMessage;
+
+ uint32_t ulVar = 10UL;
+
+ void vATask( void *pvParameters )
+ {
+ QueueHandle_t xQueue1, xQueue2;
+ struct AMessage *pxMessage;
+
+ // Create a queue capable of containing 10 uint32_t values.
+ xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
+
+ // Create a queue capable of containing 10 pointers to AMessage structures.
+ // These should be passed by pointer as they contain a lot of data.
+ xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
+
+ // ...
+
+ if( xQueue1 != 0 )
+ {
+ // Send an uint32_t. Wait for 10 ticks for space to become
+ // available if necessary.
+ if( xQueueSend( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
+ {
+ // Failed to post the message, even after 10 ticks.
+ }
+ }
+
+ if( xQueue2 != 0 )
+ {
+ // Send a pointer to a struct AMessage object. Don't block if the
+ // queue is already full.
+ pxMessage = & xMessage;
+ xQueueSend( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
+ }
+
+ // ... Rest of task code.
+ }
+ </pre>
+ * \defgroup xQueueSend xQueueSend
+ * \ingroup QueueManagement
+ */
+#define xQueueSend( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueOverwrite(
+ QueueHandle_t xQueue,
+ const void * pvItemToQueue
+ );
+ * </pre>
+ *
+ * Only for use with queues that have a length of one - so the queue is either
+ * empty or full.
+ *
+ * Post an item on a queue. If the queue is already full then overwrite the
+ * value held in the queue. The item is queued by copy, not by reference.
+ *
+ * This function must not be called from an interrupt service routine.
+ * See xQueueOverwriteFromISR () for an alternative which may be used in an ISR.
+ *
+ * @param xQueue The handle of the queue to which the data is being sent.
+ *
+ * @param pvItemToQueue A pointer to the item that is to be placed on the
+ * queue. The size of the items the queue will hold was defined when the
+ * queue was created, so this many bytes will be copied from pvItemToQueue
+ * into the queue storage area.
+ *
+ * @return xQueueOverwrite() is a macro that calls xQueueGenericSend(), and
+ * therefore has the same return values as xQueueSendToFront(). However, pdPASS
+ * is the only value that can be returned because xQueueOverwrite() will write
+ * to the queue even when the queue is already full.
+ *
+ * Example usage:
+ <pre>
+
+ void vFunction( void *pvParameters )
+ {
+ QueueHandle_t xQueue;
+ uint32_t ulVarToSend, ulValReceived;
+
+ // Create a queue to hold one uint32_t value. It is strongly
+ // recommended *not* to use xQueueOverwrite() on queues that can
+ // contain more than one value, and doing so will trigger an assertion
+ // if configASSERT() is defined.
+ xQueue = xQueueCreate( 1, sizeof( uint32_t ) );
+
+ // Write the value 10 to the queue using xQueueOverwrite().
+ ulVarToSend = 10;
+ xQueueOverwrite( xQueue, &ulVarToSend );
+
+ // Peeking the queue should now return 10, but leave the value 10 in
+ // the queue. A block time of zero is used as it is known that the
+ // queue holds a value.
+ ulValReceived = 0;
+ xQueuePeek( xQueue, &ulValReceived, 0 );
+
+ if( ulValReceived != 10 )
+ {
+ // Error unless the item was removed by a different task.
+ }
+
+ // The queue is still full. Use xQueueOverwrite() to overwrite the
+ // value held in the queue with 100.
+ ulVarToSend = 100;
+ xQueueOverwrite( xQueue, &ulVarToSend );
+
+ // This time read from the queue, leaving the queue empty once more.
+ // A block time of 0 is used again.
+ xQueueReceive( xQueue, &ulValReceived, 0 );
+
+ // The value read should be the last value written, even though the
+ // queue was already full when the value was written.
+ if( ulValReceived != 100 )
+ {
+ // Error!
+ }
+
+ // ...
+}
+ </pre>
+ * \defgroup xQueueOverwrite xQueueOverwrite
+ * \ingroup QueueManagement
+ */
+#define xQueueOverwrite( xQueue, pvItemToQueue ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), 0, queueOVERWRITE )
+
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueGenericSend(
+ QueueHandle_t xQueue,
+ const void * pvItemToQueue,
+ TickType_t xTicksToWait
+ BaseType_t xCopyPosition
+ );
+ * </pre>
+ *
+ * It is preferred that the macros xQueueSend(), xQueueSendToFront() and
+ * xQueueSendToBack() are used in place of calling this function directly.
+ *
+ * Post an item on a queue. The item is queued by copy, not by reference.
+ * This function must not be called from an interrupt service routine.
+ * See xQueueSendFromISR () for an alternative which may be used in an ISR.
+ *
+ * @param xQueue The handle to the queue on which the item is to be posted.
+ *
+ * @param pvItemToQueue A pointer to the item that is to be placed on the
+ * queue. The size of the items the queue will hold was defined when the
+ * queue was created, so this many bytes will be copied from pvItemToQueue
+ * into the queue storage area.
+ *
+ * @param xTicksToWait The maximum amount of time the task should block
+ * waiting for space to become available on the queue, should it already
+ * be full. The call will return immediately if this is set to 0 and the
+ * queue is full. The time is defined in tick periods so the constant
+ * portTICK_PERIOD_MS should be used to convert to real time if this is required.
+ *
+ * @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
+ * item at the back of the queue, or queueSEND_TO_FRONT to place the item
+ * at the front of the queue (for high priority messages).
+ *
+ * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
+ *
+ * Example usage:
+ <pre>
+ struct AMessage
+ {
+ char ucMessageID;
+ char ucData[ 20 ];
+ } xMessage;
+
+ uint32_t ulVar = 10UL;
+
+ void vATask( void *pvParameters )
+ {
+ QueueHandle_t xQueue1, xQueue2;
+ struct AMessage *pxMessage;
+
+ // Create a queue capable of containing 10 uint32_t values.
+ xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
+
+ // Create a queue capable of containing 10 pointers to AMessage structures.
+ // These should be passed by pointer as they contain a lot of data.
+ xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
+
+ // ...
+
+ if( xQueue1 != 0 )
+ {
+ // Send an uint32_t. Wait for 10 ticks for space to become
+ // available if necessary.
+ if( xQueueGenericSend( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10, queueSEND_TO_BACK ) != pdPASS )
+ {
+ // Failed to post the message, even after 10 ticks.
+ }
+ }
+
+ if( xQueue2 != 0 )
+ {
+ // Send a pointer to a struct AMessage object. Don't block if the
+ // queue is already full.
+ pxMessage = & xMessage;
+ xQueueGenericSend( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0, queueSEND_TO_BACK );
+ }
+
+ // ... Rest of task code.
+ }
+ </pre>
+ * \defgroup xQueueSend xQueueSend
+ * \ingroup QueueManagement
+ */
+BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueuePeek(
+ QueueHandle_t xQueue,
+ void *pvBuffer,
+ TickType_t xTicksToWait
+ );</pre>
+ *
+ * This is a macro that calls the xQueueGenericReceive() function.
+ *
+ * Receive an item from a queue without removing the item from the queue.
+ * The item is received by copy so a buffer of adequate size must be
+ * provided. The number of bytes copied into the buffer was defined when
+ * the queue was created.
+ *
+ * Successfully received items remain on the queue so will be returned again
+ * by the next call, or a call to xQueueReceive().
+ *
+ * This macro must not be used in an interrupt service routine. See
+ * xQueuePeekFromISR() for an alternative that can be called from an interrupt
+ * service routine.
+ *
+ * @param xQueue The handle to the queue from which the item is to be
+ * received.
+ *
+ * @param pvBuffer Pointer to the buffer into which the received item will
+ * be copied.
+ *
+ * @param xTicksToWait The maximum amount of time the task should block
+ * waiting for an item to receive should the queue be empty at the time
+ * of the call. The time is defined in tick periods so the constant
+ * portTICK_PERIOD_MS should be used to convert to real time if this is required.
+ * xQueuePeek() will return immediately if xTicksToWait is 0 and the queue
+ * is empty.
+ *
+ * @return pdTRUE if an item was successfully received from the queue,
+ * otherwise pdFALSE.
+ *
+ * Example usage:
+ <pre>
+ struct AMessage
+ {
+ char ucMessageID;
+ char ucData[ 20 ];
+ } xMessage;
+
+ QueueHandle_t xQueue;
+
+ // Task to create a queue and post a value.
+ void vATask( void *pvParameters )
+ {
+ struct AMessage *pxMessage;
+
+ // Create a queue capable of containing 10 pointers to AMessage structures.
+ // These should be passed by pointer as they contain a lot of data.
+ xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
+ if( xQueue == 0 )
+ {
+ // Failed to create the queue.
+ }
+
+ // ...
+
+ // Send a pointer to a struct AMessage object. Don't block if the
+ // queue is already full.
+ pxMessage = & xMessage;
+ xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
+
+ // ... Rest of task code.
+ }
+
+ // Task to peek the data from the queue.
+ void vADifferentTask( void *pvParameters )
+ {
+ struct AMessage *pxRxedMessage;
+
+ if( xQueue != 0 )
+ {
+ // Peek a message on the created queue. Block for 10 ticks if a
+ // message is not immediately available.
+ if( xQueuePeek( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
+ {
+ // pcRxedMessage now points to the struct AMessage variable posted
+ // by vATask, but the item still remains on the queue.
+ }
+ }
+
+ // ... Rest of task code.
+ }
+ </pre>
+ * \defgroup xQueueReceive xQueueReceive
+ * \ingroup QueueManagement
+ */
+#define xQueuePeek( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdTRUE )
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueuePeekFromISR(
+ QueueHandle_t xQueue,
+ void *pvBuffer,
+ );</pre>
+ *
+ * A version of xQueuePeek() that can be called from an interrupt service
+ * routine (ISR).
+ *
+ * Receive an item from a queue without removing the item from the queue.
+ * The item is received by copy so a buffer of adequate size must be
+ * provided. The number of bytes copied into the buffer was defined when
+ * the queue was created.
+ *
+ * Successfully received items remain on the queue so will be returned again
+ * by the next call, or a call to xQueueReceive().
+ *
+ * @param xQueue The handle to the queue from which the item is to be
+ * received.
+ *
+ * @param pvBuffer Pointer to the buffer into which the received item will
+ * be copied.
+ *
+ * @return pdTRUE if an item was successfully received from the queue,
+ * otherwise pdFALSE.
+ *
+ * \defgroup xQueuePeekFromISR xQueuePeekFromISR
+ * \ingroup QueueManagement
+ */
+BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer ) PRIVILEGED_FUNCTION;
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueReceive(
+ QueueHandle_t xQueue,
+ void *pvBuffer,
+ TickType_t xTicksToWait
+ );</pre>
+ *
+ * This is a macro that calls the xQueueGenericReceive() function.
+ *
+ * Receive an item from a queue. The item is received by copy so a buffer of
+ * adequate size must be provided. The number of bytes copied into the buffer
+ * was defined when the queue was created.
+ *
+ * Successfully received items are removed from the queue.
+ *
+ * This function must not be used in an interrupt service routine. See
+ * xQueueReceiveFromISR for an alternative that can.
+ *
+ * @param xQueue The handle to the queue from which the item is to be
+ * received.
+ *
+ * @param pvBuffer Pointer to the buffer into which the received item will
+ * be copied.
+ *
+ * @param xTicksToWait The maximum amount of time the task should block
+ * waiting for an item to receive should the queue be empty at the time
+ * of the call. xQueueReceive() will return immediately if xTicksToWait
+ * is zero and the queue is empty. The time is defined in tick periods so the
+ * constant portTICK_PERIOD_MS should be used to convert to real time if this is
+ * required.
+ *
+ * @return pdTRUE if an item was successfully received from the queue,
+ * otherwise pdFALSE.
+ *
+ * Example usage:
+ <pre>
+ struct AMessage
+ {
+ char ucMessageID;
+ char ucData[ 20 ];
+ } xMessage;
+
+ QueueHandle_t xQueue;
+
+ // Task to create a queue and post a value.
+ void vATask( void *pvParameters )
+ {
+ struct AMessage *pxMessage;
+
+ // Create a queue capable of containing 10 pointers to AMessage structures.
+ // These should be passed by pointer as they contain a lot of data.
+ xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
+ if( xQueue == 0 )
+ {
+ // Failed to create the queue.
+ }
+
+ // ...
+
+ // Send a pointer to a struct AMessage object. Don't block if the
+ // queue is already full.
+ pxMessage = & xMessage;
+ xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
+
+ // ... Rest of task code.
+ }
+
+ // Task to receive from the queue.
+ void vADifferentTask( void *pvParameters )
+ {
+ struct AMessage *pxRxedMessage;
+
+ if( xQueue != 0 )
+ {
+ // Receive a message on the created queue. Block for 10 ticks if a
+ // message is not immediately available.
+ if( xQueueReceive( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
+ {
+ // pcRxedMessage now points to the struct AMessage variable posted
+ // by vATask.
+ }
+ }
+
+ // ... Rest of task code.
+ }
+ </pre>
+ * \defgroup xQueueReceive xQueueReceive
+ * \ingroup QueueManagement
+ */
+#define xQueueReceive( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdFALSE )
+
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueGenericReceive(
+ QueueHandle_t xQueue,
+ void *pvBuffer,
+ TickType_t xTicksToWait
+ BaseType_t xJustPeek
+ );</pre>
+ *
+ * It is preferred that the macro xQueueReceive() be used rather than calling
+ * this function directly.
+ *
+ * Receive an item from a queue. The item is received by copy so a buffer of
+ * adequate size must be provided. The number of bytes copied into the buffer
+ * was defined when the queue was created.
+ *
+ * This function must not be used in an interrupt service routine. See
+ * xQueueReceiveFromISR for an alternative that can.
+ *
+ * @param xQueue The handle to the queue from which the item is to be
+ * received.
+ *
+ * @param pvBuffer Pointer to the buffer into which the received item will
+ * be copied.
+ *
+ * @param xTicksToWait The maximum amount of time the task should block
+ * waiting for an item to receive should the queue be empty at the time
+ * of the call. The time is defined in tick periods so the constant
+ * portTICK_PERIOD_MS should be used to convert to real time if this is required.
+ * xQueueGenericReceive() will return immediately if the queue is empty and
+ * xTicksToWait is 0.
+ *
+ * @param xJustPeek When set to true, the item received from the queue is not
+ * actually removed from the queue - meaning a subsequent call to
+ * xQueueReceive() will return the same item. When set to false, the item
+ * being received from the queue is also removed from the queue.
+ *
+ * @return pdTRUE if an item was successfully received from the queue,
+ * otherwise pdFALSE.
+ *
+ * Example usage:
+ <pre>
+ struct AMessage
+ {
+ char ucMessageID;
+ char ucData[ 20 ];
+ } xMessage;
+
+ QueueHandle_t xQueue;
+
+ // Task to create a queue and post a value.
+ void vATask( void *pvParameters )
+ {
+ struct AMessage *pxMessage;
+
+ // Create a queue capable of containing 10 pointers to AMessage structures.
+ // These should be passed by pointer as they contain a lot of data.
+ xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
+ if( xQueue == 0 )
+ {
+ // Failed to create the queue.
+ }
+
+ // ...
+
+ // Send a pointer to a struct AMessage object. Don't block if the
+ // queue is already full.
+ pxMessage = & xMessage;
+ xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
+
+ // ... Rest of task code.
+ }
+
+ // Task to receive from the queue.
+ void vADifferentTask( void *pvParameters )
+ {
+ struct AMessage *pxRxedMessage;
+
+ if( xQueue != 0 )
+ {
+ // Receive a message on the created queue. Block for 10 ticks if a
+ // message is not immediately available.
+ if( xQueueGenericReceive( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
+ {
+ // pcRxedMessage now points to the struct AMessage variable posted
+ // by vATask.
+ }
+ }
+
+ // ... Rest of task code.
+ }
+ </pre>
+ * \defgroup xQueueReceive xQueueReceive
+ * \ingroup QueueManagement
+ */
+BaseType_t xQueueGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, const BaseType_t xJustPeek ) PRIVILEGED_FUNCTION;
+
+/**
+ * queue. h
+ * <pre>UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue );</pre>
+ *
+ * Return the number of messages stored in a queue.
+ *
+ * @param xQueue A handle to the queue being queried.
+ *
+ * @return The number of messages available in the queue.
+ *
+ * \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
+ * \ingroup QueueManagement
+ */
+UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
+
+/**
+ * queue. h
+ * <pre>UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue );</pre>
+ *
+ * Return the number of free spaces available in a queue. This is equal to the
+ * number of items that can be sent to the queue before the queue becomes full
+ * if no items are removed.
+ *
+ * @param xQueue A handle to the queue being queried.
+ *
+ * @return The number of spaces available in the queue.
+ *
+ * \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
+ * \ingroup QueueManagement
+ */
+UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
+
+/**
+ * queue. h
+ * <pre>void vQueueDelete( QueueHandle_t xQueue );</pre>
+ *
+ * Delete a queue - freeing all the memory allocated for storing of items
+ * placed on the queue.
+ *
+ * @param xQueue A handle to the queue to be deleted.
+ *
+ * \defgroup vQueueDelete vQueueDelete
+ * \ingroup QueueManagement
+ */
+void vQueueDelete( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueSendToFrontFromISR(
+ QueueHandle_t xQueue,
+ const void *pvItemToQueue,
+ BaseType_t *pxHigherPriorityTaskWoken
+ );
+ </pre>
+ *
+ * This is a macro that calls xQueueGenericSendFromISR().
+ *
+ * Post an item to the front of a queue. It is safe to use this macro from
+ * within an interrupt service routine.
+ *
+ * Items are queued by copy not reference so it is preferable to only
+ * queue small items, especially when called from an ISR. In most cases
+ * it would be preferable to store a pointer to the item being queued.
+ *
+ * @param xQueue The handle to the queue on which the item is to be posted.
+ *
+ * @param pvItemToQueue A pointer to the item that is to be placed on the
+ * queue. The size of the items the queue will hold was defined when the
+ * queue was created, so this many bytes will be copied from pvItemToQueue
+ * into the queue storage area.
+ *
+ * @param pxHigherPriorityTaskWoken xQueueSendToFrontFromISR() will set
+ * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
+ * to unblock, and the unblocked task has a priority higher than the currently
+ * running task. If xQueueSendToFromFromISR() sets this value to pdTRUE then
+ * a context switch should be requested before the interrupt is exited.
+ *
+ * @return pdTRUE if the data was successfully sent to the queue, otherwise
+ * errQUEUE_FULL.
+ *
+ * Example usage for buffered IO (where the ISR can obtain more than one value
+ * per call):
+ <pre>
+ void vBufferISR( void )
+ {
+ char cIn;
+ BaseType_t xHigherPrioritTaskWoken;
+
+ // We have not woken a task at the start of the ISR.
+ xHigherPriorityTaskWoken = pdFALSE;
+
+ // Loop until the buffer is empty.
+ do
+ {
+ // Obtain a byte from the buffer.
+ cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
+
+ // Post the byte.
+ xQueueSendToFrontFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
+
+ } while( portINPUT_BYTE( BUFFER_COUNT ) );
+
+ // Now the buffer is empty we can switch context if necessary.
+ if( xHigherPriorityTaskWoken )
+ {
+ taskYIELD ();
+ }
+ }
+ </pre>
+ *
+ * \defgroup xQueueSendFromISR xQueueSendFromISR
+ * \ingroup QueueManagement
+ */
+#define xQueueSendToFrontFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_FRONT )
+
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueSendToBackFromISR(
+ QueueHandle_t xQueue,
+ const void *pvItemToQueue,
+ BaseType_t *pxHigherPriorityTaskWoken
+ );
+ </pre>
+ *
+ * This is a macro that calls xQueueGenericSendFromISR().
+ *
+ * Post an item to the back of a queue. It is safe to use this macro from
+ * within an interrupt service routine.
+ *
+ * Items are queued by copy not reference so it is preferable to only
+ * queue small items, especially when called from an ISR. In most cases
+ * it would be preferable to store a pointer to the item being queued.
+ *
+ * @param xQueue The handle to the queue on which the item is to be posted.
+ *
+ * @param pvItemToQueue A pointer to the item that is to be placed on the
+ * queue. The size of the items the queue will hold was defined when the
+ * queue was created, so this many bytes will be copied from pvItemToQueue
+ * into the queue storage area.
+ *
+ * @param pxHigherPriorityTaskWoken xQueueSendToBackFromISR() will set
+ * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
+ * to unblock, and the unblocked task has a priority higher than the currently
+ * running task. If xQueueSendToBackFromISR() sets this value to pdTRUE then
+ * a context switch should be requested before the interrupt is exited.
+ *
+ * @return pdTRUE if the data was successfully sent to the queue, otherwise
+ * errQUEUE_FULL.
+ *
+ * Example usage for buffered IO (where the ISR can obtain more than one value
+ * per call):
+ <pre>
+ void vBufferISR( void )
+ {
+ char cIn;
+ BaseType_t xHigherPriorityTaskWoken;
+
+ // We have not woken a task at the start of the ISR.
+ xHigherPriorityTaskWoken = pdFALSE;
+
+ // Loop until the buffer is empty.
+ do
+ {
+ // Obtain a byte from the buffer.
+ cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
+
+ // Post the byte.
+ xQueueSendToBackFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
+
+ } while( portINPUT_BYTE( BUFFER_COUNT ) );
+
+ // Now the buffer is empty we can switch context if necessary.
+ if( xHigherPriorityTaskWoken )
+ {
+ taskYIELD ();
+ }
+ }
+ </pre>
+ *
+ * \defgroup xQueueSendFromISR xQueueSendFromISR
+ * \ingroup QueueManagement
+ */
+#define xQueueSendToBackFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueOverwriteFromISR(
+ QueueHandle_t xQueue,
+ const void * pvItemToQueue,
+ BaseType_t *pxHigherPriorityTaskWoken
+ );
+ * </pre>
+ *
+ * A version of xQueueOverwrite() that can be used in an interrupt service
+ * routine (ISR).
+ *
+ * Only for use with queues that can hold a single item - so the queue is either
+ * empty or full.
+ *
+ * Post an item on a queue. If the queue is already full then overwrite the
+ * value held in the queue. The item is queued by copy, not by reference.
+ *
+ * @param xQueue The handle to the queue on which the item is to be posted.
+ *
+ * @param pvItemToQueue A pointer to the item that is to be placed on the
+ * queue. The size of the items the queue will hold was defined when the
+ * queue was created, so this many bytes will be copied from pvItemToQueue
+ * into the queue storage area.
+ *
+ * @param pxHigherPriorityTaskWoken xQueueOverwriteFromISR() will set
+ * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
+ * to unblock, and the unblocked task has a priority higher than the currently
+ * running task. If xQueueOverwriteFromISR() sets this value to pdTRUE then
+ * a context switch should be requested before the interrupt is exited.
+ *
+ * @return xQueueOverwriteFromISR() is a macro that calls
+ * xQueueGenericSendFromISR(), and therefore has the same return values as
+ * xQueueSendToFrontFromISR(). However, pdPASS is the only value that can be
+ * returned because xQueueOverwriteFromISR() will write to the queue even when
+ * the queue is already full.
+ *
+ * Example usage:
+ <pre>
+
+ QueueHandle_t xQueue;
+
+ void vFunction( void *pvParameters )
+ {
+ // Create a queue to hold one uint32_t value. It is strongly
+ // recommended *not* to use xQueueOverwriteFromISR() on queues that can
+ // contain more than one value, and doing so will trigger an assertion
+ // if configASSERT() is defined.
+ xQueue = xQueueCreate( 1, sizeof( uint32_t ) );
+}
+
+void vAnInterruptHandler( void )
+{
+// xHigherPriorityTaskWoken must be set to pdFALSE before it is used.
+BaseType_t xHigherPriorityTaskWoken = pdFALSE;
+uint32_t ulVarToSend, ulValReceived;
+
+ // Write the value 10 to the queue using xQueueOverwriteFromISR().
+ ulVarToSend = 10;
+ xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );
+
+ // The queue is full, but calling xQueueOverwriteFromISR() again will still
+ // pass because the value held in the queue will be overwritten with the
+ // new value.
+ ulVarToSend = 100;
+ xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );
+
+ // Reading from the queue will now return 100.
+
+ // ...
+
+ if( xHigherPrioritytaskWoken == pdTRUE )
+ {
+ // Writing to the queue caused a task to unblock and the unblocked task
+ // has a priority higher than or equal to the priority of the currently
+ // executing task (the task this interrupt interrupted). Perform a context
+ // switch so this interrupt returns directly to the unblocked task.
+ portYIELD_FROM_ISR(); // or portEND_SWITCHING_ISR() depending on the port.
+ }
+}
+ </pre>
+ * \defgroup xQueueOverwriteFromISR xQueueOverwriteFromISR
+ * \ingroup QueueManagement
+ */
+#define xQueueOverwriteFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueOVERWRITE )
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueSendFromISR(
+ QueueHandle_t xQueue,
+ const void *pvItemToQueue,
+ BaseType_t *pxHigherPriorityTaskWoken
+ );
+ </pre>
+ *
+ * This is a macro that calls xQueueGenericSendFromISR(). It is included
+ * for backward compatibility with versions of FreeRTOS.org that did not
+ * include the xQueueSendToBackFromISR() and xQueueSendToFrontFromISR()
+ * macros.
+ *
+ * Post an item to the back of a queue. It is safe to use this function from
+ * within an interrupt service routine.
+ *
+ * Items are queued by copy not reference so it is preferable to only
+ * queue small items, especially when called from an ISR. In most cases
+ * it would be preferable to store a pointer to the item being queued.
+ *
+ * @param xQueue The handle to the queue on which the item is to be posted.
+ *
+ * @param pvItemToQueue A pointer to the item that is to be placed on the
+ * queue. The size of the items the queue will hold was defined when the
+ * queue was created, so this many bytes will be copied from pvItemToQueue
+ * into the queue storage area.
+ *
+ * @param pxHigherPriorityTaskWoken xQueueSendFromISR() will set
+ * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
+ * to unblock, and the unblocked task has a priority higher than the currently
+ * running task. If xQueueSendFromISR() sets this value to pdTRUE then
+ * a context switch should be requested before the interrupt is exited.
+ *
+ * @return pdTRUE if the data was successfully sent to the queue, otherwise
+ * errQUEUE_FULL.
+ *
+ * Example usage for buffered IO (where the ISR can obtain more than one value
+ * per call):
+ <pre>
+ void vBufferISR( void )
+ {
+ char cIn;
+ BaseType_t xHigherPriorityTaskWoken;
+
+ // We have not woken a task at the start of the ISR.
+ xHigherPriorityTaskWoken = pdFALSE;
+
+ // Loop until the buffer is empty.
+ do
+ {
+ // Obtain a byte from the buffer.
+ cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
+
+ // Post the byte.
+ xQueueSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
+
+ } while( portINPUT_BYTE( BUFFER_COUNT ) );
+
+ // Now the buffer is empty we can switch context if necessary.
+ if( xHigherPriorityTaskWoken )
+ {
+ // Actual macro used here is port specific.
+ portYIELD_FROM_ISR ();
+ }
+ }
+ </pre>
+ *
+ * \defgroup xQueueSendFromISR xQueueSendFromISR
+ * \ingroup QueueManagement
+ */
+#define xQueueSendFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueGenericSendFromISR(
+ QueueHandle_t xQueue,
+ const void *pvItemToQueue,
+ BaseType_t *pxHigherPriorityTaskWoken,
+ BaseType_t xCopyPosition
+ );
+ </pre>
+ *
+ * It is preferred that the macros xQueueSendFromISR(),
+ * xQueueSendToFrontFromISR() and xQueueSendToBackFromISR() be used in place
+ * of calling this function directly. xQueueGiveFromISR() is an
+ * equivalent for use by semaphores that don't actually copy any data.
+ *
+ * Post an item on a queue. It is safe to use this function from within an
+ * interrupt service routine.
+ *
+ * Items are queued by copy not reference so it is preferable to only
+ * queue small items, especially when called from an ISR. In most cases
+ * it would be preferable to store a pointer to the item being queued.
+ *
+ * @param xQueue The handle to the queue on which the item is to be posted.
+ *
+ * @param pvItemToQueue A pointer to the item that is to be placed on the
+ * queue. The size of the items the queue will hold was defined when the
+ * queue was created, so this many bytes will be copied from pvItemToQueue
+ * into the queue storage area.
+ *
+ * @param pxHigherPriorityTaskWoken xQueueGenericSendFromISR() will set
+ * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
+ * to unblock, and the unblocked task has a priority higher than the currently
+ * running task. If xQueueGenericSendFromISR() sets this value to pdTRUE then
+ * a context switch should be requested before the interrupt is exited.
+ *
+ * @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
+ * item at the back of the queue, or queueSEND_TO_FRONT to place the item
+ * at the front of the queue (for high priority messages).
+ *
+ * @return pdTRUE if the data was successfully sent to the queue, otherwise
+ * errQUEUE_FULL.
+ *
+ * Example usage for buffered IO (where the ISR can obtain more than one value
+ * per call):
+ <pre>
+ void vBufferISR( void )
+ {
+ char cIn;
+ BaseType_t xHigherPriorityTaskWokenByPost;
+
+ // We have not woken a task at the start of the ISR.
+ xHigherPriorityTaskWokenByPost = pdFALSE;
+
+ // Loop until the buffer is empty.
+ do
+ {
+ // Obtain a byte from the buffer.
+ cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
+
+ // Post each byte.
+ xQueueGenericSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWokenByPost, queueSEND_TO_BACK );
+
+ } while( portINPUT_BYTE( BUFFER_COUNT ) );
+
+ // Now the buffer is empty we can switch context if necessary. Note that the
+ // name of the yield function required is port specific.
+ if( xHigherPriorityTaskWokenByPost )
+ {
+ taskYIELD_YIELD_FROM_ISR();
+ }
+ }
+ </pre>
+ *
+ * \defgroup xQueueSendFromISR xQueueSendFromISR
+ * \ingroup QueueManagement
+ */
+BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, const void * const pvItemToQueue, BaseType_t * const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
+BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue, BaseType_t * const pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
+
+/**
+ * queue. h
+ * <pre>
+ BaseType_t xQueueReceiveFromISR(
+ QueueHandle_t xQueue,
+ void *pvBuffer,
+ BaseType_t *pxTaskWoken
+ );
+ * </pre>
+ *
+ * Receive an item from a queue. It is safe to use this function from within an
+ * interrupt service routine.
+ *
+ * @param xQueue The handle to the queue from which the item is to be
+ * received.
+ *
+ * @param pvBuffer Pointer to the buffer into which the received item will
+ * be copied.
+ *
+ * @param pxTaskWoken A task may be blocked waiting for space to become
+ * available on the queue. If xQueueReceiveFromISR causes such a task to
+ * unblock *pxTaskWoken will get set to pdTRUE, otherwise *pxTaskWoken will
+ * remain unchanged.
+ *
+ * @return pdTRUE if an item was successfully received from the queue,
+ * otherwise pdFALSE.
+ *
+ * Example usage:
+ <pre>
+
+ QueueHandle_t xQueue;
+
+ // Function to create a queue and post some values.
+ void vAFunction( void *pvParameters )
+ {
+ char cValueToPost;
+ const TickType_t xTicksToWait = ( TickType_t )0xff;
+
+ // Create a queue capable of containing 10 characters.
+ xQueue = xQueueCreate( 10, sizeof( char ) );
+ if( xQueue == 0 )
+ {
+ // Failed to create the queue.
+ }
+
+ // ...
+
+ // Post some characters that will be used within an ISR. If the queue
+ // is full then this task will block for xTicksToWait ticks.
+ cValueToPost = 'a';
+ xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
+ cValueToPost = 'b';
+ xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
+
+ // ... keep posting characters ... this task may block when the queue
+ // becomes full.
+
+ cValueToPost = 'c';
+ xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
+ }
+
+ // ISR that outputs all the characters received on the queue.
+ void vISR_Routine( void )
+ {
+ BaseType_t xTaskWokenByReceive = pdFALSE;
+ char cRxedChar;
+
+ while( xQueueReceiveFromISR( xQueue, ( void * ) &cRxedChar, &xTaskWokenByReceive) )
+ {
+ // A character was received. Output the character now.
+ vOutputCharacter( cRxedChar );
+
+ // If removing the character from the queue woke the task that was
+ // posting onto the queue cTaskWokenByReceive will have been set to
+ // pdTRUE. No matter how many times this loop iterates only one
+ // task will be woken.
+ }
+
+ if( cTaskWokenByPost != ( char ) pdFALSE;
+ {
+ taskYIELD ();
+ }
+ }
+ </pre>
+ * \defgroup xQueueReceiveFromISR xQueueReceiveFromISR
+ * \ingroup QueueManagement
+ */
+BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, void * const pvBuffer, BaseType_t * const pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
+
+/*
+ * Utilities to query queues that are safe to use from an ISR. These utilities
+ * should be used only from witin an ISR, or within a critical section.
+ */
+BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
+BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
+UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
+
+
+/*
+ * xQueueAltGenericSend() is an alternative version of xQueueGenericSend().
+ * Likewise xQueueAltGenericReceive() is an alternative version of
+ * xQueueGenericReceive().
+ *
+ * The source code that implements the alternative (Alt) API is much
+ * simpler because it executes everything from within a critical section.
+ * This is the approach taken by many other RTOSes, but FreeRTOS.org has the
+ * preferred fully featured API too. The fully featured API has more
+ * complex code that takes longer to execute, but makes much less use of
+ * critical sections. Therefore the alternative API sacrifices interrupt
+ * responsiveness to gain execution speed, whereas the fully featured API
+ * sacrifices execution speed to ensure better interrupt responsiveness.
+ */
+BaseType_t xQueueAltGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
+BaseType_t xQueueAltGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, BaseType_t xJustPeeking ) PRIVILEGED_FUNCTION;
+#define xQueueAltSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueAltGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )
+#define xQueueAltSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueAltGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
+#define xQueueAltReceive( xQueue, pvBuffer, xTicksToWait ) xQueueAltGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdFALSE )
+#define xQueueAltPeek( xQueue, pvBuffer, xTicksToWait ) xQueueAltGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdTRUE )
+
+/*
+ * The functions defined above are for passing data to and from tasks. The
+ * functions below are the equivalents for passing data to and from
+ * co-routines.
+ *
+ * These functions are called from the co-routine macro implementation and
+ * should not be called directly from application code. Instead use the macro
+ * wrappers defined within croutine.h.
+ */
+BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken );
+BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxTaskWoken );
+BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait );
+BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait );
+
+/*
+ * For internal use only. Use xSemaphoreCreateMutex(),
+ * xSemaphoreCreateCounting() or xSemaphoreGetMutexHolder() instead of calling
+ * these functions directly.
+ */
+QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
+QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount ) PRIVILEGED_FUNCTION;
+void* xQueueGetMutexHolder( QueueHandle_t xSemaphore ) PRIVILEGED_FUNCTION;
+
+/*
+ * For internal use only. Use xSemaphoreTakeMutexRecursive() or
+ * xSemaphoreGiveMutexRecursive() instead of calling these functions directly.
+ */
+BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+BaseType_t xQueueGiveMutexRecursive( QueueHandle_t pxMutex ) PRIVILEGED_FUNCTION;
+
+/*
+ * Reset a queue back to its original empty state. The return value is now
+ * obsolete and is always set to pdPASS.
+ */
+#define xQueueReset( xQueue ) xQueueGenericReset( xQueue, pdFALSE )
+
+/*
+ * The registry is provided as a means for kernel aware debuggers to
+ * locate queues, semaphores and mutexes. Call vQueueAddToRegistry() add
+ * a queue, semaphore or mutex handle to the registry if you want the handle
+ * to be available to a kernel aware debugger. If you are not using a kernel
+ * aware debugger then this function can be ignored.
+ *
+ * configQUEUE_REGISTRY_SIZE defines the maximum number of handles the
+ * registry can hold. configQUEUE_REGISTRY_SIZE must be greater than 0
+ * within FreeRTOSConfig.h for the registry to be available. Its value
+ * does not effect the number of queues, semaphores and mutexes that can be
+ * created - just the number that the registry can hold.
+ *
+ * @param xQueue The handle of the queue being added to the registry. This
+ * is the handle returned by a call to xQueueCreate(). Semaphore and mutex
+ * handles can also be passed in here.
+ *
+ * @param pcName The name to be associated with the handle. This is the
+ * name that the kernel aware debugger will display. The queue registry only
+ * stores a pointer to the string - so the string must be persistent (global or
+ * preferably in ROM/Flash), not on the stack.
+ */
+#if configQUEUE_REGISTRY_SIZE > 0
+ void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcName ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+#endif
+
+/*
+ * The registry is provided as a means for kernel aware debuggers to
+ * locate queues, semaphores and mutexes. Call vQueueAddToRegistry() add
+ * a queue, semaphore or mutex handle to the registry if you want the handle
+ * to be available to a kernel aware debugger, and vQueueUnregisterQueue() to
+ * remove the queue, semaphore or mutex from the register. If you are not using
+ * a kernel aware debugger then this function can be ignored.
+ *
+ * @param xQueue The handle of the queue being removed from the registry.
+ */
+#if configQUEUE_REGISTRY_SIZE > 0
+ void vQueueUnregisterQueue( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
+#endif
+
+/*
+ * Generic version of the queue creation function, which is in turn called by
+ * any queue, semaphore or mutex creation function or macro.
+ */
+QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
+
+/*
+ * Queue sets provide a mechanism to allow a task to block (pend) on a read
+ * operation from multiple queues or semaphores simultaneously.
+ *
+ * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
+ * function.
+ *
+ * A queue set must be explicitly created using a call to xQueueCreateSet()
+ * before it can be used. Once created, standard FreeRTOS queues and semaphores
+ * can be added to the set using calls to xQueueAddToSet().
+ * xQueueSelectFromSet() is then used to determine which, if any, of the queues
+ * or semaphores contained in the set is in a state where a queue read or
+ * semaphore take operation would be successful.
+ *
+ * Note 1: See the documentation on http://wwwFreeRTOS.org/RTOS-queue-sets.html
+ * for reasons why queue sets are very rarely needed in practice as there are
+ * simpler methods of blocking on multiple objects.
+ *
+ * Note 2: Blocking on a queue set that contains a mutex will not cause the
+ * mutex holder to inherit the priority of the blocked task.
+ *
+ * Note 3: An additional 4 bytes of RAM is required for each space in a every
+ * queue added to a queue set. Therefore counting semaphores that have a high
+ * maximum count value should not be added to a queue set.
+ *
+ * Note 4: A receive (in the case of a queue) or take (in the case of a
+ * semaphore) operation must not be performed on a member of a queue set unless
+ * a call to xQueueSelectFromSet() has first returned a handle to that set member.
+ *
+ * @param uxEventQueueLength Queue sets store events that occur on
+ * the queues and semaphores contained in the set. uxEventQueueLength specifies
+ * the maximum number of events that can be queued at once. To be absolutely
+ * certain that events are not lost uxEventQueueLength should be set to the
+ * total sum of the length of the queues added to the set, where binary
+ * semaphores and mutexes have a length of 1, and counting semaphores have a
+ * length set by their maximum count value. Examples:
+ * + If a queue set is to hold a queue of length 5, another queue of length 12,
+ * and a binary semaphore, then uxEventQueueLength should be set to
+ * (5 + 12 + 1), or 18.
+ * + If a queue set is to hold three binary semaphores then uxEventQueueLength
+ * should be set to (1 + 1 + 1 ), or 3.
+ * + If a queue set is to hold a counting semaphore that has a maximum count of
+ * 5, and a counting semaphore that has a maximum count of 3, then
+ * uxEventQueueLength should be set to (5 + 3), or 8.
+ *
+ * @return If the queue set is created successfully then a handle to the created
+ * queue set is returned. Otherwise NULL is returned.
+ */
+QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength ) PRIVILEGED_FUNCTION;
+
+/*
+ * Adds a queue or semaphore to a queue set that was previously created by a
+ * call to xQueueCreateSet().
+ *
+ * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
+ * function.
+ *
+ * Note 1: A receive (in the case of a queue) or take (in the case of a
+ * semaphore) operation must not be performed on a member of a queue set unless
+ * a call to xQueueSelectFromSet() has first returned a handle to that set member.
+ *
+ * @param xQueueOrSemaphore The handle of the queue or semaphore being added to
+ * the queue set (cast to an QueueSetMemberHandle_t type).
+ *
+ * @param xQueueSet The handle of the queue set to which the queue or semaphore
+ * is being added.
+ *
+ * @return If the queue or semaphore was successfully added to the queue set
+ * then pdPASS is returned. If the queue could not be successfully added to the
+ * queue set because it is already a member of a different queue set then pdFAIL
+ * is returned.
+ */
+BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;
+
+/*
+ * Removes a queue or semaphore from a queue set. A queue or semaphore can only
+ * be removed from a set if the queue or semaphore is empty.
+ *
+ * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
+ * function.
+ *
+ * @param xQueueOrSemaphore The handle of the queue or semaphore being removed
+ * from the queue set (cast to an QueueSetMemberHandle_t type).
+ *
+ * @param xQueueSet The handle of the queue set in which the queue or semaphore
+ * is included.
+ *
+ * @return If the queue or semaphore was successfully removed from the queue set
+ * then pdPASS is returned. If the queue was not in the queue set, or the
+ * queue (or semaphore) was not empty, then pdFAIL is returned.
+ */
+BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;
+
+/*
+ * xQueueSelectFromSet() selects from the members of a queue set a queue or
+ * semaphore that either contains data (in the case of a queue) or is available
+ * to take (in the case of a semaphore). xQueueSelectFromSet() effectively
+ * allows a task to block (pend) on a read operation on all the queues and
+ * semaphores in a queue set simultaneously.
+ *
+ * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
+ * function.
+ *
+ * Note 1: See the documentation on http://wwwFreeRTOS.org/RTOS-queue-sets.html
+ * for reasons why queue sets are very rarely needed in practice as there are
+ * simpler methods of blocking on multiple objects.
+ *
+ * Note 2: Blocking on a queue set that contains a mutex will not cause the
+ * mutex holder to inherit the priority of the blocked task.
+ *
+ * Note 3: A receive (in the case of a queue) or take (in the case of a
+ * semaphore) operation must not be performed on a member of a queue set unless
+ * a call to xQueueSelectFromSet() has first returned a handle to that set member.
+ *
+ * @param xQueueSet The queue set on which the task will (potentially) block.
+ *
+ * @param xTicksToWait The maximum time, in ticks, that the calling task will
+ * remain in the Blocked state (with other tasks executing) to wait for a member
+ * of the queue set to be ready for a successful queue read or semaphore take
+ * operation.
+ *
+ * @return xQueueSelectFromSet() will return the handle of a queue (cast to
+ * a QueueSetMemberHandle_t type) contained in the queue set that contains data,
+ * or the handle of a semaphore (cast to a QueueSetMemberHandle_t type) contained
+ * in the queue set that is available, or NULL if no such queue or semaphore
+ * exists before before the specified block time expires.
+ */
+QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+
+/*
+ * A version of xQueueSelectFromSet() that can be used from an ISR.
+ */
+QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;
+
+/* Not public API functions. */
+void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) PRIVILEGED_FUNCTION;
+BaseType_t xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue ) PRIVILEGED_FUNCTION;
+void vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber ) PRIVILEGED_FUNCTION;
+UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
+uint8_t ucQueueGetQueueType( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* QUEUE_H */
+
diff --git a/src/FreeRTOS-Sim-master/Source/include/semphr.h b/src/FreeRTOS-Sim-master/Source/include/semphr.h
new file mode 100644
index 0000000..2266bb9
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/semphr.h
@@ -0,0 +1,844 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#ifndef SEMAPHORE_H
+#define SEMAPHORE_H
+
+#ifndef INC_FREERTOS_H
+ #error "include FreeRTOS.h" must appear in source files before "include semphr.h"
+#endif
+
+#include "queue.h"
+
+typedef QueueHandle_t SemaphoreHandle_t;
+
+#define semBINARY_SEMAPHORE_QUEUE_LENGTH ( ( uint8_t ) 1U )
+#define semSEMAPHORE_QUEUE_ITEM_LENGTH ( ( uint8_t ) 0U )
+#define semGIVE_BLOCK_TIME ( ( TickType_t ) 0U )
+
+
+/**
+ * semphr. h
+ * <pre>vSemaphoreCreateBinary( SemaphoreHandle_t xSemaphore )</pre>
+ *
+ * This old vSemaphoreCreateBinary() macro is now deprecated in favour of the
+ * xSemaphoreCreateBinary() function. Note that binary semaphores created using
+ * the vSemaphoreCreateBinary() macro are created in a state such that the
+ * first call to 'take' the semaphore would pass, whereas binary semaphores
+ * created using xSemaphoreCreateBinary() are created in a state such that the
+ * the semaphore must first be 'given' before it can be 'taken'.
+ *
+ * <i>Macro</i> that implements a semaphore by using the existing queue mechanism.
+ * The queue length is 1 as this is a binary semaphore. The data size is 0
+ * as we don't want to actually store any data - we just want to know if the
+ * queue is empty or full.
+ *
+ * This type of semaphore can be used for pure synchronisation between tasks or
+ * between an interrupt and a task. The semaphore need not be given back once
+ * obtained, so one task/interrupt can continuously 'give' the semaphore while
+ * another continuously 'takes' the semaphore. For this reason this type of
+ * semaphore does not use a priority inheritance mechanism. For an alternative
+ * that does use priority inheritance see xSemaphoreCreateMutex().
+ *
+ * @param xSemaphore Handle to the created semaphore. Should be of type SemaphoreHandle_t.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore = NULL;
+
+ void vATask( void * pvParameters )
+ {
+ // Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
+ // This is a macro so pass the variable in directly.
+ vSemaphoreCreateBinary( xSemaphore );
+
+ if( xSemaphore != NULL )
+ {
+ // The semaphore was created successfully.
+ // The semaphore can now be used.
+ }
+ }
+ </pre>
+ * \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary
+ * \ingroup Semaphores
+ */
+#define vSemaphoreCreateBinary( xSemaphore ) \
+ { \
+ ( xSemaphore ) = xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE ); \
+ if( ( xSemaphore ) != NULL ) \
+ { \
+ ( void ) xSemaphoreGive( ( xSemaphore ) ); \
+ } \
+ }
+
+/**
+ * semphr. h
+ * <pre>SemaphoreHandle_t xSemaphoreCreateBinary( void )</pre>
+ *
+ * The old vSemaphoreCreateBinary() macro is now deprecated in favour of this
+ * xSemaphoreCreateBinary() function. Note that binary semaphores created using
+ * the vSemaphoreCreateBinary() macro are created in a state such that the
+ * first call to 'take' the semaphore would pass, whereas binary semaphores
+ * created using xSemaphoreCreateBinary() are created in a state such that the
+ * the semaphore must first be 'given' before it can be 'taken'.
+ *
+ * Function that creates a semaphore by using the existing queue mechanism.
+ * The queue length is 1 as this is a binary semaphore. The data size is 0
+ * as nothing is actually stored - all that is important is whether the queue is
+ * empty or full (the binary semaphore is available or not).
+ *
+ * This type of semaphore can be used for pure synchronisation between tasks or
+ * between an interrupt and a task. The semaphore need not be given back once
+ * obtained, so one task/interrupt can continuously 'give' the semaphore while
+ * another continuously 'takes' the semaphore. For this reason this type of
+ * semaphore does not use a priority inheritance mechanism. For an alternative
+ * that does use priority inheritance see xSemaphoreCreateMutex().
+ *
+ * @return Handle to the created semaphore.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore = NULL;
+
+ void vATask( void * pvParameters )
+ {
+ // Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
+ // This is a macro so pass the variable in directly.
+ xSemaphore = xSemaphoreCreateBinary();
+
+ if( xSemaphore != NULL )
+ {
+ // The semaphore was created successfully.
+ // The semaphore can now be used.
+ }
+ }
+ </pre>
+ * \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary
+ * \ingroup Semaphores
+ */
+#define xSemaphoreCreateBinary() xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE )
+
+/**
+ * semphr. h
+ * <pre>xSemaphoreTake(
+ * SemaphoreHandle_t xSemaphore,
+ * TickType_t xBlockTime
+ * )</pre>
+ *
+ * <i>Macro</i> to obtain a semaphore. The semaphore must have previously been
+ * created with a call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
+ * xSemaphoreCreateCounting().
+ *
+ * @param xSemaphore A handle to the semaphore being taken - obtained when
+ * the semaphore was created.
+ *
+ * @param xBlockTime The time in ticks to wait for the semaphore to become
+ * available. The macro portTICK_PERIOD_MS can be used to convert this to a
+ * real time. A block time of zero can be used to poll the semaphore. A block
+ * time of portMAX_DELAY can be used to block indefinitely (provided
+ * INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h).
+ *
+ * @return pdTRUE if the semaphore was obtained. pdFALSE
+ * if xBlockTime expired without the semaphore becoming available.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore = NULL;
+
+ // A task that creates a semaphore.
+ void vATask( void * pvParameters )
+ {
+ // Create the semaphore to guard a shared resource.
+ vSemaphoreCreateBinary( xSemaphore );
+ }
+
+ // A task that uses the semaphore.
+ void vAnotherTask( void * pvParameters )
+ {
+ // ... Do other things.
+
+ if( xSemaphore != NULL )
+ {
+ // See if we can obtain the semaphore. If the semaphore is not available
+ // wait 10 ticks to see if it becomes free.
+ if( xSemaphoreTake( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
+ {
+ // We were able to obtain the semaphore and can now access the
+ // shared resource.
+
+ // ...
+
+ // We have finished accessing the shared resource. Release the
+ // semaphore.
+ xSemaphoreGive( xSemaphore );
+ }
+ else
+ {
+ // We could not obtain the semaphore and can therefore not access
+ // the shared resource safely.
+ }
+ }
+ }
+ </pre>
+ * \defgroup xSemaphoreTake xSemaphoreTake
+ * \ingroup Semaphores
+ */
+#define xSemaphoreTake( xSemaphore, xBlockTime ) xQueueGenericReceive( ( QueueHandle_t ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE )
+
+/**
+ * semphr. h
+ * xSemaphoreTakeRecursive(
+ * SemaphoreHandle_t xMutex,
+ * TickType_t xBlockTime
+ * )
+ *
+ * <i>Macro</i> to recursively obtain, or 'take', a mutex type semaphore.
+ * The mutex must have previously been created using a call to
+ * xSemaphoreCreateRecursiveMutex();
+ *
+ * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this
+ * macro to be available.
+ *
+ * This macro must not be used on mutexes created using xSemaphoreCreateMutex().
+ *
+ * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
+ * doesn't become available again until the owner has called
+ * xSemaphoreGiveRecursive() for each successful 'take' request. For example,
+ * if a task successfully 'takes' the same mutex 5 times then the mutex will
+ * not be available to any other task until it has also 'given' the mutex back
+ * exactly five times.
+ *
+ * @param xMutex A handle to the mutex being obtained. This is the
+ * handle returned by xSemaphoreCreateRecursiveMutex();
+ *
+ * @param xBlockTime The time in ticks to wait for the semaphore to become
+ * available. The macro portTICK_PERIOD_MS can be used to convert this to a
+ * real time. A block time of zero can be used to poll the semaphore. If
+ * the task already owns the semaphore then xSemaphoreTakeRecursive() will
+ * return immediately no matter what the value of xBlockTime.
+ *
+ * @return pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime
+ * expired without the semaphore becoming available.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xMutex = NULL;
+
+ // A task that creates a mutex.
+ void vATask( void * pvParameters )
+ {
+ // Create the mutex to guard a shared resource.
+ xMutex = xSemaphoreCreateRecursiveMutex();
+ }
+
+ // A task that uses the mutex.
+ void vAnotherTask( void * pvParameters )
+ {
+ // ... Do other things.
+
+ if( xMutex != NULL )
+ {
+ // See if we can obtain the mutex. If the mutex is not available
+ // wait 10 ticks to see if it becomes free.
+ if( xSemaphoreTakeRecursive( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
+ {
+ // We were able to obtain the mutex and can now access the
+ // shared resource.
+
+ // ...
+ // For some reason due to the nature of the code further calls to
+ // xSemaphoreTakeRecursive() are made on the same mutex. In real
+ // code these would not be just sequential calls as this would make
+ // no sense. Instead the calls are likely to be buried inside
+ // a more complex call structure.
+ xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
+ xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
+
+ // The mutex has now been 'taken' three times, so will not be
+ // available to another task until it has also been given back
+ // three times. Again it is unlikely that real code would have
+ // these calls sequentially, but instead buried in a more complex
+ // call structure. This is just for illustrative purposes.
+ xSemaphoreGiveRecursive( xMutex );
+ xSemaphoreGiveRecursive( xMutex );
+ xSemaphoreGiveRecursive( xMutex );
+
+ // Now the mutex can be taken by other tasks.
+ }
+ else
+ {
+ // We could not obtain the mutex and can therefore not access
+ // the shared resource safely.
+ }
+ }
+ }
+ </pre>
+ * \defgroup xSemaphoreTakeRecursive xSemaphoreTakeRecursive
+ * \ingroup Semaphores
+ */
+#define xSemaphoreTakeRecursive( xMutex, xBlockTime ) xQueueTakeMutexRecursive( ( xMutex ), ( xBlockTime ) )
+
+
+/*
+ * xSemaphoreAltTake() is an alternative version of xSemaphoreTake().
+ *
+ * The source code that implements the alternative (Alt) API is much
+ * simpler because it executes everything from within a critical section.
+ * This is the approach taken by many other RTOSes, but FreeRTOS.org has the
+ * preferred fully featured API too. The fully featured API has more
+ * complex code that takes longer to execute, but makes much less use of
+ * critical sections. Therefore the alternative API sacrifices interrupt
+ * responsiveness to gain execution speed, whereas the fully featured API
+ * sacrifices execution speed to ensure better interrupt responsiveness.
+ */
+#define xSemaphoreAltTake( xSemaphore, xBlockTime ) xQueueAltGenericReceive( ( QueueHandle_t ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE )
+
+/**
+ * semphr. h
+ * <pre>xSemaphoreGive( SemaphoreHandle_t xSemaphore )</pre>
+ *
+ * <i>Macro</i> to release a semaphore. The semaphore must have previously been
+ * created with a call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
+ * xSemaphoreCreateCounting(). and obtained using sSemaphoreTake().
+ *
+ * This macro must not be used from an ISR. See xSemaphoreGiveFromISR () for
+ * an alternative which can be used from an ISR.
+ *
+ * This macro must also not be used on semaphores created using
+ * xSemaphoreCreateRecursiveMutex().
+ *
+ * @param xSemaphore A handle to the semaphore being released. This is the
+ * handle returned when the semaphore was created.
+ *
+ * @return pdTRUE if the semaphore was released. pdFALSE if an error occurred.
+ * Semaphores are implemented using queues. An error can occur if there is
+ * no space on the queue to post a message - indicating that the
+ * semaphore was not first obtained correctly.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore = NULL;
+
+ void vATask( void * pvParameters )
+ {
+ // Create the semaphore to guard a shared resource.
+ vSemaphoreCreateBinary( xSemaphore );
+
+ if( xSemaphore != NULL )
+ {
+ if( xSemaphoreGive( xSemaphore ) != pdTRUE )
+ {
+ // We would expect this call to fail because we cannot give
+ // a semaphore without first "taking" it!
+ }
+
+ // Obtain the semaphore - don't block if the semaphore is not
+ // immediately available.
+ if( xSemaphoreTake( xSemaphore, ( TickType_t ) 0 ) )
+ {
+ // We now have the semaphore and can access the shared resource.
+
+ // ...
+
+ // We have finished accessing the shared resource so can free the
+ // semaphore.
+ if( xSemaphoreGive( xSemaphore ) != pdTRUE )
+ {
+ // We would not expect this call to fail because we must have
+ // obtained the semaphore to get here.
+ }
+ }
+ }
+ }
+ </pre>
+ * \defgroup xSemaphoreGive xSemaphoreGive
+ * \ingroup Semaphores
+ */
+#define xSemaphoreGive( xSemaphore ) xQueueGenericSend( ( QueueHandle_t ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
+
+/**
+ * semphr. h
+ * <pre>xSemaphoreGiveRecursive( SemaphoreHandle_t xMutex )</pre>
+ *
+ * <i>Macro</i> to recursively release, or 'give', a mutex type semaphore.
+ * The mutex must have previously been created using a call to
+ * xSemaphoreCreateRecursiveMutex();
+ *
+ * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this
+ * macro to be available.
+ *
+ * This macro must not be used on mutexes created using xSemaphoreCreateMutex().
+ *
+ * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
+ * doesn't become available again until the owner has called
+ * xSemaphoreGiveRecursive() for each successful 'take' request. For example,
+ * if a task successfully 'takes' the same mutex 5 times then the mutex will
+ * not be available to any other task until it has also 'given' the mutex back
+ * exactly five times.
+ *
+ * @param xMutex A handle to the mutex being released, or 'given'. This is the
+ * handle returned by xSemaphoreCreateMutex();
+ *
+ * @return pdTRUE if the semaphore was given.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xMutex = NULL;
+
+ // A task that creates a mutex.
+ void vATask( void * pvParameters )
+ {
+ // Create the mutex to guard a shared resource.
+ xMutex = xSemaphoreCreateRecursiveMutex();
+ }
+
+ // A task that uses the mutex.
+ void vAnotherTask( void * pvParameters )
+ {
+ // ... Do other things.
+
+ if( xMutex != NULL )
+ {
+ // See if we can obtain the mutex. If the mutex is not available
+ // wait 10 ticks to see if it becomes free.
+ if( xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 ) == pdTRUE )
+ {
+ // We were able to obtain the mutex and can now access the
+ // shared resource.
+
+ // ...
+ // For some reason due to the nature of the code further calls to
+ // xSemaphoreTakeRecursive() are made on the same mutex. In real
+ // code these would not be just sequential calls as this would make
+ // no sense. Instead the calls are likely to be buried inside
+ // a more complex call structure.
+ xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
+ xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
+
+ // The mutex has now been 'taken' three times, so will not be
+ // available to another task until it has also been given back
+ // three times. Again it is unlikely that real code would have
+ // these calls sequentially, it would be more likely that the calls
+ // to xSemaphoreGiveRecursive() would be called as a call stack
+ // unwound. This is just for demonstrative purposes.
+ xSemaphoreGiveRecursive( xMutex );
+ xSemaphoreGiveRecursive( xMutex );
+ xSemaphoreGiveRecursive( xMutex );
+
+ // Now the mutex can be taken by other tasks.
+ }
+ else
+ {
+ // We could not obtain the mutex and can therefore not access
+ // the shared resource safely.
+ }
+ }
+ }
+ </pre>
+ * \defgroup xSemaphoreGiveRecursive xSemaphoreGiveRecursive
+ * \ingroup Semaphores
+ */
+#define xSemaphoreGiveRecursive( xMutex ) xQueueGiveMutexRecursive( ( xMutex ) )
+
+/*
+ * xSemaphoreAltGive() is an alternative version of xSemaphoreGive().
+ *
+ * The source code that implements the alternative (Alt) API is much
+ * simpler because it executes everything from within a critical section.
+ * This is the approach taken by many other RTOSes, but FreeRTOS.org has the
+ * preferred fully featured API too. The fully featured API has more
+ * complex code that takes longer to execute, but makes much less use of
+ * critical sections. Therefore the alternative API sacrifices interrupt
+ * responsiveness to gain execution speed, whereas the fully featured API
+ * sacrifices execution speed to ensure better interrupt responsiveness.
+ */
+#define xSemaphoreAltGive( xSemaphore ) xQueueAltGenericSend( ( QueueHandle_t ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
+
+/**
+ * semphr. h
+ * <pre>
+ xSemaphoreGiveFromISR(
+ SemaphoreHandle_t xSemaphore,
+ BaseType_t *pxHigherPriorityTaskWoken
+ )</pre>
+ *
+ * <i>Macro</i> to release a semaphore. The semaphore must have previously been
+ * created with a call to vSemaphoreCreateBinary() or xSemaphoreCreateCounting().
+ *
+ * Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
+ * must not be used with this macro.
+ *
+ * This macro can be used from an ISR.
+ *
+ * @param xSemaphore A handle to the semaphore being released. This is the
+ * handle returned when the semaphore was created.
+ *
+ * @param pxHigherPriorityTaskWoken xSemaphoreGiveFromISR() will set
+ * *pxHigherPriorityTaskWoken to pdTRUE if giving the semaphore caused a task
+ * to unblock, and the unblocked task has a priority higher than the currently
+ * running task. If xSemaphoreGiveFromISR() sets this value to pdTRUE then
+ * a context switch should be requested before the interrupt is exited.
+ *
+ * @return pdTRUE if the semaphore was successfully given, otherwise errQUEUE_FULL.
+ *
+ * Example usage:
+ <pre>
+ \#define LONG_TIME 0xffff
+ \#define TICKS_TO_WAIT 10
+ SemaphoreHandle_t xSemaphore = NULL;
+
+ // Repetitive task.
+ void vATask( void * pvParameters )
+ {
+ for( ;; )
+ {
+ // We want this task to run every 10 ticks of a timer. The semaphore
+ // was created before this task was started.
+
+ // Block waiting for the semaphore to become available.
+ if( xSemaphoreTake( xSemaphore, LONG_TIME ) == pdTRUE )
+ {
+ // It is time to execute.
+
+ // ...
+
+ // We have finished our task. Return to the top of the loop where
+ // we will block on the semaphore until it is time to execute
+ // again. Note when using the semaphore for synchronisation with an
+ // ISR in this manner there is no need to 'give' the semaphore back.
+ }
+ }
+ }
+
+ // Timer ISR
+ void vTimerISR( void * pvParameters )
+ {
+ static uint8_t ucLocalTickCount = 0;
+ static BaseType_t xHigherPriorityTaskWoken;
+
+ // A timer tick has occurred.
+
+ // ... Do other time functions.
+
+ // Is it time for vATask () to run?
+ xHigherPriorityTaskWoken = pdFALSE;
+ ucLocalTickCount++;
+ if( ucLocalTickCount >= TICKS_TO_WAIT )
+ {
+ // Unblock the task by releasing the semaphore.
+ xSemaphoreGiveFromISR( xSemaphore, &xHigherPriorityTaskWoken );
+
+ // Reset the count so we release the semaphore again in 10 ticks time.
+ ucLocalTickCount = 0;
+ }
+
+ if( xHigherPriorityTaskWoken != pdFALSE )
+ {
+ // We can force a context switch here. Context switching from an
+ // ISR uses port specific syntax. Check the demo task for your port
+ // to find the syntax required.
+ }
+ }
+ </pre>
+ * \defgroup xSemaphoreGiveFromISR xSemaphoreGiveFromISR
+ * \ingroup Semaphores
+ */
+#define xSemaphoreGiveFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueGiveFromISR( ( QueueHandle_t ) ( xSemaphore ), ( pxHigherPriorityTaskWoken ) )
+
+/**
+ * semphr. h
+ * <pre>
+ xSemaphoreTakeFromISR(
+ SemaphoreHandle_t xSemaphore,
+ BaseType_t *pxHigherPriorityTaskWoken
+ )</pre>
+ *
+ * <i>Macro</i> to take a semaphore from an ISR. The semaphore must have
+ * previously been created with a call to vSemaphoreCreateBinary() or
+ * xSemaphoreCreateCounting().
+ *
+ * Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
+ * must not be used with this macro.
+ *
+ * This macro can be used from an ISR, however taking a semaphore from an ISR
+ * is not a common operation. It is likely to only be useful when taking a
+ * counting semaphore when an interrupt is obtaining an object from a resource
+ * pool (when the semaphore count indicates the number of resources available).
+ *
+ * @param xSemaphore A handle to the semaphore being taken. This is the
+ * handle returned when the semaphore was created.
+ *
+ * @param pxHigherPriorityTaskWoken xSemaphoreTakeFromISR() will set
+ * *pxHigherPriorityTaskWoken to pdTRUE if taking the semaphore caused a task
+ * to unblock, and the unblocked task has a priority higher than the currently
+ * running task. If xSemaphoreTakeFromISR() sets this value to pdTRUE then
+ * a context switch should be requested before the interrupt is exited.
+ *
+ * @return pdTRUE if the semaphore was successfully taken, otherwise
+ * pdFALSE
+ */
+#define xSemaphoreTakeFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueReceiveFromISR( ( QueueHandle_t ) ( xSemaphore ), NULL, ( pxHigherPriorityTaskWoken ) )
+
+/**
+ * semphr. h
+ * <pre>SemaphoreHandle_t xSemaphoreCreateMutex( void )</pre>
+ *
+ * <i>Macro</i> that implements a mutex semaphore by using the existing queue
+ * mechanism.
+ *
+ * Mutexes created using this macro can be accessed using the xSemaphoreTake()
+ * and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and
+ * xSemaphoreGiveRecursive() macros should not be used.
+ *
+ * This type of semaphore uses a priority inheritance mechanism so a task
+ * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
+ * semaphore it is no longer required.
+ *
+ * Mutex type semaphores cannot be used from within interrupt service routines.
+ *
+ * See vSemaphoreCreateBinary() for an alternative implementation that can be
+ * used for pure synchronisation (where one task or interrupt always 'gives' the
+ * semaphore and another always 'takes' the semaphore) and from within interrupt
+ * service routines.
+ *
+ * @return xSemaphore Handle to the created mutex semaphore. Should be of type
+ * SemaphoreHandle_t.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore;
+
+ void vATask( void * pvParameters )
+ {
+ // Semaphore cannot be used before a call to xSemaphoreCreateMutex().
+ // This is a macro so pass the variable in directly.
+ xSemaphore = xSemaphoreCreateMutex();
+
+ if( xSemaphore != NULL )
+ {
+ // The semaphore was created successfully.
+ // The semaphore can now be used.
+ }
+ }
+ </pre>
+ * \defgroup vSemaphoreCreateMutex vSemaphoreCreateMutex
+ * \ingroup Semaphores
+ */
+#define xSemaphoreCreateMutex() xQueueCreateMutex( queueQUEUE_TYPE_MUTEX )
+
+
+/**
+ * semphr. h
+ * <pre>SemaphoreHandle_t xSemaphoreCreateRecursiveMutex( void )</pre>
+ *
+ * <i>Macro</i> that implements a recursive mutex by using the existing queue
+ * mechanism.
+ *
+ * Mutexes created using this macro can be accessed using the
+ * xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The
+ * xSemaphoreTake() and xSemaphoreGive() macros should not be used.
+ *
+ * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
+ * doesn't become available again until the owner has called
+ * xSemaphoreGiveRecursive() for each successful 'take' request. For example,
+ * if a task successfully 'takes' the same mutex 5 times then the mutex will
+ * not be available to any other task until it has also 'given' the mutex back
+ * exactly five times.
+ *
+ * This type of semaphore uses a priority inheritance mechanism so a task
+ * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
+ * semaphore it is no longer required.
+ *
+ * Mutex type semaphores cannot be used from within interrupt service routines.
+ *
+ * See vSemaphoreCreateBinary() for an alternative implementation that can be
+ * used for pure synchronisation (where one task or interrupt always 'gives' the
+ * semaphore and another always 'takes' the semaphore) and from within interrupt
+ * service routines.
+ *
+ * @return xSemaphore Handle to the created mutex semaphore. Should be of type
+ * SemaphoreHandle_t.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore;
+
+ void vATask( void * pvParameters )
+ {
+ // Semaphore cannot be used before a call to xSemaphoreCreateMutex().
+ // This is a macro so pass the variable in directly.
+ xSemaphore = xSemaphoreCreateRecursiveMutex();
+
+ if( xSemaphore != NULL )
+ {
+ // The semaphore was created successfully.
+ // The semaphore can now be used.
+ }
+ }
+ </pre>
+ * \defgroup vSemaphoreCreateMutex vSemaphoreCreateMutex
+ * \ingroup Semaphores
+ */
+#define xSemaphoreCreateRecursiveMutex() xQueueCreateMutex( queueQUEUE_TYPE_RECURSIVE_MUTEX )
+
+/**
+ * semphr. h
+ * <pre>SemaphoreHandle_t xSemaphoreCreateCounting( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount )</pre>
+ *
+ * <i>Macro</i> that creates a counting semaphore by using the existing
+ * queue mechanism.
+ *
+ * Counting semaphores are typically used for two things:
+ *
+ * 1) Counting events.
+ *
+ * In this usage scenario an event handler will 'give' a semaphore each time
+ * an event occurs (incrementing the semaphore count value), and a handler
+ * task will 'take' a semaphore each time it processes an event
+ * (decrementing the semaphore count value). The count value is therefore
+ * the difference between the number of events that have occurred and the
+ * number that have been processed. In this case it is desirable for the
+ * initial count value to be zero.
+ *
+ * 2) Resource management.
+ *
+ * In this usage scenario the count value indicates the number of resources
+ * available. To obtain control of a resource a task must first obtain a
+ * semaphore - decrementing the semaphore count value. When the count value
+ * reaches zero there are no free resources. When a task finishes with the
+ * resource it 'gives' the semaphore back - incrementing the semaphore count
+ * value. In this case it is desirable for the initial count value to be
+ * equal to the maximum count value, indicating that all resources are free.
+ *
+ * @param uxMaxCount The maximum count value that can be reached. When the
+ * semaphore reaches this value it can no longer be 'given'.
+ *
+ * @param uxInitialCount The count value assigned to the semaphore when it is
+ * created.
+ *
+ * @return Handle to the created semaphore. Null if the semaphore could not be
+ * created.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore;
+
+ void vATask( void * pvParameters )
+ {
+ SemaphoreHandle_t xSemaphore = NULL;
+
+ // Semaphore cannot be used before a call to xSemaphoreCreateCounting().
+ // The max value to which the semaphore can count should be 10, and the
+ // initial value assigned to the count should be 0.
+ xSemaphore = xSemaphoreCreateCounting( 10, 0 );
+
+ if( xSemaphore != NULL )
+ {
+ // The semaphore was created successfully.
+ // The semaphore can now be used.
+ }
+ }
+ </pre>
+ * \defgroup xSemaphoreCreateCounting xSemaphoreCreateCounting
+ * \ingroup Semaphores
+ */
+#define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( ( uxMaxCount ), ( uxInitialCount ) )
+
+/**
+ * semphr. h
+ * <pre>void vSemaphoreDelete( SemaphoreHandle_t xSemaphore );</pre>
+ *
+ * Delete a semaphore. This function must be used with care. For example,
+ * do not delete a mutex type semaphore if the mutex is held by a task.
+ *
+ * @param xSemaphore A handle to the semaphore to be deleted.
+ *
+ * \defgroup vSemaphoreDelete vSemaphoreDelete
+ * \ingroup Semaphores
+ */
+#define vSemaphoreDelete( xSemaphore ) vQueueDelete( ( QueueHandle_t ) ( xSemaphore ) )
+
+/**
+ * semphr.h
+ * <pre>TaskHandle_t xSemaphoreGetMutexHolder( SemaphoreHandle_t xMutex );</pre>
+ *
+ * If xMutex is indeed a mutex type semaphore, return the current mutex holder.
+ * If xMutex is not a mutex type semaphore, or the mutex is available (not held
+ * by a task), return NULL.
+ *
+ * Note: This is a good way of determining if the calling task is the mutex
+ * holder, but not a good way of determining the identity of the mutex holder as
+ * the holder may change between the function exiting and the returned value
+ * being tested.
+ */
+#define xSemaphoreGetMutexHolder( xSemaphore ) xQueueGetMutexHolder( ( xSemaphore ) )
+
+#endif /* SEMAPHORE_H */
+
+
diff --git a/src/FreeRTOS-Sim-master/Source/include/stdint.readme b/src/FreeRTOS-Sim-master/Source/include/stdint.readme
new file mode 100644
index 0000000..6d86149
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/stdint.readme
@@ -0,0 +1,27 @@
+
+#ifndef FREERTOS_STDINT
+#define FREERTOS_STDINT
+
+/*******************************************************************************
+ * THIS IS NOT A FULL stdint.h IMPLEMENTATION - It only contains the definitions
+ * necessary to build the FreeRTOS code. It is provided to allow FreeRTOS to be
+ * built using compilers that do not provide their own stdint.h definition.
+ *
+ * To use this file:
+ *
+ * 1) Copy this file into the directory that contains your FreeRTOSConfig.h
+ * header file, as that directory will already be in the compilers include
+ * path.
+ *
+ * 2) Rename the copied file stdint.h.
+ *
+ */
+
+typedef signed char int8_t;
+typedef unsigned char uint8_t;
+typedef short int16_t;
+typedef unsigned short uint16_t;
+typedef long int32_t;
+typedef unsigned long uint32_t;
+
+#endif /* FREERTOS_STDINT */
diff --git a/src/FreeRTOS-Sim-master/Source/include/task.h b/src/FreeRTOS-Sim-master/Source/include/task.h
new file mode 100644
index 0000000..deda894
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/task.h
@@ -0,0 +1,2021 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+
+#ifndef INC_TASK_H
+#define INC_TASK_H
+
+#ifndef INC_FREERTOS_H
+ #error "include FreeRTOS.h must appear in source files before include task.h"
+#endif
+
+#include "list.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*-----------------------------------------------------------
+ * MACROS AND DEFINITIONS
+ *----------------------------------------------------------*/
+
+#define tskKERNEL_VERSION_NUMBER "V8.2.2"
+#define tskKERNEL_VERSION_MAJOR 8
+#define tskKERNEL_VERSION_MINOR 2
+#define tskKERNEL_VERSION_BUILD 2
+
+/**
+ * task. h
+ *
+ * Type by which tasks are referenced. For example, a call to xTaskCreate
+ * returns (via a pointer parameter) an TaskHandle_t variable that can then
+ * be used as a parameter to vTaskDelete to delete the task.
+ *
+ * \defgroup TaskHandle_t TaskHandle_t
+ * \ingroup Tasks
+ */
+typedef void * TaskHandle_t;
+
+/*
+ * Defines the prototype to which the application task hook function must
+ * conform.
+ */
+typedef BaseType_t (*TaskHookFunction_t)( void * );
+
+/* Task states returned by eTaskGetState. */
+typedef enum
+{
+ eRunning = 0, /* A task is querying the state of itself, so must be running. */
+ eReady, /* The task being queried is in a read or pending ready list. */
+ eBlocked, /* The task being queried is in the Blocked state. */
+ eSuspended, /* The task being queried is in the Suspended state, or is in the Blocked state with an infinite time out. */
+ eDeleted /* The task being queried has been deleted, but its TCB has not yet been freed. */
+} eTaskState;
+
+/* Actions that can be performed when vTaskNotify() is called. */
+typedef enum
+{
+ eNoAction = 0, /* Notify the task without updating its notify value. */
+ eSetBits, /* Set bits in the task's notification value. */
+ eIncrement, /* Increment the task's notification value. */
+ eSetValueWithOverwrite, /* Set the task's notification value to a specific value even if the previous value has not yet been read by the task. */
+ eSetValueWithoutOverwrite /* Set the task's notification value if the previous value has been read by the task. */
+} eNotifyAction;
+
+/*
+ * Used internally only.
+ */
+typedef struct xTIME_OUT
+{
+ BaseType_t xOverflowCount;
+ TickType_t xTimeOnEntering;
+} TimeOut_t;
+
+/*
+ * Defines the memory ranges allocated to the task when an MPU is used.
+ */
+typedef struct xMEMORY_REGION
+{
+ void *pvBaseAddress;
+ uint32_t ulLengthInBytes;
+ uint32_t ulParameters;
+} MemoryRegion_t;
+
+/*
+ * Parameters required to create an MPU protected task.
+ */
+typedef struct xTASK_PARAMETERS
+{
+ TaskFunction_t pvTaskCode;
+ const char * const pcName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+ uint16_t usStackDepth;
+ void *pvParameters;
+ UBaseType_t uxPriority;
+ StackType_t *puxStackBuffer;
+ MemoryRegion_t xRegions[ portNUM_CONFIGURABLE_REGIONS ];
+} TaskParameters_t;
+
+/* Used with the uxTaskGetSystemState() function to return the state of each task
+in the system. */
+typedef struct xTASK_STATUS
+{
+ TaskHandle_t xHandle; /* The handle of the task to which the rest of the information in the structure relates. */
+ const char *pcTaskName; /* A pointer to the task's name. This value will be invalid if the task was deleted since the structure was populated! */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+ UBaseType_t xTaskNumber; /* A number unique to the task. */
+ eTaskState eCurrentState; /* The state in which the task existed when the structure was populated. */
+ UBaseType_t uxCurrentPriority; /* The priority at which the task was running (may be inherited) when the structure was populated. */
+ UBaseType_t uxBasePriority; /* The priority to which the task will return if the task's current priority has been inherited to avoid unbounded priority inversion when obtaining a mutex. Only valid if configUSE_MUTEXES is defined as 1 in FreeRTOSConfig.h. */
+ uint32_t ulRunTimeCounter; /* The total run time allocated to the task so far, as defined by the run time stats clock. See http://www.freertos.org/rtos-run-time-stats.html. Only valid when configGENERATE_RUN_TIME_STATS is defined as 1 in FreeRTOSConfig.h. */
+ uint16_t usStackHighWaterMark; /* The minimum amount of stack space that has remained for the task since the task was created. The closer this value is to zero the closer the task has come to overflowing its stack. */
+} TaskStatus_t;
+
+/* Possible return values for eTaskConfirmSleepModeStatus(). */
+typedef enum
+{
+ eAbortSleep = 0, /* A task has been made ready or a context switch pended since portSUPPORESS_TICKS_AND_SLEEP() was called - abort entering a sleep mode. */
+ eStandardSleep, /* Enter a sleep mode that will not last any longer than the expected idle time. */
+ eNoTasksWaitingTimeout /* No tasks are waiting for a timeout so it is safe to enter a sleep mode that can only be exited by an external interrupt. */
+} eSleepModeStatus;
+
+
+/**
+ * Defines the priority used by the idle task. This must not be modified.
+ *
+ * \ingroup TaskUtils
+ */
+#define tskIDLE_PRIORITY ( ( UBaseType_t ) 0U )
+
+/**
+ * task. h
+ *
+ * Macro for forcing a context switch.
+ *
+ * \defgroup taskYIELD taskYIELD
+ * \ingroup SchedulerControl
+ */
+#define taskYIELD() portYIELD()
+
+/**
+ * task. h
+ *
+ * Macro to mark the start of a critical code region. Preemptive context
+ * switches cannot occur when in a critical region.
+ *
+ * NOTE: This may alter the stack (depending on the portable implementation)
+ * so must be used with care!
+ *
+ * \defgroup taskENTER_CRITICAL taskENTER_CRITICAL
+ * \ingroup SchedulerControl
+ */
+#define taskENTER_CRITICAL() portENTER_CRITICAL()
+#define taskENTER_CRITICAL_FROM_ISR() portSET_INTERRUPT_MASK_FROM_ISR()
+
+/**
+ * task. h
+ *
+ * Macro to mark the end of a critical code region. Preemptive context
+ * switches cannot occur when in a critical region.
+ *
+ * NOTE: This may alter the stack (depending on the portable implementation)
+ * so must be used with care!
+ *
+ * \defgroup taskEXIT_CRITICAL taskEXIT_CRITICAL
+ * \ingroup SchedulerControl
+ */
+#define taskEXIT_CRITICAL() portEXIT_CRITICAL()
+#define taskEXIT_CRITICAL_FROM_ISR( x ) portCLEAR_INTERRUPT_MASK_FROM_ISR( x )
+/**
+ * task. h
+ *
+ * Macro to disable all maskable interrupts.
+ *
+ * \defgroup taskDISABLE_INTERRUPTS taskDISABLE_INTERRUPTS
+ * \ingroup SchedulerControl
+ */
+#define taskDISABLE_INTERRUPTS() portDISABLE_INTERRUPTS()
+
+/**
+ * task. h
+ *
+ * Macro to enable microcontroller interrupts.
+ *
+ * \defgroup taskENABLE_INTERRUPTS taskENABLE_INTERRUPTS
+ * \ingroup SchedulerControl
+ */
+#define taskENABLE_INTERRUPTS() portENABLE_INTERRUPTS()
+
+/* Definitions returned by xTaskGetSchedulerState(). taskSCHEDULER_SUSPENDED is
+0 to generate more optimal code when configASSERT() is defined as the constant
+is used in assert() statements. */
+#define taskSCHEDULER_SUSPENDED ( ( BaseType_t ) 0 )
+#define taskSCHEDULER_NOT_STARTED ( ( BaseType_t ) 1 )
+#define taskSCHEDULER_RUNNING ( ( BaseType_t ) 2 )
+
+
+/*-----------------------------------------------------------
+ * TASK CREATION API
+ *----------------------------------------------------------*/
+
+/**
+ * task. h
+ *<pre>
+ BaseType_t xTaskCreate(
+ TaskFunction_t pvTaskCode,
+ const char * const pcName,
+ uint16_t usStackDepth,
+ void *pvParameters,
+ UBaseType_t uxPriority,
+ TaskHandle_t *pvCreatedTask
+ );</pre>
+ *
+ * Create a new task and add it to the list of tasks that are ready to run.
+ *
+ * xTaskCreate() can only be used to create a task that has unrestricted
+ * access to the entire microcontroller memory map. Systems that include MPU
+ * support can alternatively create an MPU constrained task using
+ * xTaskCreateRestricted().
+ *
+ * @param pvTaskCode Pointer to the task entry function. Tasks
+ * must be implemented to never return (i.e. continuous loop).
+ *
+ * @param pcName A descriptive name for the task. This is mainly used to
+ * facilitate debugging. Max length defined by configMAX_TASK_NAME_LEN - default
+ * is 16.
+ *
+ * @param usStackDepth The size of the task stack specified as the number of
+ * variables the stack can hold - not the number of bytes. For example, if
+ * the stack is 16 bits wide and usStackDepth is defined as 100, 200 bytes
+ * will be allocated for stack storage.
+ *
+ * @param pvParameters Pointer that will be used as the parameter for the task
+ * being created.
+ *
+ * @param uxPriority The priority at which the task should run. Systems that
+ * include MPU support can optionally create tasks in a privileged (system)
+ * mode by setting bit portPRIVILEGE_BIT of the priority parameter. For
+ * example, to create a privileged task at priority 2 the uxPriority parameter
+ * should be set to ( 2 | portPRIVILEGE_BIT ).
+ *
+ * @param pvCreatedTask Used to pass back a handle by which the created task
+ * can be referenced.
+ *
+ * @return pdPASS if the task was successfully created and added to a ready
+ * list, otherwise an error code defined in the file projdefs.h
+ *
+ * Example usage:
+ <pre>
+ // Task to be created.
+ void vTaskCode( void * pvParameters )
+ {
+ for( ;; )
+ {
+ // Task code goes here.
+ }
+ }
+
+ // Function that creates a task.
+ void vOtherFunction( void )
+ {
+ static uint8_t ucParameterToPass;
+ TaskHandle_t xHandle = NULL;
+
+ // Create the task, storing the handle. Note that the passed parameter ucParameterToPass
+ // must exist for the lifetime of the task, so in this case is declared static. If it was just an
+ // an automatic stack variable it might no longer exist, or at least have been corrupted, by the time
+ // the new task attempts to access it.
+ xTaskCreate( vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass, tskIDLE_PRIORITY, &xHandle );
+ configASSERT( xHandle );
+
+ // Use the handle to delete the task.
+ if( xHandle != NULL )
+ {
+ vTaskDelete( xHandle );
+ }
+ }
+ </pre>
+ * \defgroup xTaskCreate xTaskCreate
+ * \ingroup Tasks
+ */
+#define xTaskCreate( pvTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask ) xTaskGenericCreate( ( pvTaskCode ), ( pcName ), ( usStackDepth ), ( pvParameters ), ( uxPriority ), ( pxCreatedTask ), ( NULL ), ( NULL ) )
+
+/**
+ * task. h
+ *<pre>
+ BaseType_t xTaskCreateRestricted( TaskParameters_t *pxTaskDefinition, TaskHandle_t *pxCreatedTask );</pre>
+ *
+ * xTaskCreateRestricted() should only be used in systems that include an MPU
+ * implementation.
+ *
+ * Create a new task and add it to the list of tasks that are ready to run.
+ * The function parameters define the memory regions and associated access
+ * permissions allocated to the task.
+ *
+ * @param pxTaskDefinition Pointer to a structure that contains a member
+ * for each of the normal xTaskCreate() parameters (see the xTaskCreate() API
+ * documentation) plus an optional stack buffer and the memory region
+ * definitions.
+ *
+ * @param pxCreatedTask Used to pass back a handle by which the created task
+ * can be referenced.
+ *
+ * @return pdPASS if the task was successfully created and added to a ready
+ * list, otherwise an error code defined in the file projdefs.h
+ *
+ * Example usage:
+ <pre>
+// Create an TaskParameters_t structure that defines the task to be created.
+static const TaskParameters_t xCheckTaskParameters =
+{
+ vATask, // pvTaskCode - the function that implements the task.
+ "ATask", // pcName - just a text name for the task to assist debugging.
+ 100, // usStackDepth - the stack size DEFINED IN WORDS.
+ NULL, // pvParameters - passed into the task function as the function parameters.
+ ( 1UL | portPRIVILEGE_BIT ),// uxPriority - task priority, set the portPRIVILEGE_BIT if the task should run in a privileged state.
+ cStackBuffer,// puxStackBuffer - the buffer to be used as the task stack.
+
+ // xRegions - Allocate up to three separate memory regions for access by
+ // the task, with appropriate access permissions. Different processors have
+ // different memory alignment requirements - refer to the FreeRTOS documentation
+ // for full information.
+ {
+ // Base address Length Parameters
+ { cReadWriteArray, 32, portMPU_REGION_READ_WRITE },
+ { cReadOnlyArray, 32, portMPU_REGION_READ_ONLY },
+ { cPrivilegedOnlyAccessArray, 128, portMPU_REGION_PRIVILEGED_READ_WRITE }
+ }
+};
+
+int main( void )
+{
+TaskHandle_t xHandle;
+
+ // Create a task from the const structure defined above. The task handle
+ // is requested (the second parameter is not NULL) but in this case just for
+ // demonstration purposes as its not actually used.
+ xTaskCreateRestricted( &xRegTest1Parameters, &xHandle );
+
+ // Start the scheduler.
+ vTaskStartScheduler();
+
+ // Will only get here if there was insufficient memory to create the idle
+ // and/or timer task.
+ for( ;; );
+}
+ </pre>
+ * \defgroup xTaskCreateRestricted xTaskCreateRestricted
+ * \ingroup Tasks
+ */
+#define xTaskCreateRestricted( x, pxCreatedTask ) xTaskGenericCreate( ((x)->pvTaskCode), ((x)->pcName), ((x)->usStackDepth), ((x)->pvParameters), ((x)->uxPriority), (pxCreatedTask), ((x)->puxStackBuffer), ((x)->xRegions) )
+
+/**
+ * task. h
+ *<pre>
+ void vTaskAllocateMPURegions( TaskHandle_t xTask, const MemoryRegion_t * const pxRegions );</pre>
+ *
+ * Memory regions are assigned to a restricted task when the task is created by
+ * a call to xTaskCreateRestricted(). These regions can be redefined using
+ * vTaskAllocateMPURegions().
+ *
+ * @param xTask The handle of the task being updated.
+ *
+ * @param xRegions A pointer to an MemoryRegion_t structure that contains the
+ * new memory region definitions.
+ *
+ * Example usage:
+ <pre>
+// Define an array of MemoryRegion_t structures that configures an MPU region
+// allowing read/write access for 1024 bytes starting at the beginning of the
+// ucOneKByte array. The other two of the maximum 3 definable regions are
+// unused so set to zero.
+static const MemoryRegion_t xAltRegions[ portNUM_CONFIGURABLE_REGIONS ] =
+{
+ // Base address Length Parameters
+ { ucOneKByte, 1024, portMPU_REGION_READ_WRITE },
+ { 0, 0, 0 },
+ { 0, 0, 0 }
+};
+
+void vATask( void *pvParameters )
+{
+ // This task was created such that it has access to certain regions of
+ // memory as defined by the MPU configuration. At some point it is
+ // desired that these MPU regions are replaced with that defined in the
+ // xAltRegions const struct above. Use a call to vTaskAllocateMPURegions()
+ // for this purpose. NULL is used as the task handle to indicate that this
+ // function should modify the MPU regions of the calling task.
+ vTaskAllocateMPURegions( NULL, xAltRegions );
+
+ // Now the task can continue its function, but from this point on can only
+ // access its stack and the ucOneKByte array (unless any other statically
+ // defined or shared regions have been declared elsewhere).
+}
+ </pre>
+ * \defgroup xTaskCreateRestricted xTaskCreateRestricted
+ * \ingroup Tasks
+ */
+void vTaskAllocateMPURegions( TaskHandle_t xTask, const MemoryRegion_t * const pxRegions ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>void vTaskDelete( TaskHandle_t xTask );</pre>
+ *
+ * INCLUDE_vTaskDelete must be defined as 1 for this function to be available.
+ * See the configuration section for more information.
+ *
+ * Remove a task from the RTOS real time kernel's management. The task being
+ * deleted will be removed from all ready, blocked, suspended and event lists.
+ *
+ * NOTE: The idle task is responsible for freeing the kernel allocated
+ * memory from tasks that have been deleted. It is therefore important that
+ * the idle task is not starved of microcontroller processing time if your
+ * application makes any calls to vTaskDelete (). Memory allocated by the
+ * task code is not automatically freed, and should be freed before the task
+ * is deleted.
+ *
+ * See the demo application file death.c for sample code that utilises
+ * vTaskDelete ().
+ *
+ * @param xTask The handle of the task to be deleted. Passing NULL will
+ * cause the calling task to be deleted.
+ *
+ * Example usage:
+ <pre>
+ void vOtherFunction( void )
+ {
+ TaskHandle_t xHandle;
+
+ // Create the task, storing the handle.
+ xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
+
+ // Use the handle to delete the task.
+ vTaskDelete( xHandle );
+ }
+ </pre>
+ * \defgroup vTaskDelete vTaskDelete
+ * \ingroup Tasks
+ */
+void vTaskDelete( TaskHandle_t xTaskToDelete ) PRIVILEGED_FUNCTION;
+
+/*-----------------------------------------------------------
+ * TASK CONTROL API
+ *----------------------------------------------------------*/
+
+/**
+ * task. h
+ * <pre>void vTaskDelay( const TickType_t xTicksToDelay );</pre>
+ *
+ * Delay a task for a given number of ticks. The actual time that the
+ * task remains blocked depends on the tick rate. The constant
+ * portTICK_PERIOD_MS can be used to calculate real time from the tick
+ * rate - with the resolution of one tick period.
+ *
+ * INCLUDE_vTaskDelay must be defined as 1 for this function to be available.
+ * See the configuration section for more information.
+ *
+ *
+ * vTaskDelay() specifies a time at which the task wishes to unblock relative to
+ * the time at which vTaskDelay() is called. For example, specifying a block
+ * period of 100 ticks will cause the task to unblock 100 ticks after
+ * vTaskDelay() is called. vTaskDelay() does not therefore provide a good method
+ * of controlling the frequency of a periodic task as the path taken through the
+ * code, as well as other task and interrupt activity, will effect the frequency
+ * at which vTaskDelay() gets called and therefore the time at which the task
+ * next executes. See vTaskDelayUntil() for an alternative API function designed
+ * to facilitate fixed frequency execution. It does this by specifying an
+ * absolute time (rather than a relative time) at which the calling task should
+ * unblock.
+ *
+ * @param xTicksToDelay The amount of time, in tick periods, that
+ * the calling task should block.
+ *
+ * Example usage:
+
+ void vTaskFunction( void * pvParameters )
+ {
+ // Block for 500ms.
+ const TickType_t xDelay = 500 / portTICK_PERIOD_MS;
+
+ for( ;; )
+ {
+ // Simply toggle the LED every 500ms, blocking between each toggle.
+ vToggleLED();
+ vTaskDelay( xDelay );
+ }
+ }
+
+ * \defgroup vTaskDelay vTaskDelay
+ * \ingroup TaskCtrl
+ */
+void vTaskDelay( const TickType_t xTicksToDelay ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>void vTaskDelayUntil( TickType_t *pxPreviousWakeTime, const TickType_t xTimeIncrement );</pre>
+ *
+ * INCLUDE_vTaskDelayUntil must be defined as 1 for this function to be available.
+ * See the configuration section for more information.
+ *
+ * Delay a task until a specified time. This function can be used by periodic
+ * tasks to ensure a constant execution frequency.
+ *
+ * This function differs from vTaskDelay () in one important aspect: vTaskDelay () will
+ * cause a task to block for the specified number of ticks from the time vTaskDelay () is
+ * called. It is therefore difficult to use vTaskDelay () by itself to generate a fixed
+ * execution frequency as the time between a task starting to execute and that task
+ * calling vTaskDelay () may not be fixed [the task may take a different path though the
+ * code between calls, or may get interrupted or preempted a different number of times
+ * each time it executes].
+ *
+ * Whereas vTaskDelay () specifies a wake time relative to the time at which the function
+ * is called, vTaskDelayUntil () specifies the absolute (exact) time at which it wishes to
+ * unblock.
+ *
+ * The constant portTICK_PERIOD_MS can be used to calculate real time from the tick
+ * rate - with the resolution of one tick period.
+ *
+ * @param pxPreviousWakeTime Pointer to a variable that holds the time at which the
+ * task was last unblocked. The variable must be initialised with the current time
+ * prior to its first use (see the example below). Following this the variable is
+ * automatically updated within vTaskDelayUntil ().
+ *
+ * @param xTimeIncrement The cycle time period. The task will be unblocked at
+ * time *pxPreviousWakeTime + xTimeIncrement. Calling vTaskDelayUntil with the
+ * same xTimeIncrement parameter value will cause the task to execute with
+ * a fixed interface period.
+ *
+ * Example usage:
+ <pre>
+ // Perform an action every 10 ticks.
+ void vTaskFunction( void * pvParameters )
+ {
+ TickType_t xLastWakeTime;
+ const TickType_t xFrequency = 10;
+
+ // Initialise the xLastWakeTime variable with the current time.
+ xLastWakeTime = xTaskGetTickCount ();
+ for( ;; )
+ {
+ // Wait for the next cycle.
+ vTaskDelayUntil( &xLastWakeTime, xFrequency );
+
+ // Perform action here.
+ }
+ }
+ </pre>
+ * \defgroup vTaskDelayUntil vTaskDelayUntil
+ * \ingroup TaskCtrl
+ */
+void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask );</pre>
+ *
+ * INCLUDE_uxTaskPriorityGet must be defined as 1 for this function to be available.
+ * See the configuration section for more information.
+ *
+ * Obtain the priority of any task.
+ *
+ * @param xTask Handle of the task to be queried. Passing a NULL
+ * handle results in the priority of the calling task being returned.
+ *
+ * @return The priority of xTask.
+ *
+ * Example usage:
+ <pre>
+ void vAFunction( void )
+ {
+ TaskHandle_t xHandle;
+
+ // Create a task, storing the handle.
+ xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
+
+ // ...
+
+ // Use the handle to obtain the priority of the created task.
+ // It was created with tskIDLE_PRIORITY, but may have changed
+ // it itself.
+ if( uxTaskPriorityGet( xHandle ) != tskIDLE_PRIORITY )
+ {
+ // The task has changed it's priority.
+ }
+
+ // ...
+
+ // Is our priority higher than the created task?
+ if( uxTaskPriorityGet( xHandle ) < uxTaskPriorityGet( NULL ) )
+ {
+ // Our priority (obtained using NULL handle) is higher.
+ }
+ }
+ </pre>
+ * \defgroup uxTaskPriorityGet uxTaskPriorityGet
+ * \ingroup TaskCtrl
+ */
+UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask );</pre>
+ *
+ * A version of uxTaskPriorityGet() that can be used from an ISR.
+ */
+UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>eTaskState eTaskGetState( TaskHandle_t xTask );</pre>
+ *
+ * INCLUDE_eTaskGetState must be defined as 1 for this function to be available.
+ * See the configuration section for more information.
+ *
+ * Obtain the state of any task. States are encoded by the eTaskState
+ * enumerated type.
+ *
+ * @param xTask Handle of the task to be queried.
+ *
+ * @return The state of xTask at the time the function was called. Note the
+ * state of the task might change between the function being called, and the
+ * functions return value being tested by the calling task.
+ */
+eTaskState eTaskGetState( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority );</pre>
+ *
+ * INCLUDE_vTaskPrioritySet must be defined as 1 for this function to be available.
+ * See the configuration section for more information.
+ *
+ * Set the priority of any task.
+ *
+ * A context switch will occur before the function returns if the priority
+ * being set is higher than the currently executing task.
+ *
+ * @param xTask Handle to the task for which the priority is being set.
+ * Passing a NULL handle results in the priority of the calling task being set.
+ *
+ * @param uxNewPriority The priority to which the task will be set.
+ *
+ * Example usage:
+ <pre>
+ void vAFunction( void )
+ {
+ TaskHandle_t xHandle;
+
+ // Create a task, storing the handle.
+ xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
+
+ // ...
+
+ // Use the handle to raise the priority of the created task.
+ vTaskPrioritySet( xHandle, tskIDLE_PRIORITY + 1 );
+
+ // ...
+
+ // Use a NULL handle to raise our priority to the same value.
+ vTaskPrioritySet( NULL, tskIDLE_PRIORITY + 1 );
+ }
+ </pre>
+ * \defgroup vTaskPrioritySet vTaskPrioritySet
+ * \ingroup TaskCtrl
+ */
+void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>void vTaskSuspend( TaskHandle_t xTaskToSuspend );</pre>
+ *
+ * INCLUDE_vTaskSuspend must be defined as 1 for this function to be available.
+ * See the configuration section for more information.
+ *
+ * Suspend any task. When suspended a task will never get any microcontroller
+ * processing time, no matter what its priority.
+ *
+ * Calls to vTaskSuspend are not accumulative -
+ * i.e. calling vTaskSuspend () twice on the same task still only requires one
+ * call to vTaskResume () to ready the suspended task.
+ *
+ * @param xTaskToSuspend Handle to the task being suspended. Passing a NULL
+ * handle will cause the calling task to be suspended.
+ *
+ * Example usage:
+ <pre>
+ void vAFunction( void )
+ {
+ TaskHandle_t xHandle;
+
+ // Create a task, storing the handle.
+ xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
+
+ // ...
+
+ // Use the handle to suspend the created task.
+ vTaskSuspend( xHandle );
+
+ // ...
+
+ // The created task will not run during this period, unless
+ // another task calls vTaskResume( xHandle ).
+
+ //...
+
+
+ // Suspend ourselves.
+ vTaskSuspend( NULL );
+
+ // We cannot get here unless another task calls vTaskResume
+ // with our handle as the parameter.
+ }
+ </pre>
+ * \defgroup vTaskSuspend vTaskSuspend
+ * \ingroup TaskCtrl
+ */
+void vTaskSuspend( TaskHandle_t xTaskToSuspend ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>void vTaskResume( TaskHandle_t xTaskToResume );</pre>
+ *
+ * INCLUDE_vTaskSuspend must be defined as 1 for this function to be available.
+ * See the configuration section for more information.
+ *
+ * Resumes a suspended task.
+ *
+ * A task that has been suspended by one or more calls to vTaskSuspend ()
+ * will be made available for running again by a single call to
+ * vTaskResume ().
+ *
+ * @param xTaskToResume Handle to the task being readied.
+ *
+ * Example usage:
+ <pre>
+ void vAFunction( void )
+ {
+ TaskHandle_t xHandle;
+
+ // Create a task, storing the handle.
+ xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
+
+ // ...
+
+ // Use the handle to suspend the created task.
+ vTaskSuspend( xHandle );
+
+ // ...
+
+ // The created task will not run during this period, unless
+ // another task calls vTaskResume( xHandle ).
+
+ //...
+
+
+ // Resume the suspended task ourselves.
+ vTaskResume( xHandle );
+
+ // The created task will once again get microcontroller processing
+ // time in accordance with its priority within the system.
+ }
+ </pre>
+ * \defgroup vTaskResume vTaskResume
+ * \ingroup TaskCtrl
+ */
+void vTaskResume( TaskHandle_t xTaskToResume ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>void xTaskResumeFromISR( TaskHandle_t xTaskToResume );</pre>
+ *
+ * INCLUDE_xTaskResumeFromISR must be defined as 1 for this function to be
+ * available. See the configuration section for more information.
+ *
+ * An implementation of vTaskResume() that can be called from within an ISR.
+ *
+ * A task that has been suspended by one or more calls to vTaskSuspend ()
+ * will be made available for running again by a single call to
+ * xTaskResumeFromISR ().
+ *
+ * xTaskResumeFromISR() should not be used to synchronise a task with an
+ * interrupt if there is a chance that the interrupt could arrive prior to the
+ * task being suspended - as this can lead to interrupts being missed. Use of a
+ * semaphore as a synchronisation mechanism would avoid this eventuality.
+ *
+ * @param xTaskToResume Handle to the task being readied.
+ *
+ * @return pdTRUE if resuming the task should result in a context switch,
+ * otherwise pdFALSE. This is used by the ISR to determine if a context switch
+ * may be required following the ISR.
+ *
+ * \defgroup vTaskResumeFromISR vTaskResumeFromISR
+ * \ingroup TaskCtrl
+ */
+BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume ) PRIVILEGED_FUNCTION;
+
+/*-----------------------------------------------------------
+ * SCHEDULER CONTROL
+ *----------------------------------------------------------*/
+
+/**
+ * task. h
+ * <pre>void vTaskStartScheduler( void );</pre>
+ *
+ * Starts the real time kernel tick processing. After calling the kernel
+ * has control over which tasks are executed and when.
+ *
+ * See the demo application file main.c for an example of creating
+ * tasks and starting the kernel.
+ *
+ * Example usage:
+ <pre>
+ void vAFunction( void )
+ {
+ // Create at least one task before starting the kernel.
+ xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
+
+ // Start the real time kernel with preemption.
+ vTaskStartScheduler ();
+
+ // Will not get here unless a task calls vTaskEndScheduler ()
+ }
+ </pre>
+ *
+ * \defgroup vTaskStartScheduler vTaskStartScheduler
+ * \ingroup SchedulerControl
+ */
+void vTaskStartScheduler( void ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>void vTaskEndScheduler( void );</pre>
+ *
+ * NOTE: At the time of writing only the x86 real mode port, which runs on a PC
+ * in place of DOS, implements this function.
+ *
+ * Stops the real time kernel tick. All created tasks will be automatically
+ * deleted and multitasking (either preemptive or cooperative) will
+ * stop. Execution then resumes from the point where vTaskStartScheduler ()
+ * was called, as if vTaskStartScheduler () had just returned.
+ *
+ * See the demo application file main. c in the demo/PC directory for an
+ * example that uses vTaskEndScheduler ().
+ *
+ * vTaskEndScheduler () requires an exit function to be defined within the
+ * portable layer (see vPortEndScheduler () in port. c for the PC port). This
+ * performs hardware specific operations such as stopping the kernel tick.
+ *
+ * vTaskEndScheduler () will cause all of the resources allocated by the
+ * kernel to be freed - but will not free resources allocated by application
+ * tasks.
+ *
+ * Example usage:
+ <pre>
+ void vTaskCode( void * pvParameters )
+ {
+ for( ;; )
+ {
+ // Task code goes here.
+
+ // At some point we want to end the real time kernel processing
+ // so call ...
+ vTaskEndScheduler ();
+ }
+ }
+
+ void vAFunction( void )
+ {
+ // Create at least one task before starting the kernel.
+ xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
+
+ // Start the real time kernel with preemption.
+ vTaskStartScheduler ();
+
+ // Will only get here when the vTaskCode () task has called
+ // vTaskEndScheduler (). When we get here we are back to single task
+ // execution.
+ }
+ </pre>
+ *
+ * \defgroup vTaskEndScheduler vTaskEndScheduler
+ * \ingroup SchedulerControl
+ */
+void vTaskEndScheduler( void ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>void vTaskSuspendAll( void );</pre>
+ *
+ * Suspends the scheduler without disabling interrupts. Context switches will
+ * not occur while the scheduler is suspended.
+ *
+ * After calling vTaskSuspendAll () the calling task will continue to execute
+ * without risk of being swapped out until a call to xTaskResumeAll () has been
+ * made.
+ *
+ * API functions that have the potential to cause a context switch (for example,
+ * vTaskDelayUntil(), xQueueSend(), etc.) must not be called while the scheduler
+ * is suspended.
+ *
+ * Example usage:
+ <pre>
+ void vTask1( void * pvParameters )
+ {
+ for( ;; )
+ {
+ // Task code goes here.
+
+ // ...
+
+ // At some point the task wants to perform a long operation during
+ // which it does not want to get swapped out. It cannot use
+ // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
+ // operation may cause interrupts to be missed - including the
+ // ticks.
+
+ // Prevent the real time kernel swapping out the task.
+ vTaskSuspendAll ();
+
+ // Perform the operation here. There is no need to use critical
+ // sections as we have all the microcontroller processing time.
+ // During this time interrupts will still operate and the kernel
+ // tick count will be maintained.
+
+ // ...
+
+ // The operation is complete. Restart the kernel.
+ xTaskResumeAll ();
+ }
+ }
+ </pre>
+ * \defgroup vTaskSuspendAll vTaskSuspendAll
+ * \ingroup SchedulerControl
+ */
+void vTaskSuspendAll( void ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>BaseType_t xTaskResumeAll( void );</pre>
+ *
+ * Resumes scheduler activity after it was suspended by a call to
+ * vTaskSuspendAll().
+ *
+ * xTaskResumeAll() only resumes the scheduler. It does not unsuspend tasks
+ * that were previously suspended by a call to vTaskSuspend().
+ *
+ * @return If resuming the scheduler caused a context switch then pdTRUE is
+ * returned, otherwise pdFALSE is returned.
+ *
+ * Example usage:
+ <pre>
+ void vTask1( void * pvParameters )
+ {
+ for( ;; )
+ {
+ // Task code goes here.
+
+ // ...
+
+ // At some point the task wants to perform a long operation during
+ // which it does not want to get swapped out. It cannot use
+ // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
+ // operation may cause interrupts to be missed - including the
+ // ticks.
+
+ // Prevent the real time kernel swapping out the task.
+ vTaskSuspendAll ();
+
+ // Perform the operation here. There is no need to use critical
+ // sections as we have all the microcontroller processing time.
+ // During this time interrupts will still operate and the real
+ // time kernel tick count will be maintained.
+
+ // ...
+
+ // The operation is complete. Restart the kernel. We want to force
+ // a context switch - but there is no point if resuming the scheduler
+ // caused a context switch already.
+ if( !xTaskResumeAll () )
+ {
+ taskYIELD ();
+ }
+ }
+ }
+ </pre>
+ * \defgroup xTaskResumeAll xTaskResumeAll
+ * \ingroup SchedulerControl
+ */
+BaseType_t xTaskResumeAll( void ) PRIVILEGED_FUNCTION;
+
+/*-----------------------------------------------------------
+ * TASK UTILITIES
+ *----------------------------------------------------------*/
+
+/**
+ * task. h
+ * <PRE>TickType_t xTaskGetTickCount( void );</PRE>
+ *
+ * @return The count of ticks since vTaskStartScheduler was called.
+ *
+ * \defgroup xTaskGetTickCount xTaskGetTickCount
+ * \ingroup TaskUtils
+ */
+TickType_t xTaskGetTickCount( void ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <PRE>TickType_t xTaskGetTickCountFromISR( void );</PRE>
+ *
+ * @return The count of ticks since vTaskStartScheduler was called.
+ *
+ * This is a version of xTaskGetTickCount() that is safe to be called from an
+ * ISR - provided that TickType_t is the natural word size of the
+ * microcontroller being used or interrupt nesting is either not supported or
+ * not being used.
+ *
+ * \defgroup xTaskGetTickCountFromISR xTaskGetTickCountFromISR
+ * \ingroup TaskUtils
+ */
+TickType_t xTaskGetTickCountFromISR( void ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <PRE>uint16_t uxTaskGetNumberOfTasks( void );</PRE>
+ *
+ * @return The number of tasks that the real time kernel is currently managing.
+ * This includes all ready, blocked and suspended tasks. A task that
+ * has been deleted but not yet freed by the idle task will also be
+ * included in the count.
+ *
+ * \defgroup uxTaskGetNumberOfTasks uxTaskGetNumberOfTasks
+ * \ingroup TaskUtils
+ */
+UBaseType_t uxTaskGetNumberOfTasks( void ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <PRE>char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery );</PRE>
+ *
+ * @return The text (human readable) name of the task referenced by the handle
+ * xTaskToQuery. A task can query its own name by either passing in its own
+ * handle, or by setting xTaskToQuery to NULL. INCLUDE_pcTaskGetTaskName must be
+ * set to 1 in FreeRTOSConfig.h for pcTaskGetTaskName() to be available.
+ *
+ * \defgroup pcTaskGetTaskName pcTaskGetTaskName
+ * \ingroup TaskUtils
+ */
+char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+
+/**
+ * task.h
+ * <PRE>UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask );</PRE>
+ *
+ * INCLUDE_uxTaskGetStackHighWaterMark must be set to 1 in FreeRTOSConfig.h for
+ * this function to be available.
+ *
+ * Returns the high water mark of the stack associated with xTask. That is,
+ * the minimum free stack space there has been (in words, so on a 32 bit machine
+ * a value of 1 means 4 bytes) since the task started. The smaller the returned
+ * number the closer the task has come to overflowing its stack.
+ *
+ * @param xTask Handle of the task associated with the stack to be checked.
+ * Set xTask to NULL to check the stack of the calling task.
+ *
+ * @return The smallest amount of free stack space there has been (in words, so
+ * actual spaces on the stack rather than bytes) since the task referenced by
+ * xTask was created.
+ */
+UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+
+/* When using trace macros it is sometimes necessary to include task.h before
+FreeRTOS.h. When this is done TaskHookFunction_t will not yet have been defined,
+so the following two prototypes will cause a compilation error. This can be
+fixed by simply guarding against the inclusion of these two prototypes unless
+they are explicitly required by the configUSE_APPLICATION_TASK_TAG configuration
+constant. */
+#ifdef configUSE_APPLICATION_TASK_TAG
+ #if configUSE_APPLICATION_TASK_TAG == 1
+ /**
+ * task.h
+ * <pre>void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction );</pre>
+ *
+ * Sets pxHookFunction to be the task hook function used by the task xTask.
+ * Passing xTask as NULL has the effect of setting the calling tasks hook
+ * function.
+ */
+ void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction ) PRIVILEGED_FUNCTION;
+
+ /**
+ * task.h
+ * <pre>void xTaskGetApplicationTaskTag( TaskHandle_t xTask );</pre>
+ *
+ * Returns the pxHookFunction value assigned to the task xTask.
+ */
+ TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+ #endif /* configUSE_APPLICATION_TASK_TAG ==1 */
+#endif /* ifdef configUSE_APPLICATION_TASK_TAG */
+
+#if( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
+
+ /* Each task contains an array of pointers that is dimensioned by the
+ configNUM_THREAD_LOCAL_STORAGE_POINTERS setting in FreeRTOSConfig.h. The
+ kernel does not use the pointers itself, so the application writer can use
+ the pointers for any purpose they wish. The following two functions are
+ used to set and query a pointer respectively. */
+ void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue ) PRIVILEGED_FUNCTION;
+ void *pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex ) PRIVILEGED_FUNCTION;
+
+#endif
+
+/**
+ * task.h
+ * <pre>BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter );</pre>
+ *
+ * Calls the hook function associated with xTask. Passing xTask as NULL has
+ * the effect of calling the Running tasks (the calling task) hook function.
+ *
+ * pvParameter is passed to the hook function for the task to interpret as it
+ * wants. The return value is the value returned by the task hook function
+ * registered by the user.
+ */
+BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter ) PRIVILEGED_FUNCTION;
+
+/**
+ * xTaskGetIdleTaskHandle() is only available if
+ * INCLUDE_xTaskGetIdleTaskHandle is set to 1 in FreeRTOSConfig.h.
+ *
+ * Simply returns the handle of the idle task. It is not valid to call
+ * xTaskGetIdleTaskHandle() before the scheduler has been started.
+ */
+TaskHandle_t xTaskGetIdleTaskHandle( void ) PRIVILEGED_FUNCTION;
+
+/**
+ * configUSE_TRACE_FACILITY must be defined as 1 in FreeRTOSConfig.h for
+ * uxTaskGetSystemState() to be available.
+ *
+ * uxTaskGetSystemState() populates an TaskStatus_t structure for each task in
+ * the system. TaskStatus_t structures contain, among other things, members
+ * for the task handle, task name, task priority, task state, and total amount
+ * of run time consumed by the task. See the TaskStatus_t structure
+ * definition in this file for the full member list.
+ *
+ * NOTE: This function is intended for debugging use only as its use results in
+ * the scheduler remaining suspended for an extended period.
+ *
+ * @param pxTaskStatusArray A pointer to an array of TaskStatus_t structures.
+ * The array must contain at least one TaskStatus_t structure for each task
+ * that is under the control of the RTOS. The number of tasks under the control
+ * of the RTOS can be determined using the uxTaskGetNumberOfTasks() API function.
+ *
+ * @param uxArraySize The size of the array pointed to by the pxTaskStatusArray
+ * parameter. The size is specified as the number of indexes in the array, or
+ * the number of TaskStatus_t structures contained in the array, not by the
+ * number of bytes in the array.
+ *
+ * @param pulTotalRunTime If configGENERATE_RUN_TIME_STATS is set to 1 in
+ * FreeRTOSConfig.h then *pulTotalRunTime is set by uxTaskGetSystemState() to the
+ * total run time (as defined by the run time stats clock, see
+ * http://www.freertos.org/rtos-run-time-stats.html) since the target booted.
+ * pulTotalRunTime can be set to NULL to omit the total run time information.
+ *
+ * @return The number of TaskStatus_t structures that were populated by
+ * uxTaskGetSystemState(). This should equal the number returned by the
+ * uxTaskGetNumberOfTasks() API function, but will be zero if the value passed
+ * in the uxArraySize parameter was too small.
+ *
+ * Example usage:
+ <pre>
+ // This example demonstrates how a human readable table of run time stats
+ // information is generated from raw data provided by uxTaskGetSystemState().
+ // The human readable table is written to pcWriteBuffer
+ void vTaskGetRunTimeStats( char *pcWriteBuffer )
+ {
+ TaskStatus_t *pxTaskStatusArray;
+ volatile UBaseType_t uxArraySize, x;
+ uint32_t ulTotalRunTime, ulStatsAsPercentage;
+
+ // Make sure the write buffer does not contain a string.
+ *pcWriteBuffer = 0x00;
+
+ // Take a snapshot of the number of tasks in case it changes while this
+ // function is executing.
+ uxArraySize = uxTaskGetNumberOfTasks();
+
+ // Allocate a TaskStatus_t structure for each task. An array could be
+ // allocated statically at compile time.
+ pxTaskStatusArray = pvPortMalloc( uxArraySize * sizeof( TaskStatus_t ) );
+
+ if( pxTaskStatusArray != NULL )
+ {
+ // Generate raw status information about each task.
+ uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalRunTime );
+
+ // For percentage calculations.
+ ulTotalRunTime /= 100UL;
+
+ // Avoid divide by zero errors.
+ if( ulTotalRunTime > 0 )
+ {
+ // For each populated position in the pxTaskStatusArray array,
+ // format the raw data as human readable ASCII data
+ for( x = 0; x < uxArraySize; x++ )
+ {
+ // What percentage of the total run time has the task used?
+ // This will always be rounded down to the nearest integer.
+ // ulTotalRunTimeDiv100 has already been divided by 100.
+ ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalRunTime;
+
+ if( ulStatsAsPercentage > 0UL )
+ {
+ sprintf( pcWriteBuffer, "%s\t\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
+ }
+ else
+ {
+ // If the percentage is zero here then the task has
+ // consumed less than 1% of the total run time.
+ sprintf( pcWriteBuffer, "%s\t\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter );
+ }
+
+ pcWriteBuffer += strlen( ( char * ) pcWriteBuffer );
+ }
+ }
+
+ // The array is no longer needed, free the memory it consumes.
+ vPortFree( pxTaskStatusArray );
+ }
+ }
+ </pre>
+ */
+UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <PRE>void vTaskList( char *pcWriteBuffer );</PRE>
+ *
+ * configUSE_TRACE_FACILITY and configUSE_STATS_FORMATTING_FUNCTIONS must
+ * both be defined as 1 for this function to be available. See the
+ * configuration section of the FreeRTOS.org website for more information.
+ *
+ * NOTE 1: This function will disable interrupts for its duration. It is
+ * not intended for normal application runtime use but as a debug aid.
+ *
+ * Lists all the current tasks, along with their current state and stack
+ * usage high water mark.
+ *
+ * Tasks are reported as blocked ('B'), ready ('R'), deleted ('D') or
+ * suspended ('S').
+ *
+ * PLEASE NOTE:
+ *
+ * This function is provided for convenience only, and is used by many of the
+ * demo applications. Do not consider it to be part of the scheduler.
+ *
+ * vTaskList() calls uxTaskGetSystemState(), then formats part of the
+ * uxTaskGetSystemState() output into a human readable table that displays task
+ * names, states and stack usage.
+ *
+ * vTaskList() has a dependency on the sprintf() C library function that might
+ * bloat the code size, use a lot of stack, and provide different results on
+ * different platforms. An alternative, tiny, third party, and limited
+ * functionality implementation of sprintf() is provided in many of the
+ * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note
+ * printf-stdarg.c does not provide a full snprintf() implementation!).
+ *
+ * It is recommended that production systems call uxTaskGetSystemState()
+ * directly to get access to raw stats data, rather than indirectly through a
+ * call to vTaskList().
+ *
+ * @param pcWriteBuffer A buffer into which the above mentioned details
+ * will be written, in ASCII form. This buffer is assumed to be large
+ * enough to contain the generated report. Approximately 40 bytes per
+ * task should be sufficient.
+ *
+ * \defgroup vTaskList vTaskList
+ * \ingroup TaskUtils
+ */
+void vTaskList( char * pcWriteBuffer ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+
+/**
+ * task. h
+ * <PRE>void vTaskGetRunTimeStats( char *pcWriteBuffer );</PRE>
+ *
+ * configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS
+ * must both be defined as 1 for this function to be available. The application
+ * must also then provide definitions for
+ * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE()
+ * to configure a peripheral timer/counter and return the timers current count
+ * value respectively. The counter should be at least 10 times the frequency of
+ * the tick count.
+ *
+ * NOTE 1: This function will disable interrupts for its duration. It is
+ * not intended for normal application runtime use but as a debug aid.
+ *
+ * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total
+ * accumulated execution time being stored for each task. The resolution
+ * of the accumulated time value depends on the frequency of the timer
+ * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro.
+ * Calling vTaskGetRunTimeStats() writes the total execution time of each
+ * task into a buffer, both as an absolute count value and as a percentage
+ * of the total system execution time.
+ *
+ * NOTE 2:
+ *
+ * This function is provided for convenience only, and is used by many of the
+ * demo applications. Do not consider it to be part of the scheduler.
+ *
+ * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part of the
+ * uxTaskGetSystemState() output into a human readable table that displays the
+ * amount of time each task has spent in the Running state in both absolute and
+ * percentage terms.
+ *
+ * vTaskGetRunTimeStats() has a dependency on the sprintf() C library function
+ * that might bloat the code size, use a lot of stack, and provide different
+ * results on different platforms. An alternative, tiny, third party, and
+ * limited functionality implementation of sprintf() is provided in many of the
+ * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note
+ * printf-stdarg.c does not provide a full snprintf() implementation!).
+ *
+ * It is recommended that production systems call uxTaskGetSystemState() directly
+ * to get access to raw stats data, rather than indirectly through a call to
+ * vTaskGetRunTimeStats().
+ *
+ * @param pcWriteBuffer A buffer into which the execution times will be
+ * written, in ASCII form. This buffer is assumed to be large enough to
+ * contain the generated report. Approximately 40 bytes per task should
+ * be sufficient.
+ *
+ * \defgroup vTaskGetRunTimeStats vTaskGetRunTimeStats
+ * \ingroup TaskUtils
+ */
+void vTaskGetRunTimeStats( char *pcWriteBuffer ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+
+/**
+ * task. h
+ * <PRE>BaseType_t xTaskNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction );</PRE>
+ *
+ * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
+ * function to be available.
+ *
+ * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
+ * "notification value", which is a 32-bit unsigned integer (uint32_t).
+ *
+ * Events can be sent to a task using an intermediary object. Examples of such
+ * objects are queues, semaphores, mutexes and event groups. Task notifications
+ * are a method of sending an event directly to a task without the need for such
+ * an intermediary object.
+ *
+ * A notification sent to a task can optionally perform an action, such as
+ * update, overwrite or increment the task's notification value. In that way
+ * task notifications can be used to send data to a task, or be used as light
+ * weight and fast binary or counting semaphores.
+ *
+ * A notification sent to a task will remain pending until it is cleared by the
+ * task calling xTaskNotifyWait() or ulTaskNotifyTake(). If the task was
+ * already in the Blocked state to wait for a notification when the notification
+ * arrives then the task will automatically be removed from the Blocked state
+ * (unblocked) and the notification cleared.
+ *
+ * A task can use xTaskNotifyWait() to [optionally] block to wait for a
+ * notification to be pending, or ulTaskNotifyTake() to [optionally] block
+ * to wait for its notification value to have a non-zero value. The task does
+ * not consume any CPU time while it is in the Blocked state.
+ *
+ * See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
+ *
+ * @param xTaskToNotify The handle of the task being notified. The handle to a
+ * task can be returned from the xTaskCreate() API function used to create the
+ * task, and the handle of the currently running task can be obtained by calling
+ * xTaskGetCurrentTaskHandle().
+ *
+ * @param ulValue Data that can be sent with the notification. How the data is
+ * used depends on the value of the eAction parameter.
+ *
+ * @param eAction Specifies how the notification updates the task's notification
+ * value, if at all. Valid values for eAction are as follows:
+ *
+ * eSetBits -
+ * The task's notification value is bitwise ORed with ulValue. xTaskNofify()
+ * always returns pdPASS in this case.
+ *
+ * eIncrement -
+ * The task's notification value is incremented. ulValue is not used and
+ * xTaskNotify() always returns pdPASS in this case.
+ *
+ * eSetValueWithOverwrite -
+ * The task's notification value is set to the value of ulValue, even if the
+ * task being notified had not yet processed the previous notification (the
+ * task already had a notification pending). xTaskNotify() always returns
+ * pdPASS in this case.
+ *
+ * eSetValueWithoutOverwrite -
+ * If the task being notified did not already have a notification pending then
+ * the task's notification value is set to ulValue and xTaskNotify() will
+ * return pdPASS. If the task being notified already had a notification
+ * pending then no action is performed and pdFAIL is returned.
+ *
+ * eNoAction -
+ * The task receives a notification without its notification value being
+ * updated. ulValue is not used and xTaskNotify() always returns pdPASS in
+ * this case.
+ *
+ * pulPreviousNotificationValue -
+ * Can be used to pass out the subject task's notification value before any
+ * bits are modified by the notify function.
+ *
+ * @return Dependent on the value of eAction. See the description of the
+ * eAction parameter.
+ *
+ * \defgroup xTaskNotify xTaskNotify
+ * \ingroup TaskNotifications
+ */
+BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue ) PRIVILEGED_FUNCTION;
+#define xTaskNotify( xTaskToNotify, ulValue, eAction ) xTaskGenericNotify( ( xTaskToNotify ), ( ulValue ), ( eAction ), NULL )
+#define xTaskNotifyAndQuery( xTaskToNotify, ulValue, eAction, pulPreviousNotifyValue ) xTaskGenericNotify( ( xTaskToNotify ), ( ulValue ), ( eAction ), ( pulPreviousNotifyValue ) )
+
+/**
+ * task. h
+ * <PRE>BaseType_t xTaskNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, BaseType_t *pxHigherPriorityTaskWoken );</PRE>
+ *
+ * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
+ * function to be available.
+ *
+ * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
+ * "notification value", which is a 32-bit unsigned integer (uint32_t).
+ *
+ * A version of xTaskNotify() that can be used from an interrupt service routine
+ * (ISR).
+ *
+ * Events can be sent to a task using an intermediary object. Examples of such
+ * objects are queues, semaphores, mutexes and event groups. Task notifications
+ * are a method of sending an event directly to a task without the need for such
+ * an intermediary object.
+ *
+ * A notification sent to a task can optionally perform an action, such as
+ * update, overwrite or increment the task's notification value. In that way
+ * task notifications can be used to send data to a task, or be used as light
+ * weight and fast binary or counting semaphores.
+ *
+ * A notification sent to a task will remain pending until it is cleared by the
+ * task calling xTaskNotifyWait() or ulTaskNotifyTake(). If the task was
+ * already in the Blocked state to wait for a notification when the notification
+ * arrives then the task will automatically be removed from the Blocked state
+ * (unblocked) and the notification cleared.
+ *
+ * A task can use xTaskNotifyWait() to [optionally] block to wait for a
+ * notification to be pending, or ulTaskNotifyTake() to [optionally] block
+ * to wait for its notification value to have a non-zero value. The task does
+ * not consume any CPU time while it is in the Blocked state.
+ *
+ * See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
+ *
+ * @param xTaskToNotify The handle of the task being notified. The handle to a
+ * task can be returned from the xTaskCreate() API function used to create the
+ * task, and the handle of the currently running task can be obtained by calling
+ * xTaskGetCurrentTaskHandle().
+ *
+ * @param ulValue Data that can be sent with the notification. How the data is
+ * used depends on the value of the eAction parameter.
+ *
+ * @param eAction Specifies how the notification updates the task's notification
+ * value, if at all. Valid values for eAction are as follows:
+ *
+ * eSetBits -
+ * The task's notification value is bitwise ORed with ulValue. xTaskNofify()
+ * always returns pdPASS in this case.
+ *
+ * eIncrement -
+ * The task's notification value is incremented. ulValue is not used and
+ * xTaskNotify() always returns pdPASS in this case.
+ *
+ * eSetValueWithOverwrite -
+ * The task's notification value is set to the value of ulValue, even if the
+ * task being notified had not yet processed the previous notification (the
+ * task already had a notification pending). xTaskNotify() always returns
+ * pdPASS in this case.
+ *
+ * eSetValueWithoutOverwrite -
+ * If the task being notified did not already have a notification pending then
+ * the task's notification value is set to ulValue and xTaskNotify() will
+ * return pdPASS. If the task being notified already had a notification
+ * pending then no action is performed and pdFAIL is returned.
+ *
+ * eNoAction -
+ * The task receives a notification without its notification value being
+ * updated. ulValue is not used and xTaskNotify() always returns pdPASS in
+ * this case.
+ *
+ * @param pxHigherPriorityTaskWoken xTaskNotifyFromISR() will set
+ * *pxHigherPriorityTaskWoken to pdTRUE if sending the notification caused the
+ * task to which the notification was sent to leave the Blocked state, and the
+ * unblocked task has a priority higher than the currently running task. If
+ * xTaskNotifyFromISR() sets this value to pdTRUE then a context switch should
+ * be requested before the interrupt is exited. How a context switch is
+ * requested from an ISR is dependent on the port - see the documentation page
+ * for the port in use.
+ *
+ * @return Dependent on the value of eAction. See the description of the
+ * eAction parameter.
+ *
+ * \defgroup xTaskNotify xTaskNotify
+ * \ingroup TaskNotifications
+ */
+BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue, BaseType_t *pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
+#define xTaskNotifyFromISR( xTaskToNotify, ulValue, eAction, pxHigherPriorityTaskWoken ) xTaskGenericNotifyFromISR( ( xTaskToNotify ), ( ulValue ), ( eAction ), NULL, ( pxHigherPriorityTaskWoken ) )
+#define xTaskNotifyAndQueryFromISR( xTaskToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken ) xTaskGenericNotifyFromISR( ( xTaskToNotify ), ( ulValue ), ( eAction ), ( pulPreviousNotificationValue ), ( pxHigherPriorityTaskWoken ) )
+
+/**
+ * task. h
+ * <PRE>BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait );</pre>
+ *
+ * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
+ * function to be available.
+ *
+ * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
+ * "notification value", which is a 32-bit unsigned integer (uint32_t).
+ *
+ * Events can be sent to a task using an intermediary object. Examples of such
+ * objects are queues, semaphores, mutexes and event groups. Task notifications
+ * are a method of sending an event directly to a task without the need for such
+ * an intermediary object.
+ *
+ * A notification sent to a task can optionally perform an action, such as
+ * update, overwrite or increment the task's notification value. In that way
+ * task notifications can be used to send data to a task, or be used as light
+ * weight and fast binary or counting semaphores.
+ *
+ * A notification sent to a task will remain pending until it is cleared by the
+ * task calling xTaskNotifyWait() or ulTaskNotifyTake(). If the task was
+ * already in the Blocked state to wait for a notification when the notification
+ * arrives then the task will automatically be removed from the Blocked state
+ * (unblocked) and the notification cleared.
+ *
+ * A task can use xTaskNotifyWait() to [optionally] block to wait for a
+ * notification to be pending, or ulTaskNotifyTake() to [optionally] block
+ * to wait for its notification value to have a non-zero value. The task does
+ * not consume any CPU time while it is in the Blocked state.
+ *
+ * See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
+ *
+ * @param ulBitsToClearOnEntry Bits that are set in ulBitsToClearOnEntry value
+ * will be cleared in the calling task's notification value before the task
+ * checks to see if any notifications are pending, and optionally blocks if no
+ * notifications are pending. Setting ulBitsToClearOnEntry to ULONG_MAX (if
+ * limits.h is included) or 0xffffffffUL (if limits.h is not included) will have
+ * the effect of resetting the task's notification value to 0. Setting
+ * ulBitsToClearOnEntry to 0 will leave the task's notification value unchanged.
+ *
+ * @param ulBitsToClearOnExit If a notification is pending or received before
+ * the calling task exits the xTaskNotifyWait() function then the task's
+ * notification value (see the xTaskNotify() API function) is passed out using
+ * the pulNotificationValue parameter. Then any bits that are set in
+ * ulBitsToClearOnExit will be cleared in the task's notification value (note
+ * *pulNotificationValue is set before any bits are cleared). Setting
+ * ulBitsToClearOnExit to ULONG_MAX (if limits.h is included) or 0xffffffffUL
+ * (if limits.h is not included) will have the effect of resetting the task's
+ * notification value to 0 before the function exits. Setting
+ * ulBitsToClearOnExit to 0 will leave the task's notification value unchanged
+ * when the function exits (in which case the value passed out in
+ * pulNotificationValue will match the task's notification value).
+ *
+ * @param pulNotificationValue Used to pass the task's notification value out
+ * of the function. Note the value passed out will not be effected by the
+ * clearing of any bits caused by ulBitsToClearOnExit being non-zero.
+ *
+ * @param xTicksToWait The maximum amount of time that the task should wait in
+ * the Blocked state for a notification to be received, should a notification
+ * not already be pending when xTaskNotifyWait() was called. The task
+ * will not consume any processing time while it is in the Blocked state. This
+ * is specified in kernel ticks, the macro pdMS_TO_TICSK( value_in_ms ) can be
+ * used to convert a time specified in milliseconds to a time specified in
+ * ticks.
+ *
+ * @return If a notification was received (including notifications that were
+ * already pending when xTaskNotifyWait was called) then pdPASS is
+ * returned. Otherwise pdFAIL is returned.
+ *
+ * \defgroup xTaskNotifyWait xTaskNotifyWait
+ * \ingroup TaskNotifications
+ */
+BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <PRE>BaseType_t xTaskNotifyGive( TaskHandle_t xTaskToNotify );</PRE>
+ *
+ * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this macro
+ * to be available.
+ *
+ * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
+ * "notification value", which is a 32-bit unsigned integer (uint32_t).
+ *
+ * Events can be sent to a task using an intermediary object. Examples of such
+ * objects are queues, semaphores, mutexes and event groups. Task notifications
+ * are a method of sending an event directly to a task without the need for such
+ * an intermediary object.
+ *
+ * A notification sent to a task can optionally perform an action, such as
+ * update, overwrite or increment the task's notification value. In that way
+ * task notifications can be used to send data to a task, or be used as light
+ * weight and fast binary or counting semaphores.
+ *
+ * xTaskNotifyGive() is a helper macro intended for use when task notifications
+ * are used as light weight and faster binary or counting semaphore equivalents.
+ * Actual FreeRTOS semaphores are given using the xSemaphoreGive() API function,
+ * the equivalent action that instead uses a task notification is
+ * xTaskNotifyGive().
+ *
+ * When task notifications are being used as a binary or counting semaphore
+ * equivalent then the task being notified should wait for the notification
+ * using the ulTaskNotificationTake() API function rather than the
+ * xTaskNotifyWait() API function.
+ *
+ * See http://www.FreeRTOS.org/RTOS-task-notifications.html for more details.
+ *
+ * @param xTaskToNotify The handle of the task being notified. The handle to a
+ * task can be returned from the xTaskCreate() API function used to create the
+ * task, and the handle of the currently running task can be obtained by calling
+ * xTaskGetCurrentTaskHandle().
+ *
+ * @return xTaskNotifyGive() is a macro that calls xTaskNotify() with the
+ * eAction parameter set to eIncrement - so pdPASS is always returned.
+ *
+ * \defgroup xTaskNotifyGive xTaskNotifyGive
+ * \ingroup TaskNotifications
+ */
+#define xTaskNotifyGive( xTaskToNotify ) xTaskGenericNotify( ( xTaskToNotify ), ( 0 ), eIncrement, NULL )
+
+/**
+ * task. h
+ * <PRE>void vTaskNotifyGiveFromISR( TaskHandle_t xTaskHandle, BaseType_t *pxHigherPriorityTaskWoken );
+ *
+ * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this macro
+ * to be available.
+ *
+ * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
+ * "notification value", which is a 32-bit unsigned integer (uint32_t).
+ *
+ * A version of xTaskNotifyGive() that can be called from an interrupt service
+ * routine (ISR).
+ *
+ * Events can be sent to a task using an intermediary object. Examples of such
+ * objects are queues, semaphores, mutexes and event groups. Task notifications
+ * are a method of sending an event directly to a task without the need for such
+ * an intermediary object.
+ *
+ * A notification sent to a task can optionally perform an action, such as
+ * update, overwrite or increment the task's notification value. In that way
+ * task notifications can be used to send data to a task, or be used as light
+ * weight and fast binary or counting semaphores.
+ *
+ * vTaskNotifyGiveFromISR() is intended for use when task notifications are
+ * used as light weight and faster binary or counting semaphore equivalents.
+ * Actual FreeRTOS semaphores are given from an ISR using the
+ * xSemaphoreGiveFromISR() API function, the equivalent action that instead uses
+ * a task notification is vTaskNotifyGiveFromISR().
+ *
+ * When task notifications are being used as a binary or counting semaphore
+ * equivalent then the task being notified should wait for the notification
+ * using the ulTaskNotificationTake() API function rather than the
+ * xTaskNotifyWait() API function.
+ *
+ * See http://www.FreeRTOS.org/RTOS-task-notifications.html for more details.
+ *
+ * @param xTaskToNotify The handle of the task being notified. The handle to a
+ * task can be returned from the xTaskCreate() API function used to create the
+ * task, and the handle of the currently running task can be obtained by calling
+ * xTaskGetCurrentTaskHandle().
+ *
+ * @param pxHigherPriorityTaskWoken vTaskNotifyGiveFromISR() will set
+ * *pxHigherPriorityTaskWoken to pdTRUE if sending the notification caused the
+ * task to which the notification was sent to leave the Blocked state, and the
+ * unblocked task has a priority higher than the currently running task. If
+ * vTaskNotifyGiveFromISR() sets this value to pdTRUE then a context switch
+ * should be requested before the interrupt is exited. How a context switch is
+ * requested from an ISR is dependent on the port - see the documentation page
+ * for the port in use.
+ *
+ * \defgroup xTaskNotifyWait xTaskNotifyWait
+ * \ingroup TaskNotifications
+ */
+void vTaskNotifyGiveFromISR( TaskHandle_t xTaskToNotify, BaseType_t *pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <PRE>uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait );</pre>
+ *
+ * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
+ * function to be available.
+ *
+ * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
+ * "notification value", which is a 32-bit unsigned integer (uint32_t).
+ *
+ * Events can be sent to a task using an intermediary object. Examples of such
+ * objects are queues, semaphores, mutexes and event groups. Task notifications
+ * are a method of sending an event directly to a task without the need for such
+ * an intermediary object.
+ *
+ * A notification sent to a task can optionally perform an action, such as
+ * update, overwrite or increment the task's notification value. In that way
+ * task notifications can be used to send data to a task, or be used as light
+ * weight and fast binary or counting semaphores.
+ *
+ * ulTaskNotifyTake() is intended for use when a task notification is used as a
+ * faster and lighter weight binary or counting semaphore alternative. Actual
+ * FreeRTOS semaphores are taken using the xSemaphoreTake() API function, the
+ * equivalent action that instead uses a task notification is
+ * ulTaskNotifyTake().
+ *
+ * When a task is using its notification value as a binary or counting semaphore
+ * other tasks should send notifications to it using the xTaskNotifyGive()
+ * macro, or xTaskNotify() function with the eAction parameter set to
+ * eIncrement.
+ *
+ * ulTaskNotifyTake() can either clear the task's notification value to
+ * zero on exit, in which case the notification value acts like a binary
+ * semaphore, or decrement the task's notification value on exit, in which case
+ * the notification value acts like a counting semaphore.
+ *
+ * A task can use ulTaskNotifyTake() to [optionally] block to wait for a
+ * the task's notification value to be non-zero. The task does not consume any
+ * CPU time while it is in the Blocked state.
+ *
+ * Where as xTaskNotifyWait() will return when a notification is pending,
+ * ulTaskNotifyTake() will return when the task's notification value is
+ * not zero.
+ *
+ * See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
+ *
+ * @param xClearCountOnExit if xClearCountOnExit is pdFALSE then the task's
+ * notification value is decremented when the function exits. In this way the
+ * notification value acts like a counting semaphore. If xClearCountOnExit is
+ * not pdFALSE then the task's notification value is cleared to zero when the
+ * function exits. In this way the notification value acts like a binary
+ * semaphore.
+ *
+ * @param xTicksToWait The maximum amount of time that the task should wait in
+ * the Blocked state for the task's notification value to be greater than zero,
+ * should the count not already be greater than zero when
+ * ulTaskNotifyTake() was called. The task will not consume any processing
+ * time while it is in the Blocked state. This is specified in kernel ticks,
+ * the macro pdMS_TO_TICSK( value_in_ms ) can be used to convert a time
+ * specified in milliseconds to a time specified in ticks.
+ *
+ * @return The task's notification count before it is either cleared to zero or
+ * decremented (see the xClearCountOnExit parameter).
+ *
+ * \defgroup ulTaskNotifyTake ulTaskNotifyTake
+ * \ingroup TaskNotifications
+ */
+uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+
+/*-----------------------------------------------------------
+ * SCHEDULER INTERNALS AVAILABLE FOR PORTING PURPOSES
+ *----------------------------------------------------------*/
+
+/*
+ * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS ONLY
+ * INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
+ * AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
+ *
+ * Called from the real time kernel tick (either preemptive or cooperative),
+ * this increments the tick count and checks if any tasks that are blocked
+ * for a finite period required removing from a blocked list and placing on
+ * a ready list. If a non-zero value is returned then a context switch is
+ * required because either:
+ * + A task was removed from a blocked list because its timeout had expired,
+ * or
+ * + Time slicing is in use and there is a task of equal priority to the
+ * currently running task.
+ */
+BaseType_t xTaskIncrementTick( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
+ * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
+ *
+ * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
+ *
+ * Removes the calling task from the ready list and places it both
+ * on the list of tasks waiting for a particular event, and the
+ * list of delayed tasks. The task will be removed from both lists
+ * and replaced on the ready list should either the event occur (and
+ * there be no higher priority tasks waiting on the same event) or
+ * the delay period expires.
+ *
+ * The 'unordered' version replaces the event list item value with the
+ * xItemValue value, and inserts the list item at the end of the list.
+ *
+ * The 'ordered' version uses the existing event list item value (which is the
+ * owning tasks priority) to insert the list item into the event list is task
+ * priority order.
+ *
+ * @param pxEventList The list containing tasks that are blocked waiting
+ * for the event to occur.
+ *
+ * @param xItemValue The item value to use for the event list item when the
+ * event list is not ordered by task priority.
+ *
+ * @param xTicksToWait The maximum amount of time that the task should wait
+ * for the event to occur. This is specified in kernel ticks,the constant
+ * portTICK_PERIOD_MS can be used to convert kernel ticks into a real time
+ * period.
+ */
+void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+
+/*
+ * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
+ * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
+ *
+ * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
+ *
+ * This function performs nearly the same function as vTaskPlaceOnEventList().
+ * The difference being that this function does not permit tasks to block
+ * indefinitely, whereas vTaskPlaceOnEventList() does.
+ *
+ */
+void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, const TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) PRIVILEGED_FUNCTION;
+
+/*
+ * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
+ * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
+ *
+ * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
+ *
+ * Removes a task from both the specified event list and the list of blocked
+ * tasks, and places it on a ready queue.
+ *
+ * xTaskRemoveFromEventList()/xTaskRemoveFromUnorderedEventList() will be called
+ * if either an event occurs to unblock a task, or the block timeout period
+ * expires.
+ *
+ * xTaskRemoveFromEventList() is used when the event list is in task priority
+ * order. It removes the list item from the head of the event list as that will
+ * have the highest priority owning task of all the tasks on the event list.
+ * xTaskRemoveFromUnorderedEventList() is used when the event list is not
+ * ordered and the event list items hold something other than the owning tasks
+ * priority. In this case the event list item value is updated to the value
+ * passed in the xItemValue parameter.
+ *
+ * @return pdTRUE if the task being removed has a higher priority than the task
+ * making the call, otherwise pdFALSE.
+ */
+BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ) PRIVILEGED_FUNCTION;
+BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue ) PRIVILEGED_FUNCTION;
+
+/*
+ * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS ONLY
+ * INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
+ * AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
+ *
+ * Sets the pointer to the current TCB to the TCB of the highest priority task
+ * that is ready to run.
+ */
+void vTaskSwitchContext( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * THESE FUNCTIONS MUST NOT BE USED FROM APPLICATION CODE. THEY ARE USED BY
+ * THE EVENT BITS MODULE.
+ */
+TickType_t uxTaskResetEventItemValue( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * Return the handle of the calling task.
+ */
+TaskHandle_t xTaskGetCurrentTaskHandle( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * Capture the current time status for future reference.
+ */
+void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ) PRIVILEGED_FUNCTION;
+
+/*
+ * Compare the time status now with that previously captured to see if the
+ * timeout has expired.
+ */
+BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait ) PRIVILEGED_FUNCTION;
+
+/*
+ * Shortcut used by the queue implementation to prevent unnecessary call to
+ * taskYIELD();
+ */
+void vTaskMissedYield( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * Returns the scheduler state as taskSCHEDULER_RUNNING,
+ * taskSCHEDULER_NOT_STARTED or taskSCHEDULER_SUSPENDED.
+ */
+BaseType_t xTaskGetSchedulerState( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * Raises the priority of the mutex holder to that of the calling task should
+ * the mutex holder have a priority less than the calling task.
+ */
+void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) PRIVILEGED_FUNCTION;
+
+/*
+ * Set the priority of a task back to its proper priority in the case that it
+ * inherited a higher priority while it was holding a semaphore.
+ */
+BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder ) PRIVILEGED_FUNCTION;
+
+/*
+ * Generic version of the task creation function which is in turn called by the
+ * xTaskCreate() and xTaskCreateRestricted() macros.
+ */
+BaseType_t xTaskGenericCreate( TaskFunction_t pxTaskCode, const char * const pcName, const uint16_t usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, StackType_t * const puxStackBuffer, const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+
+/*
+ * Get the uxTCBNumber assigned to the task referenced by the xTask parameter.
+ */
+UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+
+/*
+ * Set the uxTaskNumber of the task referenced by the xTask parameter to
+ * uxHandle.
+ */
+void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle ) PRIVILEGED_FUNCTION;
+
+/*
+ * Only available when configUSE_TICKLESS_IDLE is set to 1.
+ * If tickless mode is being used, or a low power mode is implemented, then
+ * the tick interrupt will not execute during idle periods. When this is the
+ * case, the tick count value maintained by the scheduler needs to be kept up
+ * to date with the actual execution time by being skipped forward by a time
+ * equal to the idle period.
+ */
+void vTaskStepTick( const TickType_t xTicksToJump ) PRIVILEGED_FUNCTION;
+
+/*
+ * Only avilable when configUSE_TICKLESS_IDLE is set to 1.
+ * Provided for use within portSUPPRESS_TICKS_AND_SLEEP() to allow the port
+ * specific sleep function to determine if it is ok to proceed with the sleep,
+ * and if it is ok to proceed, if it is ok to sleep indefinitely.
+ *
+ * This function is necessary because portSUPPRESS_TICKS_AND_SLEEP() is only
+ * called with the scheduler suspended, not from within a critical section. It
+ * is therefore possible for an interrupt to request a context switch between
+ * portSUPPRESS_TICKS_AND_SLEEP() and the low power mode actually being
+ * entered. eTaskConfirmSleepModeStatus() should be called from a short
+ * critical section between the timer being stopped and the sleep mode being
+ * entered to ensure it is ok to proceed into the sleep mode.
+ */
+eSleepModeStatus eTaskConfirmSleepModeStatus( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * For internal use only. Increment the mutex held count when a mutex is
+ * taken and return the handle of the task that has taken the mutex.
+ */
+void *pvTaskIncrementMutexHeldCount( void ) PRIVILEGED_FUNCTION;
+
+#ifdef __cplusplus
+}
+#endif
+#endif /* INC_TASK_H */
+
+
+
diff --git a/src/FreeRTOS-Sim-master/Source/include/timers.h b/src/FreeRTOS-Sim-master/Source/include/timers.h
new file mode 100644
index 0000000..ac2bedc
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/include/timers.h
@@ -0,0 +1,1146 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+
+#ifndef TIMERS_H
+#define TIMERS_H
+
+#ifndef INC_FREERTOS_H
+ #error "include FreeRTOS.h must appear in source files before include timers.h"
+#endif
+
+/*lint -e537 This headers are only multiply included if the application code
+happens to also be including task.h. */
+#include "task.h"
+/*lint +e537 */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*-----------------------------------------------------------
+ * MACROS AND DEFINITIONS
+ *----------------------------------------------------------*/
+
+/* IDs for commands that can be sent/received on the timer queue. These are to
+be used solely through the macros that make up the public software timer API,
+as defined below. The commands that are sent from interrupts must use the
+highest numbers as tmrFIRST_FROM_ISR_COMMAND is used to determine if the task
+or interrupt version of the queue send function should be used. */
+#define tmrCOMMAND_EXECUTE_CALLBACK_FROM_ISR ( ( BaseType_t ) -2 )
+#define tmrCOMMAND_EXECUTE_CALLBACK ( ( BaseType_t ) -1 )
+#define tmrCOMMAND_START_DONT_TRACE ( ( BaseType_t ) 0 )
+#define tmrCOMMAND_START ( ( BaseType_t ) 1 )
+#define tmrCOMMAND_RESET ( ( BaseType_t ) 2 )
+#define tmrCOMMAND_STOP ( ( BaseType_t ) 3 )
+#define tmrCOMMAND_CHANGE_PERIOD ( ( BaseType_t ) 4 )
+#define tmrCOMMAND_DELETE ( ( BaseType_t ) 5 )
+
+#define tmrFIRST_FROM_ISR_COMMAND ( ( BaseType_t ) 6 )
+#define tmrCOMMAND_START_FROM_ISR ( ( BaseType_t ) 6 )
+#define tmrCOMMAND_RESET_FROM_ISR ( ( BaseType_t ) 7 )
+#define tmrCOMMAND_STOP_FROM_ISR ( ( BaseType_t ) 8 )
+#define tmrCOMMAND_CHANGE_PERIOD_FROM_ISR ( ( BaseType_t ) 9 )
+
+
+/**
+ * Type by which software timers are referenced. For example, a call to
+ * xTimerCreate() returns an TimerHandle_t variable that can then be used to
+ * reference the subject timer in calls to other software timer API functions
+ * (for example, xTimerStart(), xTimerReset(), etc.).
+ */
+typedef void * TimerHandle_t;
+
+/*
+ * Defines the prototype to which timer callback functions must conform.
+ */
+typedef void (*TimerCallbackFunction_t)( TimerHandle_t xTimer );
+
+/*
+ * Defines the prototype to which functions used with the
+ * xTimerPendFunctionCallFromISR() function must conform.
+ */
+typedef void (*PendedFunction_t)( void *, uint32_t );
+
+/**
+ * TimerHandle_t xTimerCreate( const char * const pcTimerName,
+ * TickType_t xTimerPeriodInTicks,
+ * UBaseType_t uxAutoReload,
+ * void * pvTimerID,
+ * TimerCallbackFunction_t pxCallbackFunction );
+ *
+ * Creates a new software timer instance. This allocates the storage required
+ * by the new timer, initialises the new timers internal state, and returns a
+ * handle by which the new timer can be referenced.
+ *
+ * Timers are created in the dormant state. The xTimerStart(), xTimerReset(),
+ * xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
+ * xTimerChangePeriodFromISR() API functions can all be used to transition a
+ * timer into the active state.
+ *
+ * @param pcTimerName A text name that is assigned to the timer. This is done
+ * purely to assist debugging. The kernel itself only ever references a timer
+ * by its handle, and never by its name.
+ *
+ * @param xTimerPeriodInTicks The timer period. The time is defined in tick
+ * periods so the constant portTICK_PERIOD_MS can be used to convert a time that
+ * has been specified in milliseconds. For example, if the timer must expire
+ * after 100 ticks, then xTimerPeriodInTicks should be set to 100.
+ * Alternatively, if the timer must expire after 500ms, then xPeriod can be set
+ * to ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than or
+ * equal to 1000.
+ *
+ * @param uxAutoReload If uxAutoReload is set to pdTRUE then the timer will
+ * expire repeatedly with a frequency set by the xTimerPeriodInTicks parameter.
+ * If uxAutoReload is set to pdFALSE then the timer will be a one-shot timer and
+ * enter the dormant state after it expires.
+ *
+ * @param pvTimerID An identifier that is assigned to the timer being created.
+ * Typically this would be used in the timer callback function to identify which
+ * timer expired when the same callback function is assigned to more than one
+ * timer.
+ *
+ * @param pxCallbackFunction The function to call when the timer expires.
+ * Callback functions must have the prototype defined by TimerCallbackFunction_t,
+ * which is "void vCallbackFunction( TimerHandle_t xTimer );".
+ *
+ * @return If the timer is successfully created then a handle to the newly
+ * created timer is returned. If the timer cannot be created (because either
+ * there is insufficient FreeRTOS heap remaining to allocate the timer
+ * structures, or the timer period was set to 0) then NULL is returned.
+ *
+ * Example usage:
+ * @verbatim
+ * #define NUM_TIMERS 5
+ *
+ * // An array to hold handles to the created timers.
+ * TimerHandle_t xTimers[ NUM_TIMERS ];
+ *
+ * // An array to hold a count of the number of times each timer expires.
+ * int32_t lExpireCounters[ NUM_TIMERS ] = { 0 };
+ *
+ * // Define a callback function that will be used by multiple timer instances.
+ * // The callback function does nothing but count the number of times the
+ * // associated timer expires, and stop the timer once the timer has expired
+ * // 10 times.
+ * void vTimerCallback( TimerHandle_t pxTimer )
+ * {
+ * int32_t lArrayIndex;
+ * const int32_t xMaxExpiryCountBeforeStopping = 10;
+ *
+ * // Optionally do something if the pxTimer parameter is NULL.
+ * configASSERT( pxTimer );
+ *
+ * // Which timer expired?
+ * lArrayIndex = ( int32_t ) pvTimerGetTimerID( pxTimer );
+ *
+ * // Increment the number of times that pxTimer has expired.
+ * lExpireCounters[ lArrayIndex ] += 1;
+ *
+ * // If the timer has expired 10 times then stop it from running.
+ * if( lExpireCounters[ lArrayIndex ] == xMaxExpiryCountBeforeStopping )
+ * {
+ * // Do not use a block time if calling a timer API function from a
+ * // timer callback function, as doing so could cause a deadlock!
+ * xTimerStop( pxTimer, 0 );
+ * }
+ * }
+ *
+ * void main( void )
+ * {
+ * int32_t x;
+ *
+ * // Create then start some timers. Starting the timers before the scheduler
+ * // has been started means the timers will start running immediately that
+ * // the scheduler starts.
+ * for( x = 0; x < NUM_TIMERS; x++ )
+ * {
+ * xTimers[ x ] = xTimerCreate( "Timer", // Just a text name, not used by the kernel.
+ * ( 100 * x ), // The timer period in ticks.
+ * pdTRUE, // The timers will auto-reload themselves when they expire.
+ * ( void * ) x, // Assign each timer a unique id equal to its array index.
+ * vTimerCallback // Each timer calls the same callback when it expires.
+ * );
+ *
+ * if( xTimers[ x ] == NULL )
+ * {
+ * // The timer was not created.
+ * }
+ * else
+ * {
+ * // Start the timer. No block time is specified, and even if one was
+ * // it would be ignored because the scheduler has not yet been
+ * // started.
+ * if( xTimerStart( xTimers[ x ], 0 ) != pdPASS )
+ * {
+ * // The timer could not be set into the Active state.
+ * }
+ * }
+ * }
+ *
+ * // ...
+ * // Create tasks here.
+ * // ...
+ *
+ * // Starting the scheduler will start the timers running as they have already
+ * // been set into the active state.
+ * xTaskStartScheduler();
+ *
+ * // Should not reach here.
+ * for( ;; );
+ * }
+ * @endverbatim
+ */
+TimerHandle_t xTimerCreate( const char * const pcTimerName, const TickType_t xTimerPeriodInTicks, const UBaseType_t uxAutoReload, void * const pvTimerID, TimerCallbackFunction_t pxCallbackFunction ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+
+/**
+ * void *pvTimerGetTimerID( TimerHandle_t xTimer );
+ *
+ * Returns the ID assigned to the timer.
+ *
+ * IDs are assigned to timers using the pvTimerID parameter of the call to
+ * xTimerCreated() that was used to create the timer, and by calling the
+ * vTimerSetTimerID() API function.
+ *
+ * If the same callback function is assigned to multiple timers then the timer
+ * ID can be used as time specific (timer local) storage.
+ *
+ * @param xTimer The timer being queried.
+ *
+ * @return The ID assigned to the timer being queried.
+ *
+ * Example usage:
+ *
+ * See the xTimerCreate() API function example usage scenario.
+ */
+void *pvTimerGetTimerID( const TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
+
+/**
+ * void vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID );
+ *
+ * Sets the ID assigned to the timer.
+ *
+ * IDs are assigned to timers using the pvTimerID parameter of the call to
+ * xTimerCreated() that was used to create the timer.
+ *
+ * If the same callback function is assigned to multiple timers then the timer
+ * ID can be used as time specific (timer local) storage.
+ *
+ * @param xTimer The timer being updated.
+ *
+ * @param pvNewID The ID to assign to the timer.
+ *
+ * Example usage:
+ *
+ * See the xTimerCreate() API function example usage scenario.
+ */
+void vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID ) PRIVILEGED_FUNCTION;
+
+/**
+ * BaseType_t xTimerIsTimerActive( TimerHandle_t xTimer );
+ *
+ * Queries a timer to see if it is active or dormant.
+ *
+ * A timer will be dormant if:
+ * 1) It has been created but not started, or
+ * 2) It is an expired one-shot timer that has not been restarted.
+ *
+ * Timers are created in the dormant state. The xTimerStart(), xTimerReset(),
+ * xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
+ * xTimerChangePeriodFromISR() API functions can all be used to transition a timer into the
+ * active state.
+ *
+ * @param xTimer The timer being queried.
+ *
+ * @return pdFALSE will be returned if the timer is dormant. A value other than
+ * pdFALSE will be returned if the timer is active.
+ *
+ * Example usage:
+ * @verbatim
+ * // This function assumes xTimer has already been created.
+ * void vAFunction( TimerHandle_t xTimer )
+ * {
+ * if( xTimerIsTimerActive( xTimer ) != pdFALSE ) // or more simply and equivalently "if( xTimerIsTimerActive( xTimer ) )"
+ * {
+ * // xTimer is active, do something.
+ * }
+ * else
+ * {
+ * // xTimer is not active, do something else.
+ * }
+ * }
+ * @endverbatim
+ */
+BaseType_t xTimerIsTimerActive( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
+
+/**
+ * TaskHandle_t xTimerGetTimerDaemonTaskHandle( void );
+ *
+ * xTimerGetTimerDaemonTaskHandle() is only available if
+ * INCLUDE_xTimerGetTimerDaemonTaskHandle is set to 1 in FreeRTOSConfig.h.
+ *
+ * Simply returns the handle of the timer service/daemon task. It it not valid
+ * to call xTimerGetTimerDaemonTaskHandle() before the scheduler has been started.
+ */
+TaskHandle_t xTimerGetTimerDaemonTaskHandle( void ) PRIVILEGED_FUNCTION;
+
+/**
+ * BaseType_t xTimerStart( TimerHandle_t xTimer, TickType_t xTicksToWait );
+ *
+ * Timer functionality is provided by a timer service/daemon task. Many of the
+ * public FreeRTOS timer API functions send commands to the timer service task
+ * through a queue called the timer command queue. The timer command queue is
+ * private to the kernel itself and is not directly accessible to application
+ * code. The length of the timer command queue is set by the
+ * configTIMER_QUEUE_LENGTH configuration constant.
+ *
+ * xTimerStart() starts a timer that was previously created using the
+ * xTimerCreate() API function. If the timer had already been started and was
+ * already in the active state, then xTimerStart() has equivalent functionality
+ * to the xTimerReset() API function.
+ *
+ * Starting a timer ensures the timer is in the active state. If the timer
+ * is not stopped, deleted, or reset in the mean time, the callback function
+ * associated with the timer will get called 'n' ticks after xTimerStart() was
+ * called, where 'n' is the timers defined period.
+ *
+ * It is valid to call xTimerStart() before the scheduler has been started, but
+ * when this is done the timer will not actually start until the scheduler is
+ * started, and the timers expiry time will be relative to when the scheduler is
+ * started, not relative to when xTimerStart() was called.
+ *
+ * The configUSE_TIMERS configuration constant must be set to 1 for xTimerStart()
+ * to be available.
+ *
+ * @param xTimer The handle of the timer being started/restarted.
+ *
+ * @param xTicksToWait Specifies the time, in ticks, that the calling task should
+ * be held in the Blocked state to wait for the start command to be successfully
+ * sent to the timer command queue, should the queue already be full when
+ * xTimerStart() was called. xTicksToWait is ignored if xTimerStart() is called
+ * before the scheduler is started.
+ *
+ * @return pdFAIL will be returned if the start command could not be sent to
+ * the timer command queue even after xTicksToWait ticks had passed. pdPASS will
+ * be returned if the command was successfully sent to the timer command queue.
+ * When the command is actually processed will depend on the priority of the
+ * timer service/daemon task relative to other tasks in the system, although the
+ * timers expiry time is relative to when xTimerStart() is actually called. The
+ * timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
+ * configuration constant.
+ *
+ * Example usage:
+ *
+ * See the xTimerCreate() API function example usage scenario.
+ *
+ */
+#define xTimerStart( xTimer, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCount() ), NULL, ( xTicksToWait ) )
+
+/**
+ * BaseType_t xTimerStop( TimerHandle_t xTimer, TickType_t xTicksToWait );
+ *
+ * Timer functionality is provided by a timer service/daemon task. Many of the
+ * public FreeRTOS timer API functions send commands to the timer service task
+ * through a queue called the timer command queue. The timer command queue is
+ * private to the kernel itself and is not directly accessible to application
+ * code. The length of the timer command queue is set by the
+ * configTIMER_QUEUE_LENGTH configuration constant.
+ *
+ * xTimerStop() stops a timer that was previously started using either of the
+ * The xTimerStart(), xTimerReset(), xTimerStartFromISR(), xTimerResetFromISR(),
+ * xTimerChangePeriod() or xTimerChangePeriodFromISR() API functions.
+ *
+ * Stopping a timer ensures the timer is not in the active state.
+ *
+ * The configUSE_TIMERS configuration constant must be set to 1 for xTimerStop()
+ * to be available.
+ *
+ * @param xTimer The handle of the timer being stopped.
+ *
+ * @param xTicksToWait Specifies the time, in ticks, that the calling task should
+ * be held in the Blocked state to wait for the stop command to be successfully
+ * sent to the timer command queue, should the queue already be full when
+ * xTimerStop() was called. xTicksToWait is ignored if xTimerStop() is called
+ * before the scheduler is started.
+ *
+ * @return pdFAIL will be returned if the stop command could not be sent to
+ * the timer command queue even after xTicksToWait ticks had passed. pdPASS will
+ * be returned if the command was successfully sent to the timer command queue.
+ * When the command is actually processed will depend on the priority of the
+ * timer service/daemon task relative to other tasks in the system. The timer
+ * service/daemon task priority is set by the configTIMER_TASK_PRIORITY
+ * configuration constant.
+ *
+ * Example usage:
+ *
+ * See the xTimerCreate() API function example usage scenario.
+ *
+ */
+#define xTimerStop( xTimer, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_STOP, 0U, NULL, ( xTicksToWait ) )
+
+/**
+ * BaseType_t xTimerChangePeriod( TimerHandle_t xTimer,
+ * TickType_t xNewPeriod,
+ * TickType_t xTicksToWait );
+ *
+ * Timer functionality is provided by a timer service/daemon task. Many of the
+ * public FreeRTOS timer API functions send commands to the timer service task
+ * through a queue called the timer command queue. The timer command queue is
+ * private to the kernel itself and is not directly accessible to application
+ * code. The length of the timer command queue is set by the
+ * configTIMER_QUEUE_LENGTH configuration constant.
+ *
+ * xTimerChangePeriod() changes the period of a timer that was previously
+ * created using the xTimerCreate() API function.
+ *
+ * xTimerChangePeriod() can be called to change the period of an active or
+ * dormant state timer.
+ *
+ * The configUSE_TIMERS configuration constant must be set to 1 for
+ * xTimerChangePeriod() to be available.
+ *
+ * @param xTimer The handle of the timer that is having its period changed.
+ *
+ * @param xNewPeriod The new period for xTimer. Timer periods are specified in
+ * tick periods, so the constant portTICK_PERIOD_MS can be used to convert a time
+ * that has been specified in milliseconds. For example, if the timer must
+ * expire after 100 ticks, then xNewPeriod should be set to 100. Alternatively,
+ * if the timer must expire after 500ms, then xNewPeriod can be set to
+ * ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than
+ * or equal to 1000.
+ *
+ * @param xTicksToWait Specifies the time, in ticks, that the calling task should
+ * be held in the Blocked state to wait for the change period command to be
+ * successfully sent to the timer command queue, should the queue already be
+ * full when xTimerChangePeriod() was called. xTicksToWait is ignored if
+ * xTimerChangePeriod() is called before the scheduler is started.
+ *
+ * @return pdFAIL will be returned if the change period command could not be
+ * sent to the timer command queue even after xTicksToWait ticks had passed.
+ * pdPASS will be returned if the command was successfully sent to the timer
+ * command queue. When the command is actually processed will depend on the
+ * priority of the timer service/daemon task relative to other tasks in the
+ * system. The timer service/daemon task priority is set by the
+ * configTIMER_TASK_PRIORITY configuration constant.
+ *
+ * Example usage:
+ * @verbatim
+ * // This function assumes xTimer has already been created. If the timer
+ * // referenced by xTimer is already active when it is called, then the timer
+ * // is deleted. If the timer referenced by xTimer is not active when it is
+ * // called, then the period of the timer is set to 500ms and the timer is
+ * // started.
+ * void vAFunction( TimerHandle_t xTimer )
+ * {
+ * if( xTimerIsTimerActive( xTimer ) != pdFALSE ) // or more simply and equivalently "if( xTimerIsTimerActive( xTimer ) )"
+ * {
+ * // xTimer is already active - delete it.
+ * xTimerDelete( xTimer );
+ * }
+ * else
+ * {
+ * // xTimer is not active, change its period to 500ms. This will also
+ * // cause the timer to start. Block for a maximum of 100 ticks if the
+ * // change period command cannot immediately be sent to the timer
+ * // command queue.
+ * if( xTimerChangePeriod( xTimer, 500 / portTICK_PERIOD_MS, 100 ) == pdPASS )
+ * {
+ * // The command was successfully sent.
+ * }
+ * else
+ * {
+ * // The command could not be sent, even after waiting for 100 ticks
+ * // to pass. Take appropriate action here.
+ * }
+ * }
+ * }
+ * @endverbatim
+ */
+ #define xTimerChangePeriod( xTimer, xNewPeriod, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_CHANGE_PERIOD, ( xNewPeriod ), NULL, ( xTicksToWait ) )
+
+/**
+ * BaseType_t xTimerDelete( TimerHandle_t xTimer, TickType_t xTicksToWait );
+ *
+ * Timer functionality is provided by a timer service/daemon task. Many of the
+ * public FreeRTOS timer API functions send commands to the timer service task
+ * through a queue called the timer command queue. The timer command queue is
+ * private to the kernel itself and is not directly accessible to application
+ * code. The length of the timer command queue is set by the
+ * configTIMER_QUEUE_LENGTH configuration constant.
+ *
+ * xTimerDelete() deletes a timer that was previously created using the
+ * xTimerCreate() API function.
+ *
+ * The configUSE_TIMERS configuration constant must be set to 1 for
+ * xTimerDelete() to be available.
+ *
+ * @param xTimer The handle of the timer being deleted.
+ *
+ * @param xTicksToWait Specifies the time, in ticks, that the calling task should
+ * be held in the Blocked state to wait for the delete command to be
+ * successfully sent to the timer command queue, should the queue already be
+ * full when xTimerDelete() was called. xTicksToWait is ignored if xTimerDelete()
+ * is called before the scheduler is started.
+ *
+ * @return pdFAIL will be returned if the delete command could not be sent to
+ * the timer command queue even after xTicksToWait ticks had passed. pdPASS will
+ * be returned if the command was successfully sent to the timer command queue.
+ * When the command is actually processed will depend on the priority of the
+ * timer service/daemon task relative to other tasks in the system. The timer
+ * service/daemon task priority is set by the configTIMER_TASK_PRIORITY
+ * configuration constant.
+ *
+ * Example usage:
+ *
+ * See the xTimerChangePeriod() API function example usage scenario.
+ */
+#define xTimerDelete( xTimer, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_DELETE, 0U, NULL, ( xTicksToWait ) )
+
+/**
+ * BaseType_t xTimerReset( TimerHandle_t xTimer, TickType_t xTicksToWait );
+ *
+ * Timer functionality is provided by a timer service/daemon task. Many of the
+ * public FreeRTOS timer API functions send commands to the timer service task
+ * through a queue called the timer command queue. The timer command queue is
+ * private to the kernel itself and is not directly accessible to application
+ * code. The length of the timer command queue is set by the
+ * configTIMER_QUEUE_LENGTH configuration constant.
+ *
+ * xTimerReset() re-starts a timer that was previously created using the
+ * xTimerCreate() API function. If the timer had already been started and was
+ * already in the active state, then xTimerReset() will cause the timer to
+ * re-evaluate its expiry time so that it is relative to when xTimerReset() was
+ * called. If the timer was in the dormant state then xTimerReset() has
+ * equivalent functionality to the xTimerStart() API function.
+ *
+ * Resetting a timer ensures the timer is in the active state. If the timer
+ * is not stopped, deleted, or reset in the mean time, the callback function
+ * associated with the timer will get called 'n' ticks after xTimerReset() was
+ * called, where 'n' is the timers defined period.
+ *
+ * It is valid to call xTimerReset() before the scheduler has been started, but
+ * when this is done the timer will not actually start until the scheduler is
+ * started, and the timers expiry time will be relative to when the scheduler is
+ * started, not relative to when xTimerReset() was called.
+ *
+ * The configUSE_TIMERS configuration constant must be set to 1 for xTimerReset()
+ * to be available.
+ *
+ * @param xTimer The handle of the timer being reset/started/restarted.
+ *
+ * @param xTicksToWait Specifies the time, in ticks, that the calling task should
+ * be held in the Blocked state to wait for the reset command to be successfully
+ * sent to the timer command queue, should the queue already be full when
+ * xTimerReset() was called. xTicksToWait is ignored if xTimerReset() is called
+ * before the scheduler is started.
+ *
+ * @return pdFAIL will be returned if the reset command could not be sent to
+ * the timer command queue even after xTicksToWait ticks had passed. pdPASS will
+ * be returned if the command was successfully sent to the timer command queue.
+ * When the command is actually processed will depend on the priority of the
+ * timer service/daemon task relative to other tasks in the system, although the
+ * timers expiry time is relative to when xTimerStart() is actually called. The
+ * timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
+ * configuration constant.
+ *
+ * Example usage:
+ * @verbatim
+ * // When a key is pressed, an LCD back-light is switched on. If 5 seconds pass
+ * // without a key being pressed, then the LCD back-light is switched off. In
+ * // this case, the timer is a one-shot timer.
+ *
+ * TimerHandle_t xBacklightTimer = NULL;
+ *
+ * // The callback function assigned to the one-shot timer. In this case the
+ * // parameter is not used.
+ * void vBacklightTimerCallback( TimerHandle_t pxTimer )
+ * {
+ * // The timer expired, therefore 5 seconds must have passed since a key
+ * // was pressed. Switch off the LCD back-light.
+ * vSetBacklightState( BACKLIGHT_OFF );
+ * }
+ *
+ * // The key press event handler.
+ * void vKeyPressEventHandler( char cKey )
+ * {
+ * // Ensure the LCD back-light is on, then reset the timer that is
+ * // responsible for turning the back-light off after 5 seconds of
+ * // key inactivity. Wait 10 ticks for the command to be successfully sent
+ * // if it cannot be sent immediately.
+ * vSetBacklightState( BACKLIGHT_ON );
+ * if( xTimerReset( xBacklightTimer, 100 ) != pdPASS )
+ * {
+ * // The reset command was not executed successfully. Take appropriate
+ * // action here.
+ * }
+ *
+ * // Perform the rest of the key processing here.
+ * }
+ *
+ * void main( void )
+ * {
+ * int32_t x;
+ *
+ * // Create then start the one-shot timer that is responsible for turning
+ * // the back-light off if no keys are pressed within a 5 second period.
+ * xBacklightTimer = xTimerCreate( "BacklightTimer", // Just a text name, not used by the kernel.
+ * ( 5000 / portTICK_PERIOD_MS), // The timer period in ticks.
+ * pdFALSE, // The timer is a one-shot timer.
+ * 0, // The id is not used by the callback so can take any value.
+ * vBacklightTimerCallback // The callback function that switches the LCD back-light off.
+ * );
+ *
+ * if( xBacklightTimer == NULL )
+ * {
+ * // The timer was not created.
+ * }
+ * else
+ * {
+ * // Start the timer. No block time is specified, and even if one was
+ * // it would be ignored because the scheduler has not yet been
+ * // started.
+ * if( xTimerStart( xBacklightTimer, 0 ) != pdPASS )
+ * {
+ * // The timer could not be set into the Active state.
+ * }
+ * }
+ *
+ * // ...
+ * // Create tasks here.
+ * // ...
+ *
+ * // Starting the scheduler will start the timer running as it has already
+ * // been set into the active state.
+ * xTaskStartScheduler();
+ *
+ * // Should not reach here.
+ * for( ;; );
+ * }
+ * @endverbatim
+ */
+#define xTimerReset( xTimer, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_RESET, ( xTaskGetTickCount() ), NULL, ( xTicksToWait ) )
+
+/**
+ * BaseType_t xTimerStartFromISR( TimerHandle_t xTimer,
+ * BaseType_t *pxHigherPriorityTaskWoken );
+ *
+ * A version of xTimerStart() that can be called from an interrupt service
+ * routine.
+ *
+ * @param xTimer The handle of the timer being started/restarted.
+ *
+ * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
+ * of its time in the Blocked state, waiting for messages to arrive on the timer
+ * command queue. Calling xTimerStartFromISR() writes a message to the timer
+ * command queue, so has the potential to transition the timer service/daemon
+ * task out of the Blocked state. If calling xTimerStartFromISR() causes the
+ * timer service/daemon task to leave the Blocked state, and the timer service/
+ * daemon task has a priority equal to or greater than the currently executing
+ * task (the task that was interrupted), then *pxHigherPriorityTaskWoken will
+ * get set to pdTRUE internally within the xTimerStartFromISR() function. If
+ * xTimerStartFromISR() sets this value to pdTRUE then a context switch should
+ * be performed before the interrupt exits.
+ *
+ * @return pdFAIL will be returned if the start command could not be sent to
+ * the timer command queue. pdPASS will be returned if the command was
+ * successfully sent to the timer command queue. When the command is actually
+ * processed will depend on the priority of the timer service/daemon task
+ * relative to other tasks in the system, although the timers expiry time is
+ * relative to when xTimerStartFromISR() is actually called. The timer
+ * service/daemon task priority is set by the configTIMER_TASK_PRIORITY
+ * configuration constant.
+ *
+ * Example usage:
+ * @verbatim
+ * // This scenario assumes xBacklightTimer has already been created. When a
+ * // key is pressed, an LCD back-light is switched on. If 5 seconds pass
+ * // without a key being pressed, then the LCD back-light is switched off. In
+ * // this case, the timer is a one-shot timer, and unlike the example given for
+ * // the xTimerReset() function, the key press event handler is an interrupt
+ * // service routine.
+ *
+ * // The callback function assigned to the one-shot timer. In this case the
+ * // parameter is not used.
+ * void vBacklightTimerCallback( TimerHandle_t pxTimer )
+ * {
+ * // The timer expired, therefore 5 seconds must have passed since a key
+ * // was pressed. Switch off the LCD back-light.
+ * vSetBacklightState( BACKLIGHT_OFF );
+ * }
+ *
+ * // The key press interrupt service routine.
+ * void vKeyPressEventInterruptHandler( void )
+ * {
+ * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
+ *
+ * // Ensure the LCD back-light is on, then restart the timer that is
+ * // responsible for turning the back-light off after 5 seconds of
+ * // key inactivity. This is an interrupt service routine so can only
+ * // call FreeRTOS API functions that end in "FromISR".
+ * vSetBacklightState( BACKLIGHT_ON );
+ *
+ * // xTimerStartFromISR() or xTimerResetFromISR() could be called here
+ * // as both cause the timer to re-calculate its expiry time.
+ * // xHigherPriorityTaskWoken was initialised to pdFALSE when it was
+ * // declared (in this function).
+ * if( xTimerStartFromISR( xBacklightTimer, &xHigherPriorityTaskWoken ) != pdPASS )
+ * {
+ * // The start command was not executed successfully. Take appropriate
+ * // action here.
+ * }
+ *
+ * // Perform the rest of the key processing here.
+ *
+ * // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
+ * // should be performed. The syntax required to perform a context switch
+ * // from inside an ISR varies from port to port, and from compiler to
+ * // compiler. Inspect the demos for the port you are using to find the
+ * // actual syntax required.
+ * if( xHigherPriorityTaskWoken != pdFALSE )
+ * {
+ * // Call the interrupt safe yield function here (actual function
+ * // depends on the FreeRTOS port being used).
+ * }
+ * }
+ * @endverbatim
+ */
+#define xTimerStartFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START_FROM_ISR, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U )
+
+/**
+ * BaseType_t xTimerStopFromISR( TimerHandle_t xTimer,
+ * BaseType_t *pxHigherPriorityTaskWoken );
+ *
+ * A version of xTimerStop() that can be called from an interrupt service
+ * routine.
+ *
+ * @param xTimer The handle of the timer being stopped.
+ *
+ * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
+ * of its time in the Blocked state, waiting for messages to arrive on the timer
+ * command queue. Calling xTimerStopFromISR() writes a message to the timer
+ * command queue, so has the potential to transition the timer service/daemon
+ * task out of the Blocked state. If calling xTimerStopFromISR() causes the
+ * timer service/daemon task to leave the Blocked state, and the timer service/
+ * daemon task has a priority equal to or greater than the currently executing
+ * task (the task that was interrupted), then *pxHigherPriorityTaskWoken will
+ * get set to pdTRUE internally within the xTimerStopFromISR() function. If
+ * xTimerStopFromISR() sets this value to pdTRUE then a context switch should
+ * be performed before the interrupt exits.
+ *
+ * @return pdFAIL will be returned if the stop command could not be sent to
+ * the timer command queue. pdPASS will be returned if the command was
+ * successfully sent to the timer command queue. When the command is actually
+ * processed will depend on the priority of the timer service/daemon task
+ * relative to other tasks in the system. The timer service/daemon task
+ * priority is set by the configTIMER_TASK_PRIORITY configuration constant.
+ *
+ * Example usage:
+ * @verbatim
+ * // This scenario assumes xTimer has already been created and started. When
+ * // an interrupt occurs, the timer should be simply stopped.
+ *
+ * // The interrupt service routine that stops the timer.
+ * void vAnExampleInterruptServiceRoutine( void )
+ * {
+ * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
+ *
+ * // The interrupt has occurred - simply stop the timer.
+ * // xHigherPriorityTaskWoken was set to pdFALSE where it was defined
+ * // (within this function). As this is an interrupt service routine, only
+ * // FreeRTOS API functions that end in "FromISR" can be used.
+ * if( xTimerStopFromISR( xTimer, &xHigherPriorityTaskWoken ) != pdPASS )
+ * {
+ * // The stop command was not executed successfully. Take appropriate
+ * // action here.
+ * }
+ *
+ * // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
+ * // should be performed. The syntax required to perform a context switch
+ * // from inside an ISR varies from port to port, and from compiler to
+ * // compiler. Inspect the demos for the port you are using to find the
+ * // actual syntax required.
+ * if( xHigherPriorityTaskWoken != pdFALSE )
+ * {
+ * // Call the interrupt safe yield function here (actual function
+ * // depends on the FreeRTOS port being used).
+ * }
+ * }
+ * @endverbatim
+ */
+#define xTimerStopFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_STOP_FROM_ISR, 0, ( pxHigherPriorityTaskWoken ), 0U )
+
+/**
+ * BaseType_t xTimerChangePeriodFromISR( TimerHandle_t xTimer,
+ * TickType_t xNewPeriod,
+ * BaseType_t *pxHigherPriorityTaskWoken );
+ *
+ * A version of xTimerChangePeriod() that can be called from an interrupt
+ * service routine.
+ *
+ * @param xTimer The handle of the timer that is having its period changed.
+ *
+ * @param xNewPeriod The new period for xTimer. Timer periods are specified in
+ * tick periods, so the constant portTICK_PERIOD_MS can be used to convert a time
+ * that has been specified in milliseconds. For example, if the timer must
+ * expire after 100 ticks, then xNewPeriod should be set to 100. Alternatively,
+ * if the timer must expire after 500ms, then xNewPeriod can be set to
+ * ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than
+ * or equal to 1000.
+ *
+ * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
+ * of its time in the Blocked state, waiting for messages to arrive on the timer
+ * command queue. Calling xTimerChangePeriodFromISR() writes a message to the
+ * timer command queue, so has the potential to transition the timer service/
+ * daemon task out of the Blocked state. If calling xTimerChangePeriodFromISR()
+ * causes the timer service/daemon task to leave the Blocked state, and the
+ * timer service/daemon task has a priority equal to or greater than the
+ * currently executing task (the task that was interrupted), then
+ * *pxHigherPriorityTaskWoken will get set to pdTRUE internally within the
+ * xTimerChangePeriodFromISR() function. If xTimerChangePeriodFromISR() sets
+ * this value to pdTRUE then a context switch should be performed before the
+ * interrupt exits.
+ *
+ * @return pdFAIL will be returned if the command to change the timers period
+ * could not be sent to the timer command queue. pdPASS will be returned if the
+ * command was successfully sent to the timer command queue. When the command
+ * is actually processed will depend on the priority of the timer service/daemon
+ * task relative to other tasks in the system. The timer service/daemon task
+ * priority is set by the configTIMER_TASK_PRIORITY configuration constant.
+ *
+ * Example usage:
+ * @verbatim
+ * // This scenario assumes xTimer has already been created and started. When
+ * // an interrupt occurs, the period of xTimer should be changed to 500ms.
+ *
+ * // The interrupt service routine that changes the period of xTimer.
+ * void vAnExampleInterruptServiceRoutine( void )
+ * {
+ * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
+ *
+ * // The interrupt has occurred - change the period of xTimer to 500ms.
+ * // xHigherPriorityTaskWoken was set to pdFALSE where it was defined
+ * // (within this function). As this is an interrupt service routine, only
+ * // FreeRTOS API functions that end in "FromISR" can be used.
+ * if( xTimerChangePeriodFromISR( xTimer, &xHigherPriorityTaskWoken ) != pdPASS )
+ * {
+ * // The command to change the timers period was not executed
+ * // successfully. Take appropriate action here.
+ * }
+ *
+ * // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
+ * // should be performed. The syntax required to perform a context switch
+ * // from inside an ISR varies from port to port, and from compiler to
+ * // compiler. Inspect the demos for the port you are using to find the
+ * // actual syntax required.
+ * if( xHigherPriorityTaskWoken != pdFALSE )
+ * {
+ * // Call the interrupt safe yield function here (actual function
+ * // depends on the FreeRTOS port being used).
+ * }
+ * }
+ * @endverbatim
+ */
+#define xTimerChangePeriodFromISR( xTimer, xNewPeriod, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_CHANGE_PERIOD_FROM_ISR, ( xNewPeriod ), ( pxHigherPriorityTaskWoken ), 0U )
+
+/**
+ * BaseType_t xTimerResetFromISR( TimerHandle_t xTimer,
+ * BaseType_t *pxHigherPriorityTaskWoken );
+ *
+ * A version of xTimerReset() that can be called from an interrupt service
+ * routine.
+ *
+ * @param xTimer The handle of the timer that is to be started, reset, or
+ * restarted.
+ *
+ * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
+ * of its time in the Blocked state, waiting for messages to arrive on the timer
+ * command queue. Calling xTimerResetFromISR() writes a message to the timer
+ * command queue, so has the potential to transition the timer service/daemon
+ * task out of the Blocked state. If calling xTimerResetFromISR() causes the
+ * timer service/daemon task to leave the Blocked state, and the timer service/
+ * daemon task has a priority equal to or greater than the currently executing
+ * task (the task that was interrupted), then *pxHigherPriorityTaskWoken will
+ * get set to pdTRUE internally within the xTimerResetFromISR() function. If
+ * xTimerResetFromISR() sets this value to pdTRUE then a context switch should
+ * be performed before the interrupt exits.
+ *
+ * @return pdFAIL will be returned if the reset command could not be sent to
+ * the timer command queue. pdPASS will be returned if the command was
+ * successfully sent to the timer command queue. When the command is actually
+ * processed will depend on the priority of the timer service/daemon task
+ * relative to other tasks in the system, although the timers expiry time is
+ * relative to when xTimerResetFromISR() is actually called. The timer service/daemon
+ * task priority is set by the configTIMER_TASK_PRIORITY configuration constant.
+ *
+ * Example usage:
+ * @verbatim
+ * // This scenario assumes xBacklightTimer has already been created. When a
+ * // key is pressed, an LCD back-light is switched on. If 5 seconds pass
+ * // without a key being pressed, then the LCD back-light is switched off. In
+ * // this case, the timer is a one-shot timer, and unlike the example given for
+ * // the xTimerReset() function, the key press event handler is an interrupt
+ * // service routine.
+ *
+ * // The callback function assigned to the one-shot timer. In this case the
+ * // parameter is not used.
+ * void vBacklightTimerCallback( TimerHandle_t pxTimer )
+ * {
+ * // The timer expired, therefore 5 seconds must have passed since a key
+ * // was pressed. Switch off the LCD back-light.
+ * vSetBacklightState( BACKLIGHT_OFF );
+ * }
+ *
+ * // The key press interrupt service routine.
+ * void vKeyPressEventInterruptHandler( void )
+ * {
+ * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
+ *
+ * // Ensure the LCD back-light is on, then reset the timer that is
+ * // responsible for turning the back-light off after 5 seconds of
+ * // key inactivity. This is an interrupt service routine so can only
+ * // call FreeRTOS API functions that end in "FromISR".
+ * vSetBacklightState( BACKLIGHT_ON );
+ *
+ * // xTimerStartFromISR() or xTimerResetFromISR() could be called here
+ * // as both cause the timer to re-calculate its expiry time.
+ * // xHigherPriorityTaskWoken was initialised to pdFALSE when it was
+ * // declared (in this function).
+ * if( xTimerResetFromISR( xBacklightTimer, &xHigherPriorityTaskWoken ) != pdPASS )
+ * {
+ * // The reset command was not executed successfully. Take appropriate
+ * // action here.
+ * }
+ *
+ * // Perform the rest of the key processing here.
+ *
+ * // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
+ * // should be performed. The syntax required to perform a context switch
+ * // from inside an ISR varies from port to port, and from compiler to
+ * // compiler. Inspect the demos for the port you are using to find the
+ * // actual syntax required.
+ * if( xHigherPriorityTaskWoken != pdFALSE )
+ * {
+ * // Call the interrupt safe yield function here (actual function
+ * // depends on the FreeRTOS port being used).
+ * }
+ * }
+ * @endverbatim
+ */
+#define xTimerResetFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_RESET_FROM_ISR, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U )
+
+
+/**
+ * BaseType_t xTimerPendFunctionCallFromISR( PendedFunction_t xFunctionToPend,
+ * void *pvParameter1,
+ * uint32_t ulParameter2,
+ * BaseType_t *pxHigherPriorityTaskWoken );
+ *
+ *
+ * Used from application interrupt service routines to defer the execution of a
+ * function to the RTOS daemon task (the timer service task, hence this function
+ * is implemented in timers.c and is prefixed with 'Timer').
+ *
+ * Ideally an interrupt service routine (ISR) is kept as short as possible, but
+ * sometimes an ISR either has a lot of processing to do, or needs to perform
+ * processing that is not deterministic. In these cases
+ * xTimerPendFunctionCallFromISR() can be used to defer processing of a function
+ * to the RTOS daemon task.
+ *
+ * A mechanism is provided that allows the interrupt to return directly to the
+ * task that will subsequently execute the pended callback function. This
+ * allows the callback function to execute contiguously in time with the
+ * interrupt - just as if the callback had executed in the interrupt itself.
+ *
+ * @param xFunctionToPend The function to execute from the timer service/
+ * daemon task. The function must conform to the PendedFunction_t
+ * prototype.
+ *
+ * @param pvParameter1 The value of the callback function's first parameter.
+ * The parameter has a void * type to allow it to be used to pass any type.
+ * For example, unsigned longs can be cast to a void *, or the void * can be
+ * used to point to a structure.
+ *
+ * @param ulParameter2 The value of the callback function's second parameter.
+ *
+ * @param pxHigherPriorityTaskWoken As mentioned above, calling this function
+ * will result in a message being sent to the timer daemon task. If the
+ * priority of the timer daemon task (which is set using
+ * configTIMER_TASK_PRIORITY in FreeRTOSConfig.h) is higher than the priority of
+ * the currently running task (the task the interrupt interrupted) then
+ * *pxHigherPriorityTaskWoken will be set to pdTRUE within
+ * xTimerPendFunctionCallFromISR(), indicating that a context switch should be
+ * requested before the interrupt exits. For that reason
+ * *pxHigherPriorityTaskWoken must be initialised to pdFALSE. See the
+ * example code below.
+ *
+ * @return pdPASS is returned if the message was successfully sent to the
+ * timer daemon task, otherwise pdFALSE is returned.
+ *
+ * Example usage:
+ * @verbatim
+ *
+ * // The callback function that will execute in the context of the daemon task.
+ * // Note callback functions must all use this same prototype.
+ * void vProcessInterface( void *pvParameter1, uint32_t ulParameter2 )
+ * {
+ * BaseType_t xInterfaceToService;
+ *
+ * // The interface that requires servicing is passed in the second
+ * // parameter. The first parameter is not used in this case.
+ * xInterfaceToService = ( BaseType_t ) ulParameter2;
+ *
+ * // ...Perform the processing here...
+ * }
+ *
+ * // An ISR that receives data packets from multiple interfaces
+ * void vAnISR( void )
+ * {
+ * BaseType_t xInterfaceToService, xHigherPriorityTaskWoken;
+ *
+ * // Query the hardware to determine which interface needs processing.
+ * xInterfaceToService = prvCheckInterfaces();
+ *
+ * // The actual processing is to be deferred to a task. Request the
+ * // vProcessInterface() callback function is executed, passing in the
+ * // number of the interface that needs processing. The interface to
+ * // service is passed in the second parameter. The first parameter is
+ * // not used in this case.
+ * xHigherPriorityTaskWoken = pdFALSE;
+ * xTimerPendFunctionCallFromISR( vProcessInterface, NULL, ( uint32_t ) xInterfaceToService, &xHigherPriorityTaskWoken );
+ *
+ * // If xHigherPriorityTaskWoken is now set to pdTRUE then a context
+ * // switch should be requested. The macro used is port specific and will
+ * // be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() - refer to
+ * // the documentation page for the port being used.
+ * portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
+ *
+ * }
+ * @endverbatim
+ */
+BaseType_t xTimerPendFunctionCallFromISR( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, BaseType_t *pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
+
+ /**
+ * BaseType_t xTimerPendFunctionCall( PendedFunction_t xFunctionToPend,
+ * void *pvParameter1,
+ * uint32_t ulParameter2,
+ * TickType_t xTicksToWait );
+ *
+ *
+ * Used to defer the execution of a function to the RTOS daemon task (the timer
+ * service task, hence this function is implemented in timers.c and is prefixed
+ * with 'Timer').
+ *
+ * @param xFunctionToPend The function to execute from the timer service/
+ * daemon task. The function must conform to the PendedFunction_t
+ * prototype.
+ *
+ * @param pvParameter1 The value of the callback function's first parameter.
+ * The parameter has a void * type to allow it to be used to pass any type.
+ * For example, unsigned longs can be cast to a void *, or the void * can be
+ * used to point to a structure.
+ *
+ * @param ulParameter2 The value of the callback function's second parameter.
+ *
+ * @param xTicksToWait Calling this function will result in a message being
+ * sent to the timer daemon task on a queue. xTicksToWait is the amount of
+ * time the calling task should remain in the Blocked state (so not using any
+ * processing time) for space to become available on the timer queue if the
+ * queue is found to be full.
+ *
+ * @return pdPASS is returned if the message was successfully sent to the
+ * timer daemon task, otherwise pdFALSE is returned.
+ *
+ */
+BaseType_t xTimerPendFunctionCall( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+
+/**
+ * const char * const pcTimerGetTimerName( TimerHandle_t xTimer );
+ *
+ * Returns the name that was assigned to a timer when the timer was created.
+ *
+ * @param xTimer The handle of the timer being queried.
+ *
+ * @return The name assigned to the timer specified by the xTimer parameter.
+ */
+const char * pcTimerGetTimerName( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+
+/*
+ * Functions beyond this part are not part of the public API and are intended
+ * for use by the kernel only.
+ */
+BaseType_t xTimerCreateTimerTask( void ) PRIVILEGED_FUNCTION;
+BaseType_t xTimerGenericCommand( TimerHandle_t xTimer, const BaseType_t xCommandID, const TickType_t xOptionalValue, BaseType_t * const pxHigherPriorityTaskWoken, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+
+#ifdef __cplusplus
+}
+#endif
+#endif /* TIMERS_H */
+
+
+
diff --git a/src/FreeRTOS-Sim-master/Source/list.c b/src/FreeRTOS-Sim-master/Source/list.c
new file mode 100644
index 0000000..22e8623
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/list.c
@@ -0,0 +1,240 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+
+#include <stdlib.h>
+#include "FreeRTOS.h"
+#include "list.h"
+
+/*-----------------------------------------------------------
+ * PUBLIC LIST API documented in list.h
+ *----------------------------------------------------------*/
+
+void vListInitialise( List_t * const pxList )
+{
+ /* The list structure contains a list item which is used to mark the
+ end of the list. To initialise the list the list end is inserted
+ as the only list entry. */
+ pxList->pxIndex = ( ListItem_t * ) &( pxList->xListEnd ); /*lint !e826 !e740 The mini list structure is used as the list end to save RAM. This is checked and valid. */
+
+ /* The list end value is the highest possible value in the list to
+ ensure it remains at the end of the list. */
+ pxList->xListEnd.xItemValue = portMAX_DELAY;
+
+ /* The list end next and previous pointers point to itself so we know
+ when the list is empty. */
+ pxList->xListEnd.pxNext = ( ListItem_t * ) &( pxList->xListEnd ); /*lint !e826 !e740 The mini list structure is used as the list end to save RAM. This is checked and valid. */
+ pxList->xListEnd.pxPrevious = ( ListItem_t * ) &( pxList->xListEnd );/*lint !e826 !e740 The mini list structure is used as the list end to save RAM. This is checked and valid. */
+
+ pxList->uxNumberOfItems = ( UBaseType_t ) 0U;
+
+ /* Write known values into the list if
+ configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
+ listSET_LIST_INTEGRITY_CHECK_1_VALUE( pxList );
+ listSET_LIST_INTEGRITY_CHECK_2_VALUE( pxList );
+}
+/*-----------------------------------------------------------*/
+
+void vListInitialiseItem( ListItem_t * const pxItem )
+{
+ /* Make sure the list item is not recorded as being on a list. */
+ pxItem->pvContainer = NULL;
+
+ /* Write known values into the list item if
+ configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
+ listSET_FIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem );
+ listSET_SECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem );
+}
+/*-----------------------------------------------------------*/
+
+void vListInsertEnd( List_t * const pxList, ListItem_t * const pxNewListItem )
+{
+ListItem_t * const pxIndex = pxList->pxIndex;
+
+ /* Only effective when configASSERT() is also defined, these tests may catch
+ the list data structures being overwritten in memory. They will not catch
+ data errors caused by incorrect configuration or use of FreeRTOS. */
+ listTEST_LIST_INTEGRITY( pxList );
+ listTEST_LIST_ITEM_INTEGRITY( pxNewListItem );
+
+ /* Insert a new list item into pxList, but rather than sort the list,
+ makes the new list item the last item to be removed by a call to
+ listGET_OWNER_OF_NEXT_ENTRY(). */
+ pxNewListItem->pxNext = pxIndex;
+ pxNewListItem->pxPrevious = pxIndex->pxPrevious;
+
+ /* Only used during decision coverage testing. */
+ mtCOVERAGE_TEST_DELAY();
+
+ pxIndex->pxPrevious->pxNext = pxNewListItem;
+ pxIndex->pxPrevious = pxNewListItem;
+
+ /* Remember which list the item is in. */
+ pxNewListItem->pvContainer = ( void * ) pxList;
+
+ ( pxList->uxNumberOfItems )++;
+}
+/*-----------------------------------------------------------*/
+
+void vListInsert( List_t * const pxList, ListItem_t * const pxNewListItem )
+{
+ListItem_t *pxIterator;
+const TickType_t xValueOfInsertion = pxNewListItem->xItemValue;
+
+ /* Only effective when configASSERT() is also defined, these tests may catch
+ the list data structures being overwritten in memory. They will not catch
+ data errors caused by incorrect configuration or use of FreeRTOS. */
+ listTEST_LIST_INTEGRITY( pxList );
+ listTEST_LIST_ITEM_INTEGRITY( pxNewListItem );
+
+ /* Insert the new list item into the list, sorted in xItemValue order.
+
+ If the list already contains a list item with the same item value then the
+ new list item should be placed after it. This ensures that TCB's which are
+ stored in ready lists (all of which have the same xItemValue value) get a
+ share of the CPU. However, if the xItemValue is the same as the back marker
+ the iteration loop below will not end. Therefore the value is checked
+ first, and the algorithm slightly modified if necessary. */
+ if( xValueOfInsertion == portMAX_DELAY )
+ {
+ pxIterator = pxList->xListEnd.pxPrevious;
+ }
+ else
+ {
+ /* *** NOTE ***********************************************************
+ If you find your application is crashing here then likely causes are
+ listed below. In addition see http://www.freertos.org/FAQHelp.html for
+ more tips, and ensure configASSERT() is defined!
+ http://www.freertos.org/a00110.html#configASSERT
+
+ 1) Stack overflow -
+ see http://www.freertos.org/Stacks-and-stack-overflow-checking.html
+ 2) Incorrect interrupt priority assignment, especially on Cortex-M
+ parts where numerically high priority values denote low actual
+ interrupt priorities, which can seem counter intuitive. See
+ http://www.freertos.org/RTOS-Cortex-M3-M4.html and the definition
+ of configMAX_SYSCALL_INTERRUPT_PRIORITY on
+ http://www.freertos.org/a00110.html
+ 3) Calling an API function from within a critical section or when
+ the scheduler is suspended, or calling an API function that does
+ not end in "FromISR" from an interrupt.
+ 4) Using a queue or semaphore before it has been initialised or
+ before the scheduler has been started (are interrupts firing
+ before vTaskStartScheduler() has been called?).
+ **********************************************************************/
+
+ for( pxIterator = ( ListItem_t * ) &( pxList->xListEnd ); pxIterator->pxNext->xItemValue <= xValueOfInsertion; pxIterator = pxIterator->pxNext ) /*lint !e826 !e740 The mini list structure is used as the list end to save RAM. This is checked and valid. */
+ {
+ /* There is nothing to do here, just iterating to the wanted
+ insertion position. */
+ }
+ }
+
+ pxNewListItem->pxNext = pxIterator->pxNext;
+ pxNewListItem->pxNext->pxPrevious = pxNewListItem;
+ pxNewListItem->pxPrevious = pxIterator;
+ pxIterator->pxNext = pxNewListItem;
+
+ /* Remember which list the item is in. This allows fast removal of the
+ item later. */
+ pxNewListItem->pvContainer = ( void * ) pxList;
+
+ ( pxList->uxNumberOfItems )++;
+}
+/*-----------------------------------------------------------*/
+
+UBaseType_t uxListRemove( ListItem_t * const pxItemToRemove )
+{
+/* The list item knows which list it is in. Obtain the list from the list
+item. */
+List_t * const pxList = ( List_t * ) pxItemToRemove->pvContainer;
+
+ pxItemToRemove->pxNext->pxPrevious = pxItemToRemove->pxPrevious;
+ pxItemToRemove->pxPrevious->pxNext = pxItemToRemove->pxNext;
+
+ /* Only used during decision coverage testing. */
+ mtCOVERAGE_TEST_DELAY();
+
+ /* Make sure the index is left pointing to a valid item. */
+ if( pxList->pxIndex == pxItemToRemove )
+ {
+ pxList->pxIndex = pxItemToRemove->pxPrevious;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ pxItemToRemove->pvContainer = NULL;
+ ( pxList->uxNumberOfItems )--;
+
+ return pxList->uxNumberOfItems;
+}
+/*-----------------------------------------------------------*/
+
diff --git a/src/FreeRTOS-Sim-master/Source/portable/GCC/POSIX/port.c b/src/FreeRTOS-Sim-master/Source/portable/GCC/POSIX/port.c
new file mode 100644
index 0000000..53e030f
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/portable/GCC/POSIX/port.c
@@ -0,0 +1,787 @@
+/*
+ Copyright (C) 2009 William Davy - william.davy@wittenstein.co.uk
+ Contributed to FreeRTOS.org V5.3.0.
+
+ This file is part of the FreeRTOS.org distribution.
+
+ FreeRTOS.org is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License (version 2) as published
+ by the Free Software Foundation and modified by the FreeRTOS exception.
+
+ FreeRTOS.org is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ more details.
+
+ You should have received a copy of the GNU General Public License along
+ with FreeRTOS.org; if not, write to the Free Software Foundation, Inc., 59
+ Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+
+ A special exception to the GPL is included to allow you to distribute a
+ combined work that includes FreeRTOS.org without being obliged to provide
+ the source code for any proprietary components. See the licensing section
+ of http://www.FreeRTOS.org for full details.
+
+
+ ***************************************************************************
+ * *
+ * Get the FreeRTOS eBook! See http://www.FreeRTOS.org/Documentation *
+ * *
+ * This is a concise, step by step, 'hands on' guide that describes both *
+ * general multitasking concepts and FreeRTOS specifics. It presents and *
+ * explains numerous examples that are written using the FreeRTOS API. *
+ * Full source code for all the examples is provided in an accompanying *
+ * .zip file. *
+ * *
+ ***************************************************************************
+
+ 1 tab == 4 spaces!
+
+ Please ensure to read the configuration and relevant port sections of the
+ online documentation.
+
+ http://www.FreeRTOS.org - Documentation, latest information, license and
+ contact details.
+
+ http://www.SafeRTOS.com - A version that is certified for use in safety
+ critical systems.
+
+ http://www.OpenRTOS.com - Commercial support, development, porting,
+ licensing and training services.
+*/
+
+/*-----------------------------------------------------------
+ * Implementation of functions defined in portable.h for the Posix port.
+ *----------------------------------------------------------*/
+
+#include <pthread.h>
+#include <sched.h>
+#include <signal.h>
+#include <errno.h>
+#include <sys/time.h>
+#include <time.h>
+#include <sys/times.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <unistd.h>
+#include <limits.h>
+
+/* Scheduler includes. */
+#include "FreeRTOS.h"
+#include "task.h"
+/*-----------------------------------------------------------*/
+#ifndef MAX_NUMBER_OF_TASKS
+#define MAX_NUMBER_OF_TASKS ( _POSIX_THREAD_THREADS_MAX )
+#endif
+/*-----------------------------------------------------------*/
+
+/* Parameters to pass to the newly created pthread. */
+typedef struct XPARAMS
+{
+ pdTASK_CODE pxCode;
+ void *pvParams;
+} xParams;
+
+/* Each task maintains its own interrupt status in the critical nesting variable. */
+typedef struct THREAD_SUSPENSIONS
+{
+ pthread_t hThread;
+ xTaskHandle hTask;
+ unsigned portBASE_TYPE uxCriticalNesting;
+} xThreadState;
+/*-----------------------------------------------------------*/
+
+static xThreadState *pxThreads;
+static pthread_once_t hSigSetupThread = PTHREAD_ONCE_INIT;
+static pthread_attr_t xThreadAttributes;
+static pthread_mutex_t xSuspendResumeThreadMutex = PTHREAD_MUTEX_INITIALIZER;
+static pthread_mutex_t xSingleThreadMutex = PTHREAD_MUTEX_INITIALIZER;
+static pthread_t hMainThread = ( pthread_t )NULL;
+/*-----------------------------------------------------------*/
+
+static volatile portBASE_TYPE xSentinel = 0;
+static volatile portBASE_TYPE xSchedulerEnd = pdFALSE;
+static volatile portBASE_TYPE xInterruptsEnabled = pdTRUE;
+static volatile portBASE_TYPE xServicingTick = pdFALSE;
+static volatile portBASE_TYPE xPendYield = pdFALSE;
+static volatile portLONG lIndexOfLastAddedTask = 0;
+static volatile unsigned portBASE_TYPE uxCriticalNesting;
+/*-----------------------------------------------------------*/
+
+/*
+ * Setup the timer to generate the tick interrupts.
+ */
+static void prvSetupTimerInterrupt( void );
+static void *prvWaitForStart( void * pvParams );
+static void prvSuspendSignalHandler(int sig);
+static void prvResumeSignalHandler(int sig);
+static void prvSetupSignalsAndSchedulerPolicy( void );
+static void prvSuspendThread( pthread_t xThreadId );
+static void prvResumeThread( pthread_t xThreadId );
+static pthread_t prvGetThreadHandle( xTaskHandle hTask );
+static portLONG prvGetFreeThreadState( void );
+static void prvSetTaskCriticalNesting( pthread_t xThreadId, unsigned portBASE_TYPE uxNesting );
+static unsigned portBASE_TYPE prvGetTaskCriticalNesting( pthread_t xThreadId );
+static void prvDeleteThread( void *xThreadId );
+/*-----------------------------------------------------------*/
+
+/*
+ * Exception handlers.
+ */
+void vPortYield( void );
+void vPortSystemTickHandler( int sig );
+
+/*
+ * Start first task is a separate function so it can be tested in isolation.
+ */
+void vPortStartFirstTask( void );
+/*-----------------------------------------------------------*/
+
+/*
+ * See header file for description.
+ */
+portSTACK_TYPE *pxPortInitialiseStack( portSTACK_TYPE *pxTopOfStack, pdTASK_CODE pxCode, void *pvParameters )
+{
+/* Should actually keep this struct on the stack. */
+xParams *pxThisThreadParams = pvPortMalloc( sizeof( xParams ) );
+
+ (void)pthread_once( &hSigSetupThread, prvSetupSignalsAndSchedulerPolicy );
+
+ if ( (pthread_t)NULL == hMainThread )
+ {
+ hMainThread = pthread_self();
+ }
+
+ /* No need to join the threads. */
+ pthread_attr_init( &xThreadAttributes );
+ pthread_attr_setdetachstate( &xThreadAttributes, PTHREAD_CREATE_DETACHED );
+
+ /* Add the task parameters. */
+ pxThisThreadParams->pxCode = pxCode;
+ pxThisThreadParams->pvParams = pvParameters;
+
+ vPortEnterCritical();
+
+ lIndexOfLastAddedTask = prvGetFreeThreadState();
+
+ /* Create the new pThread. */
+ if ( 0 == pthread_mutex_lock( &xSingleThreadMutex ) )
+ {
+ xSentinel = 0;
+ if ( 0 != pthread_create( &( pxThreads[ lIndexOfLastAddedTask ].hThread ), &xThreadAttributes, prvWaitForStart, (void *)pxThisThreadParams ) )
+ {
+ /* Thread create failed, signal the failure */
+ pxTopOfStack = 0;
+ }
+
+ /* Wait until the task suspends. */
+ (void)pthread_mutex_unlock( &xSingleThreadMutex );
+ while ( xSentinel == 0 );
+ vPortExitCritical();
+ }
+
+ return pxTopOfStack;
+}
+/*-----------------------------------------------------------*/
+
+void vPortStartFirstTask( void )
+{
+ /* Initialise the critical nesting count ready for the first task. */
+ uxCriticalNesting = 0;
+
+ /* Start the first task. */
+ vPortEnableInterrupts();
+
+ /* Start the first task. */
+ prvResumeThread( prvGetThreadHandle( xTaskGetCurrentTaskHandle() ) );
+}
+/*-----------------------------------------------------------*/
+
+/*
+ * See header file for description.
+ */
+portBASE_TYPE xPortStartScheduler( void )
+{
+portBASE_TYPE xResult;
+int iSignal;
+sigset_t xSignals;
+sigset_t xSignalToBlock;
+sigset_t xSignalsBlocked;
+portLONG lIndex;
+
+ /* Establish the signals to block before they are needed. */
+ sigfillset( &xSignalToBlock );
+
+ /* Block until the end */
+ (void)pthread_sigmask( SIG_SETMASK, &xSignalToBlock, &xSignalsBlocked );
+
+ for ( lIndex = 0; lIndex < MAX_NUMBER_OF_TASKS; lIndex++ )
+ {
+ pxThreads[ lIndex ].uxCriticalNesting = 0;
+ }
+
+ /* Start the timer that generates the tick ISR. Interrupts are disabled
+ here already. */
+ prvSetupTimerInterrupt();
+
+ /* Start the first task. Will not return unless all threads are killed. */
+ vPortStartFirstTask();
+
+ /* This is the end signal we are looking for. */
+ sigemptyset( &xSignals );
+ sigaddset( &xSignals, SIG_RESUME );
+
+ while ( pdTRUE != xSchedulerEnd )
+ {
+ if ( 0 != sigwait( &xSignals, &iSignal ) )
+ {
+ printf( "Main thread spurious signal: %d\n", iSignal );
+ }
+ }
+
+ printf( "Cleaning Up, Exiting.\n" );
+ /* Cleanup the mutexes */
+ xResult = pthread_mutex_destroy( &xSuspendResumeThreadMutex );
+ xResult = pthread_mutex_destroy( &xSingleThreadMutex );
+ vPortFree( (void *)pxThreads );
+
+ /* Should not get here! */
+ return xResult;
+}
+/*-----------------------------------------------------------*/
+
+void vPortEndScheduler( void )
+{
+portBASE_TYPE xNumberOfThreads;
+portBASE_TYPE xResult;
+ for ( xNumberOfThreads = 0; xNumberOfThreads < MAX_NUMBER_OF_TASKS; xNumberOfThreads++ )
+ {
+ if ( ( pthread_t )NULL != pxThreads[ xNumberOfThreads ].hThread )
+ {
+ /* Kill all of the threads, they are in the detached state. */
+ xResult = pthread_cancel( pxThreads[ xNumberOfThreads ].hThread );
+ if (xResult)
+ printf("pthread_cancel error!\n");
+ }
+ }
+
+ /* Signal the scheduler to exit its loop. */
+ xSchedulerEnd = pdTRUE;
+ (void)pthread_kill( hMainThread, SIG_RESUME );
+}
+/*-----------------------------------------------------------*/
+
+void vPortYieldFromISR( void )
+{
+ /* Calling Yield from a Interrupt/Signal handler often doesn't work because the
+ * xSingleThreadMutex is already owned by an original call to Yield. Therefore,
+ * simply indicate that a yield is required soon.
+ */
+ xPendYield = pdTRUE;
+}
+/*-----------------------------------------------------------*/
+
+void vPortEnterCritical( void )
+{
+ vPortDisableInterrupts();
+ uxCriticalNesting++;
+}
+/*-----------------------------------------------------------*/
+
+void vPortExitCritical( void )
+{
+ /* Check for unmatched exits. */
+ if ( uxCriticalNesting > 0 )
+ {
+ uxCriticalNesting--;
+ }
+
+ /* If we have reached 0 then re-enable the interrupts. */
+ if( uxCriticalNesting == 0 )
+ {
+ /* Have we missed ticks? This is the equivalent of pending an interrupt. */
+ if ( pdTRUE == xPendYield )
+ {
+ xPendYield = pdFALSE;
+ vPortYield();
+ }
+ vPortEnableInterrupts();
+ }
+}
+/*-----------------------------------------------------------*/
+
+void vPortYield( void )
+{
+pthread_t xTaskToSuspend;
+pthread_t xTaskToResume;
+
+ if ( 0 == pthread_mutex_lock( &xSingleThreadMutex ) )
+ {
+ xTaskToSuspend = prvGetThreadHandle( xTaskGetCurrentTaskHandle() );
+
+ vTaskSwitchContext();
+
+ xTaskToResume = prvGetThreadHandle( xTaskGetCurrentTaskHandle() );
+ if ( xTaskToSuspend != xTaskToResume )
+ {
+ /* Remember and switch the critical nesting. */
+ prvSetTaskCriticalNesting( xTaskToSuspend, uxCriticalNesting );
+ uxCriticalNesting = prvGetTaskCriticalNesting( xTaskToResume );
+ /* Switch tasks. */
+ prvResumeThread( xTaskToResume );
+ prvSuspendThread( xTaskToSuspend );
+ }
+ else
+ {
+ /* Yielding to self */
+ (void)pthread_mutex_unlock( &xSingleThreadMutex );
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+void vPortDisableInterrupts( void )
+{
+ xInterruptsEnabled = pdFALSE;
+}
+/*-----------------------------------------------------------*/
+
+void vPortEnableInterrupts( void )
+{
+ xInterruptsEnabled = pdTRUE;
+}
+/*-----------------------------------------------------------*/
+
+portBASE_TYPE xPortSetInterruptMask( void )
+{
+portBASE_TYPE xReturn = xInterruptsEnabled;
+ xInterruptsEnabled = pdFALSE;
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+void vPortClearInterruptMask( portBASE_TYPE xMask )
+{
+ xInterruptsEnabled = xMask;
+}
+/*-----------------------------------------------------------*/
+
+/*
+ * Setup the systick timer to generate the tick interrupts at the required
+ * frequency.
+ */
+void prvSetupTimerInterrupt( void )
+{
+struct itimerval itimer, oitimer;
+portTickType xMicroSeconds = portTICK_PERIOD_MS * 1000;
+
+ /* Initialise the structure with the current timer information. */
+ if ( 0 == getitimer( TIMER_TYPE, &itimer ) )
+ {
+ /* Set the interval between timer events. */
+ itimer.it_interval.tv_sec = 0;
+ itimer.it_interval.tv_usec = xMicroSeconds;
+
+ /* Set the current count-down. */
+ itimer.it_value.tv_sec = 0;
+ itimer.it_value.tv_usec = xMicroSeconds;
+
+ /* Set-up the timer interrupt. */
+ if ( 0 != setitimer( TIMER_TYPE, &itimer, &oitimer ) )
+ {
+ printf( "Set Timer problem.\n" );
+ }
+ }
+ else
+ {
+ printf( "Get Timer problem.\n" );
+ }
+}
+/*-----------------------------------------------------------*/
+
+void vPortSystemTickHandler( int sig )
+{
+pthread_t xTaskToSuspend;
+pthread_t xTaskToResume;
+
+ (void)(sig);
+ if ( ( pdTRUE == xInterruptsEnabled ) && ( pdTRUE != xServicingTick ) )
+ {
+ if ( 0 == pthread_mutex_trylock( &xSingleThreadMutex ) )
+ {
+ xServicingTick = pdTRUE;
+
+ xTaskToSuspend = prvGetThreadHandle( xTaskGetCurrentTaskHandle() );
+ /* Tick Increment. */
+ xTaskIncrementTick();
+
+ /* Select Next Task. */
+#if ( configUSE_PREEMPTION == 1 )
+ vTaskSwitchContext();
+#endif
+ xTaskToResume = prvGetThreadHandle( xTaskGetCurrentTaskHandle() );
+
+ /* The only thread that can process this tick is the running thread. */
+ if ( xTaskToSuspend != xTaskToResume )
+ {
+ /* Remember and switch the critical nesting. */
+ prvSetTaskCriticalNesting( xTaskToSuspend, uxCriticalNesting );
+ uxCriticalNesting = prvGetTaskCriticalNesting( xTaskToResume );
+ /* Resume next task. */
+ prvResumeThread( xTaskToResume );
+ /* Suspend the current task. */
+ prvSuspendThread( xTaskToSuspend );
+ }
+ else
+ {
+ /* Release the lock as we are Resuming. */
+ (void)pthread_mutex_unlock( &xSingleThreadMutex );
+ }
+ xServicingTick = pdFALSE;
+ }
+ else
+ {
+ xPendYield = pdTRUE;
+ }
+ }
+ else
+ {
+ xPendYield = pdTRUE;
+ }
+}
+/*-----------------------------------------------------------*/
+
+void vPortForciblyEndThread( void *pxTaskToDelete )
+{
+xTaskHandle hTaskToDelete = ( xTaskHandle )pxTaskToDelete;
+pthread_t xTaskToDelete;
+pthread_t xTaskToResume;
+portBASE_TYPE xResult;
+
+ if ( 0 == pthread_mutex_lock( &xSingleThreadMutex ) )
+ {
+ xTaskToDelete = prvGetThreadHandle( hTaskToDelete );
+ xTaskToResume = prvGetThreadHandle( xTaskGetCurrentTaskHandle() );
+
+ if ( xTaskToResume == xTaskToDelete )
+ {
+ /* This is a suicidal thread, need to select a different task to run. */
+ vTaskSwitchContext();
+ xTaskToResume = prvGetThreadHandle( xTaskGetCurrentTaskHandle() );
+ }
+
+ if ( pthread_self() != xTaskToDelete )
+ {
+ /* Cancelling a thread that is not me. */
+ if ( xTaskToDelete != ( pthread_t )NULL )
+ {
+ /* Send a signal to wake the task so that it definitely cancels. */
+ pthread_testcancel();
+ xResult = pthread_cancel( xTaskToDelete );
+ if (xResult)
+ printf("pthread_cancel error!\n");
+ /* Pthread Clean-up function will note the cancellation. */
+ }
+ (void)pthread_mutex_unlock( &xSingleThreadMutex );
+ }
+ else
+ {
+ /* Resume the other thread. */
+ prvResumeThread( xTaskToResume );
+ /* Pthread Clean-up function will note the cancellation. */
+ /* Release the execution. */
+ uxCriticalNesting = 0;
+ vPortEnableInterrupts();
+ (void)pthread_mutex_unlock( &xSingleThreadMutex );
+ /* Commit suicide */
+ pthread_exit( (void *)1 );
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+void *prvWaitForStart( void * pvParams )
+{
+xParams * pxParams = ( xParams * )pvParams;
+pdTASK_CODE pvCode = pxParams->pxCode;
+void * pParams = pxParams->pvParams;
+ vPortFree( pvParams );
+
+ pthread_cleanup_push( prvDeleteThread, (void *)pthread_self() );
+
+ if ( 0 == pthread_mutex_lock( &xSingleThreadMutex ) )
+ {
+ prvSuspendThread( pthread_self() );
+ }
+
+ pvCode( pParams );
+
+ pthread_cleanup_pop( 1 );
+ return (void *)NULL;
+}
+/*-----------------------------------------------------------*/
+
+void prvSuspendSignalHandler(int sig)
+{
+sigset_t xSignals;
+
+ /* Only interested in the resume signal. */
+ sigemptyset( &xSignals );
+ sigaddset( &xSignals, SIG_RESUME );
+ xSentinel = 1;
+
+ /* Unlock the Single thread mutex to allow the resumed task to continue. */
+ if ( 0 != pthread_mutex_unlock( &xSingleThreadMutex ) )
+ {
+ printf( "Releasing someone else's lock.\n" );
+ }
+
+ /* Wait on the resume signal. */
+ if ( 0 != sigwait( &xSignals, &sig ) )
+ {
+ printf( "SSH: Sw %d\n", sig );
+ }
+
+ /* Will resume here when the SIG_RESUME signal is received. */
+ /* Need to set the interrupts based on the task's critical nesting. */
+ if ( uxCriticalNesting == 0 )
+ {
+ vPortEnableInterrupts();
+ }
+ else
+ {
+ vPortDisableInterrupts();
+ }
+}
+/*-----------------------------------------------------------*/
+
+void prvSuspendThread( pthread_t xThreadId )
+{
+portBASE_TYPE xResult = pthread_mutex_lock( &xSuspendResumeThreadMutex );
+ if ( 0 == xResult )
+ {
+ /* Set-up for the Suspend Signal handler? */
+ xSentinel = 0;
+ xResult = pthread_mutex_unlock( &xSuspendResumeThreadMutex );
+ xResult = pthread_kill( xThreadId, SIG_SUSPEND );
+ if (xResult)
+ printf("pthread_kill error!\n");
+ while ( ( xSentinel == 0 ) && ( pdTRUE != xServicingTick ) )
+ {
+ sched_yield();
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+void prvResumeSignalHandler(int sig)
+{
+ (void)(sig);
+ /* Yield the Scheduler to ensure that the yielding thread completes. */
+ if ( 0 == pthread_mutex_lock( &xSingleThreadMutex ) )
+ {
+ (void)pthread_mutex_unlock( &xSingleThreadMutex );
+ }
+}
+/*-----------------------------------------------------------*/
+
+void prvResumeThread( pthread_t xThreadId )
+{
+portBASE_TYPE xResult;
+ if ( 0 == pthread_mutex_lock( &xSuspendResumeThreadMutex ) )
+ {
+ if ( pthread_self() != xThreadId )
+ {
+ xResult = pthread_kill( xThreadId, SIG_RESUME );
+ if (xResult)
+ printf("pthread_kill error!\n");
+ }
+ xResult = pthread_mutex_unlock( &xSuspendResumeThreadMutex );
+ if (xResult)
+ printf("pthread_mutex_unlock error!\n");
+ }
+}
+/*-----------------------------------------------------------*/
+
+void prvSetupSignalsAndSchedulerPolicy( void )
+{
+/* The following code would allow for configuring the scheduling of this task as a Real-time task.
+ * The process would then need to be run with higher privileges for it to take affect.
+int iPolicy;
+int iResult;
+int iSchedulerPriority;
+ iResult = pthread_getschedparam( pthread_self(), &iPolicy, &iSchedulerPriority );
+ iResult = pthread_attr_setschedpolicy( &xThreadAttributes, SCHED_FIFO );
+ iPolicy = SCHED_FIFO;
+ iResult = pthread_setschedparam( pthread_self(), iPolicy, &iSchedulerPriority ); */
+
+struct sigaction sigsuspendself, sigresume, sigtick;
+portLONG lIndex;
+
+ pxThreads = ( xThreadState *)pvPortMalloc( sizeof( xThreadState ) * MAX_NUMBER_OF_TASKS );
+ for ( lIndex = 0; lIndex < MAX_NUMBER_OF_TASKS; lIndex++ )
+ {
+ pxThreads[ lIndex ].hThread = ( pthread_t )NULL;
+ pxThreads[ lIndex ].hTask = ( xTaskHandle )NULL;
+ pxThreads[ lIndex ].uxCriticalNesting = 0;
+ }
+
+ sigsuspendself.sa_flags = 0;
+ sigsuspendself.sa_handler = prvSuspendSignalHandler;
+ sigfillset( &sigsuspendself.sa_mask );
+
+ sigresume.sa_flags = 0;
+ sigresume.sa_handler = prvResumeSignalHandler;
+ sigfillset( &sigresume.sa_mask );
+
+ sigtick.sa_flags = 0;
+ sigtick.sa_handler = vPortSystemTickHandler;
+ sigfillset( &sigtick.sa_mask );
+
+ if ( 0 != sigaction( SIG_SUSPEND, &sigsuspendself, NULL ) )
+ {
+ printf( "Problem installing SIG_SUSPEND_SELF\n" );
+ }
+ if ( 0 != sigaction( SIG_RESUME, &sigresume, NULL ) )
+ {
+ printf( "Problem installing SIG_RESUME\n" );
+ }
+ if ( 0 != sigaction( SIG_TICK, &sigtick, NULL ) )
+ {
+ printf( "Problem installing SIG_TICK\n" );
+ }
+ printf( "Running as PID: %d\n", getpid() );
+}
+/*-----------------------------------------------------------*/
+
+pthread_t prvGetThreadHandle( xTaskHandle hTask )
+{
+pthread_t hThread = ( pthread_t )NULL;
+portLONG lIndex;
+ for ( lIndex = 0; lIndex < MAX_NUMBER_OF_TASKS; lIndex++ )
+ {
+ if ( pxThreads[ lIndex ].hTask == hTask )
+ {
+ hThread = pxThreads[ lIndex ].hThread;
+ break;
+ }
+ }
+ return hThread;
+}
+/*-----------------------------------------------------------*/
+
+portLONG prvGetFreeThreadState( void )
+{
+portLONG lIndex;
+ for ( lIndex = 0; lIndex < MAX_NUMBER_OF_TASKS; lIndex++ )
+ {
+ if ( pxThreads[ lIndex ].hThread == ( pthread_t )NULL )
+ {
+ break;
+ }
+ }
+
+ if ( MAX_NUMBER_OF_TASKS == lIndex )
+ {
+ printf( "No more free threads, please increase the maximum.\n" );
+ lIndex = 0;
+ vPortEndScheduler();
+ }
+
+ return lIndex;
+}
+/*-----------------------------------------------------------*/
+
+void prvSetTaskCriticalNesting( pthread_t xThreadId, unsigned portBASE_TYPE uxNesting )
+{
+portLONG lIndex;
+ for ( lIndex = 0; lIndex < MAX_NUMBER_OF_TASKS; lIndex++ )
+ {
+ if ( pxThreads[ lIndex ].hThread == xThreadId )
+ {
+ pxThreads[ lIndex ].uxCriticalNesting = uxNesting;
+ break;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+unsigned portBASE_TYPE prvGetTaskCriticalNesting( pthread_t xThreadId )
+{
+unsigned portBASE_TYPE uxNesting = 0;
+portLONG lIndex;
+ for ( lIndex = 0; lIndex < MAX_NUMBER_OF_TASKS; lIndex++ )
+ {
+ if ( pxThreads[ lIndex ].hThread == xThreadId )
+ {
+ uxNesting = pxThreads[ lIndex ].uxCriticalNesting;
+ break;
+ }
+ }
+ return uxNesting;
+}
+/*-----------------------------------------------------------*/
+
+void prvDeleteThread( void *xThreadId )
+{
+portLONG lIndex;
+ for ( lIndex = 0; lIndex < MAX_NUMBER_OF_TASKS; lIndex++ )
+ {
+ if ( pxThreads[ lIndex ].hThread == ( pthread_t )xThreadId )
+ {
+ pxThreads[ lIndex ].hThread = (pthread_t)NULL;
+ pxThreads[ lIndex ].hTask = (xTaskHandle)NULL;
+ if ( pxThreads[ lIndex ].uxCriticalNesting > 0 )
+ {
+ uxCriticalNesting = 0;
+ vPortEnableInterrupts();
+ }
+ pxThreads[ lIndex ].uxCriticalNesting = 0;
+ break;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+void vPortAddTaskHandle( void *pxTaskHandle )
+{
+portLONG lIndex;
+
+ pxThreads[ lIndexOfLastAddedTask ].hTask = ( xTaskHandle )pxTaskHandle;
+ for ( lIndex = 0; lIndex < MAX_NUMBER_OF_TASKS; lIndex++ )
+ {
+ if ( pxThreads[ lIndex ].hThread == pxThreads[ lIndexOfLastAddedTask ].hThread )
+ {
+ if ( pxThreads[ lIndex ].hTask != pxThreads[ lIndexOfLastAddedTask ].hTask )
+ {
+ pxThreads[ lIndex ].hThread = ( pthread_t )NULL;
+ pxThreads[ lIndex ].hTask = NULL;
+ pxThreads[ lIndex ].uxCriticalNesting = 0;
+ }
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+void vPortFindTicksPerSecond( void )
+{
+ /* Needs to be reasonably high for accuracy. */
+ unsigned long ulTicksPerSecond = sysconf(_SC_CLK_TCK);
+ printf( "Timer Resolution for Run TimeStats is %ld ticks per second.\n", ulTicksPerSecond );
+}
+/*-----------------------------------------------------------*/
+
+unsigned long ulPortGetTimerValue( void )
+{
+struct tms xTimes;
+ unsigned long ulTotalTime = times( &xTimes );
+ /* Return the application code times.
+ * The timer only increases when the application code is actually running
+ * which means that the total execution times should add up to 100%.
+ */
+ return ( unsigned long ) xTimes.tms_utime;
+
+ /* Should check ulTotalTime for being clock_t max minus 1. */
+ (void)ulTotalTime;
+}
+/*-----------------------------------------------------------*/
diff --git a/src/FreeRTOS-Sim-master/Source/portable/GCC/POSIX/portmacro.h b/src/FreeRTOS-Sim-master/Source/portable/GCC/POSIX/portmacro.h
new file mode 100644
index 0000000..a4219cd
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/portable/GCC/POSIX/portmacro.h
@@ -0,0 +1,128 @@
+/*
+ POSIX Simulator
+ Tested with FreeRTOS V8.2.2
+ 1 tab == 4 spaces!
+*/
+
+#ifndef PORTMACRO_H
+#define PORTMACRO_H
+
+#ifdef __cplusplus
+ extern "C" {
+#endif
+
+/******************************************************************************
+ Defines
+******************************************************************************/
+/* Type definitions. */
+#define portCHAR char
+#define portFLOAT float
+#define portDOUBLE double
+#define portLONG long
+#define portSHORT short
+#define portSTACK_TYPE size_t
+#define portBASE_TYPE long
+#define portPOINTER_SIZE_TYPE size_t
+
+typedef portSTACK_TYPE StackType_t;
+typedef long BaseType_t;
+typedef unsigned long UBaseType_t;
+
+#if( configUSE_16_BIT_TICKS == 1 )
+ typedef uint16_t TickType_t;
+ #define portMAX_DELAY ( TickType_t ) 0xffff
+#else
+ typedef uint32_t TickType_t;
+ #define portMAX_DELAY ( TickType_t ) 0xffffffffUL
+
+ /* 32/64-bit tick type on a 32/64-bit architecture, so reads of the tick
+ count do not need to be guarded with a critical section. */
+ #define portTICK_TYPE_IS_ATOMIC 1
+#endif
+
+/* Hardware specifics. */
+#define portSTACK_GROWTH ( -1 )
+#define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ )
+#define portINLINE __inline__
+
+#if defined( __x86_64__)
+ #define portBYTE_ALIGNMENT 8
+#else
+ #define portBYTE_ALIGNMENT 4
+#endif
+
+//TODO: check portREMOVE_STATIC_QUALIFIER
+#define portREMOVE_STATIC_QUALIFIER
+
+/*-----------------------------------------------------------*/
+
+/* Scheduler utilities. */
+extern void vPortYieldFromISR( void );
+extern void vPortYield( void );
+#define portYIELD() vPortYield()
+#define portEND_SWITCHING_ISR( xSwitchRequired ) if( xSwitchRequired ) vPortYieldFromISR()
+#define portYIELD_FROM_ISR( x ) portEND_SWITCHING_ISR( x )
+
+/*-----------------------------------------------------------*/
+
+/* Critical section management. */
+extern BaseType_t xPortSetInterruptMask( void );
+extern void vPortClearInterruptMask( portBASE_TYPE xMask );
+
+#define portSET_INTERRUPT_MASK_FROM_ISR() xPortSetInterruptMask()
+#define portCLEAR_INTERRUPT_MASK_FROM_ISR(x) vPortClearInterruptMask(x)
+
+extern void vPortDisableInterrupts( void );
+extern void vPortEnableInterrupts( void );
+#define portSET_INTERRUPT_MASK() ( vPortDisableInterrupts() )
+#define portCLEAR_INTERRUPT_MASK() ( vPortEnableInterrupts() )
+
+#define portDISABLE_INTERRUPTS() portSET_INTERRUPT_MASK()
+#define portENABLE_INTERRUPTS() portCLEAR_INTERRUPT_MASK()
+
+extern void vPortEnterCritical( void );
+extern void vPortExitCritical( void );
+#define portENTER_CRITICAL() vPortEnterCritical()
+#define portEXIT_CRITICAL() vPortExitCritical()
+
+/*-----------------------------------------------------------*/
+
+/* Task function macros as described on the FreeRTOS.org WEB site. */
+#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void * pvParameters )
+#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void * pvParameters )
+
+#define portNOP()
+
+#define portOUTPUT_BYTE( a, b )
+
+extern void vPortForciblyEndThread( void *pxTaskToDelete );
+#define traceTASK_DELETE( pxTaskToDelete ) vPortForciblyEndThread( pxTaskToDelete )
+
+extern void vPortAddTaskHandle( void *pxTaskHandle );
+#define traceTASK_CREATE( pxNewTCB ) vPortAddTaskHandle( pxNewTCB )
+
+/* Posix Signal definitions that can be changed or read as appropriate. */
+#define SIG_SUSPEND SIGUSR1
+#define SIG_RESUME SIGUSR2
+
+/* Enable the following hash defines to make use of the real-time tick where time progresses at real-time. */
+#define SIG_TICK SIGALRM
+#define TIMER_TYPE ITIMER_REAL
+/* Enable the following hash defines to make use of the process tick where time progresses only when the process is executing.
+#define SIG_TICK SIGVTALRM
+#define TIMER_TYPE ITIMER_VIRTUAL */
+/* Enable the following hash defines to make use of the profile tick where time progresses when the process or system calls are executing.
+#define SIG_TICK SIGPROF
+#define TIMER_TYPE ITIMER_PROF */
+
+/* Make use of times(man 2) to gather run-time statistics on the tasks. */
+extern void vPortFindTicksPerSecond( void );
+#define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() vPortFindTicksPerSecond() /* Nothing to do because the timer is already present. */
+extern unsigned long ulPortGetTimerValue( void );
+#define portGET_RUN_TIME_COUNTER_VALUE() ulPortGetTimerValue() /* Query the System time stats for this process. */
+
+#ifdef __cplusplus
+} /* extern C */
+#endif
+
+#endif /* PORTMACRO_H */
diff --git a/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_1.c b/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_1.c
new file mode 100644
index 0000000..560b256
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_1.c
@@ -0,0 +1,174 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+
+/*
+ * The simplest possible implementation of pvPortMalloc(). Note that this
+ * implementation does NOT allow allocated memory to be freed again.
+ *
+ * See heap_2.c, heap_3.c and heap_4.c for alternative implementations, and the
+ * memory management pages of http://www.FreeRTOS.org for more information.
+ */
+#include <stdlib.h>
+
+/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
+all the API functions to use the MPU wrappers. That should only be done when
+task.h is included from an application file. */
+#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+#include "FreeRTOS.h"
+#include "task.h"
+
+#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+/* A few bytes might be lost to byte aligning the heap start address. */
+#define configADJUSTED_HEAP_SIZE ( configTOTAL_HEAP_SIZE - portBYTE_ALIGNMENT )
+
+/* Allocate the memory for the heap. */
+static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
+static size_t xNextFreeByte = ( size_t ) 0;
+
+/*-----------------------------------------------------------*/
+
+void *pvPortMalloc( size_t xWantedSize )
+{
+void *pvReturn = NULL;
+static uint8_t *pucAlignedHeap = NULL;
+
+ /* Ensure that blocks are always aligned to the required number of bytes. */
+ #if portBYTE_ALIGNMENT != 1
+ if( xWantedSize & portBYTE_ALIGNMENT_MASK )
+ {
+ /* Byte alignment required. */
+ xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
+ }
+ #endif
+
+ vTaskSuspendAll();
+ {
+ if( pucAlignedHeap == NULL )
+ {
+ /* Ensure the heap starts on a correctly aligned boundary. */
+ pucAlignedHeap = ( uint8_t * ) ( ( ( portPOINTER_SIZE_TYPE ) &ucHeap[ portBYTE_ALIGNMENT ] ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
+ }
+
+ /* Check there is enough room left for the allocation. */
+ if( ( ( xNextFreeByte + xWantedSize ) < configADJUSTED_HEAP_SIZE ) &&
+ ( ( xNextFreeByte + xWantedSize ) > xNextFreeByte ) )/* Check for overflow. */
+ {
+ /* Return the next free byte then increment the index past this
+ block. */
+ pvReturn = pucAlignedHeap + xNextFreeByte;
+ xNextFreeByte += xWantedSize;
+ }
+
+ traceMALLOC( pvReturn, xWantedSize );
+ }
+ ( void ) xTaskResumeAll();
+
+ #if( configUSE_MALLOC_FAILED_HOOK == 1 )
+ {
+ if( pvReturn == NULL )
+ {
+ extern void vApplicationMallocFailedHook( void );
+ vApplicationMallocFailedHook();
+ }
+ }
+ #endif
+
+ return pvReturn;
+}
+/*-----------------------------------------------------------*/
+
+void vPortFree( void *pv )
+{
+ /* Memory cannot be freed using this scheme. See heap_2.c, heap_3.c and
+ heap_4.c for alternative implementations, and the memory management pages of
+ http://www.FreeRTOS.org for more information. */
+ ( void ) pv;
+
+ /* Force an assert as it is invalid to call this function. */
+ configASSERT( pv == NULL );
+}
+/*-----------------------------------------------------------*/
+
+void vPortInitialiseBlocks( void )
+{
+ /* Only required when static memory is not cleared. */
+ xNextFreeByte = ( size_t ) 0;
+}
+/*-----------------------------------------------------------*/
+
+size_t xPortGetFreeHeapSize( void )
+{
+ return ( configADJUSTED_HEAP_SIZE - xNextFreeByte );
+}
+
+
+
diff --git a/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_2.c b/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_2.c
new file mode 100644
index 0000000..4e0c92e
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_2.c
@@ -0,0 +1,303 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/*
+ * A sample implementation of pvPortMalloc() and vPortFree() that permits
+ * allocated blocks to be freed, but does not combine adjacent free blocks
+ * into a single larger block (and so will fragment memory). See heap_4.c for
+ * an equivalent that does combine adjacent blocks into single larger blocks.
+ *
+ * See heap_1.c, heap_3.c and heap_4.c for alternative implementations, and the
+ * memory management pages of http://www.FreeRTOS.org for more information.
+ */
+#include <stdlib.h>
+
+/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
+all the API functions to use the MPU wrappers. That should only be done when
+task.h is included from an application file. */
+#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+#include "FreeRTOS.h"
+#include "task.h"
+
+#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+/* A few bytes might be lost to byte aligning the heap start address. */
+#define configADJUSTED_HEAP_SIZE ( configTOTAL_HEAP_SIZE - portBYTE_ALIGNMENT )
+
+/*
+ * Initialises the heap structures before their first use.
+ */
+static void prvHeapInit( void );
+
+/* Allocate the memory for the heap. */
+static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
+
+/* Define the linked list structure. This is used to link free blocks in order
+of their size. */
+typedef struct A_BLOCK_LINK
+{
+ struct A_BLOCK_LINK *pxNextFreeBlock; /*<< The next free block in the list. */
+ size_t xBlockSize; /*<< The size of the free block. */
+} BlockLink_t;
+
+
+static const uint16_t heapSTRUCT_SIZE = ( ( sizeof ( BlockLink_t ) + ( portBYTE_ALIGNMENT - 1 ) ) & ~portBYTE_ALIGNMENT_MASK );
+#define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( heapSTRUCT_SIZE * 2 ) )
+
+/* Create a couple of list links to mark the start and end of the list. */
+static BlockLink_t xStart, xEnd;
+
+/* Keeps track of the number of free bytes remaining, but says nothing about
+fragmentation. */
+static size_t xFreeBytesRemaining = configADJUSTED_HEAP_SIZE;
+
+/* STATIC FUNCTIONS ARE DEFINED AS MACROS TO MINIMIZE THE FUNCTION CALL DEPTH. */
+
+/*
+ * Insert a block into the list of free blocks - which is ordered by size of
+ * the block. Small blocks at the start of the list and large blocks at the end
+ * of the list.
+ */
+#define prvInsertBlockIntoFreeList( pxBlockToInsert ) \
+{ \
+BlockLink_t *pxIterator; \
+size_t xBlockSize; \
+ \
+ xBlockSize = pxBlockToInsert->xBlockSize; \
+ \
+ /* Iterate through the list until a block is found that has a larger size */ \
+ /* than the block we are inserting. */ \
+ for( pxIterator = &xStart; pxIterator->pxNextFreeBlock->xBlockSize < xBlockSize; pxIterator = pxIterator->pxNextFreeBlock ) \
+ { \
+ /* There is nothing to do here - just iterate to the correct position. */ \
+ } \
+ \
+ /* Update the list to include the block being inserted in the correct */ \
+ /* position. */ \
+ pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock; \
+ pxIterator->pxNextFreeBlock = pxBlockToInsert; \
+}
+/*-----------------------------------------------------------*/
+
+void *pvPortMalloc( size_t xWantedSize )
+{
+BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
+static BaseType_t xHeapHasBeenInitialised = pdFALSE;
+void *pvReturn = NULL;
+
+ vTaskSuspendAll();
+ {
+ /* If this is the first call to malloc then the heap will require
+ initialisation to setup the list of free blocks. */
+ if( xHeapHasBeenInitialised == pdFALSE )
+ {
+ prvHeapInit();
+ xHeapHasBeenInitialised = pdTRUE;
+ }
+
+ /* The wanted size is increased so it can contain a BlockLink_t
+ structure in addition to the requested amount of bytes. */
+ if( xWantedSize > 0 )
+ {
+ xWantedSize += heapSTRUCT_SIZE;
+
+ /* Ensure that blocks are always aligned to the required number of bytes. */
+ if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0 )
+ {
+ /* Byte alignment required. */
+ xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
+ }
+ }
+
+ if( ( xWantedSize > 0 ) && ( xWantedSize < configADJUSTED_HEAP_SIZE ) )
+ {
+ /* Blocks are stored in byte order - traverse the list from the start
+ (smallest) block until one of adequate size is found. */
+ pxPreviousBlock = &xStart;
+ pxBlock = xStart.pxNextFreeBlock;
+ while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
+ {
+ pxPreviousBlock = pxBlock;
+ pxBlock = pxBlock->pxNextFreeBlock;
+ }
+
+ /* If we found the end marker then a block of adequate size was not found. */
+ if( pxBlock != &xEnd )
+ {
+ /* Return the memory space - jumping over the BlockLink_t structure
+ at its start. */
+ pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + heapSTRUCT_SIZE );
+
+ /* This block is being returned for use so must be taken out of the
+ list of free blocks. */
+ pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
+
+ /* If the block is larger than required it can be split into two. */
+ if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
+ {
+ /* This block is to be split into two. Create a new block
+ following the number of bytes requested. The void cast is
+ used to prevent byte alignment warnings from the compiler. */
+ pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
+
+ /* Calculate the sizes of two blocks split from the single
+ block. */
+ pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
+ pxBlock->xBlockSize = xWantedSize;
+
+ /* Insert the new block into the list of free blocks. */
+ prvInsertBlockIntoFreeList( ( pxNewBlockLink ) );
+ }
+
+ xFreeBytesRemaining -= pxBlock->xBlockSize;
+ }
+ }
+
+ traceMALLOC( pvReturn, xWantedSize );
+ }
+ ( void ) xTaskResumeAll();
+
+ #if( configUSE_MALLOC_FAILED_HOOK == 1 )
+ {
+ if( pvReturn == NULL )
+ {
+ extern void vApplicationMallocFailedHook( void );
+ vApplicationMallocFailedHook();
+ }
+ }
+ #endif
+
+ return pvReturn;
+}
+/*-----------------------------------------------------------*/
+
+void vPortFree( void *pv )
+{
+uint8_t *puc = ( uint8_t * ) pv;
+BlockLink_t *pxLink;
+
+ if( pv != NULL )
+ {
+ /* The memory being freed will have an BlockLink_t structure immediately
+ before it. */
+ puc -= heapSTRUCT_SIZE;
+
+ /* This unexpected casting is to keep some compilers from issuing
+ byte alignment warnings. */
+ pxLink = ( void * ) puc;
+
+ vTaskSuspendAll();
+ {
+ /* Add this block to the list of free blocks. */
+ prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
+ xFreeBytesRemaining += pxLink->xBlockSize;
+ traceFREE( pv, pxLink->xBlockSize );
+ }
+ ( void ) xTaskResumeAll();
+ }
+}
+/*-----------------------------------------------------------*/
+
+size_t xPortGetFreeHeapSize( void )
+{
+ return xFreeBytesRemaining;
+}
+/*-----------------------------------------------------------*/
+
+void vPortInitialiseBlocks( void )
+{
+ /* This just exists to keep the linker quiet. */
+}
+/*-----------------------------------------------------------*/
+
+static void prvHeapInit( void )
+{
+BlockLink_t *pxFirstFreeBlock;
+uint8_t *pucAlignedHeap;
+
+ /* Ensure the heap starts on a correctly aligned boundary. */
+ pucAlignedHeap = ( uint8_t * ) ( ( ( portPOINTER_SIZE_TYPE ) &ucHeap[ portBYTE_ALIGNMENT ] ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
+
+ /* xStart is used to hold a pointer to the first item in the list of free
+ blocks. The void cast is used to prevent compiler warnings. */
+ xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap;
+ xStart.xBlockSize = ( size_t ) 0;
+
+ /* xEnd is used to mark the end of the list of free blocks. */
+ xEnd.xBlockSize = configADJUSTED_HEAP_SIZE;
+ xEnd.pxNextFreeBlock = NULL;
+
+ /* To start with there is a single free block that is sized to take up the
+ entire heap space. */
+ pxFirstFreeBlock = ( void * ) pucAlignedHeap;
+ pxFirstFreeBlock->xBlockSize = configADJUSTED_HEAP_SIZE;
+ pxFirstFreeBlock->pxNextFreeBlock = &xEnd;
+}
+/*-----------------------------------------------------------*/
diff --git a/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_3.c b/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_3.c
new file mode 100644
index 0000000..0fa88f5
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_3.c
@@ -0,0 +1,135 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+
+/*
+ * Implementation of pvPortMalloc() and vPortFree() that relies on the
+ * compilers own malloc() and free() implementations.
+ *
+ * This file can only be used if the linker is configured to to generate
+ * a heap memory area.
+ *
+ * See heap_1.c, heap_2.c and heap_4.c for alternative implementations, and the
+ * memory management pages of http://www.FreeRTOS.org for more information.
+ */
+
+#include <stdlib.h>
+
+/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
+all the API functions to use the MPU wrappers. That should only be done when
+task.h is included from an application file. */
+#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+#include "FreeRTOS.h"
+#include "task.h"
+
+#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+/*-----------------------------------------------------------*/
+
+void *pvPortMalloc( size_t xWantedSize )
+{
+void *pvReturn;
+
+ vTaskSuspendAll();
+ {
+ pvReturn = malloc( xWantedSize );
+ traceMALLOC( pvReturn, xWantedSize );
+ }
+ ( void ) xTaskResumeAll();
+
+ #if( configUSE_MALLOC_FAILED_HOOK == 1 )
+ {
+ if( pvReturn == NULL )
+ {
+ extern void vApplicationMallocFailedHook( void );
+ vApplicationMallocFailedHook();
+ }
+ }
+ #endif
+
+ return pvReturn;
+}
+/*-----------------------------------------------------------*/
+
+void vPortFree( void *pv )
+{
+ if( pv )
+ {
+ vTaskSuspendAll();
+ {
+ free( pv );
+ traceFREE( pv, 0 );
+ }
+ ( void ) xTaskResumeAll();
+ }
+}
+
+
+
diff --git a/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_4.c b/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_4.c
new file mode 100644
index 0000000..ce482d0
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_4.c
@@ -0,0 +1,474 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/*
+ * A sample implementation of pvPortMalloc() and vPortFree() that combines
+ * (coalescences) adjacent memory blocks as they are freed, and in so doing
+ * limits memory fragmentation.
+ *
+ * See heap_1.c, heap_2.c and heap_3.c for alternative implementations, and the
+ * memory management pages of http://www.FreeRTOS.org for more information.
+ */
+#include <stdlib.h>
+
+/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
+all the API functions to use the MPU wrappers. That should only be done when
+task.h is included from an application file. */
+#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+#include "FreeRTOS.h"
+#include "task.h"
+
+#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+/* Block sizes must not get too small. */
+#define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( xHeapStructSize << 1 ) )
+
+/* Assumes 8bit bytes! */
+#define heapBITS_PER_BYTE ( ( size_t ) 8 )
+
+/* Allocate the memory for the heap. */
+#if( configAPPLICATION_ALLOCATED_HEAP == 1 )
+ /* The application writer has already defined the array used for the RTOS
+ heap - probably so it can be placed in a special segment or address. */
+ extern uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
+#else
+ static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
+#endif /* configAPPLICATION_ALLOCATED_HEAP */
+
+/* Define the linked list structure. This is used to link free blocks in order
+of their memory address. */
+typedef struct A_BLOCK_LINK
+{
+ struct A_BLOCK_LINK *pxNextFreeBlock; /*<< The next free block in the list. */
+ size_t xBlockSize; /*<< The size of the free block. */
+} BlockLink_t;
+
+/*-----------------------------------------------------------*/
+
+/*
+ * Inserts a block of memory that is being freed into the correct position in
+ * the list of free memory blocks. The block being freed will be merged with
+ * the block in front it and/or the block behind it if the memory blocks are
+ * adjacent to each other.
+ */
+static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert );
+
+/*
+ * Called automatically to setup the required heap structures the first time
+ * pvPortMalloc() is called.
+ */
+static void prvHeapInit( void );
+
+/*-----------------------------------------------------------*/
+
+/* The size of the structure placed at the beginning of each allocated memory
+block must by correctly byte aligned. */
+static const size_t xHeapStructSize = ( sizeof( BlockLink_t ) + ( ( size_t ) ( portBYTE_ALIGNMENT - 1 ) ) ) & ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
+
+/* Create a couple of list links to mark the start and end of the list. */
+static BlockLink_t xStart, *pxEnd = NULL;
+
+/* Keeps track of the number of free bytes remaining, but says nothing about
+fragmentation. */
+static size_t xFreeBytesRemaining = 0U;
+static size_t xMinimumEverFreeBytesRemaining = 0U;
+
+/* Gets set to the top bit of an size_t type. When this bit in the xBlockSize
+member of an BlockLink_t structure is set then the block belongs to the
+application. When the bit is free the block is still part of the free heap
+space. */
+static size_t xBlockAllocatedBit = 0;
+
+/*-----------------------------------------------------------*/
+
+void *pvPortMalloc( size_t xWantedSize )
+{
+BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
+void *pvReturn = NULL;
+
+ vTaskSuspendAll();
+ {
+ /* If this is the first call to malloc then the heap will require
+ initialisation to setup the list of free blocks. */
+ if( pxEnd == NULL )
+ {
+ prvHeapInit();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Check the requested block size is not so large that the top bit is
+ set. The top bit of the block size member of the BlockLink_t structure
+ is used to determine who owns the block - the application or the
+ kernel, so it must be free. */
+ if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
+ {
+ /* The wanted size is increased so it can contain a BlockLink_t
+ structure in addition to the requested amount of bytes. */
+ if( xWantedSize > 0 )
+ {
+ xWantedSize += xHeapStructSize;
+
+ /* Ensure that blocks are always aligned to the required number
+ of bytes. */
+ if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
+ {
+ /* Byte alignment required. */
+ xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
+ configASSERT( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) == 0 );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
+ {
+ /* Traverse the list from the start (lowest address) block until
+ one of adequate size is found. */
+ pxPreviousBlock = &xStart;
+ pxBlock = xStart.pxNextFreeBlock;
+ while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
+ {
+ pxPreviousBlock = pxBlock;
+ pxBlock = pxBlock->pxNextFreeBlock;
+ }
+
+ /* If the end marker was reached then a block of adequate size
+ was not found. */
+ if( pxBlock != pxEnd )
+ {
+ /* Return the memory space pointed to - jumping over the
+ BlockLink_t structure at its start. */
+ pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize );
+
+ /* This block is being returned for use so must be taken out
+ of the list of free blocks. */
+ pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
+
+ /* If the block is larger than required it can be split into
+ two. */
+ if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
+ {
+ /* This block is to be split into two. Create a new
+ block following the number of bytes requested. The void
+ cast is used to prevent byte alignment warnings from the
+ compiler. */
+ pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
+ configASSERT( ( ( ( size_t ) pxNewBlockLink ) & portBYTE_ALIGNMENT_MASK ) == 0 );
+
+ /* Calculate the sizes of two blocks split from the
+ single block. */
+ pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
+ pxBlock->xBlockSize = xWantedSize;
+
+ /* Insert the new block into the list of free blocks. */
+ prvInsertBlockIntoFreeList( ( pxNewBlockLink ) );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ xFreeBytesRemaining -= pxBlock->xBlockSize;
+
+ if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
+ {
+ xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* The block is being returned - it is allocated and owned
+ by the application and has no "next" block. */
+ pxBlock->xBlockSize |= xBlockAllocatedBit;
+ pxBlock->pxNextFreeBlock = NULL;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ traceMALLOC( pvReturn, xWantedSize );
+ }
+ ( void ) xTaskResumeAll();
+
+ #if( configUSE_MALLOC_FAILED_HOOK == 1 )
+ {
+ if( pvReturn == NULL )
+ {
+ extern void vApplicationMallocFailedHook( void );
+ vApplicationMallocFailedHook();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif
+
+ configASSERT( ( ( ( uint32_t ) pvReturn ) & portBYTE_ALIGNMENT_MASK ) == 0 );
+ return pvReturn;
+}
+/*-----------------------------------------------------------*/
+
+void vPortFree( void *pv )
+{
+uint8_t *puc = ( uint8_t * ) pv;
+BlockLink_t *pxLink;
+
+ if( pv != NULL )
+ {
+ /* The memory being freed will have an BlockLink_t structure immediately
+ before it. */
+ puc -= xHeapStructSize;
+
+ /* This casting is to keep the compiler from issuing warnings. */
+ pxLink = ( void * ) puc;
+
+ /* Check the block is actually allocated. */
+ configASSERT( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 );
+ configASSERT( pxLink->pxNextFreeBlock == NULL );
+
+ if( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 )
+ {
+ if( pxLink->pxNextFreeBlock == NULL )
+ {
+ /* The block is being returned to the heap - it is no longer
+ allocated. */
+ pxLink->xBlockSize &= ~xBlockAllocatedBit;
+
+ vTaskSuspendAll();
+ {
+ /* Add this block to the list of free blocks. */
+ xFreeBytesRemaining += pxLink->xBlockSize;
+ traceFREE( pv, pxLink->xBlockSize );
+ prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
+ }
+ ( void ) xTaskResumeAll();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+size_t xPortGetFreeHeapSize( void )
+{
+ return xFreeBytesRemaining;
+}
+/*-----------------------------------------------------------*/
+
+size_t xPortGetMinimumEverFreeHeapSize( void )
+{
+ return xMinimumEverFreeBytesRemaining;
+}
+/*-----------------------------------------------------------*/
+
+void vPortInitialiseBlocks( void )
+{
+ /* This just exists to keep the linker quiet. */
+}
+/*-----------------------------------------------------------*/
+
+static void prvHeapInit( void )
+{
+BlockLink_t *pxFirstFreeBlock;
+uint8_t *pucAlignedHeap;
+size_t uxAddress;
+size_t xTotalHeapSize = configTOTAL_HEAP_SIZE;
+
+ /* Ensure the heap starts on a correctly aligned boundary. */
+ uxAddress = ( size_t ) ucHeap;
+
+ if( ( uxAddress & portBYTE_ALIGNMENT_MASK ) != 0 )
+ {
+ uxAddress += ( portBYTE_ALIGNMENT - 1 );
+ uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
+ xTotalHeapSize -= uxAddress - ( size_t ) ucHeap;
+ }
+
+ pucAlignedHeap = ( uint8_t * ) uxAddress;
+
+ /* xStart is used to hold a pointer to the first item in the list of free
+ blocks. The void cast is used to prevent compiler warnings. */
+ xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap;
+ xStart.xBlockSize = ( size_t ) 0;
+
+ /* pxEnd is used to mark the end of the list of free blocks and is inserted
+ at the end of the heap space. */
+ uxAddress = ( ( size_t ) pucAlignedHeap ) + xTotalHeapSize;
+ uxAddress -= xHeapStructSize;
+ uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
+ pxEnd = ( void * ) uxAddress;
+ pxEnd->xBlockSize = 0;
+ pxEnd->pxNextFreeBlock = NULL;
+
+ /* To start with there is a single free block that is sized to take up the
+ entire heap space, minus the space taken by pxEnd. */
+ pxFirstFreeBlock = ( void * ) pucAlignedHeap;
+ pxFirstFreeBlock->xBlockSize = uxAddress - ( size_t ) pxFirstFreeBlock;
+ pxFirstFreeBlock->pxNextFreeBlock = pxEnd;
+
+ /* Only one block exists - and it covers the entire usable heap space. */
+ xMinimumEverFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
+ xFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
+
+ /* Work out the position of the top bit in a size_t variable. */
+ xBlockAllocatedBit = ( ( size_t ) 1 ) << ( ( sizeof( size_t ) * heapBITS_PER_BYTE ) - 1 );
+}
+/*-----------------------------------------------------------*/
+
+static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert )
+{
+BlockLink_t *pxIterator;
+uint8_t *puc;
+
+ /* Iterate through the list until a block is found that has a higher address
+ than the block being inserted. */
+ for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock )
+ {
+ /* Nothing to do here, just iterate to the right position. */
+ }
+
+ /* Do the block being inserted, and the block it is being inserted after
+ make a contiguous block of memory? */
+ puc = ( uint8_t * ) pxIterator;
+ if( ( puc + pxIterator->xBlockSize ) == ( uint8_t * ) pxBlockToInsert )
+ {
+ pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
+ pxBlockToInsert = pxIterator;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Do the block being inserted, and the block it is being inserted before
+ make a contiguous block of memory? */
+ puc = ( uint8_t * ) pxBlockToInsert;
+ if( ( puc + pxBlockToInsert->xBlockSize ) == ( uint8_t * ) pxIterator->pxNextFreeBlock )
+ {
+ if( pxIterator->pxNextFreeBlock != pxEnd )
+ {
+ /* Form one big block from the two blocks. */
+ pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
+ pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
+ }
+ else
+ {
+ pxBlockToInsert->pxNextFreeBlock = pxEnd;
+ }
+ }
+ else
+ {
+ pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
+ }
+
+ /* If the block being inserted plugged a gab, so was merged with the block
+ before and the block after, then it's pxNextFreeBlock pointer will have
+ already been set, and should not be set here as that would make it point
+ to itself. */
+ if( pxIterator != pxBlockToInsert )
+ {
+ pxIterator->pxNextFreeBlock = pxBlockToInsert;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+}
+
diff --git a/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_5.c b/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_5.c
new file mode 100644
index 0000000..666ec65
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/portable/MemMang/heap_5.c
@@ -0,0 +1,523 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/*
+ * A sample implementation of pvPortMalloc() that allows the heap to be defined
+ * across multiple non-contigous blocks and combines (coalescences) adjacent
+ * memory blocks as they are freed.
+ *
+ * See heap_1.c, heap_2.c, heap_3.c and heap_4.c for alternative
+ * implementations, and the memory management pages of http://www.FreeRTOS.org
+ * for more information.
+ *
+ * Usage notes:
+ *
+ * vPortDefineHeapRegions() ***must*** be called before pvPortMalloc().
+ * pvPortMalloc() will be called if any task objects (tasks, queues, event
+ * groups, etc.) are created, therefore vPortDefineHeapRegions() ***must*** be
+ * called before any other objects are defined.
+ *
+ * vPortDefineHeapRegions() takes a single parameter. The parameter is an array
+ * of HeapRegion_t structures. HeapRegion_t is defined in portable.h as
+ *
+ * typedef struct HeapRegion
+ * {
+ * uint8_t *pucStartAddress; << Start address of a block of memory that will be part of the heap.
+ * size_t xSizeInBytes; << Size of the block of memory.
+ * } HeapRegion_t;
+ *
+ * The array is terminated using a NULL zero sized region definition, and the
+ * memory regions defined in the array ***must*** appear in address order from
+ * low address to high address. So the following is a valid example of how
+ * to use the function.
+ *
+ * HeapRegion_t xHeapRegions[] =
+ * {
+ * { ( uint8_t * ) 0x80000000UL, 0x10000 }, << Defines a block of 0x10000 bytes starting at address 0x80000000
+ * { ( uint8_t * ) 0x90000000UL, 0xa0000 }, << Defines a block of 0xa0000 bytes starting at address of 0x90000000
+ * { NULL, 0 } << Terminates the array.
+ * };
+ *
+ * vPortDefineHeapRegions( xHeapRegions ); << Pass the array into vPortDefineHeapRegions().
+ *
+ * Note 0x80000000 is the lower address so appears in the array first.
+ *
+ */
+#include <stdlib.h>
+
+/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
+all the API functions to use the MPU wrappers. That should only be done when
+task.h is included from an application file. */
+#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+#include "FreeRTOS.h"
+#include "task.h"
+
+#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+/* Block sizes must not get too small. */
+#define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( xHeapStructSize << 1 ) )
+
+/* Assumes 8bit bytes! */
+#define heapBITS_PER_BYTE ( ( size_t ) 8 )
+
+/* Define the linked list structure. This is used to link free blocks in order
+of their memory address. */
+typedef struct A_BLOCK_LINK
+{
+ struct A_BLOCK_LINK *pxNextFreeBlock; /*<< The next free block in the list. */
+ size_t xBlockSize; /*<< The size of the free block. */
+} BlockLink_t;
+
+/*-----------------------------------------------------------*/
+
+/*
+ * Inserts a block of memory that is being freed into the correct position in
+ * the list of free memory blocks. The block being freed will be merged with
+ * the block in front it and/or the block behind it if the memory blocks are
+ * adjacent to each other.
+ */
+static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert );
+
+/*-----------------------------------------------------------*/
+
+/* The size of the structure placed at the beginning of each allocated memory
+block must by correctly byte aligned. */
+static const size_t xHeapStructSize = ( sizeof( BlockLink_t ) + ( ( size_t ) ( portBYTE_ALIGNMENT - 1 ) ) ) & ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
+
+/* Create a couple of list links to mark the start and end of the list. */
+static BlockLink_t xStart, *pxEnd = NULL;
+
+/* Keeps track of the number of free bytes remaining, but says nothing about
+fragmentation. */
+static size_t xFreeBytesRemaining = 0U;
+static size_t xMinimumEverFreeBytesRemaining = 0U;
+
+/* Gets set to the top bit of an size_t type. When this bit in the xBlockSize
+member of an BlockLink_t structure is set then the block belongs to the
+application. When the bit is free the block is still part of the free heap
+space. */
+static size_t xBlockAllocatedBit = 0;
+
+/*-----------------------------------------------------------*/
+
+void *pvPortMalloc( size_t xWantedSize )
+{
+BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
+void *pvReturn = NULL;
+
+ /* The heap must be initialised before the first call to
+ prvPortMalloc(). */
+ configASSERT( pxEnd );
+
+ vTaskSuspendAll();
+ {
+ /* Check the requested block size is not so large that the top bit is
+ set. The top bit of the block size member of the BlockLink_t structure
+ is used to determine who owns the block - the application or the
+ kernel, so it must be free. */
+ if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
+ {
+ /* The wanted size is increased so it can contain a BlockLink_t
+ structure in addition to the requested amount of bytes. */
+ if( xWantedSize > 0 )
+ {
+ xWantedSize += xHeapStructSize;
+
+ /* Ensure that blocks are always aligned to the required number
+ of bytes. */
+ if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
+ {
+ /* Byte alignment required. */
+ xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
+ {
+ /* Traverse the list from the start (lowest address) block until
+ one of adequate size is found. */
+ pxPreviousBlock = &xStart;
+ pxBlock = xStart.pxNextFreeBlock;
+ while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
+ {
+ pxPreviousBlock = pxBlock;
+ pxBlock = pxBlock->pxNextFreeBlock;
+ }
+
+ /* If the end marker was reached then a block of adequate size
+ was not found. */
+ if( pxBlock != pxEnd )
+ {
+ /* Return the memory space pointed to - jumping over the
+ BlockLink_t structure at its start. */
+ pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize );
+
+ /* This block is being returned for use so must be taken out
+ of the list of free blocks. */
+ pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
+
+ /* If the block is larger than required it can be split into
+ two. */
+ if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
+ {
+ /* This block is to be split into two. Create a new
+ block following the number of bytes requested. The void
+ cast is used to prevent byte alignment warnings from the
+ compiler. */
+ pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
+
+ /* Calculate the sizes of two blocks split from the
+ single block. */
+ pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
+ pxBlock->xBlockSize = xWantedSize;
+
+ /* Insert the new block into the list of free blocks. */
+ prvInsertBlockIntoFreeList( ( pxNewBlockLink ) );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ xFreeBytesRemaining -= pxBlock->xBlockSize;
+
+ if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
+ {
+ xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* The block is being returned - it is allocated and owned
+ by the application and has no "next" block. */
+ pxBlock->xBlockSize |= xBlockAllocatedBit;
+ pxBlock->pxNextFreeBlock = NULL;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ traceMALLOC( pvReturn, xWantedSize );
+ }
+ ( void ) xTaskResumeAll();
+
+ #if( configUSE_MALLOC_FAILED_HOOK == 1 )
+ {
+ if( pvReturn == NULL )
+ {
+ extern void vApplicationMallocFailedHook( void );
+ vApplicationMallocFailedHook();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif
+
+ return pvReturn;
+}
+/*-----------------------------------------------------------*/
+
+void vPortFree( void *pv )
+{
+uint8_t *puc = ( uint8_t * ) pv;
+BlockLink_t *pxLink;
+
+ if( pv != NULL )
+ {
+ /* The memory being freed will have an BlockLink_t structure immediately
+ before it. */
+ puc -= xHeapStructSize;
+
+ /* This casting is to keep the compiler from issuing warnings. */
+ pxLink = ( void * ) puc;
+
+ /* Check the block is actually allocated. */
+ configASSERT( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 );
+ configASSERT( pxLink->pxNextFreeBlock == NULL );
+
+ if( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 )
+ {
+ if( pxLink->pxNextFreeBlock == NULL )
+ {
+ /* The block is being returned to the heap - it is no longer
+ allocated. */
+ pxLink->xBlockSize &= ~xBlockAllocatedBit;
+
+ vTaskSuspendAll();
+ {
+ /* Add this block to the list of free blocks. */
+ xFreeBytesRemaining += pxLink->xBlockSize;
+ traceFREE( pv, pxLink->xBlockSize );
+ prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
+ }
+ ( void ) xTaskResumeAll();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+size_t xPortGetFreeHeapSize( void )
+{
+ return xFreeBytesRemaining;
+}
+/*-----------------------------------------------------------*/
+
+size_t xPortGetMinimumEverFreeHeapSize( void )
+{
+ return xMinimumEverFreeBytesRemaining;
+}
+/*-----------------------------------------------------------*/
+
+static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert )
+{
+BlockLink_t *pxIterator;
+uint8_t *puc;
+
+ /* Iterate through the list until a block is found that has a higher address
+ than the block being inserted. */
+ for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock )
+ {
+ /* Nothing to do here, just iterate to the right position. */
+ }
+
+ /* Do the block being inserted, and the block it is being inserted after
+ make a contiguous block of memory? */
+ puc = ( uint8_t * ) pxIterator;
+ if( ( puc + pxIterator->xBlockSize ) == ( uint8_t * ) pxBlockToInsert )
+ {
+ pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
+ pxBlockToInsert = pxIterator;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Do the block being inserted, and the block it is being inserted before
+ make a contiguous block of memory? */
+ puc = ( uint8_t * ) pxBlockToInsert;
+ if( ( puc + pxBlockToInsert->xBlockSize ) == ( uint8_t * ) pxIterator->pxNextFreeBlock )
+ {
+ if( pxIterator->pxNextFreeBlock != pxEnd )
+ {
+ /* Form one big block from the two blocks. */
+ pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
+ pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
+ }
+ else
+ {
+ pxBlockToInsert->pxNextFreeBlock = pxEnd;
+ }
+ }
+ else
+ {
+ pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
+ }
+
+ /* If the block being inserted plugged a gab, so was merged with the block
+ before and the block after, then it's pxNextFreeBlock pointer will have
+ already been set, and should not be set here as that would make it point
+ to itself. */
+ if( pxIterator != pxBlockToInsert )
+ {
+ pxIterator->pxNextFreeBlock = pxBlockToInsert;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+}
+/*-----------------------------------------------------------*/
+
+void vPortDefineHeapRegions( const HeapRegion_t * const pxHeapRegions )
+{
+BlockLink_t *pxFirstFreeBlockInRegion = NULL, *pxPreviousFreeBlock;
+uint8_t *pucAlignedHeap;
+size_t xTotalRegionSize, xTotalHeapSize = 0;
+BaseType_t xDefinedRegions = 0;
+size_t xAddress;
+const HeapRegion_t *pxHeapRegion;
+
+ /* Can only call once! */
+ configASSERT( pxEnd == NULL );
+
+ pxHeapRegion = &( pxHeapRegions[ xDefinedRegions ] );
+
+ while( pxHeapRegion->xSizeInBytes > 0 )
+ {
+ xTotalRegionSize = pxHeapRegion->xSizeInBytes;
+
+ /* Ensure the heap region starts on a correctly aligned boundary. */
+ xAddress = ( size_t ) pxHeapRegion->pucStartAddress;
+ if( ( xAddress & portBYTE_ALIGNMENT_MASK ) != 0 )
+ {
+ xAddress += ( portBYTE_ALIGNMENT - 1 );
+ xAddress &= ~portBYTE_ALIGNMENT_MASK;
+
+ /* Adjust the size for the bytes lost to alignment. */
+ xTotalRegionSize -= xAddress - ( size_t ) pxHeapRegion->pucStartAddress;
+ }
+
+ pucAlignedHeap = ( uint8_t * ) xAddress;
+
+ /* Set xStart if it has not already been set. */
+ if( xDefinedRegions == 0 )
+ {
+ /* xStart is used to hold a pointer to the first item in the list of
+ free blocks. The void cast is used to prevent compiler warnings. */
+ xStart.pxNextFreeBlock = ( BlockLink_t * ) pucAlignedHeap;
+ xStart.xBlockSize = ( size_t ) 0;
+ }
+ else
+ {
+ /* Should only get here if one region has already been added to the
+ heap. */
+ configASSERT( pxEnd != NULL );
+
+ /* Check blocks are passed in with increasing start addresses. */
+ configASSERT( xAddress > ( size_t ) pxEnd );
+ }
+
+ /* Remember the location of the end marker in the previous region, if
+ any. */
+ pxPreviousFreeBlock = pxEnd;
+
+ /* pxEnd is used to mark the end of the list of free blocks and is
+ inserted at the end of the region space. */
+ xAddress = ( ( size_t ) pucAlignedHeap ) + xTotalRegionSize;
+ xAddress -= xHeapStructSize;
+ xAddress &= ~portBYTE_ALIGNMENT_MASK;
+ pxEnd = ( BlockLink_t * ) xAddress;
+ pxEnd->xBlockSize = 0;
+ pxEnd->pxNextFreeBlock = NULL;
+
+ /* To start with there is a single free block in this region that is
+ sized to take up the entire heap region minus the space taken by the
+ free block structure. */
+ pxFirstFreeBlockInRegion = ( BlockLink_t * ) pucAlignedHeap;
+ pxFirstFreeBlockInRegion->xBlockSize = xAddress - ( size_t ) pxFirstFreeBlockInRegion;
+ pxFirstFreeBlockInRegion->pxNextFreeBlock = pxEnd;
+
+ /* If this is not the first region that makes up the entire heap space
+ then link the previous region to this region. */
+ if( pxPreviousFreeBlock != NULL )
+ {
+ pxPreviousFreeBlock->pxNextFreeBlock = pxFirstFreeBlockInRegion;
+ }
+
+ xTotalHeapSize += pxFirstFreeBlockInRegion->xBlockSize;
+
+ /* Move onto the next HeapRegion_t structure. */
+ xDefinedRegions++;
+ pxHeapRegion = &( pxHeapRegions[ xDefinedRegions ] );
+ }
+
+ xMinimumEverFreeBytesRemaining = xTotalHeapSize;
+ xFreeBytesRemaining = xTotalHeapSize;
+
+ /* Check something was actually defined before it is accessed. */
+ configASSERT( xTotalHeapSize );
+
+ /* Work out the position of the top bit in a size_t variable. */
+ xBlockAllocatedBit = ( ( size_t ) 1 ) << ( ( sizeof( size_t ) * heapBITS_PER_BYTE ) - 1 );
+}
+
diff --git a/src/FreeRTOS-Sim-master/Source/queue.c b/src/FreeRTOS-Sim-master/Source/queue.c
new file mode 100644
index 0000000..1a3d58c
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/queue.c
@@ -0,0 +1,2609 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+#include <stdlib.h>
+#include <string.h>
+
+/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
+all the API functions to use the MPU wrappers. That should only be done when
+task.h is included from an application file. */
+#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+#include "FreeRTOS.h"
+#include "task.h"
+#include "queue.h"
+
+#if ( configUSE_CO_ROUTINES == 1 )
+ #include "croutine.h"
+#endif
+
+/* Lint e961 and e750 are suppressed as a MISRA exception justified because the
+MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
+header files above, but not in this file, in order to generate the correct
+privileged Vs unprivileged linkage and placement. */
+#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
+
+
+/* Constants used with the xRxLock and xTxLock structure members. */
+#define queueUNLOCKED ( ( BaseType_t ) -1 )
+#define queueLOCKED_UNMODIFIED ( ( BaseType_t ) 0 )
+
+/* When the Queue_t structure is used to represent a base queue its pcHead and
+pcTail members are used as pointers into the queue storage area. When the
+Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
+not necessary, and the pcHead pointer is set to NULL to indicate that the
+pcTail pointer actually points to the mutex holder (if any). Map alternative
+names to the pcHead and pcTail structure members to ensure the readability of
+the code is maintained despite this dual use of two structure members. An
+alternative implementation would be to use a union, but use of a union is
+against the coding standard (although an exception to the standard has been
+permitted where the dual use also significantly changes the type of the
+structure member). */
+#define pxMutexHolder pcTail
+#define uxQueueType pcHead
+#define queueQUEUE_IS_MUTEX NULL
+
+/* Semaphores do not actually store or copy data, so have an item size of
+zero. */
+#define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
+#define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
+
+#if( configUSE_PREEMPTION == 0 )
+ /* If the cooperative scheduler is being used then a yield should not be
+ performed just because a higher priority task has been woken. */
+ #define queueYIELD_IF_USING_PREEMPTION()
+#else
+ #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
+#endif
+
+/*
+ * Definition of the queue used by the scheduler.
+ * Items are queued by copy, not reference. See the following link for the
+ * rationale: http://www.freertos.org/Embedded-RTOS-Queues.html
+ */
+typedef struct QueueDefinition
+{
+ int8_t *pcHead; /*< Points to the beginning of the queue storage area. */
+ int8_t *pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
+ int8_t *pcWriteTo; /*< Points to the free next place in the storage area. */
+
+ union /* Use of a union is an exception to the coding standard to ensure two mutually exclusive structure members don't appear simultaneously (wasting RAM). */
+ {
+ int8_t *pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
+ UBaseType_t uxRecursiveCallCount;/*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
+ } u;
+
+ List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
+ List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
+
+ volatile UBaseType_t uxMessagesWaiting;/*< The number of items currently in the queue. */
+ UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
+ UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
+
+ volatile BaseType_t xRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
+ volatile BaseType_t xTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
+
+ #if ( configUSE_TRACE_FACILITY == 1 )
+ UBaseType_t uxQueueNumber;
+ uint8_t ucQueueType;
+ #endif
+
+ #if ( configUSE_QUEUE_SETS == 1 )
+ struct QueueDefinition *pxQueueSetContainer;
+ #endif
+
+} xQUEUE;
+
+/* The old xQUEUE name is maintained above then typedefed to the new Queue_t
+name below to enable the use of older kernel aware debuggers. */
+typedef xQUEUE Queue_t;
+
+/*-----------------------------------------------------------*/
+
+/*
+ * The queue registry is just a means for kernel aware debuggers to locate
+ * queue structures. It has no other purpose so is an optional component.
+ */
+#if ( configQUEUE_REGISTRY_SIZE > 0 )
+
+ /* The type stored within the queue registry array. This allows a name
+ to be assigned to each queue making kernel aware debugging a little
+ more user friendly. */
+ typedef struct QUEUE_REGISTRY_ITEM
+ {
+ const char *pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+ QueueHandle_t xHandle;
+ } xQueueRegistryItem;
+
+ /* The old xQueueRegistryItem name is maintained above then typedefed to the
+ new xQueueRegistryItem name below to enable the use of older kernel aware
+ debuggers. */
+ typedef xQueueRegistryItem QueueRegistryItem_t;
+
+ /* The queue registry is simply an array of QueueRegistryItem_t structures.
+ The pcQueueName member of a structure being NULL is indicative of the
+ array position being vacant. */
+ PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
+
+#endif /* configQUEUE_REGISTRY_SIZE */
+
+/*
+ * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
+ * prevent an ISR from adding or removing items to the queue, but does prevent
+ * an ISR from removing tasks from the queue event lists. If an ISR finds a
+ * queue is locked it will instead increment the appropriate queue lock count
+ * to indicate that a task may require unblocking. When the queue in unlocked
+ * these lock counts are inspected, and the appropriate action taken.
+ */
+static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
+
+/*
+ * Uses a critical section to determine if there is any data in a queue.
+ *
+ * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
+ */
+static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue ) PRIVILEGED_FUNCTION;
+
+/*
+ * Uses a critical section to determine if there is any space in a queue.
+ *
+ * @return pdTRUE if there is no space, otherwise pdFALSE;
+ */
+static BaseType_t prvIsQueueFull( const Queue_t *pxQueue ) PRIVILEGED_FUNCTION;
+
+/*
+ * Copies an item into the queue, either at the front of the queue or the
+ * back of the queue.
+ */
+static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
+
+/*
+ * Copies an item out of a queue.
+ */
+static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer ) PRIVILEGED_FUNCTION;
+
+#if ( configUSE_QUEUE_SETS == 1 )
+ /*
+ * Checks to see if a queue is a member of a queue set, and if so, notifies
+ * the queue set that the queue contains data.
+ */
+ static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
+#endif
+
+/*-----------------------------------------------------------*/
+
+/*
+ * Macro to mark a queue as locked. Locking a queue prevents an ISR from
+ * accessing the queue event lists.
+ */
+#define prvLockQueue( pxQueue ) \
+ taskENTER_CRITICAL(); \
+ { \
+ if( ( pxQueue )->xRxLock == queueUNLOCKED ) \
+ { \
+ ( pxQueue )->xRxLock = queueLOCKED_UNMODIFIED; \
+ } \
+ if( ( pxQueue )->xTxLock == queueUNLOCKED ) \
+ { \
+ ( pxQueue )->xTxLock = queueLOCKED_UNMODIFIED; \
+ } \
+ } \
+ taskEXIT_CRITICAL()
+/*-----------------------------------------------------------*/
+
+BaseType_t xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue )
+{
+Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ configASSERT( pxQueue );
+
+ taskENTER_CRITICAL();
+ {
+ pxQueue->pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize );
+ pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
+ pxQueue->pcWriteTo = pxQueue->pcHead;
+ pxQueue->u.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - ( UBaseType_t ) 1U ) * pxQueue->uxItemSize );
+ pxQueue->xRxLock = queueUNLOCKED;
+ pxQueue->xTxLock = queueUNLOCKED;
+
+ if( xNewQueue == pdFALSE )
+ {
+ /* If there are tasks blocked waiting to read from the queue, then
+ the tasks will remain blocked as after this function exits the queue
+ will still be empty. If there are tasks blocked waiting to write to
+ the queue, then one should be unblocked as after this function exits
+ it will be possible to write to it. */
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) == pdTRUE )
+ {
+ queueYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ /* Ensure the event queues start in the correct state. */
+ vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
+ vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ /* A value is returned for calling semantic consistency with previous
+ versions. */
+ return pdPASS;
+}
+/*-----------------------------------------------------------*/
+
+QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType )
+{
+Queue_t *pxNewQueue;
+size_t xQueueSizeInBytes;
+QueueHandle_t xReturn = NULL;
+
+ /* Remove compiler warnings about unused parameters should
+ configUSE_TRACE_FACILITY not be set to 1. */
+ ( void ) ucQueueType;
+
+ configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
+
+ if( uxItemSize == ( UBaseType_t ) 0 )
+ {
+ /* There is not going to be a queue storage area. */
+ xQueueSizeInBytes = ( size_t ) 0;
+ }
+ else
+ {
+ /* The queue is one byte longer than asked for to make wrap checking
+ easier/faster. */
+ xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ) + ( size_t ) 1; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
+ }
+
+ /* Allocate the new queue structure and storage area. */
+ pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes );
+
+ if( pxNewQueue != NULL )
+ {
+ if( uxItemSize == ( UBaseType_t ) 0 )
+ {
+ /* No RAM was allocated for the queue storage area, but PC head
+ cannot be set to NULL because NULL is used as a key to say the queue
+ is used as a mutex. Therefore just set pcHead to point to the queue
+ as a benign value that is known to be within the memory map. */
+ pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
+ }
+ else
+ {
+ /* Jump past the queue structure to find the location of the queue
+ storage area. */
+ pxNewQueue->pcHead = ( ( int8_t * ) pxNewQueue ) + sizeof( Queue_t );
+ }
+
+ /* Initialise the queue members as described above where the queue type
+ is defined. */
+ pxNewQueue->uxLength = uxQueueLength;
+ pxNewQueue->uxItemSize = uxItemSize;
+ ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
+
+ #if ( configUSE_TRACE_FACILITY == 1 )
+ {
+ pxNewQueue->ucQueueType = ucQueueType;
+ }
+ #endif /* configUSE_TRACE_FACILITY */
+
+ #if( configUSE_QUEUE_SETS == 1 )
+ {
+ pxNewQueue->pxQueueSetContainer = NULL;
+ }
+ #endif /* configUSE_QUEUE_SETS */
+
+ traceQUEUE_CREATE( pxNewQueue );
+ xReturn = pxNewQueue;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ configASSERT( xReturn );
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_MUTEXES == 1 )
+
+ QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
+ {
+ Queue_t *pxNewQueue;
+
+ /* Prevent compiler warnings about unused parameters if
+ configUSE_TRACE_FACILITY does not equal 1. */
+ ( void ) ucQueueType;
+
+ /* Allocate the new queue structure. */
+ pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) );
+ if( pxNewQueue != NULL )
+ {
+ /* Information required for priority inheritance. */
+ pxNewQueue->pxMutexHolder = NULL;
+ pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
+
+ /* Queues used as a mutex no data is actually copied into or out
+ of the queue. */
+ pxNewQueue->pcWriteTo = NULL;
+ pxNewQueue->u.pcReadFrom = NULL;
+
+ /* Each mutex has a length of 1 (like a binary semaphore) and
+ an item size of 0 as nothing is actually copied into or out
+ of the mutex. */
+ pxNewQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
+ pxNewQueue->uxLength = ( UBaseType_t ) 1U;
+ pxNewQueue->uxItemSize = ( UBaseType_t ) 0U;
+ pxNewQueue->xRxLock = queueUNLOCKED;
+ pxNewQueue->xTxLock = queueUNLOCKED;
+
+ #if ( configUSE_TRACE_FACILITY == 1 )
+ {
+ pxNewQueue->ucQueueType = ucQueueType;
+ }
+ #endif
+
+ #if ( configUSE_QUEUE_SETS == 1 )
+ {
+ pxNewQueue->pxQueueSetContainer = NULL;
+ }
+ #endif
+
+ /* Ensure the event queues start with the correct state. */
+ vListInitialise( &( pxNewQueue->xTasksWaitingToSend ) );
+ vListInitialise( &( pxNewQueue->xTasksWaitingToReceive ) );
+
+ traceCREATE_MUTEX( pxNewQueue );
+
+ /* Start with the semaphore in the expected state. */
+ ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
+ }
+ else
+ {
+ traceCREATE_MUTEX_FAILED();
+ }
+
+ configASSERT( pxNewQueue );
+ return pxNewQueue;
+ }
+
+#endif /* configUSE_MUTEXES */
+/*-----------------------------------------------------------*/
+
+#if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
+
+ void* xQueueGetMutexHolder( QueueHandle_t xSemaphore )
+ {
+ void *pxReturn;
+
+ /* This function is called by xSemaphoreGetMutexHolder(), and should not
+ be called directly. Note: This is a good way of determining if the
+ calling task is the mutex holder, but not a good way of determining the
+ identity of the mutex holder, as the holder may change between the
+ following critical section exiting and the function returning. */
+ taskENTER_CRITICAL();
+ {
+ if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
+ {
+ pxReturn = ( void * ) ( ( Queue_t * ) xSemaphore )->pxMutexHolder;
+ }
+ else
+ {
+ pxReturn = NULL;
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ return pxReturn;
+ } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
+
+#endif
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_RECURSIVE_MUTEXES == 1 )
+
+ BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
+ {
+ BaseType_t xReturn;
+ Queue_t * const pxMutex = ( Queue_t * ) xMutex;
+
+ configASSERT( pxMutex );
+
+ /* If this is the task that holds the mutex then pxMutexHolder will not
+ change outside of this task. If this task does not hold the mutex then
+ pxMutexHolder can never coincidentally equal the tasks handle, and as
+ this is the only condition we are interested in it does not matter if
+ pxMutexHolder is accessed simultaneously by another task. Therefore no
+ mutual exclusion is required to test the pxMutexHolder variable. */
+ if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Not a redundant cast as TaskHandle_t is a typedef. */
+ {
+ traceGIVE_MUTEX_RECURSIVE( pxMutex );
+
+ /* uxRecursiveCallCount cannot be zero if pxMutexHolder is equal to
+ the task handle, therefore no underflow check is required. Also,
+ uxRecursiveCallCount is only modified by the mutex holder, and as
+ there can only be one, no mutual exclusion is required to modify the
+ uxRecursiveCallCount member. */
+ ( pxMutex->u.uxRecursiveCallCount )--;
+
+ /* Have we unwound the call count? */
+ if( pxMutex->u.uxRecursiveCallCount == ( UBaseType_t ) 0 )
+ {
+ /* Return the mutex. This will automatically unblock any other
+ task that might be waiting to access the mutex. */
+ ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ xReturn = pdPASS;
+ }
+ else
+ {
+ /* The mutex cannot be given because the calling task is not the
+ holder. */
+ xReturn = pdFAIL;
+
+ traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
+ }
+
+ return xReturn;
+ }
+
+#endif /* configUSE_RECURSIVE_MUTEXES */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_RECURSIVE_MUTEXES == 1 )
+
+ BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait )
+ {
+ BaseType_t xReturn;
+ Queue_t * const pxMutex = ( Queue_t * ) xMutex;
+
+ configASSERT( pxMutex );
+
+ /* Comments regarding mutual exclusion as per those within
+ xQueueGiveMutexRecursive(). */
+
+ traceTAKE_MUTEX_RECURSIVE( pxMutex );
+
+ if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */
+ {
+ ( pxMutex->u.uxRecursiveCallCount )++;
+ xReturn = pdPASS;
+ }
+ else
+ {
+ xReturn = xQueueGenericReceive( pxMutex, NULL, xTicksToWait, pdFALSE );
+
+ /* pdPASS will only be returned if the mutex was successfully
+ obtained. The calling task may have entered the Blocked state
+ before reaching here. */
+ if( xReturn == pdPASS )
+ {
+ ( pxMutex->u.uxRecursiveCallCount )++;
+ }
+ else
+ {
+ traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
+ }
+ }
+
+ return xReturn;
+ }
+
+#endif /* configUSE_RECURSIVE_MUTEXES */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_COUNTING_SEMAPHORES == 1 )
+
+ QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount )
+ {
+ QueueHandle_t xHandle;
+
+ configASSERT( uxMaxCount != 0 );
+ configASSERT( uxInitialCount <= uxMaxCount );
+
+ xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
+
+ if( xHandle != NULL )
+ {
+ ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
+
+ traceCREATE_COUNTING_SEMAPHORE();
+ }
+ else
+ {
+ traceCREATE_COUNTING_SEMAPHORE_FAILED();
+ }
+
+ configASSERT( xHandle );
+ return xHandle;
+ }
+
+#endif /* configUSE_COUNTING_SEMAPHORES */
+/*-----------------------------------------------------------*/
+
+BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition )
+{
+BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
+TimeOut_t xTimeOut;
+Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ configASSERT( pxQueue );
+ configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
+ configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
+ #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
+ {
+ configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
+ }
+ #endif
+
+
+ /* This function relaxes the coding standard somewhat to allow return
+ statements within the function itself. This is done in the interest
+ of execution time efficiency. */
+ for( ;; )
+ {
+ taskENTER_CRITICAL();
+ {
+ /* Is there room on the queue now? The running task must be the
+ highest priority task wanting to access the queue. If the head item
+ in the queue is to be overwritten then it does not matter if the
+ queue is full. */
+ if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
+ {
+ traceQUEUE_SEND( pxQueue );
+ xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
+
+ #if ( configUSE_QUEUE_SETS == 1 )
+ {
+ if( pxQueue->pxQueueSetContainer != NULL )
+ {
+ if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) == pdTRUE )
+ {
+ /* The queue is a member of a queue set, and posting
+ to the queue set caused a higher priority task to
+ unblock. A context switch is required. */
+ queueYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ /* If there was a task waiting for data to arrive on the
+ queue then unblock it now. */
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) == pdTRUE )
+ {
+ /* The unblocked task has a priority higher than
+ our own so yield immediately. Yes it is ok to
+ do this from within the critical section - the
+ kernel takes care of that. */
+ queueYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else if( xYieldRequired != pdFALSE )
+ {
+ /* This path is a special case that will only get
+ executed if the task was holding multiple mutexes
+ and the mutexes were given back in an order that is
+ different to that in which they were taken. */
+ queueYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+ #else /* configUSE_QUEUE_SETS */
+ {
+ /* If there was a task waiting for data to arrive on the
+ queue then unblock it now. */
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) == pdTRUE )
+ {
+ /* The unblocked task has a priority higher than
+ our own so yield immediately. Yes it is ok to do
+ this from within the critical section - the kernel
+ takes care of that. */
+ queueYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else if( xYieldRequired != pdFALSE )
+ {
+ /* This path is a special case that will only get
+ executed if the task was holding multiple mutexes and
+ the mutexes were given back in an order that is
+ different to that in which they were taken. */
+ queueYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* configUSE_QUEUE_SETS */
+
+ taskEXIT_CRITICAL();
+ return pdPASS;
+ }
+ else
+ {
+ if( xTicksToWait == ( TickType_t ) 0 )
+ {
+ /* The queue was full and no block time is specified (or
+ the block time has expired) so leave now. */
+ taskEXIT_CRITICAL();
+
+ /* Return to the original privilege level before exiting
+ the function. */
+ traceQUEUE_SEND_FAILED( pxQueue );
+ return errQUEUE_FULL;
+ }
+ else if( xEntryTimeSet == pdFALSE )
+ {
+ /* The queue was full and a block time was specified so
+ configure the timeout structure. */
+ vTaskSetTimeOutState( &xTimeOut );
+ xEntryTimeSet = pdTRUE;
+ }
+ else
+ {
+ /* Entry time was already set. */
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ /* Interrupts and other tasks can send to and receive from the queue
+ now the critical section has been exited. */
+
+ vTaskSuspendAll();
+ prvLockQueue( pxQueue );
+
+ /* Update the timeout state to see if it has expired yet. */
+ if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
+ {
+ if( prvIsQueueFull( pxQueue ) != pdFALSE )
+ {
+ traceBLOCKING_ON_QUEUE_SEND( pxQueue );
+ vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
+
+ /* Unlocking the queue means queue events can effect the
+ event list. It is possible that interrupts occurring now
+ remove this task from the event list again - but as the
+ scheduler is suspended the task will go onto the pending
+ ready last instead of the actual ready list. */
+ prvUnlockQueue( pxQueue );
+
+ /* Resuming the scheduler will move tasks from the pending
+ ready list into the ready list - so it is feasible that this
+ task is already in a ready list before it yields - in which
+ case the yield will not cause a context switch unless there
+ is also a higher priority task in the pending ready list. */
+ if( xTaskResumeAll() == pdFALSE )
+ {
+ portYIELD_WITHIN_API();
+ }
+ }
+ else
+ {
+ /* Try again. */
+ prvUnlockQueue( pxQueue );
+ ( void ) xTaskResumeAll();
+ }
+ }
+ else
+ {
+ /* The timeout has expired. */
+ prvUnlockQueue( pxQueue );
+ ( void ) xTaskResumeAll();
+
+ /* Return to the original privilege level before exiting the
+ function. */
+ traceQUEUE_SEND_FAILED( pxQueue );
+ return errQUEUE_FULL;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_ALTERNATIVE_API == 1 )
+
+ BaseType_t xQueueAltGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, BaseType_t xCopyPosition )
+ {
+ BaseType_t xEntryTimeSet = pdFALSE;
+ TimeOut_t xTimeOut;
+ Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ configASSERT( pxQueue );
+ configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
+
+ for( ;; )
+ {
+ taskENTER_CRITICAL();
+ {
+ /* Is there room on the queue now? To be running we must be
+ the highest priority task wanting to access the queue. */
+ if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
+ {
+ traceQUEUE_SEND( pxQueue );
+ prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
+
+ /* If there was a task waiting for data to arrive on the
+ queue then unblock it now. */
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) == pdTRUE )
+ {
+ /* The unblocked task has a priority higher than
+ our own so yield immediately. */
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ taskEXIT_CRITICAL();
+ return pdPASS;
+ }
+ else
+ {
+ if( xTicksToWait == ( TickType_t ) 0 )
+ {
+ taskEXIT_CRITICAL();
+ return errQUEUE_FULL;
+ }
+ else if( xEntryTimeSet == pdFALSE )
+ {
+ vTaskSetTimeOutState( &xTimeOut );
+ xEntryTimeSet = pdTRUE;
+ }
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ taskENTER_CRITICAL();
+ {
+ if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
+ {
+ if( prvIsQueueFull( pxQueue ) != pdFALSE )
+ {
+ traceBLOCKING_ON_QUEUE_SEND( pxQueue );
+ vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ taskEXIT_CRITICAL();
+ traceQUEUE_SEND_FAILED( pxQueue );
+ return errQUEUE_FULL;
+ }
+ }
+ taskEXIT_CRITICAL();
+ }
+ }
+
+#endif /* configUSE_ALTERNATIVE_API */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_ALTERNATIVE_API == 1 )
+
+ BaseType_t xQueueAltGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, BaseType_t xJustPeeking )
+ {
+ BaseType_t xEntryTimeSet = pdFALSE;
+ TimeOut_t xTimeOut;
+ int8_t *pcOriginalReadPosition;
+ Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ configASSERT( pxQueue );
+ configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
+
+ for( ;; )
+ {
+ taskENTER_CRITICAL();
+ {
+ if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
+ {
+ /* Remember our read position in case we are just peeking. */
+ pcOriginalReadPosition = pxQueue->u.pcReadFrom;
+
+ prvCopyDataFromQueue( pxQueue, pvBuffer );
+
+ if( xJustPeeking == pdFALSE )
+ {
+ traceQUEUE_RECEIVE( pxQueue );
+
+ /* Data is actually being removed (not just peeked). */
+ --( pxQueue->uxMessagesWaiting );
+
+ #if ( configUSE_MUTEXES == 1 )
+ {
+ if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
+ {
+ /* Record the information required to implement
+ priority inheritance should it become necessary. */
+ pxQueue->pxMutexHolder = ( int8_t * ) xTaskGetCurrentTaskHandle();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif
+
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) == pdTRUE )
+ {
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+ else
+ {
+ traceQUEUE_PEEK( pxQueue );
+
+ /* The data is not being removed, so reset our read
+ pointer. */
+ pxQueue->u.pcReadFrom = pcOriginalReadPosition;
+
+ /* The data is being left in the queue, so see if there are
+ any other tasks waiting for the data. */
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ /* Tasks that are removed from the event list will get added to
+ the pending ready list as the scheduler is still suspended. */
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
+ {
+ /* The task waiting has a higher priority than this task. */
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+ taskEXIT_CRITICAL();
+ return pdPASS;
+ }
+ else
+ {
+ if( xTicksToWait == ( TickType_t ) 0 )
+ {
+ taskEXIT_CRITICAL();
+ traceQUEUE_RECEIVE_FAILED( pxQueue );
+ return errQUEUE_EMPTY;
+ }
+ else if( xEntryTimeSet == pdFALSE )
+ {
+ vTaskSetTimeOutState( &xTimeOut );
+ xEntryTimeSet = pdTRUE;
+ }
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ taskENTER_CRITICAL();
+ {
+ if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
+ {
+ if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
+ {
+ traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
+
+ #if ( configUSE_MUTEXES == 1 )
+ {
+ if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
+ {
+ taskENTER_CRITICAL();
+ {
+ vTaskPriorityInherit( ( void * ) pxQueue->pxMutexHolder );
+ }
+ taskEXIT_CRITICAL();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif
+
+ vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ taskEXIT_CRITICAL();
+ traceQUEUE_RECEIVE_FAILED( pxQueue );
+ return errQUEUE_EMPTY;
+ }
+ }
+ taskEXIT_CRITICAL();
+ }
+ }
+
+
+#endif /* configUSE_ALTERNATIVE_API */
+/*-----------------------------------------------------------*/
+
+BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, const void * const pvItemToQueue, BaseType_t * const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition )
+{
+BaseType_t xReturn;
+UBaseType_t uxSavedInterruptStatus;
+Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ configASSERT( pxQueue );
+ configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
+ configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
+
+ /* RTOS ports that support interrupt nesting have the concept of a maximum
+ system call (or maximum API call) interrupt priority. Interrupts that are
+ above the maximum system call priority are kept permanently enabled, even
+ when the RTOS kernel is in a critical section, but cannot make any calls to
+ FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
+ then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
+ failure if a FreeRTOS API function is called from an interrupt that has been
+ assigned a priority above the configured maximum system call priority.
+ Only FreeRTOS functions that end in FromISR can be called from interrupts
+ that have been assigned a priority at or (logically) below the maximum
+ system call interrupt priority. FreeRTOS maintains a separate interrupt
+ safe API to ensure interrupt entry is as fast and as simple as possible.
+ More information (albeit Cortex-M specific) is provided on the following
+ link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
+
+ /* Similar to xQueueGenericSend, except without blocking if there is no room
+ in the queue. Also don't directly wake a task that was blocked on a queue
+ read, instead return a flag to say whether a context switch is required or
+ not (i.e. has a task with a higher priority than us been woken by this
+ post). */
+ uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
+ {
+ if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
+ {
+ traceQUEUE_SEND_FROM_ISR( pxQueue );
+
+ /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
+ semaphore or mutex. That means prvCopyDataToQueue() cannot result
+ in a task disinheriting a priority and prvCopyDataToQueue() can be
+ called here even though the disinherit function does not check if
+ the scheduler is suspended before accessing the ready lists. */
+ ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
+
+ /* The event list is not altered if the queue is locked. This will
+ be done when the queue is unlocked later. */
+ if( pxQueue->xTxLock == queueUNLOCKED )
+ {
+ #if ( configUSE_QUEUE_SETS == 1 )
+ {
+ if( pxQueue->pxQueueSetContainer != NULL )
+ {
+ if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) == pdTRUE )
+ {
+ /* The queue is a member of a queue set, and posting
+ to the queue set caused a higher priority task to
+ unblock. A context switch is required. */
+ if( pxHigherPriorityTaskWoken != NULL )
+ {
+ *pxHigherPriorityTaskWoken = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
+ {
+ /* The task waiting has a higher priority so
+ record that a context switch is required. */
+ if( pxHigherPriorityTaskWoken != NULL )
+ {
+ *pxHigherPriorityTaskWoken = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+ #else /* configUSE_QUEUE_SETS */
+ {
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
+ {
+ /* The task waiting has a higher priority so record that a
+ context switch is required. */
+ if( pxHigherPriorityTaskWoken != NULL )
+ {
+ *pxHigherPriorityTaskWoken = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* configUSE_QUEUE_SETS */
+ }
+ else
+ {
+ /* Increment the lock count so the task that unlocks the queue
+ knows that data was posted while it was locked. */
+ ++( pxQueue->xTxLock );
+ }
+
+ xReturn = pdPASS;
+ }
+ else
+ {
+ traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
+ xReturn = errQUEUE_FULL;
+ }
+ }
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue, BaseType_t * const pxHigherPriorityTaskWoken )
+{
+BaseType_t xReturn;
+UBaseType_t uxSavedInterruptStatus;
+Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
+ item size is 0. Don't directly wake a task that was blocked on a queue
+ read, instead return a flag to say whether a context switch is required or
+ not (i.e. has a task with a higher priority than us been woken by this
+ post). */
+
+ configASSERT( pxQueue );
+
+ /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
+ if the item size is not 0. */
+ configASSERT( pxQueue->uxItemSize == 0 );
+
+ /* Normally a mutex would not be given from an interrupt, especially if
+ there is a mutex holder, as priority inheritance makes no sense for an
+ interrupts, only tasks. */
+ configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->pxMutexHolder != NULL ) ) );
+
+ /* RTOS ports that support interrupt nesting have the concept of a maximum
+ system call (or maximum API call) interrupt priority. Interrupts that are
+ above the maximum system call priority are kept permanently enabled, even
+ when the RTOS kernel is in a critical section, but cannot make any calls to
+ FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
+ then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
+ failure if a FreeRTOS API function is called from an interrupt that has been
+ assigned a priority above the configured maximum system call priority.
+ Only FreeRTOS functions that end in FromISR can be called from interrupts
+ that have been assigned a priority at or (logically) below the maximum
+ system call interrupt priority. FreeRTOS maintains a separate interrupt
+ safe API to ensure interrupt entry is as fast and as simple as possible.
+ More information (albeit Cortex-M specific) is provided on the following
+ link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
+
+ uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
+ {
+ /* When the queue is used to implement a semaphore no data is ever
+ moved through the queue but it is still valid to see if the queue 'has
+ space'. */
+ if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
+ {
+ traceQUEUE_SEND_FROM_ISR( pxQueue );
+
+ /* A task can only have an inherited priority if it is a mutex
+ holder - and if there is a mutex holder then the mutex cannot be
+ given from an ISR. As this is the ISR version of the function it
+ can be assumed there is no mutex holder and no need to determine if
+ priority disinheritance is needed. Simply increase the count of
+ messages (semaphores) available. */
+ ++( pxQueue->uxMessagesWaiting );
+
+ /* The event list is not altered if the queue is locked. This will
+ be done when the queue is unlocked later. */
+ if( pxQueue->xTxLock == queueUNLOCKED )
+ {
+ #if ( configUSE_QUEUE_SETS == 1 )
+ {
+ if( pxQueue->pxQueueSetContainer != NULL )
+ {
+ if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) == pdTRUE )
+ {
+ /* The semaphore is a member of a queue set, and
+ posting to the queue set caused a higher priority
+ task to unblock. A context switch is required. */
+ if( pxHigherPriorityTaskWoken != NULL )
+ {
+ *pxHigherPriorityTaskWoken = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
+ {
+ /* The task waiting has a higher priority so
+ record that a context switch is required. */
+ if( pxHigherPriorityTaskWoken != NULL )
+ {
+ *pxHigherPriorityTaskWoken = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+ #else /* configUSE_QUEUE_SETS */
+ {
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
+ {
+ /* The task waiting has a higher priority so record that a
+ context switch is required. */
+ if( pxHigherPriorityTaskWoken != NULL )
+ {
+ *pxHigherPriorityTaskWoken = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* configUSE_QUEUE_SETS */
+ }
+ else
+ {
+ /* Increment the lock count so the task that unlocks the queue
+ knows that data was posted while it was locked. */
+ ++( pxQueue->xTxLock );
+ }
+
+ xReturn = pdPASS;
+ }
+ else
+ {
+ traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
+ xReturn = errQUEUE_FULL;
+ }
+ }
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xQueueGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, const BaseType_t xJustPeeking )
+{
+BaseType_t xEntryTimeSet = pdFALSE;
+TimeOut_t xTimeOut;
+int8_t *pcOriginalReadPosition;
+Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ configASSERT( pxQueue );
+ configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
+ #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
+ {
+ configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
+ }
+ #endif
+
+ /* This function relaxes the coding standard somewhat to allow return
+ statements within the function itself. This is done in the interest
+ of execution time efficiency. */
+
+ for( ;; )
+ {
+ taskENTER_CRITICAL();
+ {
+ /* Is there data in the queue now? To be running the calling task
+ must be the highest priority task wanting to access the queue. */
+ if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
+ {
+ /* Remember the read position in case the queue is only being
+ peeked. */
+ pcOriginalReadPosition = pxQueue->u.pcReadFrom;
+
+ prvCopyDataFromQueue( pxQueue, pvBuffer );
+
+ if( xJustPeeking == pdFALSE )
+ {
+ traceQUEUE_RECEIVE( pxQueue );
+
+ /* Actually removing data, not just peeking. */
+ --( pxQueue->uxMessagesWaiting );
+
+ #if ( configUSE_MUTEXES == 1 )
+ {
+ if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
+ {
+ /* Record the information required to implement
+ priority inheritance should it become necessary. */
+ pxQueue->pxMutexHolder = ( int8_t * ) pvTaskIncrementMutexHeldCount(); /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* configUSE_MUTEXES */
+
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) == pdTRUE )
+ {
+ queueYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ traceQUEUE_PEEK( pxQueue );
+
+ /* The data is not being removed, so reset the read
+ pointer. */
+ pxQueue->u.pcReadFrom = pcOriginalReadPosition;
+
+ /* The data is being left in the queue, so see if there are
+ any other tasks waiting for the data. */
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
+ {
+ /* The task waiting has a higher priority than this task. */
+ queueYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+ taskEXIT_CRITICAL();
+ return pdPASS;
+ }
+ else
+ {
+ if( xTicksToWait == ( TickType_t ) 0 )
+ {
+ /* The queue was empty and no block time is specified (or
+ the block time has expired) so leave now. */
+ taskEXIT_CRITICAL();
+ traceQUEUE_RECEIVE_FAILED( pxQueue );
+ return errQUEUE_EMPTY;
+ }
+ else if( xEntryTimeSet == pdFALSE )
+ {
+ /* The queue was empty and a block time was specified so
+ configure the timeout structure. */
+ vTaskSetTimeOutState( &xTimeOut );
+ xEntryTimeSet = pdTRUE;
+ }
+ else
+ {
+ /* Entry time was already set. */
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ /* Interrupts and other tasks can send to and receive from the queue
+ now the critical section has been exited. */
+
+ vTaskSuspendAll();
+ prvLockQueue( pxQueue );
+
+ /* Update the timeout state to see if it has expired yet. */
+ if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
+ {
+ if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
+ {
+ traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
+
+ #if ( configUSE_MUTEXES == 1 )
+ {
+ if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
+ {
+ taskENTER_CRITICAL();
+ {
+ vTaskPriorityInherit( ( void * ) pxQueue->pxMutexHolder );
+ }
+ taskEXIT_CRITICAL();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif
+
+ vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
+ prvUnlockQueue( pxQueue );
+ if( xTaskResumeAll() == pdFALSE )
+ {
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ /* Try again. */
+ prvUnlockQueue( pxQueue );
+ ( void ) xTaskResumeAll();
+ }
+ }
+ else
+ {
+ prvUnlockQueue( pxQueue );
+ ( void ) xTaskResumeAll();
+ traceQUEUE_RECEIVE_FAILED( pxQueue );
+ return errQUEUE_EMPTY;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, void * const pvBuffer, BaseType_t * const pxHigherPriorityTaskWoken )
+{
+BaseType_t xReturn;
+UBaseType_t uxSavedInterruptStatus;
+Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ configASSERT( pxQueue );
+ configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
+
+ /* RTOS ports that support interrupt nesting have the concept of a maximum
+ system call (or maximum API call) interrupt priority. Interrupts that are
+ above the maximum system call priority are kept permanently enabled, even
+ when the RTOS kernel is in a critical section, but cannot make any calls to
+ FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
+ then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
+ failure if a FreeRTOS API function is called from an interrupt that has been
+ assigned a priority above the configured maximum system call priority.
+ Only FreeRTOS functions that end in FromISR can be called from interrupts
+ that have been assigned a priority at or (logically) below the maximum
+ system call interrupt priority. FreeRTOS maintains a separate interrupt
+ safe API to ensure interrupt entry is as fast and as simple as possible.
+ More information (albeit Cortex-M specific) is provided on the following
+ link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
+
+ uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
+ {
+ /* Cannot block in an ISR, so check there is data available. */
+ if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
+ {
+ traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
+
+ prvCopyDataFromQueue( pxQueue, pvBuffer );
+ --( pxQueue->uxMessagesWaiting );
+
+ /* If the queue is locked the event list will not be modified.
+ Instead update the lock count so the task that unlocks the queue
+ will know that an ISR has removed data while the queue was
+ locked. */
+ if( pxQueue->xRxLock == queueUNLOCKED )
+ {
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
+ {
+ /* The task waiting has a higher priority than us so
+ force a context switch. */
+ if( pxHigherPriorityTaskWoken != NULL )
+ {
+ *pxHigherPriorityTaskWoken = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ /* Increment the lock count so the task that unlocks the queue
+ knows that data was removed while it was locked. */
+ ++( pxQueue->xRxLock );
+ }
+
+ xReturn = pdPASS;
+ }
+ else
+ {
+ xReturn = pdFAIL;
+ traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
+ }
+ }
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer )
+{
+BaseType_t xReturn;
+UBaseType_t uxSavedInterruptStatus;
+int8_t *pcOriginalReadPosition;
+Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ configASSERT( pxQueue );
+ configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
+ configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
+
+ /* RTOS ports that support interrupt nesting have the concept of a maximum
+ system call (or maximum API call) interrupt priority. Interrupts that are
+ above the maximum system call priority are kept permanently enabled, even
+ when the RTOS kernel is in a critical section, but cannot make any calls to
+ FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
+ then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
+ failure if a FreeRTOS API function is called from an interrupt that has been
+ assigned a priority above the configured maximum system call priority.
+ Only FreeRTOS functions that end in FromISR can be called from interrupts
+ that have been assigned a priority at or (logically) below the maximum
+ system call interrupt priority. FreeRTOS maintains a separate interrupt
+ safe API to ensure interrupt entry is as fast and as simple as possible.
+ More information (albeit Cortex-M specific) is provided on the following
+ link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
+
+ uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
+ {
+ /* Cannot block in an ISR, so check there is data available. */
+ if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
+ {
+ traceQUEUE_PEEK_FROM_ISR( pxQueue );
+
+ /* Remember the read position so it can be reset as nothing is
+ actually being removed from the queue. */
+ pcOriginalReadPosition = pxQueue->u.pcReadFrom;
+ prvCopyDataFromQueue( pxQueue, pvBuffer );
+ pxQueue->u.pcReadFrom = pcOriginalReadPosition;
+
+ xReturn = pdPASS;
+ }
+ else
+ {
+ xReturn = pdFAIL;
+ traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
+ }
+ }
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
+{
+UBaseType_t uxReturn;
+
+ configASSERT( xQueue );
+
+ taskENTER_CRITICAL();
+ {
+ uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
+ }
+ taskEXIT_CRITICAL();
+
+ return uxReturn;
+} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
+/*-----------------------------------------------------------*/
+
+UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
+{
+UBaseType_t uxReturn;
+Queue_t *pxQueue;
+
+ pxQueue = ( Queue_t * ) xQueue;
+ configASSERT( pxQueue );
+
+ taskENTER_CRITICAL();
+ {
+ uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
+ }
+ taskEXIT_CRITICAL();
+
+ return uxReturn;
+} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
+/*-----------------------------------------------------------*/
+
+UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
+{
+UBaseType_t uxReturn;
+
+ configASSERT( xQueue );
+
+ uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
+
+ return uxReturn;
+} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
+/*-----------------------------------------------------------*/
+
+void vQueueDelete( QueueHandle_t xQueue )
+{
+Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ configASSERT( pxQueue );
+
+ traceQUEUE_DELETE( pxQueue );
+ #if ( configQUEUE_REGISTRY_SIZE > 0 )
+ {
+ vQueueUnregisterQueue( pxQueue );
+ }
+ #endif
+ vPortFree( pxQueue );
+}
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_TRACE_FACILITY == 1 )
+
+ UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
+ {
+ return ( ( Queue_t * ) xQueue )->uxQueueNumber;
+ }
+
+#endif /* configUSE_TRACE_FACILITY */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_TRACE_FACILITY == 1 )
+
+ void vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber )
+ {
+ ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
+ }
+
+#endif /* configUSE_TRACE_FACILITY */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_TRACE_FACILITY == 1 )
+
+ uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
+ {
+ return ( ( Queue_t * ) xQueue )->ucQueueType;
+ }
+
+#endif /* configUSE_TRACE_FACILITY */
+/*-----------------------------------------------------------*/
+
+static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition )
+{
+BaseType_t xReturn = pdFALSE;
+
+ if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
+ {
+ #if ( configUSE_MUTEXES == 1 )
+ {
+ if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
+ {
+ /* The mutex is no longer being held. */
+ xReturn = xTaskPriorityDisinherit( ( void * ) pxQueue->pxMutexHolder );
+ pxQueue->pxMutexHolder = NULL;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* configUSE_MUTEXES */
+ }
+ else if( xPosition == queueSEND_TO_BACK )
+ {
+ ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. */
+ pxQueue->pcWriteTo += pxQueue->uxItemSize;
+ if( pxQueue->pcWriteTo >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
+ {
+ pxQueue->pcWriteTo = pxQueue->pcHead;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ ( void ) memcpy( ( void * ) pxQueue->u.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
+ pxQueue->u.pcReadFrom -= pxQueue->uxItemSize;
+ if( pxQueue->u.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
+ {
+ pxQueue->u.pcReadFrom = ( pxQueue->pcTail - pxQueue->uxItemSize );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ if( xPosition == queueOVERWRITE )
+ {
+ if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
+ {
+ /* An item is not being added but overwritten, so subtract
+ one from the recorded number of items in the queue so when
+ one is added again below the number of recorded items remains
+ correct. */
+ --( pxQueue->uxMessagesWaiting );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+ ++( pxQueue->uxMessagesWaiting );
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer )
+{
+ if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
+ {
+ pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
+ if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
+ {
+ pxQueue->u.pcReadFrom = pxQueue->pcHead;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. */
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvUnlockQueue( Queue_t * const pxQueue )
+{
+ /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
+
+ /* The lock counts contains the number of extra data items placed or
+ removed from the queue while the queue was locked. When a queue is
+ locked items can be added or removed, but the event lists cannot be
+ updated. */
+ taskENTER_CRITICAL();
+ {
+ /* See if data was added to the queue while it was locked. */
+ while( pxQueue->xTxLock > queueLOCKED_UNMODIFIED )
+ {
+ /* Data was posted while the queue was locked. Are any tasks
+ blocked waiting for data to become available? */
+ #if ( configUSE_QUEUE_SETS == 1 )
+ {
+ if( pxQueue->pxQueueSetContainer != NULL )
+ {
+ if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) == pdTRUE )
+ {
+ /* The queue is a member of a queue set, and posting to
+ the queue set caused a higher priority task to unblock.
+ A context switch is required. */
+ vTaskMissedYield();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ /* Tasks that are removed from the event list will get added to
+ the pending ready list as the scheduler is still suspended. */
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
+ {
+ /* The task waiting has a higher priority so record that a
+ context switch is required. */
+ vTaskMissedYield();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ break;
+ }
+ }
+ }
+ #else /* configUSE_QUEUE_SETS */
+ {
+ /* Tasks that are removed from the event list will get added to
+ the pending ready list as the scheduler is still suspended. */
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
+ {
+ /* The task waiting has a higher priority so record that a
+ context switch is required. */
+ vTaskMissedYield();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ break;
+ }
+ }
+ #endif /* configUSE_QUEUE_SETS */
+
+ --( pxQueue->xTxLock );
+ }
+
+ pxQueue->xTxLock = queueUNLOCKED;
+ }
+ taskEXIT_CRITICAL();
+
+ /* Do the same for the Rx lock. */
+ taskENTER_CRITICAL();
+ {
+ while( pxQueue->xRxLock > queueLOCKED_UNMODIFIED )
+ {
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
+ {
+ vTaskMissedYield();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ --( pxQueue->xRxLock );
+ }
+ else
+ {
+ break;
+ }
+ }
+
+ pxQueue->xRxLock = queueUNLOCKED;
+ }
+ taskEXIT_CRITICAL();
+}
+/*-----------------------------------------------------------*/
+
+static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue )
+{
+BaseType_t xReturn;
+
+ taskENTER_CRITICAL();
+ {
+ if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
+ {
+ xReturn = pdTRUE;
+ }
+ else
+ {
+ xReturn = pdFALSE;
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
+{
+BaseType_t xReturn;
+
+ configASSERT( xQueue );
+ if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( UBaseType_t ) 0 )
+ {
+ xReturn = pdTRUE;
+ }
+ else
+ {
+ xReturn = pdFALSE;
+ }
+
+ return xReturn;
+} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
+/*-----------------------------------------------------------*/
+
+static BaseType_t prvIsQueueFull( const Queue_t *pxQueue )
+{
+BaseType_t xReturn;
+
+ taskENTER_CRITICAL();
+ {
+ if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
+ {
+ xReturn = pdTRUE;
+ }
+ else
+ {
+ xReturn = pdFALSE;
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
+{
+BaseType_t xReturn;
+
+ configASSERT( xQueue );
+ if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( ( Queue_t * ) xQueue )->uxLength )
+ {
+ xReturn = pdTRUE;
+ }
+ else
+ {
+ xReturn = pdFALSE;
+ }
+
+ return xReturn;
+} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_CO_ROUTINES == 1 )
+
+ BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait )
+ {
+ BaseType_t xReturn;
+ Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ /* If the queue is already full we may have to block. A critical section
+ is required to prevent an interrupt removing something from the queue
+ between the check to see if the queue is full and blocking on the queue. */
+ portDISABLE_INTERRUPTS();
+ {
+ if( prvIsQueueFull( pxQueue ) != pdFALSE )
+ {
+ /* The queue is full - do we want to block or just leave without
+ posting? */
+ if( xTicksToWait > ( TickType_t ) 0 )
+ {
+ /* As this is called from a coroutine we cannot block directly, but
+ return indicating that we need to block. */
+ vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
+ portENABLE_INTERRUPTS();
+ return errQUEUE_BLOCKED;
+ }
+ else
+ {
+ portENABLE_INTERRUPTS();
+ return errQUEUE_FULL;
+ }
+ }
+ }
+ portENABLE_INTERRUPTS();
+
+ portDISABLE_INTERRUPTS();
+ {
+ if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
+ {
+ /* There is room in the queue, copy the data into the queue. */
+ prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
+ xReturn = pdPASS;
+
+ /* Were any co-routines waiting for data to become available? */
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ /* In this instance the co-routine could be placed directly
+ into the ready list as we are within a critical section.
+ Instead the same pending ready list mechanism is used as if
+ the event were caused from within an interrupt. */
+ if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
+ {
+ /* The co-routine waiting has a higher priority so record
+ that a yield might be appropriate. */
+ xReturn = errQUEUE_YIELD;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ xReturn = errQUEUE_FULL;
+ }
+ }
+ portENABLE_INTERRUPTS();
+
+ return xReturn;
+ }
+
+#endif /* configUSE_CO_ROUTINES */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_CO_ROUTINES == 1 )
+
+ BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait )
+ {
+ BaseType_t xReturn;
+ Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ /* If the queue is already empty we may have to block. A critical section
+ is required to prevent an interrupt adding something to the queue
+ between the check to see if the queue is empty and blocking on the queue. */
+ portDISABLE_INTERRUPTS();
+ {
+ if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
+ {
+ /* There are no messages in the queue, do we want to block or just
+ leave with nothing? */
+ if( xTicksToWait > ( TickType_t ) 0 )
+ {
+ /* As this is a co-routine we cannot block directly, but return
+ indicating that we need to block. */
+ vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
+ portENABLE_INTERRUPTS();
+ return errQUEUE_BLOCKED;
+ }
+ else
+ {
+ portENABLE_INTERRUPTS();
+ return errQUEUE_FULL;
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ portENABLE_INTERRUPTS();
+
+ portDISABLE_INTERRUPTS();
+ {
+ if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
+ {
+ /* Data is available from the queue. */
+ pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
+ if( pxQueue->u.pcReadFrom >= pxQueue->pcTail )
+ {
+ pxQueue->u.pcReadFrom = pxQueue->pcHead;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ --( pxQueue->uxMessagesWaiting );
+ ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
+
+ xReturn = pdPASS;
+
+ /* Were any co-routines waiting for space to become available? */
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
+ {
+ /* In this instance the co-routine could be placed directly
+ into the ready list as we are within a critical section.
+ Instead the same pending ready list mechanism is used as if
+ the event were caused from within an interrupt. */
+ if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
+ {
+ xReturn = errQUEUE_YIELD;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ xReturn = pdFAIL;
+ }
+ }
+ portENABLE_INTERRUPTS();
+
+ return xReturn;
+ }
+
+#endif /* configUSE_CO_ROUTINES */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_CO_ROUTINES == 1 )
+
+ BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken )
+ {
+ Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ /* Cannot block within an ISR so if there is no space on the queue then
+ exit without doing anything. */
+ if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
+ {
+ prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
+
+ /* We only want to wake one co-routine per ISR, so check that a
+ co-routine has not already been woken. */
+ if( xCoRoutinePreviouslyWoken == pdFALSE )
+ {
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
+ {
+ return pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ return xCoRoutinePreviouslyWoken;
+ }
+
+#endif /* configUSE_CO_ROUTINES */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_CO_ROUTINES == 1 )
+
+ BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxCoRoutineWoken )
+ {
+ BaseType_t xReturn;
+ Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ /* We cannot block from an ISR, so check there is data available. If
+ not then just leave without doing anything. */
+ if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
+ {
+ /* Copy the data from the queue. */
+ pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
+ if( pxQueue->u.pcReadFrom >= pxQueue->pcTail )
+ {
+ pxQueue->u.pcReadFrom = pxQueue->pcHead;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ --( pxQueue->uxMessagesWaiting );
+ ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
+
+ if( ( *pxCoRoutineWoken ) == pdFALSE )
+ {
+ if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
+ {
+ if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
+ {
+ *pxCoRoutineWoken = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ xReturn = pdPASS;
+ }
+ else
+ {
+ xReturn = pdFAIL;
+ }
+
+ return xReturn;
+ }
+
+#endif /* configUSE_CO_ROUTINES */
+/*-----------------------------------------------------------*/
+
+#if ( configQUEUE_REGISTRY_SIZE > 0 )
+
+ void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+ {
+ UBaseType_t ux;
+
+ /* See if there is an empty space in the registry. A NULL name denotes
+ a free slot. */
+ for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
+ {
+ if( xQueueRegistry[ ux ].pcQueueName == NULL )
+ {
+ /* Store the information on this queue. */
+ xQueueRegistry[ ux ].pcQueueName = pcQueueName;
+ xQueueRegistry[ ux ].xHandle = xQueue;
+
+ traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
+ break;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+
+#endif /* configQUEUE_REGISTRY_SIZE */
+/*-----------------------------------------------------------*/
+
+#if ( configQUEUE_REGISTRY_SIZE > 0 )
+
+ void vQueueUnregisterQueue( QueueHandle_t xQueue )
+ {
+ UBaseType_t ux;
+
+ /* See if the handle of the queue being unregistered in actually in the
+ registry. */
+ for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
+ {
+ if( xQueueRegistry[ ux ].xHandle == xQueue )
+ {
+ /* Set the name to NULL to show that this slot if free again. */
+ xQueueRegistry[ ux ].pcQueueName = NULL;
+ break;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+ } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
+
+#endif /* configQUEUE_REGISTRY_SIZE */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_TIMERS == 1 )
+
+ void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely )
+ {
+ Queue_t * const pxQueue = ( Queue_t * ) xQueue;
+
+ /* This function should not be called by application code hence the
+ 'Restricted' in its name. It is not part of the public API. It is
+ designed for use by kernel code, and has special calling requirements.
+ It can result in vListInsert() being called on a list that can only
+ possibly ever have one item in it, so the list will be fast, but even
+ so it should be called with the scheduler locked and not from a critical
+ section. */
+
+ /* Only do anything if there are no messages in the queue. This function
+ will not actually cause the task to block, just place it on a blocked
+ list. It will not block until the scheduler is unlocked - at which
+ time a yield will be performed. If an item is added to the queue while
+ the queue is locked, and the calling task blocks on the queue, then the
+ calling task will be immediately unblocked when the queue is unlocked. */
+ prvLockQueue( pxQueue );
+ if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
+ {
+ /* There is nothing in the queue, block for the specified period. */
+ vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ prvUnlockQueue( pxQueue );
+ }
+
+#endif /* configUSE_TIMERS */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_QUEUE_SETS == 1 )
+
+ QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
+ {
+ QueueSetHandle_t pxQueue;
+
+ pxQueue = xQueueGenericCreate( uxEventQueueLength, sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
+
+ return pxQueue;
+ }
+
+#endif /* configUSE_QUEUE_SETS */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_QUEUE_SETS == 1 )
+
+ BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet )
+ {
+ BaseType_t xReturn;
+
+ taskENTER_CRITICAL();
+ {
+ if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
+ {
+ /* Cannot add a queue/semaphore to more than one queue set. */
+ xReturn = pdFAIL;
+ }
+ else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
+ {
+ /* Cannot add a queue/semaphore to a queue set if there are already
+ items in the queue/semaphore. */
+ xReturn = pdFAIL;
+ }
+ else
+ {
+ ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
+ xReturn = pdPASS;
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ return xReturn;
+ }
+
+#endif /* configUSE_QUEUE_SETS */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_QUEUE_SETS == 1 )
+
+ BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet )
+ {
+ BaseType_t xReturn;
+ Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
+
+ if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
+ {
+ /* The queue was not a member of the set. */
+ xReturn = pdFAIL;
+ }
+ else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
+ {
+ /* It is dangerous to remove a queue from a set when the queue is
+ not empty because the queue set will still hold pending events for
+ the queue. */
+ xReturn = pdFAIL;
+ }
+ else
+ {
+ taskENTER_CRITICAL();
+ {
+ /* The queue is no longer contained in the set. */
+ pxQueueOrSemaphore->pxQueueSetContainer = NULL;
+ }
+ taskEXIT_CRITICAL();
+ xReturn = pdPASS;
+ }
+
+ return xReturn;
+ } /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
+
+#endif /* configUSE_QUEUE_SETS */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_QUEUE_SETS == 1 )
+
+ QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, TickType_t const xTicksToWait )
+ {
+ QueueSetMemberHandle_t xReturn = NULL;
+
+ ( void ) xQueueGenericReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait, pdFALSE ); /*lint !e961 Casting from one typedef to another is not redundant. */
+ return xReturn;
+ }
+
+#endif /* configUSE_QUEUE_SETS */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_QUEUE_SETS == 1 )
+
+ QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
+ {
+ QueueSetMemberHandle_t xReturn = NULL;
+
+ ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
+ return xReturn;
+ }
+
+#endif /* configUSE_QUEUE_SETS */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_QUEUE_SETS == 1 )
+
+ static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition )
+ {
+ Queue_t *pxQueueSetContainer = pxQueue->pxQueueSetContainer;
+ BaseType_t xReturn = pdFALSE;
+
+ /* This function must be called form a critical section. */
+
+ configASSERT( pxQueueSetContainer );
+ configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
+
+ if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
+ {
+ traceQUEUE_SEND( pxQueueSetContainer );
+
+ /* The data copied is the handle of the queue that contains data. */
+ xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, xCopyPosition );
+
+ if( pxQueueSetContainer->xTxLock == queueUNLOCKED )
+ {
+ if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
+ {
+ if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
+ {
+ /* The task waiting has a higher priority. */
+ xReturn = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ ( pxQueueSetContainer->xTxLock )++;
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ return xReturn;
+ }
+
+#endif /* configUSE_QUEUE_SETS */
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/src/FreeRTOS-Sim-master/Source/readme.txt b/src/FreeRTOS-Sim-master/Source/readme.txt
new file mode 100644
index 0000000..81518ec
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/readme.txt
@@ -0,0 +1,17 @@
+Each real time kernel port consists of three files that contain the core kernel
+components and are common to every port, and one or more files that are
+specific to a particular microcontroller and or compiler.
+
++ The FreeRTOS/Source directory contains the three files that are common to
+every port - list.c, queue.c and tasks.c. The kernel is contained within these
+three files. croutine.c implements the optional co-routine functionality - which
+is normally only used on very memory limited systems.
+
++ The FreeRTOS/Source/Portable directory contains the files that are specific to
+a particular microcontroller and or compiler.
+
++ The FreeRTOS/Source/include directory contains the real time kernel header
+files.
+
+See the readme file in the FreeRTOS/Source/Portable directory for more
+information. \ No newline at end of file
diff --git a/src/FreeRTOS-Sim-master/Source/tasks.c b/src/FreeRTOS-Sim-master/Source/tasks.c
new file mode 100644
index 0000000..2d0c4bb
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/tasks.c
@@ -0,0 +1,4449 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/* Standard includes. */
+#include <stdlib.h>
+#include <string.h>
+
+/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
+all the API functions to use the MPU wrappers. That should only be done when
+task.h is included from an application file. */
+#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+/* FreeRTOS includes. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "timers.h"
+#include "StackMacros.h"
+
+/* Lint e961 and e750 are suppressed as a MISRA exception justified because the
+MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
+header files above, but not in this file, in order to generate the correct
+privileged Vs unprivileged linkage and placement. */
+#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
+
+/* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
+functions but without including stdio.h here. */
+#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
+ /* At the bottom of this file are two optional functions that can be used
+ to generate human readable text from the raw data generated by the
+ uxTaskGetSystemState() function. Note the formatting functions are provided
+ for convenience only, and are NOT considered part of the kernel. */
+ #include <stdio.h>
+#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
+
+/* Sanity check the configuration. */
+#if( configUSE_TICKLESS_IDLE != 0 )
+ #if( INCLUDE_vTaskSuspend != 1 )
+ #error INCLUDE_vTaskSuspend must be set to 1 if configUSE_TICKLESS_IDLE is not set to 0
+ #endif /* INCLUDE_vTaskSuspend */
+#endif /* configUSE_TICKLESS_IDLE */
+
+/*
+ * Defines the size, in words, of the stack allocated to the idle task.
+ */
+#define tskIDLE_STACK_SIZE configMINIMAL_STACK_SIZE
+
+#if( configUSE_PREEMPTION == 0 )
+ /* If the cooperative scheduler is being used then a yield should not be
+ performed just because a higher priority task has been woken. */
+ #define taskYIELD_IF_USING_PREEMPTION()
+#else
+ #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
+#endif
+
+/* Value that can be assigned to the eNotifyState member of the TCB. */
+typedef enum
+{
+ eNotWaitingNotification = 0,
+ eWaitingNotification,
+ eNotified
+} eNotifyValue;
+
+/*
+ * Task control block. A task control block (TCB) is allocated for each task,
+ * and stores task state information, including a pointer to the task's context
+ * (the task's run time environment, including register values)
+ */
+typedef struct tskTaskControlBlock
+{
+ volatile StackType_t *pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
+
+ #if ( portUSING_MPU_WRAPPERS == 1 )
+ xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
+ BaseType_t xUsingStaticallyAllocatedStack; /* Set to pdTRUE if the stack is a statically allocated array, and pdFALSE if the stack is dynamically allocated. */
+ #endif
+
+ ListItem_t xGenericListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
+ ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
+ UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
+ StackType_t *pxStack; /*< Points to the start of the stack. */
+ char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+
+ #if ( portSTACK_GROWTH > 0 )
+ StackType_t *pxEndOfStack; /*< Points to the end of the stack on architectures where the stack grows up from low memory. */
+ #endif
+
+ #if ( portCRITICAL_NESTING_IN_TCB == 1 )
+ UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
+ #endif
+
+ #if ( configUSE_TRACE_FACILITY == 1 )
+ UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
+ UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
+ #endif
+
+ #if ( configUSE_MUTEXES == 1 )
+ UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
+ UBaseType_t uxMutexesHeld;
+ #endif
+
+ #if ( configUSE_APPLICATION_TASK_TAG == 1 )
+ TaskHookFunction_t pxTaskTag;
+ #endif
+
+ #if( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
+ void *pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
+ #endif
+
+ #if ( configGENERATE_RUN_TIME_STATS == 1 )
+ uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
+ #endif
+
+ #if ( configUSE_NEWLIB_REENTRANT == 1 )
+ /* Allocate a Newlib reent structure that is specific to this task.
+ Note Newlib support has been included by popular demand, but is not
+ used by the FreeRTOS maintainers themselves. FreeRTOS is not
+ responsible for resulting newlib operation. User must be familiar with
+ newlib and must provide system-wide implementations of the necessary
+ stubs. Be warned that (at the time of writing) the current newlib design
+ implements a system-wide malloc() that must be provided with locks. */
+ struct _reent xNewLib_reent;
+ #endif
+
+ #if ( configUSE_TASK_NOTIFICATIONS == 1 )
+ volatile uint32_t ulNotifiedValue;
+ volatile eNotifyValue eNotifyState;
+ #endif
+
+} tskTCB;
+
+/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
+below to enable the use of older kernel aware debuggers. */
+typedef tskTCB TCB_t;
+
+/*
+ * Some kernel aware debuggers require the data the debugger needs access to to
+ * be global, rather than file scope.
+ */
+#ifdef portREMOVE_STATIC_QUALIFIER
+ #define static
+#endif
+
+/*lint -e956 A manual analysis and inspection has been used to determine which
+static variables must be declared volatile. */
+
+PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
+
+/* Lists for ready and blocked tasks. --------------------*/
+PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ];/*< Prioritised ready tasks. */
+PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
+PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
+PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
+PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
+PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
+
+#if ( INCLUDE_vTaskDelete == 1 )
+
+ PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
+ PRIVILEGED_DATA static volatile UBaseType_t uxTasksDeleted = ( UBaseType_t ) 0U;
+
+#endif
+
+#if ( INCLUDE_vTaskSuspend == 1 )
+
+ PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
+
+#endif
+
+#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
+
+ PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
+
+#endif
+
+/* Other file private variables. --------------------------------*/
+PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
+PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) 0U;
+PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
+PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
+PRIVILEGED_DATA static volatile UBaseType_t uxPendedTicks = ( UBaseType_t ) 0U;
+PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
+PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
+PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
+PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY; before the scheduler starts. */
+
+/* Context switches are held pending while the scheduler is suspended. Also,
+interrupts must not manipulate the xGenericListItem of a TCB, or any of the
+lists the xGenericListItem can be referenced from, if the scheduler is suspended.
+If an interrupt needs to unblock a task while the scheduler is suspended then it
+moves the task's event list item into the xPendingReadyList, ready for the
+kernel to move the task from the pending ready list into the real ready list
+when the scheduler is unsuspended. The pending ready list itself can only be
+accessed from a critical section. */
+PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
+
+#if ( configGENERATE_RUN_TIME_STATS == 1 )
+
+ PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
+ PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
+
+#endif
+
+/*lint +e956 */
+
+/* Debugging and trace facilities private variables and macros. ------------*/
+
+/*
+ * The value used to fill the stack of a task when the task is created. This
+ * is used purely for checking the high water mark for tasks.
+ */
+#define tskSTACK_FILL_BYTE ( 0xa5U )
+
+/*
+ * Macros used by vListTask to indicate which state a task is in.
+ */
+#define tskBLOCKED_CHAR ( 'B' )
+#define tskREADY_CHAR ( 'R' )
+#define tskDELETED_CHAR ( 'D' )
+#define tskSUSPENDED_CHAR ( 'S' )
+
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
+
+ /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
+ performed in a generic way that is not optimised to any particular
+ microcontroller architecture. */
+
+ /* uxTopReadyPriority holds the priority of the highest priority ready
+ state task. */
+ #define taskRECORD_READY_PRIORITY( uxPriority ) \
+ { \
+ if( ( uxPriority ) > uxTopReadyPriority ) \
+ { \
+ uxTopReadyPriority = ( uxPriority ); \
+ } \
+ } /* taskRECORD_READY_PRIORITY */
+
+ /*-----------------------------------------------------------*/
+
+ #define taskSELECT_HIGHEST_PRIORITY_TASK() \
+ { \
+ /* Find the highest priority queue that contains ready tasks. */ \
+ while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopReadyPriority ] ) ) ) \
+ { \
+ configASSERT( uxTopReadyPriority ); \
+ --uxTopReadyPriority; \
+ } \
+ \
+ /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
+ the same priority get an equal share of the processor time. */ \
+ listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopReadyPriority ] ) ); \
+ } /* taskSELECT_HIGHEST_PRIORITY_TASK */
+
+ /*-----------------------------------------------------------*/
+
+ /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
+ they are only required when a port optimised method of task selection is
+ being used. */
+ #define taskRESET_READY_PRIORITY( uxPriority )
+ #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
+
+#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
+
+ /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
+ performed in a way that is tailored to the particular microcontroller
+ architecture being used. */
+
+ /* A port optimised version is provided. Call the port defined macros. */
+ #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
+
+ /*-----------------------------------------------------------*/
+
+ #define taskSELECT_HIGHEST_PRIORITY_TASK() \
+ { \
+ UBaseType_t uxTopPriority; \
+ \
+ /* Find the highest priority queue that contains ready tasks. */ \
+ portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
+ configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
+ listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
+ } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
+
+ /*-----------------------------------------------------------*/
+
+ /* A port optimised version is provided, call it only if the TCB being reset
+ is being referenced from a ready list. If it is referenced from a delayed
+ or suspended list then it won't be in a ready list. */
+ #define taskRESET_READY_PRIORITY( uxPriority ) \
+ { \
+ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
+ { \
+ portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
+ } \
+ }
+
+#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
+
+/*-----------------------------------------------------------*/
+
+/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
+count overflows. */
+#define taskSWITCH_DELAYED_LISTS() \
+{ \
+ List_t *pxTemp; \
+ \
+ /* The delayed tasks list should be empty when the lists are switched. */ \
+ configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
+ \
+ pxTemp = pxDelayedTaskList; \
+ pxDelayedTaskList = pxOverflowDelayedTaskList; \
+ pxOverflowDelayedTaskList = pxTemp; \
+ xNumOfOverflows++; \
+ prvResetNextTaskUnblockTime(); \
+}
+
+/*-----------------------------------------------------------*/
+
+/*
+ * Place the task represented by pxTCB into the appropriate ready list for
+ * the task. It is inserted at the end of the list.
+ */
+#define prvAddTaskToReadyList( pxTCB ) \
+ traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
+ taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
+ vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xGenericListItem ) )
+/*-----------------------------------------------------------*/
+
+/*
+ * Several functions take an TaskHandle_t parameter that can optionally be NULL,
+ * where NULL is used to indicate that the handle of the currently executing
+ * task should be used in place of the parameter. This macro simply checks to
+ * see if the parameter is NULL and returns a pointer to the appropriate TCB.
+ */
+#define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( TCB_t * ) pxCurrentTCB : ( TCB_t * ) ( pxHandle ) )
+
+/* The item value of the event list item is normally used to hold the priority
+of the task to which it belongs (coded to allow it to be held in reverse
+priority order). However, it is occasionally borrowed for other purposes. It
+is important its value is not updated due to a task priority change while it is
+being used for another purpose. The following bit definition is used to inform
+the scheduler that the value should not be changed - in which case it is the
+responsibility of whichever module is using the value to ensure it gets set back
+to its original value when it is released. */
+#if configUSE_16_BIT_TICKS == 1
+ #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
+#else
+ #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
+#endif
+
+/* Callback function prototypes. --------------------------*/
+#if configCHECK_FOR_STACK_OVERFLOW > 0
+ extern void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName );
+#endif
+
+#if configUSE_TICK_HOOK > 0
+ extern void vApplicationTickHook( void );
+#endif
+
+/* File private functions. --------------------------------*/
+
+/*
+ * Utility to ready a TCB for a given task. Mainly just copies the parameters
+ * into the TCB structure.
+ */
+static void prvInitialiseTCBVariables( TCB_t * const pxTCB, const char * const pcName, UBaseType_t uxPriority, const MemoryRegion_t * const xRegions, const uint16_t usStackDepth ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+
+/**
+ * Utility task that simply returns pdTRUE if the task referenced by xTask is
+ * currently in the Suspended state, or pdFALSE if the task referenced by xTask
+ * is in any other state.
+ */
+#if ( INCLUDE_vTaskSuspend == 1 )
+ static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+#endif /* INCLUDE_vTaskSuspend */
+
+/*
+ * Utility to ready all the lists used by the scheduler. This is called
+ * automatically upon the creation of the first task.
+ */
+static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * The idle task, which as all tasks is implemented as a never ending loop.
+ * The idle task is automatically created and added to the ready lists upon
+ * creation of the first user task.
+ *
+ * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
+ * language extensions. The equivalent prototype for this function is:
+ *
+ * void prvIdleTask( void *pvParameters );
+ *
+ */
+static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters );
+
+/*
+ * Utility to free all memory allocated by the scheduler to hold a TCB,
+ * including the stack pointed to by the TCB.
+ *
+ * This does not free memory allocated by the task itself (i.e. memory
+ * allocated by calls to pvPortMalloc from within the tasks application code).
+ */
+#if ( INCLUDE_vTaskDelete == 1 )
+
+ static void prvDeleteTCB( TCB_t *pxTCB ) PRIVILEGED_FUNCTION;
+
+#endif
+
+/*
+ * Used only by the idle task. This checks to see if anything has been placed
+ * in the list of tasks waiting to be deleted. If so the task is cleaned up
+ * and its TCB deleted.
+ */
+static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * The currently executing task is entering the Blocked state. Add the task to
+ * either the current or the overflow delayed task list.
+ */
+static void prvAddCurrentTaskToDelayedList( const TickType_t xTimeToWake ) PRIVILEGED_FUNCTION;
+
+/*
+ * Allocates memory from the heap for a TCB and associated stack. Checks the
+ * allocation was successful.
+ */
+static TCB_t *prvAllocateTCBAndStack( const uint16_t usStackDepth, StackType_t * const puxStackBuffer ) PRIVILEGED_FUNCTION;
+
+/*
+ * Fills an TaskStatus_t structure with information on each task that is
+ * referenced from the pxList list (which may be a ready list, a delayed list,
+ * a suspended list, etc.).
+ *
+ * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
+ * NORMAL APPLICATION CODE.
+ */
+#if ( configUSE_TRACE_FACILITY == 1 )
+
+ static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) PRIVILEGED_FUNCTION;
+
+#endif
+
+/*
+ * When a task is created, the stack of the task is filled with a known value.
+ * This function determines the 'high water mark' of the task stack by
+ * determining how much of the stack remains at the original preset value.
+ */
+#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
+
+ static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
+
+#endif
+
+/*
+ * Return the amount of time, in ticks, that will pass before the kernel will
+ * next move a task from the Blocked state to the Running state.
+ *
+ * This conditional compilation should use inequality to 0, not equality to 1.
+ * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
+ * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
+ * set to a value other than 1.
+ */
+#if ( configUSE_TICKLESS_IDLE != 0 )
+
+ static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
+
+#endif
+
+/*
+ * Set xNextTaskUnblockTime to the time at which the next Blocked state task
+ * will exit the Blocked state.
+ */
+static void prvResetNextTaskUnblockTime( void );
+
+#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
+
+ /*
+ * Helper function used to pad task names with spaces when printing out
+ * human readable tables of task information.
+ */
+ static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName );
+
+#endif
+/*-----------------------------------------------------------*/
+
+BaseType_t xTaskGenericCreate( TaskFunction_t pxTaskCode, const char * const pcName, const uint16_t usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, StackType_t * const puxStackBuffer, const MemoryRegion_t * const xRegions ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+{
+BaseType_t xReturn;
+TCB_t * pxNewTCB;
+StackType_t *pxTopOfStack;
+
+ configASSERT( pxTaskCode );
+ configASSERT( ( ( uxPriority & ( UBaseType_t ) ( ~portPRIVILEGE_BIT ) ) < ( UBaseType_t ) configMAX_PRIORITIES ) );
+
+ /* Allocate the memory required by the TCB and stack for the new task,
+ checking that the allocation was successful. */
+ pxNewTCB = prvAllocateTCBAndStack( usStackDepth, puxStackBuffer );
+
+ if( pxNewTCB != NULL )
+ {
+ #if( portUSING_MPU_WRAPPERS == 1 )
+ /* Should the task be created in privileged mode? */
+ BaseType_t xRunPrivileged;
+ if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
+ {
+ xRunPrivileged = pdTRUE;
+ }
+ else
+ {
+ xRunPrivileged = pdFALSE;
+ }
+ uxPriority &= ~portPRIVILEGE_BIT;
+
+ if( puxStackBuffer != NULL )
+ {
+ /* The application provided its own stack. Note this so no
+ attempt is made to delete the stack should that task be
+ deleted. */
+ pxNewTCB->xUsingStaticallyAllocatedStack = pdTRUE;
+ }
+ else
+ {
+ /* The stack was allocated dynamically. Note this so it can be
+ deleted again if the task is deleted. */
+ pxNewTCB->xUsingStaticallyAllocatedStack = pdFALSE;
+ }
+ #endif /* portUSING_MPU_WRAPPERS == 1 */
+
+ /* Calculate the top of stack address. This depends on whether the
+ stack grows from high memory to low (as per the 80x86) or vice versa.
+ portSTACK_GROWTH is used to make the result positive or negative as
+ required by the port. */
+ #if( portSTACK_GROWTH < 0 )
+ {
+ pxTopOfStack = pxNewTCB->pxStack + ( usStackDepth - ( uint16_t ) 1 );
+ pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. */
+
+ /* Check the alignment of the calculated top of stack is correct. */
+ configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
+ }
+ #else /* portSTACK_GROWTH */
+ {
+ pxTopOfStack = pxNewTCB->pxStack;
+
+ /* Check the alignment of the stack buffer is correct. */
+ configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
+
+ /* If we want to use stack checking on architectures that use
+ a positive stack growth direction then we also need to store the
+ other extreme of the stack space. */
+ pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( usStackDepth - 1 );
+ }
+ #endif /* portSTACK_GROWTH */
+
+ /* Setup the newly allocated TCB with the initial state of the task. */
+ prvInitialiseTCBVariables( pxNewTCB, pcName, uxPriority, xRegions, usStackDepth );
+
+ /* Initialize the TCB stack to look as if the task was already running,
+ but had been interrupted by the scheduler. The return address is set
+ to the start of the task function. Once the stack has been initialised
+ the top of stack variable is updated. */
+ #if( portUSING_MPU_WRAPPERS == 1 )
+ {
+ pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
+ }
+ #else /* portUSING_MPU_WRAPPERS */
+ {
+ pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
+ }
+ #endif /* portUSING_MPU_WRAPPERS */
+
+ if( ( void * ) pxCreatedTask != NULL )
+ {
+ /* Pass the TCB out - in an anonymous way. The calling function/
+ task can use this as a handle to delete the task later if
+ required.*/
+ *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Ensure interrupts don't access the task lists while they are being
+ updated. */
+ taskENTER_CRITICAL();
+ {
+ uxCurrentNumberOfTasks++;
+ if( pxCurrentTCB == NULL )
+ {
+ /* There are no other tasks, or all the other tasks are in
+ the suspended state - make this the current task. */
+ pxCurrentTCB = pxNewTCB;
+
+ if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
+ {
+ /* This is the first task to be created so do the preliminary
+ initialisation required. We will not recover if this call
+ fails, but we will report the failure. */
+ prvInitialiseTaskLists();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ /* If the scheduler is not already running, make this task the
+ current task if it is the highest priority task to be created
+ so far. */
+ if( xSchedulerRunning == pdFALSE )
+ {
+ if( pxCurrentTCB->uxPriority <= uxPriority )
+ {
+ pxCurrentTCB = pxNewTCB;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+ uxTaskNumber++;
+
+ #if ( configUSE_TRACE_FACILITY == 1 )
+ {
+ /* Add a counter into the TCB for tracing only. */
+ pxNewTCB->uxTCBNumber = uxTaskNumber;
+ }
+ #endif /* configUSE_TRACE_FACILITY */
+ traceTASK_CREATE( pxNewTCB );
+
+ prvAddTaskToReadyList( pxNewTCB );
+
+ xReturn = pdPASS;
+ portSETUP_TCB( pxNewTCB );
+ }
+ taskEXIT_CRITICAL();
+ }
+ else
+ {
+ xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
+ traceTASK_CREATE_FAILED();
+ }
+
+ if( xReturn == pdPASS )
+ {
+ if( xSchedulerRunning != pdFALSE )
+ {
+ /* If the created task is of a higher priority than the current task
+ then it should run now. */
+ if( pxCurrentTCB->uxPriority < uxPriority )
+ {
+ taskYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_vTaskDelete == 1 )
+
+ void vTaskDelete( TaskHandle_t xTaskToDelete )
+ {
+ TCB_t *pxTCB;
+
+ taskENTER_CRITICAL();
+ {
+ /* If null is passed in here then it is the calling task that is
+ being deleted. */
+ pxTCB = prvGetTCBFromHandle( xTaskToDelete );
+
+ /* Remove task from the ready list and place in the termination list.
+ This will stop the task from be scheduled. The idle task will check
+ the termination list and free up any memory allocated by the
+ scheduler for the TCB and stack. */
+ if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
+ {
+ taskRESET_READY_PRIORITY( pxTCB->uxPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Is the task waiting on an event also? */
+ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
+ {
+ ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xGenericListItem ) );
+
+ /* Increment the ucTasksDeleted variable so the idle task knows
+ there is a task that has been deleted and that it should therefore
+ check the xTasksWaitingTermination list. */
+ ++uxTasksDeleted;
+
+ /* Increment the uxTaskNumberVariable also so kernel aware debuggers
+ can detect that the task lists need re-generating. */
+ uxTaskNumber++;
+
+ traceTASK_DELETE( pxTCB );
+ }
+ taskEXIT_CRITICAL();
+
+ /* Force a reschedule if it is the currently running task that has just
+ been deleted. */
+ if( xSchedulerRunning != pdFALSE )
+ {
+ if( pxTCB == pxCurrentTCB )
+ {
+ configASSERT( uxSchedulerSuspended == 0 );
+
+ /* The pre-delete hook is primarily for the Windows simulator,
+ in which Windows specific clean up operations are performed,
+ after which it is not possible to yield away from this task -
+ hence xYieldPending is used to latch that a context switch is
+ required. */
+ portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ /* Reset the next expected unblock time in case it referred to
+ the task that has just been deleted. */
+ taskENTER_CRITICAL();
+ {
+ prvResetNextTaskUnblockTime();
+ }
+ taskEXIT_CRITICAL();
+ }
+ }
+ }
+
+#endif /* INCLUDE_vTaskDelete */
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_vTaskDelayUntil == 1 )
+
+ void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement )
+ {
+ TickType_t xTimeToWake;
+ BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
+
+ configASSERT( pxPreviousWakeTime );
+ configASSERT( ( xTimeIncrement > 0U ) );
+ configASSERT( uxSchedulerSuspended == 0 );
+
+ vTaskSuspendAll();
+ {
+ /* Minor optimisation. The tick count cannot change in this
+ block. */
+ const TickType_t xConstTickCount = xTickCount;
+
+ /* Generate the tick time at which the task wants to wake. */
+ xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
+
+ if( xConstTickCount < *pxPreviousWakeTime )
+ {
+ /* The tick count has overflowed since this function was
+ lasted called. In this case the only time we should ever
+ actually delay is if the wake time has also overflowed,
+ and the wake time is greater than the tick time. When this
+ is the case it is as if neither time had overflowed. */
+ if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
+ {
+ xShouldDelay = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ /* The tick time has not overflowed. In this case we will
+ delay if either the wake time has overflowed, and/or the
+ tick time is less than the wake time. */
+ if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
+ {
+ xShouldDelay = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+ /* Update the wake time ready for the next call. */
+ *pxPreviousWakeTime = xTimeToWake;
+
+ if( xShouldDelay != pdFALSE )
+ {
+ traceTASK_DELAY_UNTIL();
+
+ /* Remove the task from the ready list before adding it to the
+ blocked list as the same list item is used for both lists. */
+ if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
+ {
+ /* The current task must be in a ready list, so there is
+ no need to check, and the port reset macro can be called
+ directly. */
+ portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ prvAddCurrentTaskToDelayedList( xTimeToWake );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ xAlreadyYielded = xTaskResumeAll();
+
+ /* Force a reschedule if xTaskResumeAll has not already done so, we may
+ have put ourselves to sleep. */
+ if( xAlreadyYielded == pdFALSE )
+ {
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+#endif /* INCLUDE_vTaskDelayUntil */
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_vTaskDelay == 1 )
+
+ void vTaskDelay( const TickType_t xTicksToDelay )
+ {
+ TickType_t xTimeToWake;
+ BaseType_t xAlreadyYielded = pdFALSE;
+
+
+ /* A delay time of zero just forces a reschedule. */
+ if( xTicksToDelay > ( TickType_t ) 0U )
+ {
+ configASSERT( uxSchedulerSuspended == 0 );
+ vTaskSuspendAll();
+ {
+ traceTASK_DELAY();
+
+ /* A task that is removed from the event list while the
+ scheduler is suspended will not get placed in the ready
+ list or removed from the blocked list until the scheduler
+ is resumed.
+
+ This task cannot be in an event list as it is the currently
+ executing task. */
+
+ /* Calculate the time to wake - this may overflow but this is
+ not a problem. */
+ xTimeToWake = xTickCount + xTicksToDelay;
+
+ /* We must remove ourselves from the ready list before adding
+ ourselves to the blocked list as the same list item is used for
+ both lists. */
+ if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
+ {
+ /* The current task must be in a ready list, so there is
+ no need to check, and the port reset macro can be called
+ directly. */
+ portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ prvAddCurrentTaskToDelayedList( xTimeToWake );
+ }
+ xAlreadyYielded = xTaskResumeAll();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Force a reschedule if xTaskResumeAll has not already done so, we may
+ have put ourselves to sleep. */
+ if( xAlreadyYielded == pdFALSE )
+ {
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+#endif /* INCLUDE_vTaskDelay */
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_eTaskGetState == 1 )
+
+ eTaskState eTaskGetState( TaskHandle_t xTask )
+ {
+ eTaskState eReturn;
+ List_t *pxStateList;
+ const TCB_t * const pxTCB = ( TCB_t * ) xTask;
+
+ configASSERT( pxTCB );
+
+ if( pxTCB == pxCurrentTCB )
+ {
+ /* The task calling this function is querying its own state. */
+ eReturn = eRunning;
+ }
+ else
+ {
+ taskENTER_CRITICAL();
+ {
+ pxStateList = ( List_t * ) listLIST_ITEM_CONTAINER( &( pxTCB->xGenericListItem ) );
+ }
+ taskEXIT_CRITICAL();
+
+ if( ( pxStateList == pxDelayedTaskList ) || ( pxStateList == pxOverflowDelayedTaskList ) )
+ {
+ /* The task being queried is referenced from one of the Blocked
+ lists. */
+ eReturn = eBlocked;
+ }
+
+ #if ( INCLUDE_vTaskSuspend == 1 )
+ else if( pxStateList == &xSuspendedTaskList )
+ {
+ /* The task being queried is referenced from the suspended
+ list. Is it genuinely suspended or is it block
+ indefinitely? */
+ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
+ {
+ eReturn = eSuspended;
+ }
+ else
+ {
+ eReturn = eBlocked;
+ }
+ }
+ #endif
+
+ #if ( INCLUDE_vTaskDelete == 1 )
+ else if( pxStateList == &xTasksWaitingTermination )
+ {
+ /* The task being queried is referenced from the deleted
+ tasks list. */
+ eReturn = eDeleted;
+ }
+ #endif
+
+ else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
+ {
+ /* If the task is not in any other state, it must be in the
+ Ready (including pending ready) state. */
+ eReturn = eReady;
+ }
+ }
+
+ return eReturn;
+ } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
+
+#endif /* INCLUDE_eTaskGetState */
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_uxTaskPriorityGet == 1 )
+
+ UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask )
+ {
+ TCB_t *pxTCB;
+ UBaseType_t uxReturn;
+
+ taskENTER_CRITICAL();
+ {
+ /* If null is passed in here then it is the priority of the that
+ called uxTaskPriorityGet() that is being queried. */
+ pxTCB = prvGetTCBFromHandle( xTask );
+ uxReturn = pxTCB->uxPriority;
+ }
+ taskEXIT_CRITICAL();
+
+ return uxReturn;
+ }
+
+#endif /* INCLUDE_uxTaskPriorityGet */
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_uxTaskPriorityGet == 1 )
+
+ UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask )
+ {
+ TCB_t *pxTCB;
+ UBaseType_t uxReturn, uxSavedInterruptState;
+
+ /* RTOS ports that support interrupt nesting have the concept of a
+ maximum system call (or maximum API call) interrupt priority.
+ Interrupts that are above the maximum system call priority are keep
+ permanently enabled, even when the RTOS kernel is in a critical section,
+ but cannot make any calls to FreeRTOS API functions. If configASSERT()
+ is defined in FreeRTOSConfig.h then
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
+ failure if a FreeRTOS API function is called from an interrupt that has
+ been assigned a priority above the configured maximum system call
+ priority. Only FreeRTOS functions that end in FromISR can be called
+ from interrupts that have been assigned a priority at or (logically)
+ below the maximum system call interrupt priority. FreeRTOS maintains a
+ separate interrupt safe API to ensure interrupt entry is as fast and as
+ simple as possible. More information (albeit Cortex-M specific) is
+ provided on the following link:
+ http://www.freertos.org/RTOS-Cortex-M3-M4.html */
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
+
+ uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
+ {
+ /* If null is passed in here then it is the priority of the calling
+ task that is being queried. */
+ pxTCB = prvGetTCBFromHandle( xTask );
+ uxReturn = pxTCB->uxPriority;
+ }
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
+
+ return uxReturn;
+ }
+
+#endif /* INCLUDE_uxTaskPriorityGet */
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_vTaskPrioritySet == 1 )
+
+ void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority )
+ {
+ TCB_t *pxTCB;
+ UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
+ BaseType_t xYieldRequired = pdFALSE;
+
+ configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
+
+ /* Ensure the new priority is valid. */
+ if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
+ {
+ uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ taskENTER_CRITICAL();
+ {
+ /* If null is passed in here then it is the priority of the calling
+ task that is being changed. */
+ pxTCB = prvGetTCBFromHandle( xTask );
+
+ traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
+
+ #if ( configUSE_MUTEXES == 1 )
+ {
+ uxCurrentBasePriority = pxTCB->uxBasePriority;
+ }
+ #else
+ {
+ uxCurrentBasePriority = pxTCB->uxPriority;
+ }
+ #endif
+
+ if( uxCurrentBasePriority != uxNewPriority )
+ {
+ /* The priority change may have readied a task of higher
+ priority than the calling task. */
+ if( uxNewPriority > uxCurrentBasePriority )
+ {
+ if( pxTCB != pxCurrentTCB )
+ {
+ /* The priority of a task other than the currently
+ running task is being raised. Is the priority being
+ raised above that of the running task? */
+ if( uxNewPriority >= pxCurrentTCB->uxPriority )
+ {
+ xYieldRequired = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ /* The priority of the running task is being raised,
+ but the running task must already be the highest
+ priority task able to run so no yield is required. */
+ }
+ }
+ else if( pxTCB == pxCurrentTCB )
+ {
+ /* Setting the priority of the running task down means
+ there may now be another task of higher priority that
+ is ready to execute. */
+ xYieldRequired = pdTRUE;
+ }
+ else
+ {
+ /* Setting the priority of any other task down does not
+ require a yield as the running task must be above the
+ new priority of the task being modified. */
+ }
+
+ /* Remember the ready list the task might be referenced from
+ before its uxPriority member is changed so the
+ taskRESET_READY_PRIORITY() macro can function correctly. */
+ uxPriorityUsedOnEntry = pxTCB->uxPriority;
+
+ #if ( configUSE_MUTEXES == 1 )
+ {
+ /* Only change the priority being used if the task is not
+ currently using an inherited priority. */
+ if( pxTCB->uxBasePriority == pxTCB->uxPriority )
+ {
+ pxTCB->uxPriority = uxNewPriority;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* The base priority gets set whatever. */
+ pxTCB->uxBasePriority = uxNewPriority;
+ }
+ #else
+ {
+ pxTCB->uxPriority = uxNewPriority;
+ }
+ #endif
+
+ /* Only reset the event list item value if the value is not
+ being used for anything else. */
+ if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
+ {
+ listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* If the task is in the blocked or suspended list we need do
+ nothing more than change it's priority variable. However, if
+ the task is in a ready list it needs to be removed and placed
+ in the list appropriate to its new priority. */
+ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE )
+ {
+ /* The task is currently in its ready list - remove before adding
+ it to it's new ready list. As we are in a critical section we
+ can do this even if the scheduler is suspended. */
+ if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
+ {
+ /* It is known that the task is in its ready list so
+ there is no need to check again and the port level
+ reset macro can be called directly. */
+ portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ prvAddTaskToReadyList( pxTCB );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ if( xYieldRequired == pdTRUE )
+ {
+ taskYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Remove compiler warning about unused variables when the port
+ optimised task selection is not being used. */
+ ( void ) uxPriorityUsedOnEntry;
+ }
+ }
+ taskEXIT_CRITICAL();
+ }
+
+#endif /* INCLUDE_vTaskPrioritySet */
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_vTaskSuspend == 1 )
+
+ void vTaskSuspend( TaskHandle_t xTaskToSuspend )
+ {
+ TCB_t *pxTCB;
+
+ taskENTER_CRITICAL();
+ {
+ /* If null is passed in here then it is the running task that is
+ being suspended. */
+ pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
+
+ traceTASK_SUSPEND( pxTCB );
+
+ /* Remove task from the ready/delayed list and place in the
+ suspended list. */
+ if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
+ {
+ taskRESET_READY_PRIORITY( pxTCB->uxPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Is the task waiting on an event also? */
+ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
+ {
+ ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) );
+ }
+ taskEXIT_CRITICAL();
+
+ if( pxTCB == pxCurrentTCB )
+ {
+ if( xSchedulerRunning != pdFALSE )
+ {
+ /* The current task has just been suspended. */
+ configASSERT( uxSchedulerSuspended == 0 );
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ /* The scheduler is not running, but the task that was pointed
+ to by pxCurrentTCB has just been suspended and pxCurrentTCB
+ must be adjusted to point to a different task. */
+ if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks )
+ {
+ /* No other tasks are ready, so set pxCurrentTCB back to
+ NULL so when the next task is created pxCurrentTCB will
+ be set to point to it no matter what its relative priority
+ is. */
+ pxCurrentTCB = NULL;
+ }
+ else
+ {
+ vTaskSwitchContext();
+ }
+ }
+ }
+ else
+ {
+ if( xSchedulerRunning != pdFALSE )
+ {
+ /* A task other than the currently running task was suspended,
+ reset the next expected unblock time in case it referred to the
+ task that is now in the Suspended state. */
+ taskENTER_CRITICAL();
+ {
+ prvResetNextTaskUnblockTime();
+ }
+ taskEXIT_CRITICAL();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+
+#endif /* INCLUDE_vTaskSuspend */
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_vTaskSuspend == 1 )
+
+ static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
+ {
+ BaseType_t xReturn = pdFALSE;
+ const TCB_t * const pxTCB = ( TCB_t * ) xTask;
+
+ /* Accesses xPendingReadyList so must be called from a critical
+ section. */
+
+ /* It does not make sense to check if the calling task is suspended. */
+ configASSERT( xTask );
+
+ /* Is the task being resumed actually in the suspended list? */
+ if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) ) != pdFALSE )
+ {
+ /* Has the task already been resumed from within an ISR? */
+ if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
+ {
+ /* Is it in the suspended list because it is in the Suspended
+ state, or because is is blocked with no timeout? */
+ if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
+ {
+ xReturn = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ return xReturn;
+ } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
+
+#endif /* INCLUDE_vTaskSuspend */
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_vTaskSuspend == 1 )
+
+ void vTaskResume( TaskHandle_t xTaskToResume )
+ {
+ TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;
+
+ /* It does not make sense to resume the calling task. */
+ configASSERT( xTaskToResume );
+
+ /* The parameter cannot be NULL as it is impossible to resume the
+ currently executing task. */
+ if( ( pxTCB != NULL ) && ( pxTCB != pxCurrentTCB ) )
+ {
+ taskENTER_CRITICAL();
+ {
+ if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE )
+ {
+ traceTASK_RESUME( pxTCB );
+
+ /* As we are in a critical section we can access the ready
+ lists even if the scheduler is suspended. */
+ ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
+ prvAddTaskToReadyList( pxTCB );
+
+ /* We may have just resumed a higher priority task. */
+ if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
+ {
+ /* This yield may not cause the task just resumed to run,
+ but will leave the lists in the correct state for the
+ next yield. */
+ taskYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ taskEXIT_CRITICAL();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+#endif /* INCLUDE_vTaskSuspend */
+
+/*-----------------------------------------------------------*/
+
+#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
+
+ BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
+ {
+ BaseType_t xYieldRequired = pdFALSE;
+ TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;
+ UBaseType_t uxSavedInterruptStatus;
+
+ configASSERT( xTaskToResume );
+
+ /* RTOS ports that support interrupt nesting have the concept of a
+ maximum system call (or maximum API call) interrupt priority.
+ Interrupts that are above the maximum system call priority are keep
+ permanently enabled, even when the RTOS kernel is in a critical section,
+ but cannot make any calls to FreeRTOS API functions. If configASSERT()
+ is defined in FreeRTOSConfig.h then
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
+ failure if a FreeRTOS API function is called from an interrupt that has
+ been assigned a priority above the configured maximum system call
+ priority. Only FreeRTOS functions that end in FromISR can be called
+ from interrupts that have been assigned a priority at or (logically)
+ below the maximum system call interrupt priority. FreeRTOS maintains a
+ separate interrupt safe API to ensure interrupt entry is as fast and as
+ simple as possible. More information (albeit Cortex-M specific) is
+ provided on the following link:
+ http://www.freertos.org/RTOS-Cortex-M3-M4.html */
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
+
+ uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
+ {
+ if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE )
+ {
+ traceTASK_RESUME_FROM_ISR( pxTCB );
+
+ /* Check the ready lists can be accessed. */
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
+ {
+ /* Ready lists can be accessed so move the task from the
+ suspended list to the ready list directly. */
+ if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
+ {
+ xYieldRequired = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
+ prvAddTaskToReadyList( pxTCB );
+ }
+ else
+ {
+ /* The delayed or ready lists cannot be accessed so the task
+ is held in the pending ready list until the scheduler is
+ unsuspended. */
+ vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
+
+ return xYieldRequired;
+ }
+
+#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
+/*-----------------------------------------------------------*/
+
+void vTaskStartScheduler( void )
+{
+BaseType_t xReturn;
+
+ /* Add the idle task at the lowest priority. */
+ #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
+ {
+ /* Create the idle task, storing its handle in xIdleTaskHandle so it can
+ be returned by the xTaskGetIdleTaskHandle() function. */
+ xReturn = xTaskCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
+ }
+ #else
+ {
+ /* Create the idle task without storing its handle. */
+ xReturn = xTaskCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), NULL ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
+ }
+ #endif /* INCLUDE_xTaskGetIdleTaskHandle */
+
+ #if ( configUSE_TIMERS == 1 )
+ {
+ if( xReturn == pdPASS )
+ {
+ xReturn = xTimerCreateTimerTask();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* configUSE_TIMERS */
+
+ if( xReturn == pdPASS )
+ {
+ /* Interrupts are turned off here, to ensure a tick does not occur
+ before or during the call to xPortStartScheduler(). The stacks of
+ the created tasks contain a status word with interrupts switched on
+ so interrupts will automatically get re-enabled when the first task
+ starts to run. */
+ portDISABLE_INTERRUPTS();
+
+ #if ( configUSE_NEWLIB_REENTRANT == 1 )
+ {
+ /* Switch Newlib's _impure_ptr variable to point to the _reent
+ structure specific to the task that will run first. */
+ _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
+ }
+ #endif /* configUSE_NEWLIB_REENTRANT */
+
+ xNextTaskUnblockTime = portMAX_DELAY;
+ xSchedulerRunning = pdTRUE;
+ xTickCount = ( TickType_t ) 0U;
+
+ /* If configGENERATE_RUN_TIME_STATS is defined then the following
+ macro must be defined to configure the timer/counter used to generate
+ the run time counter time base. */
+ portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
+
+ /* Setting up the timer tick is hardware specific and thus in the
+ portable interface. */
+ if( xPortStartScheduler() != pdFALSE )
+ {
+ /* Should not reach here as if the scheduler is running the
+ function will not return. */
+ }
+ else
+ {
+ /* Should only reach here if a task calls xTaskEndScheduler(). */
+ }
+ }
+ else
+ {
+ /* This line will only be reached if the kernel could not be started,
+ because there was not enough FreeRTOS heap to create the idle task
+ or the timer task. */
+ configASSERT( xReturn );
+ }
+}
+/*-----------------------------------------------------------*/
+
+void vTaskEndScheduler( void )
+{
+ /* Stop the scheduler interrupts and call the portable scheduler end
+ routine so the original ISRs can be restored if necessary. The port
+ layer must ensure interrupts enable bit is left in the correct state. */
+ portDISABLE_INTERRUPTS();
+ xSchedulerRunning = pdFALSE;
+ vPortEndScheduler();
+}
+/*----------------------------------------------------------*/
+
+void vTaskSuspendAll( void )
+{
+ /* A critical section is not required as the variable is of type
+ BaseType_t. Please read Richard Barry's reply in the following link to a
+ post in the FreeRTOS support forum before reporting this as a bug! -
+ http://goo.gl/wu4acr */
+ ++uxSchedulerSuspended;
+}
+/*----------------------------------------------------------*/
+
+#if ( configUSE_TICKLESS_IDLE != 0 )
+
+ static TickType_t prvGetExpectedIdleTime( void )
+ {
+ TickType_t xReturn;
+
+ if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
+ {
+ xReturn = 0;
+ }
+ else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
+ {
+ /* There are other idle priority tasks in the ready state. If
+ time slicing is used then the very next tick interrupt must be
+ processed. */
+ xReturn = 0;
+ }
+ else
+ {
+ xReturn = xNextTaskUnblockTime - xTickCount;
+ }
+
+ return xReturn;
+ }
+
+#endif /* configUSE_TICKLESS_IDLE */
+/*----------------------------------------------------------*/
+
+BaseType_t xTaskResumeAll( void )
+{
+TCB_t *pxTCB;
+BaseType_t xAlreadyYielded = pdFALSE;
+
+ /* If uxSchedulerSuspended is zero then this function does not match a
+ previous call to vTaskSuspendAll(). */
+ configASSERT( uxSchedulerSuspended );
+
+ /* It is possible that an ISR caused a task to be removed from an event
+ list while the scheduler was suspended. If this was the case then the
+ removed task will have been added to the xPendingReadyList. Once the
+ scheduler has been resumed it is safe to move all the pending ready
+ tasks from this list into their appropriate ready list. */
+ taskENTER_CRITICAL();
+ {
+ --uxSchedulerSuspended;
+
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
+ {
+ if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
+ {
+ /* Move any readied tasks from the pending list into the
+ appropriate ready list. */
+ while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
+ {
+ pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
+ ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
+ ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
+ prvAddTaskToReadyList( pxTCB );
+
+ /* If the moved task has a priority higher than the current
+ task then a yield must be performed. */
+ if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
+ {
+ xYieldPending = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+ /* If any ticks occurred while the scheduler was suspended then
+ they should be processed now. This ensures the tick count does
+ not slip, and that any delayed tasks are resumed at the correct
+ time. */
+ if( uxPendedTicks > ( UBaseType_t ) 0U )
+ {
+ while( uxPendedTicks > ( UBaseType_t ) 0U )
+ {
+ if( xTaskIncrementTick() != pdFALSE )
+ {
+ xYieldPending = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ --uxPendedTicks;
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ if( xYieldPending == pdTRUE )
+ {
+ #if( configUSE_PREEMPTION != 0 )
+ {
+ xAlreadyYielded = pdTRUE;
+ }
+ #endif
+ taskYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ return xAlreadyYielded;
+}
+/*-----------------------------------------------------------*/
+
+TickType_t xTaskGetTickCount( void )
+{
+TickType_t xTicks;
+
+ /* Critical section required if running on a 16 bit processor. */
+ portTICK_TYPE_ENTER_CRITICAL();
+ {
+ xTicks = xTickCount;
+ }
+ portTICK_TYPE_EXIT_CRITICAL();
+
+ return xTicks;
+}
+/*-----------------------------------------------------------*/
+
+TickType_t xTaskGetTickCountFromISR( void )
+{
+TickType_t xReturn;
+UBaseType_t uxSavedInterruptStatus;
+
+ /* RTOS ports that support interrupt nesting have the concept of a maximum
+ system call (or maximum API call) interrupt priority. Interrupts that are
+ above the maximum system call priority are kept permanently enabled, even
+ when the RTOS kernel is in a critical section, but cannot make any calls to
+ FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
+ then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
+ failure if a FreeRTOS API function is called from an interrupt that has been
+ assigned a priority above the configured maximum system call priority.
+ Only FreeRTOS functions that end in FromISR can be called from interrupts
+ that have been assigned a priority at or (logically) below the maximum
+ system call interrupt priority. FreeRTOS maintains a separate interrupt
+ safe API to ensure interrupt entry is as fast and as simple as possible.
+ More information (albeit Cortex-M specific) is provided on the following
+ link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
+
+ uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
+ {
+ xReturn = xTickCount;
+ }
+ portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+UBaseType_t uxTaskGetNumberOfTasks( void )
+{
+ /* A critical section is not required because the variables are of type
+ BaseType_t. */
+ return uxCurrentNumberOfTasks;
+}
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_pcTaskGetTaskName == 1 )
+
+ char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+ {
+ TCB_t *pxTCB;
+
+ /* If null is passed in here then the name of the calling task is being queried. */
+ pxTCB = prvGetTCBFromHandle( xTaskToQuery );
+ configASSERT( pxTCB );
+ return &( pxTCB->pcTaskName[ 0 ] );
+ }
+
+#endif /* INCLUDE_pcTaskGetTaskName */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_TRACE_FACILITY == 1 )
+
+ UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime )
+ {
+ UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
+
+ vTaskSuspendAll();
+ {
+ /* Is there a space in the array for each task in the system? */
+ if( uxArraySize >= uxCurrentNumberOfTasks )
+ {
+ /* Fill in an TaskStatus_t structure with information on each
+ task in the Ready state. */
+ do
+ {
+ uxQueue--;
+ uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
+
+ } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
+
+ /* Fill in an TaskStatus_t structure with information on each
+ task in the Blocked state. */
+ uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
+ uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
+
+ #if( INCLUDE_vTaskDelete == 1 )
+ {
+ /* Fill in an TaskStatus_t structure with information on
+ each task that has been deleted but not yet cleaned up. */
+ uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
+ }
+ #endif
+
+ #if ( INCLUDE_vTaskSuspend == 1 )
+ {
+ /* Fill in an TaskStatus_t structure with information on
+ each task in the Suspended state. */
+ uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
+ }
+ #endif
+
+ #if ( configGENERATE_RUN_TIME_STATS == 1)
+ {
+ if( pulTotalRunTime != NULL )
+ {
+ #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
+ portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
+ #else
+ *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
+ #endif
+ }
+ }
+ #else
+ {
+ if( pulTotalRunTime != NULL )
+ {
+ *pulTotalRunTime = 0;
+ }
+ }
+ #endif
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ ( void ) xTaskResumeAll();
+
+ return uxTask;
+ }
+
+#endif /* configUSE_TRACE_FACILITY */
+/*----------------------------------------------------------*/
+
+#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
+
+ TaskHandle_t xTaskGetIdleTaskHandle( void )
+ {
+ /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
+ started, then xIdleTaskHandle will be NULL. */
+ configASSERT( ( xIdleTaskHandle != NULL ) );
+ return xIdleTaskHandle;
+ }
+
+#endif /* INCLUDE_xTaskGetIdleTaskHandle */
+/*----------------------------------------------------------*/
+
+/* This conditional compilation should use inequality to 0, not equality to 1.
+This is to ensure vTaskStepTick() is available when user defined low power mode
+implementations require configUSE_TICKLESS_IDLE to be set to a value other than
+1. */
+#if ( configUSE_TICKLESS_IDLE != 0 )
+
+ void vTaskStepTick( const TickType_t xTicksToJump )
+ {
+ /* Correct the tick count value after a period during which the tick
+ was suppressed. Note this does *not* call the tick hook function for
+ each stepped tick. */
+ configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
+ xTickCount += xTicksToJump;
+ traceINCREASE_TICK_COUNT( xTicksToJump );
+ }
+
+#endif /* configUSE_TICKLESS_IDLE */
+/*----------------------------------------------------------*/
+
+BaseType_t xTaskIncrementTick( void )
+{
+TCB_t * pxTCB;
+TickType_t xItemValue;
+BaseType_t xSwitchRequired = pdFALSE;
+
+ /* Called by the portable layer each time a tick interrupt occurs.
+ Increments the tick then checks to see if the new tick value will cause any
+ tasks to be unblocked. */
+ traceTASK_INCREMENT_TICK( xTickCount );
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
+ {
+ /* Increment the RTOS tick, switching the delayed and overflowed
+ delayed lists if it wraps to 0. */
+ ++xTickCount;
+
+ {
+ /* Minor optimisation. The tick count cannot change in this
+ block. */
+ const TickType_t xConstTickCount = xTickCount;
+
+ if( xConstTickCount == ( TickType_t ) 0U )
+ {
+ taskSWITCH_DELAYED_LISTS();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* See if this tick has made a timeout expire. Tasks are stored in
+ the queue in the order of their wake time - meaning once one task
+ has been found whose block time has not expired there is no need to
+ look any further down the list. */
+ if( xConstTickCount >= xNextTaskUnblockTime )
+ {
+ for( ;; )
+ {
+ if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
+ {
+ /* The delayed list is empty. Set xNextTaskUnblockTime
+ to the maximum possible value so it is extremely
+ unlikely that the
+ if( xTickCount >= xNextTaskUnblockTime ) test will pass
+ next time through. */
+ xNextTaskUnblockTime = portMAX_DELAY;
+ break;
+ }
+ else
+ {
+ /* The delayed list is not empty, get the value of the
+ item at the head of the delayed list. This is the time
+ at which the task at the head of the delayed list must
+ be removed from the Blocked state. */
+ pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
+ xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xGenericListItem ) );
+
+ if( xConstTickCount < xItemValue )
+ {
+ /* It is not time to unblock this item yet, but the
+ item value is the time at which the task at the head
+ of the blocked list must be removed from the Blocked
+ state - so record the item value in
+ xNextTaskUnblockTime. */
+ xNextTaskUnblockTime = xItemValue;
+ break;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* It is time to remove the item from the Blocked state. */
+ ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
+
+ /* Is the task waiting on an event also? If so remove
+ it from the event list. */
+ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
+ {
+ ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Place the unblocked task into the appropriate ready
+ list. */
+ prvAddTaskToReadyList( pxTCB );
+
+ /* A task being unblocked cannot cause an immediate
+ context switch if preemption is turned off. */
+ #if ( configUSE_PREEMPTION == 1 )
+ {
+ /* Preemption is on, but a context switch should
+ only be performed if the unblocked task has a
+ priority that is equal to or higher than the
+ currently executing task. */
+ if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
+ {
+ xSwitchRequired = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* configUSE_PREEMPTION */
+ }
+ }
+ }
+ }
+
+ /* Tasks of equal priority to the currently running task will share
+ processing time (time slice) if preemption is on, and the application
+ writer has not explicitly turned time slicing off. */
+ #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
+ {
+ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
+ {
+ xSwitchRequired = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
+
+ #if ( configUSE_TICK_HOOK == 1 )
+ {
+ /* Guard against the tick hook being called when the pended tick
+ count is being unwound (when the scheduler is being unlocked). */
+ if( uxPendedTicks == ( UBaseType_t ) 0U )
+ {
+ vApplicationTickHook();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* configUSE_TICK_HOOK */
+ }
+ else
+ {
+ ++uxPendedTicks;
+
+ /* The tick hook gets called at regular intervals, even if the
+ scheduler is locked. */
+ #if ( configUSE_TICK_HOOK == 1 )
+ {
+ vApplicationTickHook();
+ }
+ #endif
+ }
+
+ #if ( configUSE_PREEMPTION == 1 )
+ {
+ if( xYieldPending != pdFALSE )
+ {
+ xSwitchRequired = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* configUSE_PREEMPTION */
+
+ return xSwitchRequired;
+}
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_APPLICATION_TASK_TAG == 1 )
+
+ void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction )
+ {
+ TCB_t *xTCB;
+
+ /* If xTask is NULL then it is the task hook of the calling task that is
+ getting set. */
+ if( xTask == NULL )
+ {
+ xTCB = ( TCB_t * ) pxCurrentTCB;
+ }
+ else
+ {
+ xTCB = ( TCB_t * ) xTask;
+ }
+
+ /* Save the hook function in the TCB. A critical section is required as
+ the value can be accessed from an interrupt. */
+ taskENTER_CRITICAL();
+ xTCB->pxTaskTag = pxHookFunction;
+ taskEXIT_CRITICAL();
+ }
+
+#endif /* configUSE_APPLICATION_TASK_TAG */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_APPLICATION_TASK_TAG == 1 )
+
+ TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
+ {
+ TCB_t *xTCB;
+ TaskHookFunction_t xReturn;
+
+ /* If xTask is NULL then we are setting our own task hook. */
+ if( xTask == NULL )
+ {
+ xTCB = ( TCB_t * ) pxCurrentTCB;
+ }
+ else
+ {
+ xTCB = ( TCB_t * ) xTask;
+ }
+
+ /* Save the hook function in the TCB. A critical section is required as
+ the value can be accessed from an interrupt. */
+ taskENTER_CRITICAL();
+ {
+ xReturn = xTCB->pxTaskTag;
+ }
+ taskEXIT_CRITICAL();
+
+ return xReturn;
+ }
+
+#endif /* configUSE_APPLICATION_TASK_TAG */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_APPLICATION_TASK_TAG == 1 )
+
+ BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter )
+ {
+ TCB_t *xTCB;
+ BaseType_t xReturn;
+
+ /* If xTask is NULL then we are calling our own task hook. */
+ if( xTask == NULL )
+ {
+ xTCB = ( TCB_t * ) pxCurrentTCB;
+ }
+ else
+ {
+ xTCB = ( TCB_t * ) xTask;
+ }
+
+ if( xTCB->pxTaskTag != NULL )
+ {
+ xReturn = xTCB->pxTaskTag( pvParameter );
+ }
+ else
+ {
+ xReturn = pdFAIL;
+ }
+
+ return xReturn;
+ }
+
+#endif /* configUSE_APPLICATION_TASK_TAG */
+/*-----------------------------------------------------------*/
+
+void vTaskSwitchContext( void )
+{
+ if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
+ {
+ /* The scheduler is currently suspended - do not allow a context
+ switch. */
+ xYieldPending = pdTRUE;
+ }
+ else
+ {
+ xYieldPending = pdFALSE;
+ traceTASK_SWITCHED_OUT();
+
+ #if ( configGENERATE_RUN_TIME_STATS == 1 )
+ {
+ #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
+ portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
+ #else
+ ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
+ #endif
+
+ /* Add the amount of time the task has been running to the
+ accumulated time so far. The time the task started running was
+ stored in ulTaskSwitchedInTime. Note that there is no overflow
+ protection here so count values are only valid until the timer
+ overflows. The guard against negative values is to protect
+ against suspect run time stat counter implementations - which
+ are provided by the application, not the kernel. */
+ if( ulTotalRunTime > ulTaskSwitchedInTime )
+ {
+ pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ ulTaskSwitchedInTime = ulTotalRunTime;
+ }
+ #endif /* configGENERATE_RUN_TIME_STATS */
+
+ /* Check for stack overflow, if configured. */
+ taskFIRST_CHECK_FOR_STACK_OVERFLOW();
+ taskSECOND_CHECK_FOR_STACK_OVERFLOW();
+
+ /* Select a new task to run using either the generic C or port
+ optimised asm code. */
+ taskSELECT_HIGHEST_PRIORITY_TASK();
+ traceTASK_SWITCHED_IN();
+
+ #if ( configUSE_NEWLIB_REENTRANT == 1 )
+ {
+ /* Switch Newlib's _impure_ptr variable to point to the _reent
+ structure specific to this task. */
+ _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
+ }
+ #endif /* configUSE_NEWLIB_REENTRANT */
+ }
+}
+/*-----------------------------------------------------------*/
+
+void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait )
+{
+TickType_t xTimeToWake;
+
+ configASSERT( pxEventList );
+
+ /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
+ SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
+
+ /* Place the event list item of the TCB in the appropriate event list.
+ This is placed in the list in priority order so the highest priority task
+ is the first to be woken by the event. The queue that contains the event
+ list is locked, preventing simultaneous access from interrupts. */
+ vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
+
+ /* The task must be removed from from the ready list before it is added to
+ the blocked list as the same list item is used for both lists. Exclusive
+ access to the ready lists guaranteed because the scheduler is locked. */
+ if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
+ {
+ /* The current task must be in a ready list, so there is no need to
+ check, and the port reset macro can be called directly. */
+ portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ #if ( INCLUDE_vTaskSuspend == 1 )
+ {
+ if( xTicksToWait == portMAX_DELAY )
+ {
+ /* Add the task to the suspended task list instead of a delayed task
+ list to ensure the task is not woken by a timing event. It will
+ block indefinitely. */
+ vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) );
+ }
+ else
+ {
+ /* Calculate the time at which the task should be woken if the event
+ does not occur. This may overflow but this doesn't matter, the
+ scheduler will handle it. */
+ xTimeToWake = xTickCount + xTicksToWait;
+ prvAddCurrentTaskToDelayedList( xTimeToWake );
+ }
+ }
+ #else /* INCLUDE_vTaskSuspend */
+ {
+ /* Calculate the time at which the task should be woken if the event does
+ not occur. This may overflow but this doesn't matter, the scheduler
+ will handle it. */
+ xTimeToWake = xTickCount + xTicksToWait;
+ prvAddCurrentTaskToDelayedList( xTimeToWake );
+ }
+ #endif /* INCLUDE_vTaskSuspend */
+}
+/*-----------------------------------------------------------*/
+
+void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait )
+{
+TickType_t xTimeToWake;
+
+ configASSERT( pxEventList );
+
+ /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
+ the event groups implementation. */
+ configASSERT( uxSchedulerSuspended != 0 );
+
+ /* Store the item value in the event list item. It is safe to access the
+ event list item here as interrupts won't access the event list item of a
+ task that is not in the Blocked state. */
+ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
+
+ /* Place the event list item of the TCB at the end of the appropriate event
+ list. It is safe to access the event list here because it is part of an
+ event group implementation - and interrupts don't access event groups
+ directly (instead they access them indirectly by pending function calls to
+ the task level). */
+ vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
+
+ /* The task must be removed from the ready list before it is added to the
+ blocked list. Exclusive access can be assured to the ready list as the
+ scheduler is locked. */
+ if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
+ {
+ /* The current task must be in a ready list, so there is no need to
+ check, and the port reset macro can be called directly. */
+ portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ #if ( INCLUDE_vTaskSuspend == 1 )
+ {
+ if( xTicksToWait == portMAX_DELAY )
+ {
+ /* Add the task to the suspended task list instead of a delayed task
+ list to ensure it is not woken by a timing event. It will block
+ indefinitely. */
+ vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) );
+ }
+ else
+ {
+ /* Calculate the time at which the task should be woken if the event
+ does not occur. This may overflow but this doesn't matter, the
+ kernel will manage it correctly. */
+ xTimeToWake = xTickCount + xTicksToWait;
+ prvAddCurrentTaskToDelayedList( xTimeToWake );
+ }
+ }
+ #else /* INCLUDE_vTaskSuspend */
+ {
+ /* Calculate the time at which the task should be woken if the event does
+ not occur. This may overflow but this doesn't matter, the kernel
+ will manage it correctly. */
+ xTimeToWake = xTickCount + xTicksToWait;
+ prvAddCurrentTaskToDelayedList( xTimeToWake );
+ }
+ #endif /* INCLUDE_vTaskSuspend */
+}
+/*-----------------------------------------------------------*/
+
+#if configUSE_TIMERS == 1
+
+ void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, const TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely )
+ {
+ TickType_t xTimeToWake;
+
+ configASSERT( pxEventList );
+
+ /* This function should not be called by application code hence the
+ 'Restricted' in its name. It is not part of the public API. It is
+ designed for use by kernel code, and has special calling requirements -
+ it should be called with the scheduler suspended. */
+
+
+ /* Place the event list item of the TCB in the appropriate event list.
+ In this case it is assume that this is the only task that is going to
+ be waiting on this event list, so the faster vListInsertEnd() function
+ can be used in place of vListInsert. */
+ vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
+
+ /* We must remove this task from the ready list before adding it to the
+ blocked list as the same list item is used for both lists. This
+ function is called with the scheduler locked so interrupts will not
+ access the lists at the same time. */
+ if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
+ {
+ /* The current task must be in a ready list, so there is no need to
+ check, and the port reset macro can be called directly. */
+ portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* If vTaskSuspend() is available then the suspended task list is also
+ available and a task that is blocking indefinitely can enter the
+ suspended state (it is not really suspended as it will re-enter the
+ Ready state when the event it is waiting indefinitely for occurs).
+ Blocking indefinitely is useful when using tickless idle mode as when
+ all tasks are blocked indefinitely all timers can be turned off. */
+ #if( INCLUDE_vTaskSuspend == 1 )
+ {
+ if( xWaitIndefinitely == pdTRUE )
+ {
+ /* Add the task to the suspended task list instead of a delayed
+ task list to ensure the task is not woken by a timing event. It
+ will block indefinitely. */
+ traceTASK_DELAY_SUSPEND( pxCurrentTCB );
+ vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) );
+ }
+ else
+ {
+ /* Calculate the time at which the task should be woken if the
+ event does not occur. This may overflow but this doesn't
+ matter. */
+ xTimeToWake = xTickCount + xTicksToWait;
+ traceTASK_DELAY_UNTIL();
+ prvAddCurrentTaskToDelayedList( xTimeToWake );
+ }
+ }
+ #else
+ {
+ /* Calculate the time at which the task should be woken if the event
+ does not occur. This may overflow but this doesn't matter. */
+ xTimeToWake = xTickCount + xTicksToWait;
+ traceTASK_DELAY_UNTIL();
+ prvAddCurrentTaskToDelayedList( xTimeToWake );
+
+ /* Remove compiler warnings when INCLUDE_vTaskSuspend() is not
+ defined. */
+ ( void ) xWaitIndefinitely;
+ }
+ #endif
+ }
+
+#endif /* configUSE_TIMERS */
+/*-----------------------------------------------------------*/
+
+BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
+{
+TCB_t *pxUnblockedTCB;
+BaseType_t xReturn;
+
+ /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
+ called from a critical section within an ISR. */
+
+ /* The event list is sorted in priority order, so the first in the list can
+ be removed as it is known to be the highest priority. Remove the TCB from
+ the delayed list, and add it to the ready list.
+
+ If an event is for a queue that is locked then this function will never
+ get called - the lock count on the queue will get modified instead. This
+ means exclusive access to the event list is guaranteed here.
+
+ This function assumes that a check has already been made to ensure that
+ pxEventList is not empty. */
+ pxUnblockedTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
+ configASSERT( pxUnblockedTCB );
+ ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
+
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
+ {
+ ( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) );
+ prvAddTaskToReadyList( pxUnblockedTCB );
+ }
+ else
+ {
+ /* The delayed and ready lists cannot be accessed, so hold this task
+ pending until the scheduler is resumed. */
+ vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
+ }
+
+ if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
+ {
+ /* Return true if the task removed from the event list has a higher
+ priority than the calling task. This allows the calling task to know if
+ it should force a context switch now. */
+ xReturn = pdTRUE;
+
+ /* Mark that a yield is pending in case the user is not using the
+ "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
+ xYieldPending = pdTRUE;
+ }
+ else
+ {
+ xReturn = pdFALSE;
+ }
+
+ #if( configUSE_TICKLESS_IDLE != 0 )
+ {
+ /* If a task is blocked on a kernel object then xNextTaskUnblockTime
+ might be set to the blocked task's time out time. If the task is
+ unblocked for a reason other than a timeout xNextTaskUnblockTime is
+ normally left unchanged, because it is automatically reset to a new
+ value when the tick count equals xNextTaskUnblockTime. However if
+ tickless idling is used it might be more important to enter sleep mode
+ at the earliest possible time - so reset xNextTaskUnblockTime here to
+ ensure it is updated at the earliest possible time. */
+ prvResetNextTaskUnblockTime();
+ }
+ #endif
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue )
+{
+TCB_t *pxUnblockedTCB;
+BaseType_t xReturn;
+
+ /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
+ the event flags implementation. */
+ configASSERT( uxSchedulerSuspended != pdFALSE );
+
+ /* Store the new item value in the event list. */
+ listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
+
+ /* Remove the event list form the event flag. Interrupts do not access
+ event flags. */
+ pxUnblockedTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxEventListItem );
+ configASSERT( pxUnblockedTCB );
+ ( void ) uxListRemove( pxEventListItem );
+
+ /* Remove the task from the delayed list and add it to the ready list. The
+ scheduler is suspended so interrupts will not be accessing the ready
+ lists. */
+ ( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) );
+ prvAddTaskToReadyList( pxUnblockedTCB );
+
+ if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
+ {
+ /* Return true if the task removed from the event list has
+ a higher priority than the calling task. This allows
+ the calling task to know if it should force a context
+ switch now. */
+ xReturn = pdTRUE;
+
+ /* Mark that a yield is pending in case the user is not using the
+ "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
+ xYieldPending = pdTRUE;
+ }
+ else
+ {
+ xReturn = pdFALSE;
+ }
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
+{
+ configASSERT( pxTimeOut );
+ pxTimeOut->xOverflowCount = xNumOfOverflows;
+ pxTimeOut->xTimeOnEntering = xTickCount;
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait )
+{
+BaseType_t xReturn;
+
+ configASSERT( pxTimeOut );
+ configASSERT( pxTicksToWait );
+
+ taskENTER_CRITICAL();
+ {
+ /* Minor optimisation. The tick count cannot change in this block. */
+ const TickType_t xConstTickCount = xTickCount;
+
+ #if ( INCLUDE_vTaskSuspend == 1 )
+ /* If INCLUDE_vTaskSuspend is set to 1 and the block time specified is
+ the maximum block time then the task should block indefinitely, and
+ therefore never time out. */
+ if( *pxTicksToWait == portMAX_DELAY )
+ {
+ xReturn = pdFALSE;
+ }
+ else /* We are not blocking indefinitely, perform the checks below. */
+ #endif
+
+ if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
+ {
+ /* The tick count is greater than the time at which vTaskSetTimeout()
+ was called, but has also overflowed since vTaskSetTimeOut() was called.
+ It must have wrapped all the way around and gone past us again. This
+ passed since vTaskSetTimeout() was called. */
+ xReturn = pdTRUE;
+ }
+ else if( ( xConstTickCount - pxTimeOut->xTimeOnEntering ) < *pxTicksToWait )
+ {
+ /* Not a genuine timeout. Adjust parameters for time remaining. */
+ *pxTicksToWait -= ( xConstTickCount - pxTimeOut->xTimeOnEntering );
+ vTaskSetTimeOutState( pxTimeOut );
+ xReturn = pdFALSE;
+ }
+ else
+ {
+ xReturn = pdTRUE;
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+void vTaskMissedYield( void )
+{
+ xYieldPending = pdTRUE;
+}
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_TRACE_FACILITY == 1 )
+
+ UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
+ {
+ UBaseType_t uxReturn;
+ TCB_t *pxTCB;
+
+ if( xTask != NULL )
+ {
+ pxTCB = ( TCB_t * ) xTask;
+ uxReturn = pxTCB->uxTaskNumber;
+ }
+ else
+ {
+ uxReturn = 0U;
+ }
+
+ return uxReturn;
+ }
+
+#endif /* configUSE_TRACE_FACILITY */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_TRACE_FACILITY == 1 )
+
+ void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle )
+ {
+ TCB_t *pxTCB;
+
+ if( xTask != NULL )
+ {
+ pxTCB = ( TCB_t * ) xTask;
+ pxTCB->uxTaskNumber = uxHandle;
+ }
+ }
+
+#endif /* configUSE_TRACE_FACILITY */
+
+/*
+ * -----------------------------------------------------------
+ * The Idle task.
+ * ----------------------------------------------------------
+ *
+ * The portTASK_FUNCTION() macro is used to allow port/compiler specific
+ * language extensions. The equivalent prototype for this function is:
+ *
+ * void prvIdleTask( void *pvParameters );
+ *
+ */
+static portTASK_FUNCTION( prvIdleTask, pvParameters )
+{
+ /* Stop warnings. */
+ ( void ) pvParameters;
+
+ for( ;; )
+ {
+ /* See if any tasks have been deleted. */
+ prvCheckTasksWaitingTermination();
+
+ #if ( configUSE_PREEMPTION == 0 )
+ {
+ /* If we are not using preemption we keep forcing a task switch to
+ see if any other task has become available. If we are using
+ preemption we don't need to do this as any task becoming available
+ will automatically get the processor anyway. */
+ taskYIELD();
+ }
+ #endif /* configUSE_PREEMPTION */
+
+ #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
+ {
+ /* When using preemption tasks of equal priority will be
+ timesliced. If a task that is sharing the idle priority is ready
+ to run then the idle task should yield before the end of the
+ timeslice.
+
+ A critical region is not required here as we are just reading from
+ the list, and an occasional incorrect value will not matter. If
+ the ready list at the idle priority contains more than one task
+ then a task other than the idle task is ready to execute. */
+ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
+ {
+ taskYIELD();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
+
+ #if ( configUSE_IDLE_HOOK == 1 )
+ {
+ extern void vApplicationIdleHook( void );
+
+ /* Call the user defined function from within the idle task. This
+ allows the application designer to add background functionality
+ without the overhead of a separate task.
+ NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
+ CALL A FUNCTION THAT MIGHT BLOCK. */
+ vApplicationIdleHook();
+ }
+ #endif /* configUSE_IDLE_HOOK */
+
+ /* This conditional compilation should use inequality to 0, not equality
+ to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
+ user defined low power mode implementations require
+ configUSE_TICKLESS_IDLE to be set to a value other than 1. */
+ #if ( configUSE_TICKLESS_IDLE != 0 )
+ {
+ TickType_t xExpectedIdleTime;
+
+ /* It is not desirable to suspend then resume the scheduler on
+ each iteration of the idle task. Therefore, a preliminary
+ test of the expected idle time is performed without the
+ scheduler suspended. The result here is not necessarily
+ valid. */
+ xExpectedIdleTime = prvGetExpectedIdleTime();
+
+ if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
+ {
+ vTaskSuspendAll();
+ {
+ /* Now the scheduler is suspended, the expected idle
+ time can be sampled again, and this time its value can
+ be used. */
+ configASSERT( xNextTaskUnblockTime >= xTickCount );
+ xExpectedIdleTime = prvGetExpectedIdleTime();
+
+ if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
+ {
+ traceLOW_POWER_IDLE_BEGIN();
+ portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
+ traceLOW_POWER_IDLE_END();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ ( void ) xTaskResumeAll();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* configUSE_TICKLESS_IDLE */
+ }
+}
+/*-----------------------------------------------------------*/
+
+#if( configUSE_TICKLESS_IDLE != 0 )
+
+ eSleepModeStatus eTaskConfirmSleepModeStatus( void )
+ {
+ /* The idle task exists in addition to the application tasks. */
+ const UBaseType_t uxNonApplicationTasks = 1;
+ eSleepModeStatus eReturn = eStandardSleep;
+
+ if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
+ {
+ /* A task was made ready while the scheduler was suspended. */
+ eReturn = eAbortSleep;
+ }
+ else if( xYieldPending != pdFALSE )
+ {
+ /* A yield was pended while the scheduler was suspended. */
+ eReturn = eAbortSleep;
+ }
+ else
+ {
+ /* If all the tasks are in the suspended list (which might mean they
+ have an infinite block time rather than actually being suspended)
+ then it is safe to turn all clocks off and just wait for external
+ interrupts. */
+ if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
+ {
+ eReturn = eNoTasksWaitingTimeout;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+ return eReturn;
+ }
+
+#endif /* configUSE_TICKLESS_IDLE */
+/*-----------------------------------------------------------*/
+
+static void prvInitialiseTCBVariables( TCB_t * const pxTCB, const char * const pcName, UBaseType_t uxPriority, const MemoryRegion_t * const xRegions, const uint16_t usStackDepth ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+{
+UBaseType_t x;
+
+ /* Store the task name in the TCB. */
+ for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
+ {
+ pxTCB->pcTaskName[ x ] = pcName[ x ];
+
+ /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
+ configMAX_TASK_NAME_LEN characters just in case the memory after the
+ string is not accessible (extremely unlikely). */
+ if( pcName[ x ] == 0x00 )
+ {
+ break;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+ /* Ensure the name string is terminated in the case that the string length
+ was greater or equal to configMAX_TASK_NAME_LEN. */
+ pxTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
+
+ /* This is used as an array index so must ensure it's not too large. First
+ remove the privilege bit if one is present. */
+ if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
+ {
+ uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ pxTCB->uxPriority = uxPriority;
+ #if ( configUSE_MUTEXES == 1 )
+ {
+ pxTCB->uxBasePriority = uxPriority;
+ pxTCB->uxMutexesHeld = 0;
+ }
+ #endif /* configUSE_MUTEXES */
+
+ vListInitialiseItem( &( pxTCB->xGenericListItem ) );
+ vListInitialiseItem( &( pxTCB->xEventListItem ) );
+
+ /* Set the pxTCB as a link back from the ListItem_t. This is so we can get
+ back to the containing TCB from a generic item in a list. */
+ listSET_LIST_ITEM_OWNER( &( pxTCB->xGenericListItem ), pxTCB );
+
+ /* Event lists are always in priority order. */
+ listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
+ listSET_LIST_ITEM_OWNER( &( pxTCB->xEventListItem ), pxTCB );
+
+ #if ( portCRITICAL_NESTING_IN_TCB == 1 )
+ {
+ pxTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
+ }
+ #endif /* portCRITICAL_NESTING_IN_TCB */
+
+ #if ( configUSE_APPLICATION_TASK_TAG == 1 )
+ {
+ pxTCB->pxTaskTag = NULL;
+ }
+ #endif /* configUSE_APPLICATION_TASK_TAG */
+
+ #if ( configGENERATE_RUN_TIME_STATS == 1 )
+ {
+ pxTCB->ulRunTimeCounter = 0UL;
+ }
+ #endif /* configGENERATE_RUN_TIME_STATS */
+
+ #if ( portUSING_MPU_WRAPPERS == 1 )
+ {
+ vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, pxTCB->pxStack, usStackDepth );
+ }
+ #else /* portUSING_MPU_WRAPPERS */
+ {
+ ( void ) xRegions;
+ ( void ) usStackDepth;
+ }
+ #endif /* portUSING_MPU_WRAPPERS */
+
+ #if( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
+ {
+ for( x = 0; x < ( UBaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ )
+ {
+ pxTCB->pvThreadLocalStoragePointers[ x ] = NULL;
+ }
+ }
+ #endif
+
+ #if ( configUSE_TASK_NOTIFICATIONS == 1 )
+ {
+ pxTCB->ulNotifiedValue = 0;
+ pxTCB->eNotifyState = eNotWaitingNotification;
+ }
+ #endif
+
+ #if ( configUSE_NEWLIB_REENTRANT == 1 )
+ {
+ /* Initialise this task's Newlib reent structure. */
+ _REENT_INIT_PTR( ( &( pxTCB->xNewLib_reent ) ) );
+ }
+ #endif /* configUSE_NEWLIB_REENTRANT */
+}
+/*-----------------------------------------------------------*/
+
+#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
+
+ void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue )
+ {
+ TCB_t *pxTCB;
+
+ if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
+ {
+ pxTCB = prvGetTCBFromHandle( xTaskToSet );
+ pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
+ }
+ }
+
+#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
+/*-----------------------------------------------------------*/
+
+#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
+
+ void *pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex )
+ {
+ void *pvReturn = NULL;
+ TCB_t *pxTCB;
+
+ if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
+ {
+ pxTCB = prvGetTCBFromHandle( xTaskToQuery );
+ pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
+ }
+ else
+ {
+ pvReturn = NULL;
+ }
+
+ return pvReturn;
+ }
+
+#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
+/*-----------------------------------------------------------*/
+
+#if ( portUSING_MPU_WRAPPERS == 1 )
+
+ void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions )
+ {
+ TCB_t *pxTCB;
+
+ /* If null is passed in here then we are modifying the MPU settings of
+ the calling task. */
+ pxTCB = prvGetTCBFromHandle( xTaskToModify );
+
+ vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
+ }
+
+#endif /* portUSING_MPU_WRAPPERS */
+/*-----------------------------------------------------------*/
+
+static void prvInitialiseTaskLists( void )
+{
+UBaseType_t uxPriority;
+
+ for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
+ {
+ vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
+ }
+
+ vListInitialise( &xDelayedTaskList1 );
+ vListInitialise( &xDelayedTaskList2 );
+ vListInitialise( &xPendingReadyList );
+
+ #if ( INCLUDE_vTaskDelete == 1 )
+ {
+ vListInitialise( &xTasksWaitingTermination );
+ }
+ #endif /* INCLUDE_vTaskDelete */
+
+ #if ( INCLUDE_vTaskSuspend == 1 )
+ {
+ vListInitialise( &xSuspendedTaskList );
+ }
+ #endif /* INCLUDE_vTaskSuspend */
+
+ /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
+ using list2. */
+ pxDelayedTaskList = &xDelayedTaskList1;
+ pxOverflowDelayedTaskList = &xDelayedTaskList2;
+}
+/*-----------------------------------------------------------*/
+
+static void prvCheckTasksWaitingTermination( void )
+{
+ #if ( INCLUDE_vTaskDelete == 1 )
+ {
+ BaseType_t xListIsEmpty;
+
+ /* ucTasksDeleted is used to prevent vTaskSuspendAll() being called
+ too often in the idle task. */
+ while( uxTasksDeleted > ( UBaseType_t ) 0U )
+ {
+ vTaskSuspendAll();
+ {
+ xListIsEmpty = listLIST_IS_EMPTY( &xTasksWaitingTermination );
+ }
+ ( void ) xTaskResumeAll();
+
+ if( xListIsEmpty == pdFALSE )
+ {
+ TCB_t *pxTCB;
+
+ taskENTER_CRITICAL();
+ {
+ pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
+ ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
+ --uxCurrentNumberOfTasks;
+ --uxTasksDeleted;
+ }
+ taskEXIT_CRITICAL();
+
+ prvDeleteTCB( pxTCB );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+ #endif /* vTaskDelete */
+}
+/*-----------------------------------------------------------*/
+
+static void prvAddCurrentTaskToDelayedList( const TickType_t xTimeToWake )
+{
+ /* The list item will be inserted in wake time order. */
+ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xGenericListItem ), xTimeToWake );
+
+ if( xTimeToWake < xTickCount )
+ {
+ /* Wake time has overflowed. Place this item in the overflow list. */
+ vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xGenericListItem ) );
+ }
+ else
+ {
+ /* The wake time has not overflowed, so the current block list is used. */
+ vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xGenericListItem ) );
+
+ /* If the task entering the blocked state was placed at the head of the
+ list of blocked tasks then xNextTaskUnblockTime needs to be updated
+ too. */
+ if( xTimeToWake < xNextTaskUnblockTime )
+ {
+ xNextTaskUnblockTime = xTimeToWake;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+static TCB_t *prvAllocateTCBAndStack( const uint16_t usStackDepth, StackType_t * const puxStackBuffer )
+{
+TCB_t *pxNewTCB;
+
+ /* If the stack grows down then allocate the stack then the TCB so the stack
+ does not grow into the TCB. Likewise if the stack grows up then allocate
+ the TCB then the stack. */
+ #if( portSTACK_GROWTH > 0 )
+ {
+ /* Allocate space for the TCB. Where the memory comes from depends on
+ the implementation of the port malloc function. */
+ pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
+
+ if( pxNewTCB != NULL )
+ {
+ /* Allocate space for the stack used by the task being created.
+ The base of the stack memory stored in the TCB so the task can
+ be deleted later if required. */
+ pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocAligned( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ), puxStackBuffer ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
+
+ if( pxNewTCB->pxStack == NULL )
+ {
+ /* Could not allocate the stack. Delete the allocated TCB. */
+ vPortFree( pxNewTCB );
+ pxNewTCB = NULL;
+ }
+ }
+ }
+ #else /* portSTACK_GROWTH */
+ {
+ StackType_t *pxStack;
+
+ /* Allocate space for the stack used by the task being created. */
+ pxStack = ( StackType_t * ) pvPortMallocAligned( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ), puxStackBuffer ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
+
+ if( pxStack != NULL )
+ {
+ /* Allocate space for the TCB. Where the memory comes from depends
+ on the implementation of the port malloc function. */
+ pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
+
+ if( pxNewTCB != NULL )
+ {
+ /* Store the stack location in the TCB. */
+ pxNewTCB->pxStack = pxStack;
+ }
+ else
+ {
+ /* The stack cannot be used as the TCB was not created. Free it
+ again. */
+ vPortFree( pxStack );
+ }
+ }
+ else
+ {
+ pxNewTCB = NULL;
+ }
+ }
+ #endif /* portSTACK_GROWTH */
+
+ if( pxNewTCB != NULL )
+ {
+ /* Avoid dependency on memset() if it is not required. */
+ #if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
+ {
+ /* Just to help debugging. */
+ ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) usStackDepth * sizeof( StackType_t ) );
+ }
+ #endif /* ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) ) */
+ }
+
+ return pxNewTCB;
+}
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_TRACE_FACILITY == 1 )
+
+ static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState )
+ {
+ volatile TCB_t *pxNextTCB, *pxFirstTCB;
+ UBaseType_t uxTask = 0;
+
+ if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
+ {
+ listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
+
+ /* Populate an TaskStatus_t structure within the
+ pxTaskStatusArray array for each task that is referenced from
+ pxList. See the definition of TaskStatus_t in task.h for the
+ meaning of each TaskStatus_t structure member. */
+ do
+ {
+ listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
+
+ pxTaskStatusArray[ uxTask ].xHandle = ( TaskHandle_t ) pxNextTCB;
+ pxTaskStatusArray[ uxTask ].pcTaskName = ( const char * ) &( pxNextTCB->pcTaskName [ 0 ] );
+ pxTaskStatusArray[ uxTask ].xTaskNumber = pxNextTCB->uxTCBNumber;
+ pxTaskStatusArray[ uxTask ].eCurrentState = eState;
+ pxTaskStatusArray[ uxTask ].uxCurrentPriority = pxNextTCB->uxPriority;
+
+ #if ( INCLUDE_vTaskSuspend == 1 )
+ {
+ /* If the task is in the suspended list then there is a chance
+ it is actually just blocked indefinitely - so really it should
+ be reported as being in the Blocked state. */
+ if( eState == eSuspended )
+ {
+ if( listLIST_ITEM_CONTAINER( &( pxNextTCB->xEventListItem ) ) != NULL )
+ {
+ pxTaskStatusArray[ uxTask ].eCurrentState = eBlocked;
+ }
+ }
+ }
+ #endif /* INCLUDE_vTaskSuspend */
+
+ #if ( configUSE_MUTEXES == 1 )
+ {
+ pxTaskStatusArray[ uxTask ].uxBasePriority = pxNextTCB->uxBasePriority;
+ }
+ #else
+ {
+ pxTaskStatusArray[ uxTask ].uxBasePriority = 0;
+ }
+ #endif
+
+ #if ( configGENERATE_RUN_TIME_STATS == 1 )
+ {
+ pxTaskStatusArray[ uxTask ].ulRunTimeCounter = pxNextTCB->ulRunTimeCounter;
+ }
+ #else
+ {
+ pxTaskStatusArray[ uxTask ].ulRunTimeCounter = 0;
+ }
+ #endif
+
+ #if ( portSTACK_GROWTH > 0 )
+ {
+ pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxEndOfStack );
+ }
+ #else
+ {
+ pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxStack );
+ }
+ #endif
+
+ uxTask++;
+
+ } while( pxNextTCB != pxFirstTCB );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ return uxTask;
+ }
+
+#endif /* configUSE_TRACE_FACILITY */
+/*-----------------------------------------------------------*/
+
+#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
+
+ static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
+ {
+ uint32_t ulCount = 0U;
+
+ while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
+ {
+ pucStackByte -= portSTACK_GROWTH;
+ ulCount++;
+ }
+
+ ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
+
+ return ( uint16_t ) ulCount;
+ }
+
+#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) */
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
+
+ UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
+ {
+ TCB_t *pxTCB;
+ uint8_t *pucEndOfStack;
+ UBaseType_t uxReturn;
+
+ pxTCB = prvGetTCBFromHandle( xTask );
+
+ #if portSTACK_GROWTH < 0
+ {
+ pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
+ }
+ #else
+ {
+ pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
+ }
+ #endif
+
+ uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
+
+ return uxReturn;
+ }
+
+#endif /* INCLUDE_uxTaskGetStackHighWaterMark */
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_vTaskDelete == 1 )
+
+ static void prvDeleteTCB( TCB_t *pxTCB )
+ {
+ /* This call is required specifically for the TriCore port. It must be
+ above the vPortFree() calls. The call is also used by ports/demos that
+ want to allocate and clean RAM statically. */
+ portCLEAN_UP_TCB( pxTCB );
+
+ /* Free up the memory allocated by the scheduler for the task. It is up
+ to the task to free any memory allocated at the application level. */
+ #if ( configUSE_NEWLIB_REENTRANT == 1 )
+ {
+ _reclaim_reent( &( pxTCB->xNewLib_reent ) );
+ }
+ #endif /* configUSE_NEWLIB_REENTRANT */
+
+ #if( portUSING_MPU_WRAPPERS == 1 )
+ {
+ /* Only free the stack if it was allocated dynamically in the first
+ place. */
+ if( pxTCB->xUsingStaticallyAllocatedStack == pdFALSE )
+ {
+ vPortFreeAligned( pxTCB->pxStack );
+ }
+ }
+ #else
+ {
+ vPortFreeAligned( pxTCB->pxStack );
+ }
+ #endif
+
+ vPortFree( pxTCB );
+ }
+
+#endif /* INCLUDE_vTaskDelete */
+/*-----------------------------------------------------------*/
+
+static void prvResetNextTaskUnblockTime( void )
+{
+TCB_t *pxTCB;
+
+ if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
+ {
+ /* The new current delayed list is empty. Set xNextTaskUnblockTime to
+ the maximum possible value so it is extremely unlikely that the
+ if( xTickCount >= xNextTaskUnblockTime ) test will pass until
+ there is an item in the delayed list. */
+ xNextTaskUnblockTime = portMAX_DELAY;
+ }
+ else
+ {
+ /* The new current delayed list is not empty, get the value of
+ the item at the head of the delayed list. This is the time at
+ which the task at the head of the delayed list should be removed
+ from the Blocked state. */
+ ( pxTCB ) = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
+ xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xGenericListItem ) );
+ }
+}
+/*-----------------------------------------------------------*/
+
+#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
+
+ TaskHandle_t xTaskGetCurrentTaskHandle( void )
+ {
+ TaskHandle_t xReturn;
+
+ /* A critical section is not required as this is not called from
+ an interrupt and the current TCB will always be the same for any
+ individual execution thread. */
+ xReturn = pxCurrentTCB;
+
+ return xReturn;
+ }
+
+#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
+/*-----------------------------------------------------------*/
+
+#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
+
+ BaseType_t xTaskGetSchedulerState( void )
+ {
+ BaseType_t xReturn;
+
+ if( xSchedulerRunning == pdFALSE )
+ {
+ xReturn = taskSCHEDULER_NOT_STARTED;
+ }
+ else
+ {
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
+ {
+ xReturn = taskSCHEDULER_RUNNING;
+ }
+ else
+ {
+ xReturn = taskSCHEDULER_SUSPENDED;
+ }
+ }
+
+ return xReturn;
+ }
+
+#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_MUTEXES == 1 )
+
+ void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
+ {
+ TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
+
+ /* If the mutex was given back by an interrupt while the queue was
+ locked then the mutex holder might now be NULL. */
+ if( pxMutexHolder != NULL )
+ {
+ /* If the holder of the mutex has a priority below the priority of
+ the task attempting to obtain the mutex then it will temporarily
+ inherit the priority of the task attempting to obtain the mutex. */
+ if( pxTCB->uxPriority < pxCurrentTCB->uxPriority )
+ {
+ /* Adjust the mutex holder state to account for its new
+ priority. Only reset the event list item value if the value is
+ not being used for anything else. */
+ if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
+ {
+ listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* If the task being modified is in the ready state it will need
+ to be moved into a new list. */
+ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxTCB->uxPriority ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE )
+ {
+ if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
+ {
+ taskRESET_READY_PRIORITY( pxTCB->uxPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Inherit the priority before being moved into the new list. */
+ pxTCB->uxPriority = pxCurrentTCB->uxPriority;
+ prvAddTaskToReadyList( pxTCB );
+ }
+ else
+ {
+ /* Just inherit the priority. */
+ pxTCB->uxPriority = pxCurrentTCB->uxPriority;
+ }
+
+ traceTASK_PRIORITY_INHERIT( pxTCB, pxCurrentTCB->uxPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+#endif /* configUSE_MUTEXES */
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_MUTEXES == 1 )
+
+ BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
+ {
+ TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
+ BaseType_t xReturn = pdFALSE;
+
+ if( pxMutexHolder != NULL )
+ {
+ /* A task can only have an inherited priority if it holds the mutex.
+ If the mutex is held by a task then it cannot be given from an
+ interrupt, and if a mutex is given by the holding task then it must
+ be the running state task. */
+ configASSERT( pxTCB == pxCurrentTCB );
+
+ configASSERT( pxTCB->uxMutexesHeld );
+ ( pxTCB->uxMutexesHeld )--;
+
+ /* Has the holder of the mutex inherited the priority of another
+ task? */
+ if( pxTCB->uxPriority != pxTCB->uxBasePriority )
+ {
+ /* Only disinherit if no other mutexes are held. */
+ if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
+ {
+ /* A task can only have an inherited priority if it holds
+ the mutex. If the mutex is held by a task then it cannot be
+ given from an interrupt, and if a mutex is given by the
+ holding task then it must be the running state task. Remove
+ the holding task from the ready list. */
+ if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
+ {
+ taskRESET_READY_PRIORITY( pxTCB->uxPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Disinherit the priority before adding the task into the
+ new ready list. */
+ traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
+ pxTCB->uxPriority = pxTCB->uxBasePriority;
+
+ /* Reset the event list item value. It cannot be in use for
+ any other purpose if this task is running, and it must be
+ running to give back the mutex. */
+ listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
+ prvAddTaskToReadyList( pxTCB );
+
+ /* Return true to indicate that a context switch is required.
+ This is only actually required in the corner case whereby
+ multiple mutexes were held and the mutexes were given back
+ in an order different to that in which they were taken.
+ If a context switch did not occur when the first mutex was
+ returned, even if a task was waiting on it, then a context
+ switch should occur when the last mutex is returned whether
+ a task is waiting on it or not. */
+ xReturn = pdTRUE;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ return xReturn;
+ }
+
+#endif /* configUSE_MUTEXES */
+/*-----------------------------------------------------------*/
+
+#if ( portCRITICAL_NESTING_IN_TCB == 1 )
+
+ void vTaskEnterCritical( void )
+ {
+ portDISABLE_INTERRUPTS();
+
+ if( xSchedulerRunning != pdFALSE )
+ {
+ ( pxCurrentTCB->uxCriticalNesting )++;
+
+ /* This is not the interrupt safe version of the enter critical
+ function so assert() if it is being called from an interrupt
+ context. Only API functions that end in "FromISR" can be used in an
+ interrupt. Only assert if the critical nesting count is 1 to
+ protect against recursive calls if the assert function also uses a
+ critical section. */
+ if( pxCurrentTCB->uxCriticalNesting == 1 )
+ {
+ portASSERT_IF_IN_ISR();
+ }
+
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+#endif /* portCRITICAL_NESTING_IN_TCB */
+/*-----------------------------------------------------------*/
+
+#if ( portCRITICAL_NESTING_IN_TCB == 1 )
+
+ void vTaskExitCritical( void )
+ {
+ if( xSchedulerRunning != pdFALSE )
+ {
+ if( pxCurrentTCB->uxCriticalNesting > 0U )
+ {
+ ( pxCurrentTCB->uxCriticalNesting )--;
+
+ if( pxCurrentTCB->uxCriticalNesting == 0U )
+ {
+ portENABLE_INTERRUPTS();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+#endif /* portCRITICAL_NESTING_IN_TCB */
+/*-----------------------------------------------------------*/
+
+#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
+
+ static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName )
+ {
+ BaseType_t x;
+
+ /* Start by copying the entire string. */
+ strcpy( pcBuffer, pcTaskName );
+
+ /* Pad the end of the string with spaces to ensure columns line up when
+ printed out. */
+ for( x = strlen( pcBuffer ); x < ( configMAX_TASK_NAME_LEN - 1 ); x++ )
+ {
+ pcBuffer[ x ] = ' ';
+ }
+
+ /* Terminate. */
+ pcBuffer[ x ] = 0x00;
+
+ /* Return the new end of string. */
+ return &( pcBuffer[ x ] );
+ }
+
+#endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
+/*-----------------------------------------------------------*/
+
+#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
+
+ void vTaskList( char * pcWriteBuffer )
+ {
+ TaskStatus_t *pxTaskStatusArray;
+ volatile UBaseType_t uxArraySize, x;
+ char cStatus;
+
+ /*
+ * PLEASE NOTE:
+ *
+ * This function is provided for convenience only, and is used by many
+ * of the demo applications. Do not consider it to be part of the
+ * scheduler.
+ *
+ * vTaskList() calls uxTaskGetSystemState(), then formats part of the
+ * uxTaskGetSystemState() output into a human readable table that
+ * displays task names, states and stack usage.
+ *
+ * vTaskList() has a dependency on the sprintf() C library function that
+ * might bloat the code size, use a lot of stack, and provide different
+ * results on different platforms. An alternative, tiny, third party,
+ * and limited functionality implementation of sprintf() is provided in
+ * many of the FreeRTOS/Demo sub-directories in a file called
+ * printf-stdarg.c (note printf-stdarg.c does not provide a full
+ * snprintf() implementation!).
+ *
+ * It is recommended that production systems call uxTaskGetSystemState()
+ * directly to get access to raw stats data, rather than indirectly
+ * through a call to vTaskList().
+ */
+
+
+ /* Make sure the write buffer does not contain a string. */
+ *pcWriteBuffer = 0x00;
+
+ /* Take a snapshot of the number of tasks in case it changes while this
+ function is executing. */
+ uxArraySize = uxCurrentNumberOfTasks;
+
+ /* Allocate an array index for each task. */
+ pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
+
+ if( pxTaskStatusArray != NULL )
+ {
+ /* Generate the (binary) data. */
+ uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
+
+ /* Create a human readable table from the binary data. */
+ for( x = 0; x < uxArraySize; x++ )
+ {
+ switch( pxTaskStatusArray[ x ].eCurrentState )
+ {
+ case eReady: cStatus = tskREADY_CHAR;
+ break;
+
+ case eBlocked: cStatus = tskBLOCKED_CHAR;
+ break;
+
+ case eSuspended: cStatus = tskSUSPENDED_CHAR;
+ break;
+
+ case eDeleted: cStatus = tskDELETED_CHAR;
+ break;
+
+ default: /* Should not get here, but it is included
+ to prevent static checking errors. */
+ cStatus = 0x00;
+ break;
+ }
+
+ /* Write the task name to the string, padding with spaces so it
+ can be printed in tabular form more easily. */
+ pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
+
+ /* Write the rest of the string. */
+ sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
+ pcWriteBuffer += strlen( pcWriteBuffer );
+ }
+
+ /* Free the array again. */
+ vPortFree( pxTaskStatusArray );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
+/*----------------------------------------------------------*/
+
+#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
+
+ void vTaskGetRunTimeStats( char *pcWriteBuffer )
+ {
+ TaskStatus_t *pxTaskStatusArray;
+ volatile UBaseType_t uxArraySize, x;
+ uint32_t ulTotalTime, ulStatsAsPercentage;
+
+ #if( configUSE_TRACE_FACILITY != 1 )
+ {
+ #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
+ }
+ #endif
+
+ /*
+ * PLEASE NOTE:
+ *
+ * This function is provided for convenience only, and is used by many
+ * of the demo applications. Do not consider it to be part of the
+ * scheduler.
+ *
+ * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
+ * of the uxTaskGetSystemState() output into a human readable table that
+ * displays the amount of time each task has spent in the Running state
+ * in both absolute and percentage terms.
+ *
+ * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
+ * function that might bloat the code size, use a lot of stack, and
+ * provide different results on different platforms. An alternative,
+ * tiny, third party, and limited functionality implementation of
+ * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
+ * a file called printf-stdarg.c (note printf-stdarg.c does not provide
+ * a full snprintf() implementation!).
+ *
+ * It is recommended that production systems call uxTaskGetSystemState()
+ * directly to get access to raw stats data, rather than indirectly
+ * through a call to vTaskGetRunTimeStats().
+ */
+
+ /* Make sure the write buffer does not contain a string. */
+ *pcWriteBuffer = 0x00;
+
+ /* Take a snapshot of the number of tasks in case it changes while this
+ function is executing. */
+ uxArraySize = uxCurrentNumberOfTasks;
+
+ /* Allocate an array index for each task. */
+ pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
+
+ if( pxTaskStatusArray != NULL )
+ {
+ /* Generate the (binary) data. */
+ uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
+
+ /* For percentage calculations. */
+ ulTotalTime /= 100UL;
+
+ /* Avoid divide by zero errors. */
+ if( ulTotalTime > 0 )
+ {
+ /* Create a human readable table from the binary data. */
+ for( x = 0; x < uxArraySize; x++ )
+ {
+ /* What percentage of the total run time has the task used?
+ This will always be rounded down to the nearest integer.
+ ulTotalRunTimeDiv100 has already been divided by 100. */
+ ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
+
+ /* Write the task name to the string, padding with
+ spaces so it can be printed in tabular form more
+ easily. */
+ pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
+
+ if( ulStatsAsPercentage > 0UL )
+ {
+ #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
+ {
+ sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
+ }
+ #else
+ {
+ /* sizeof( int ) == sizeof( long ) so a smaller
+ printf() library can be used. */
+ sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage );
+ }
+ #endif
+ }
+ else
+ {
+ /* If the percentage is zero here then the task has
+ consumed less than 1% of the total run time. */
+ #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
+ {
+ sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
+ }
+ #else
+ {
+ /* sizeof( int ) == sizeof( long ) so a smaller
+ printf() library can be used. */
+ sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
+ }
+ #endif
+ }
+
+ pcWriteBuffer += strlen( pcWriteBuffer );
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Free the array again. */
+ vPortFree( pxTaskStatusArray );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
+/*-----------------------------------------------------------*/
+
+TickType_t uxTaskResetEventItemValue( void )
+{
+TickType_t uxReturn;
+
+ uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
+
+ /* Reset the event list item to its normal value - so it can be used with
+ queues and semaphores. */
+ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
+
+ return uxReturn;
+}
+/*-----------------------------------------------------------*/
+
+#if ( configUSE_MUTEXES == 1 )
+
+ void *pvTaskIncrementMutexHeldCount( void )
+ {
+ /* If xSemaphoreCreateMutex() is called before any tasks have been created
+ then pxCurrentTCB will be NULL. */
+ if( pxCurrentTCB != NULL )
+ {
+ ( pxCurrentTCB->uxMutexesHeld )++;
+ }
+
+ return pxCurrentTCB;
+ }
+
+#endif /* configUSE_MUTEXES */
+/*-----------------------------------------------------------*/
+
+#if( configUSE_TASK_NOTIFICATIONS == 1 )
+
+ uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait )
+ {
+ TickType_t xTimeToWake;
+ uint32_t ulReturn;
+
+ taskENTER_CRITICAL();
+ {
+ /* Only block if the notification count is not already non-zero. */
+ if( pxCurrentTCB->ulNotifiedValue == 0UL )
+ {
+ /* Mark this task as waiting for a notification. */
+ pxCurrentTCB->eNotifyState = eWaitingNotification;
+
+ if( xTicksToWait > ( TickType_t ) 0 )
+ {
+ /* The task is going to block. First it must be removed
+ from the ready list. */
+ if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
+ {
+ /* The current task must be in a ready list, so there is
+ no need to check, and the port reset macro can be called
+ directly. */
+ portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ #if ( INCLUDE_vTaskSuspend == 1 )
+ {
+ if( xTicksToWait == portMAX_DELAY )
+ {
+ /* Add the task to the suspended task list instead
+ of a delayed task list to ensure the task is not
+ woken by a timing event. It will block
+ indefinitely. */
+ vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) );
+ }
+ else
+ {
+ /* Calculate the time at which the task should be
+ woken if no notification events occur. This may
+ overflow but this doesn't matter, the scheduler will
+ handle it. */
+ xTimeToWake = xTickCount + xTicksToWait;
+ prvAddCurrentTaskToDelayedList( xTimeToWake );
+ }
+ }
+ #else /* INCLUDE_vTaskSuspend */
+ {
+ /* Calculate the time at which the task should be
+ woken if the event does not occur. This may
+ overflow but this doesn't matter, the scheduler will
+ handle it. */
+ xTimeToWake = xTickCount + xTicksToWait;
+ prvAddCurrentTaskToDelayedList( xTimeToWake );
+ }
+ #endif /* INCLUDE_vTaskSuspend */
+
+ traceTASK_NOTIFY_TAKE_BLOCK();
+
+ /* All ports are written to allow a yield in a critical
+ section (some will yield immediately, others wait until the
+ critical section exits) - but it is not something that
+ application code should ever do. */
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ taskENTER_CRITICAL();
+ {
+ traceTASK_NOTIFY_TAKE();
+ ulReturn = pxCurrentTCB->ulNotifiedValue;
+
+ if( ulReturn != 0UL )
+ {
+ if( xClearCountOnExit != pdFALSE )
+ {
+ pxCurrentTCB->ulNotifiedValue = 0UL;
+ }
+ else
+ {
+ ( pxCurrentTCB->ulNotifiedValue )--;
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ pxCurrentTCB->eNotifyState = eNotWaitingNotification;
+ }
+ taskEXIT_CRITICAL();
+
+ return ulReturn;
+ }
+
+#endif /* configUSE_TASK_NOTIFICATIONS */
+/*-----------------------------------------------------------*/
+
+#if( configUSE_TASK_NOTIFICATIONS == 1 )
+
+ BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait )
+ {
+ TickType_t xTimeToWake;
+ BaseType_t xReturn;
+
+ taskENTER_CRITICAL();
+ {
+ /* Only block if a notification is not already pending. */
+ if( pxCurrentTCB->eNotifyState != eNotified )
+ {
+ /* Clear bits in the task's notification value as bits may get
+ set by the notifying task or interrupt. This can be used to
+ clear the value to zero. */
+ pxCurrentTCB->ulNotifiedValue &= ~ulBitsToClearOnEntry;
+
+ /* Mark this task as waiting for a notification. */
+ pxCurrentTCB->eNotifyState = eWaitingNotification;
+
+ if( xTicksToWait > ( TickType_t ) 0 )
+ {
+ /* The task is going to block. First it must be removed
+ from the ready list. */
+ if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
+ {
+ /* The current task must be in a ready list, so there is
+ no need to check, and the port reset macro can be called
+ directly. */
+ portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ #if ( INCLUDE_vTaskSuspend == 1 )
+ {
+ if( xTicksToWait == portMAX_DELAY )
+ {
+ /* Add the task to the suspended task list instead
+ of a delayed task list to ensure the task is not
+ woken by a timing event. It will block
+ indefinitely. */
+ vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) );
+ }
+ else
+ {
+ /* Calculate the time at which the task should be
+ woken if no notification events occur. This may
+ overflow but this doesn't matter, the scheduler will
+ handle it. */
+ xTimeToWake = xTickCount + xTicksToWait;
+ prvAddCurrentTaskToDelayedList( xTimeToWake );
+ }
+ }
+ #else /* INCLUDE_vTaskSuspend */
+ {
+ /* Calculate the time at which the task should be
+ woken if the event does not occur. This may
+ overflow but this doesn't matter, the scheduler will
+ handle it. */
+ xTimeToWake = xTickCount + xTicksToWait;
+ prvAddCurrentTaskToDelayedList( xTimeToWake );
+ }
+ #endif /* INCLUDE_vTaskSuspend */
+
+ traceTASK_NOTIFY_WAIT_BLOCK();
+
+ /* All ports are written to allow a yield in a critical
+ section (some will yield immediately, others wait until the
+ critical section exits) - but it is not something that
+ application code should ever do. */
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ taskENTER_CRITICAL();
+ {
+ traceTASK_NOTIFY_WAIT();
+
+ if( pulNotificationValue != NULL )
+ {
+ /* Output the current notification value, which may or may not
+ have changed. */
+ *pulNotificationValue = pxCurrentTCB->ulNotifiedValue;
+ }
+
+ /* If eNotifyValue is set then either the task never entered the
+ blocked state (because a notification was already pending) or the
+ task unblocked because of a notification. Otherwise the task
+ unblocked because of a timeout. */
+ if( pxCurrentTCB->eNotifyState == eWaitingNotification )
+ {
+ /* A notification was not received. */
+ xReturn = pdFALSE;
+ }
+ else
+ {
+ /* A notification was already pending or a notification was
+ received while the task was waiting. */
+ pxCurrentTCB->ulNotifiedValue &= ~ulBitsToClearOnExit;
+ xReturn = pdTRUE;
+ }
+
+ pxCurrentTCB->eNotifyState = eNotWaitingNotification;
+ }
+ taskEXIT_CRITICAL();
+
+ return xReturn;
+ }
+
+#endif /* configUSE_TASK_NOTIFICATIONS */
+/*-----------------------------------------------------------*/
+
+#if( configUSE_TASK_NOTIFICATIONS == 1 )
+
+ BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue )
+ {
+ TCB_t * pxTCB;
+ eNotifyValue eOriginalNotifyState;
+ BaseType_t xReturn = pdPASS;
+
+ configASSERT( xTaskToNotify );
+ pxTCB = ( TCB_t * ) xTaskToNotify;
+
+ taskENTER_CRITICAL();
+ {
+ if( pulPreviousNotificationValue != NULL )
+ {
+ *pulPreviousNotificationValue = pxTCB->ulNotifiedValue;
+ }
+
+ eOriginalNotifyState = pxTCB->eNotifyState;
+
+ pxTCB->eNotifyState = eNotified;
+
+ switch( eAction )
+ {
+ case eSetBits :
+ pxTCB->ulNotifiedValue |= ulValue;
+ break;
+
+ case eIncrement :
+ ( pxTCB->ulNotifiedValue )++;
+ break;
+
+ case eSetValueWithOverwrite :
+ pxTCB->ulNotifiedValue = ulValue;
+ break;
+
+ case eSetValueWithoutOverwrite :
+ if( eOriginalNotifyState != eNotified )
+ {
+ pxTCB->ulNotifiedValue = ulValue;
+ }
+ else
+ {
+ /* The value could not be written to the task. */
+ xReturn = pdFAIL;
+ }
+ break;
+
+ case eNoAction:
+ /* The task is being notified without its notify value being
+ updated. */
+ break;
+ }
+
+ traceTASK_NOTIFY();
+
+ /* If the task is in the blocked state specifically to wait for a
+ notification then unblock it now. */
+ if( eOriginalNotifyState == eWaitingNotification )
+ {
+ ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
+ prvAddTaskToReadyList( pxTCB );
+
+ /* The task should not have been on an event list. */
+ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
+
+ #if( configUSE_TICKLESS_IDLE != 0 )
+ {
+ /* If a task is blocked waiting for a notification then
+ xNextTaskUnblockTime might be set to the blocked task's time
+ out time. If the task is unblocked for a reason other than
+ a timeout xNextTaskUnblockTime is normally left unchanged,
+ because it will automatically get reset to a new value when
+ the tick count equals xNextTaskUnblockTime. However if
+ tickless idling is used it might be more important to enter
+ sleep mode at the earliest possible time - so reset
+ xNextTaskUnblockTime here to ensure it is updated at the
+ earliest possible time. */
+ prvResetNextTaskUnblockTime();
+ }
+ #endif
+
+ if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
+ {
+ /* The notified task has a priority above the currently
+ executing task so a yield is required. */
+ taskYIELD_IF_USING_PREEMPTION();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ taskEXIT_CRITICAL();
+
+ return xReturn;
+ }
+
+#endif /* configUSE_TASK_NOTIFICATIONS */
+/*-----------------------------------------------------------*/
+
+#if( configUSE_TASK_NOTIFICATIONS == 1 )
+
+ BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue, BaseType_t *pxHigherPriorityTaskWoken )
+ {
+ TCB_t * pxTCB;
+ eNotifyValue eOriginalNotifyState;
+ BaseType_t xReturn = pdPASS;
+ UBaseType_t uxSavedInterruptStatus;
+
+ configASSERT( xTaskToNotify );
+
+ /* RTOS ports that support interrupt nesting have the concept of a
+ maximum system call (or maximum API call) interrupt priority.
+ Interrupts that are above the maximum system call priority are keep
+ permanently enabled, even when the RTOS kernel is in a critical section,
+ but cannot make any calls to FreeRTOS API functions. If configASSERT()
+ is defined in FreeRTOSConfig.h then
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
+ failure if a FreeRTOS API function is called from an interrupt that has
+ been assigned a priority above the configured maximum system call
+ priority. Only FreeRTOS functions that end in FromISR can be called
+ from interrupts that have been assigned a priority at or (logically)
+ below the maximum system call interrupt priority. FreeRTOS maintains a
+ separate interrupt safe API to ensure interrupt entry is as fast and as
+ simple as possible. More information (albeit Cortex-M specific) is
+ provided on the following link:
+ http://www.freertos.org/RTOS-Cortex-M3-M4.html */
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
+
+ pxTCB = ( TCB_t * ) xTaskToNotify;
+
+ uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
+ {
+ if( pulPreviousNotificationValue != NULL )
+ {
+ *pulPreviousNotificationValue = pxTCB->ulNotifiedValue;
+ }
+
+ eOriginalNotifyState = pxTCB->eNotifyState;
+ pxTCB->eNotifyState = eNotified;
+
+ switch( eAction )
+ {
+ case eSetBits :
+ pxTCB->ulNotifiedValue |= ulValue;
+ break;
+
+ case eIncrement :
+ ( pxTCB->ulNotifiedValue )++;
+ break;
+
+ case eSetValueWithOverwrite :
+ pxTCB->ulNotifiedValue = ulValue;
+ break;
+
+ case eSetValueWithoutOverwrite :
+ if( eOriginalNotifyState != eNotified )
+ {
+ pxTCB->ulNotifiedValue = ulValue;
+ }
+ else
+ {
+ /* The value could not be written to the task. */
+ xReturn = pdFAIL;
+ }
+ break;
+
+ case eNoAction :
+ /* The task is being notified without its notify value being
+ updated. */
+ break;
+ }
+
+ traceTASK_NOTIFY_FROM_ISR();
+
+ /* If the task is in the blocked state specifically to wait for a
+ notification then unblock it now. */
+ if( eOriginalNotifyState == eWaitingNotification )
+ {
+ /* The task should not have been on an event list. */
+ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
+
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
+ {
+ ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
+ prvAddTaskToReadyList( pxTCB );
+ }
+ else
+ {
+ /* The delayed and ready lists cannot be accessed, so hold
+ this task pending until the scheduler is resumed. */
+ vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
+ }
+
+ if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
+ {
+ /* The notified task has a priority above the currently
+ executing task so a yield is required. */
+ if( pxHigherPriorityTaskWoken != NULL )
+ {
+ *pxHigherPriorityTaskWoken = pdTRUE;
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
+
+ return xReturn;
+ }
+
+#endif /* configUSE_TASK_NOTIFICATIONS */
+/*-----------------------------------------------------------*/
+
+#if( configUSE_TASK_NOTIFICATIONS == 1 )
+
+ void vTaskNotifyGiveFromISR( TaskHandle_t xTaskToNotify, BaseType_t *pxHigherPriorityTaskWoken )
+ {
+ TCB_t * pxTCB;
+ eNotifyValue eOriginalNotifyState;
+ UBaseType_t uxSavedInterruptStatus;
+
+ configASSERT( xTaskToNotify );
+
+ /* RTOS ports that support interrupt nesting have the concept of a
+ maximum system call (or maximum API call) interrupt priority.
+ Interrupts that are above the maximum system call priority are keep
+ permanently enabled, even when the RTOS kernel is in a critical section,
+ but cannot make any calls to FreeRTOS API functions. If configASSERT()
+ is defined in FreeRTOSConfig.h then
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
+ failure if a FreeRTOS API function is called from an interrupt that has
+ been assigned a priority above the configured maximum system call
+ priority. Only FreeRTOS functions that end in FromISR can be called
+ from interrupts that have been assigned a priority at or (logically)
+ below the maximum system call interrupt priority. FreeRTOS maintains a
+ separate interrupt safe API to ensure interrupt entry is as fast and as
+ simple as possible. More information (albeit Cortex-M specific) is
+ provided on the following link:
+ http://www.freertos.org/RTOS-Cortex-M3-M4.html */
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
+
+ pxTCB = ( TCB_t * ) xTaskToNotify;
+
+ uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
+ {
+ eOriginalNotifyState = pxTCB->eNotifyState;
+ pxTCB->eNotifyState = eNotified;
+
+ /* 'Giving' is equivalent to incrementing a count in a counting
+ semaphore. */
+ ( pxTCB->ulNotifiedValue )++;
+
+ traceTASK_NOTIFY_GIVE_FROM_ISR();
+
+ /* If the task is in the blocked state specifically to wait for a
+ notification then unblock it now. */
+ if( eOriginalNotifyState == eWaitingNotification )
+ {
+ /* The task should not have been on an event list. */
+ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
+
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
+ {
+ ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
+ prvAddTaskToReadyList( pxTCB );
+ }
+ else
+ {
+ /* The delayed and ready lists cannot be accessed, so hold
+ this task pending until the scheduler is resumed. */
+ vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
+ }
+
+ if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
+ {
+ /* The notified task has a priority above the currently
+ executing task so a yield is required. */
+ if( pxHigherPriorityTaskWoken != NULL )
+ {
+ *pxHigherPriorityTaskWoken = pdTRUE;
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
+ }
+
+#endif /* configUSE_TASK_NOTIFICATIONS */
+
+/*-----------------------------------------------------------*/
+
+
+#ifdef FREERTOS_MODULE_TEST
+ #include "tasks_test_access_functions.h"
+#endif
+
diff --git a/src/FreeRTOS-Sim-master/Source/timers.c b/src/FreeRTOS-Sim-master/Source/timers.c
new file mode 100644
index 0000000..5d1ad08
--- /dev/null
+++ b/src/FreeRTOS-Sim-master/Source/timers.c
@@ -0,0 +1,917 @@
+/*
+ FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/* Standard includes. */
+#include <stdlib.h>
+
+/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
+all the API functions to use the MPU wrappers. That should only be done when
+task.h is included from an application file. */
+#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
+
+#include "FreeRTOS.h"
+#include "task.h"
+#include "queue.h"
+#include "timers.h"
+
+#if ( INCLUDE_xTimerPendFunctionCall == 1 ) && ( configUSE_TIMERS == 0 )
+ #error configUSE_TIMERS must be set to 1 to make the xTimerPendFunctionCall() function available.
+#endif
+
+/* Lint e961 and e750 are suppressed as a MISRA exception justified because the
+MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
+header files above, but not in this file, in order to generate the correct
+privileged Vs unprivileged linkage and placement. */
+#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
+
+
+/* This entire source file will be skipped if the application is not configured
+to include software timer functionality. This #if is closed at the very bottom
+of this file. If you want to include software timer functionality then ensure
+configUSE_TIMERS is set to 1 in FreeRTOSConfig.h. */
+#if ( configUSE_TIMERS == 1 )
+
+/* Misc definitions. */
+#define tmrNO_DELAY ( TickType_t ) 0U
+
+/* The definition of the timers themselves. */
+typedef struct tmrTimerControl
+{
+ const char *pcTimerName; /*<< Text name. This is not used by the kernel, it is included simply to make debugging easier. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+ ListItem_t xTimerListItem; /*<< Standard linked list item as used by all kernel features for event management. */
+ TickType_t xTimerPeriodInTicks;/*<< How quickly and often the timer expires. */
+ UBaseType_t uxAutoReload; /*<< Set to pdTRUE if the timer should be automatically restarted once expired. Set to pdFALSE if the timer is, in effect, a one-shot timer. */
+ void *pvTimerID; /*<< An ID to identify the timer. This allows the timer to be identified when the same callback is used for multiple timers. */
+ TimerCallbackFunction_t pxCallbackFunction; /*<< The function that will be called when the timer expires. */
+ #if( configUSE_TRACE_FACILITY == 1 )
+ UBaseType_t uxTimerNumber; /*<< An ID assigned by trace tools such as FreeRTOS+Trace */
+ #endif
+} xTIMER;
+
+/* The old xTIMER name is maintained above then typedefed to the new Timer_t
+name below to enable the use of older kernel aware debuggers. */
+typedef xTIMER Timer_t;
+
+/* The definition of messages that can be sent and received on the timer queue.
+Two types of message can be queued - messages that manipulate a software timer,
+and messages that request the execution of a non-timer related callback. The
+two message types are defined in two separate structures, xTimerParametersType
+and xCallbackParametersType respectively. */
+typedef struct tmrTimerParameters
+{
+ TickType_t xMessageValue; /*<< An optional value used by a subset of commands, for example, when changing the period of a timer. */
+ Timer_t * pxTimer; /*<< The timer to which the command will be applied. */
+} TimerParameter_t;
+
+
+typedef struct tmrCallbackParameters
+{
+ PendedFunction_t pxCallbackFunction; /* << The callback function to execute. */
+ void *pvParameter1; /* << The value that will be used as the callback functions first parameter. */
+ uint32_t ulParameter2; /* << The value that will be used as the callback functions second parameter. */
+} CallbackParameters_t;
+
+/* The structure that contains the two message types, along with an identifier
+that is used to determine which message type is valid. */
+typedef struct tmrTimerQueueMessage
+{
+ BaseType_t xMessageID; /*<< The command being sent to the timer service task. */
+ union
+ {
+ TimerParameter_t xTimerParameters;
+
+ /* Don't include xCallbackParameters if it is not going to be used as
+ it makes the structure (and therefore the timer queue) larger. */
+ #if ( INCLUDE_xTimerPendFunctionCall == 1 )
+ CallbackParameters_t xCallbackParameters;
+ #endif /* INCLUDE_xTimerPendFunctionCall */
+ } u;
+} DaemonTaskMessage_t;
+
+/*lint -e956 A manual analysis and inspection has been used to determine which
+static variables must be declared volatile. */
+
+/* The list in which active timers are stored. Timers are referenced in expire
+time order, with the nearest expiry time at the front of the list. Only the
+timer service task is allowed to access these lists. */
+PRIVILEGED_DATA static List_t xActiveTimerList1;
+PRIVILEGED_DATA static List_t xActiveTimerList2;
+PRIVILEGED_DATA static List_t *pxCurrentTimerList;
+PRIVILEGED_DATA static List_t *pxOverflowTimerList;
+
+/* A queue that is used to send commands to the timer service task. */
+PRIVILEGED_DATA static QueueHandle_t xTimerQueue = NULL;
+
+#if ( INCLUDE_xTimerGetTimerDaemonTaskHandle == 1 )
+
+ PRIVILEGED_DATA static TaskHandle_t xTimerTaskHandle = NULL;
+
+#endif
+
+/*lint +e956 */
+
+/*-----------------------------------------------------------*/
+
+/*
+ * Initialise the infrastructure used by the timer service task if it has not
+ * been initialised already.
+ */
+static void prvCheckForValidListAndQueue( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * The timer service task (daemon). Timer functionality is controlled by this
+ * task. Other tasks communicate with the timer service task using the
+ * xTimerQueue queue.
+ */
+static void prvTimerTask( void *pvParameters ) PRIVILEGED_FUNCTION;
+
+/*
+ * Called by the timer service task to interpret and process a command it
+ * received on the timer queue.
+ */
+static void prvProcessReceivedCommands( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * Insert the timer into either xActiveTimerList1, or xActiveTimerList2,
+ * depending on if the expire time causes a timer counter overflow.
+ */
+static BaseType_t prvInsertTimerInActiveList( Timer_t * const pxTimer, const TickType_t xNextExpiryTime, const TickType_t xTimeNow, const TickType_t xCommandTime ) PRIVILEGED_FUNCTION;
+
+/*
+ * An active timer has reached its expire time. Reload the timer if it is an
+ * auto reload timer, then call its callback.
+ */
+static void prvProcessExpiredTimer( const TickType_t xNextExpireTime, const TickType_t xTimeNow ) PRIVILEGED_FUNCTION;
+
+/*
+ * The tick count has overflowed. Switch the timer lists after ensuring the
+ * current timer list does not still reference some timers.
+ */
+static void prvSwitchTimerLists( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * Obtain the current tick count, setting *pxTimerListsWereSwitched to pdTRUE
+ * if a tick count overflow occurred since prvSampleTimeNow() was last called.
+ */
+static TickType_t prvSampleTimeNow( BaseType_t * const pxTimerListsWereSwitched ) PRIVILEGED_FUNCTION;
+
+/*
+ * If the timer list contains any active timers then return the expire time of
+ * the timer that will expire first and set *pxListWasEmpty to false. If the
+ * timer list does not contain any timers then return 0 and set *pxListWasEmpty
+ * to pdTRUE.
+ */
+static TickType_t prvGetNextExpireTime( BaseType_t * const pxListWasEmpty ) PRIVILEGED_FUNCTION;
+
+/*
+ * If a timer has expired, process it. Otherwise, block the timer service task
+ * until either a timer does expire or a command is received.
+ */
+static void prvProcessTimerOrBlockTask( const TickType_t xNextExpireTime, const BaseType_t xListWasEmpty ) PRIVILEGED_FUNCTION;
+
+/*-----------------------------------------------------------*/
+
+BaseType_t xTimerCreateTimerTask( void )
+{
+BaseType_t xReturn = pdFAIL;
+
+ /* This function is called when the scheduler is started if
+ configUSE_TIMERS is set to 1. Check that the infrastructure used by the
+ timer service task has been created/initialised. If timers have already
+ been created then the initialisation will already have been performed. */
+ prvCheckForValidListAndQueue();
+
+ if( xTimerQueue != NULL )
+ {
+ #if ( INCLUDE_xTimerGetTimerDaemonTaskHandle == 1 )
+ {
+ /* Create the timer task, storing its handle in xTimerTaskHandle so
+ it can be returned by the xTimerGetTimerDaemonTaskHandle() function. */
+ xReturn = xTaskCreate( prvTimerTask, "Tmr Svc", ( uint16_t ) configTIMER_TASK_STACK_DEPTH, NULL, ( ( UBaseType_t ) configTIMER_TASK_PRIORITY ) | portPRIVILEGE_BIT, &xTimerTaskHandle );
+ }
+ #else
+ {
+ /* Create the timer task without storing its handle. */
+ xReturn = xTaskCreate( prvTimerTask, "Tmr Svc", ( uint16_t ) configTIMER_TASK_STACK_DEPTH, NULL, ( ( UBaseType_t ) configTIMER_TASK_PRIORITY ) | portPRIVILEGE_BIT, NULL);
+ }
+ #endif
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ configASSERT( xReturn );
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+TimerHandle_t xTimerCreate( const char * const pcTimerName, const TickType_t xTimerPeriodInTicks, const UBaseType_t uxAutoReload, void * const pvTimerID, TimerCallbackFunction_t pxCallbackFunction ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+{
+Timer_t *pxNewTimer;
+
+ /* Allocate the timer structure. */
+ if( xTimerPeriodInTicks == ( TickType_t ) 0U )
+ {
+ pxNewTimer = NULL;
+ }
+ else
+ {
+ pxNewTimer = ( Timer_t * ) pvPortMalloc( sizeof( Timer_t ) );
+ if( pxNewTimer != NULL )
+ {
+ /* Ensure the infrastructure used by the timer service task has been
+ created/initialised. */
+ prvCheckForValidListAndQueue();
+
+ /* Initialise the timer structure members using the function parameters. */
+ pxNewTimer->pcTimerName = pcTimerName;
+ pxNewTimer->xTimerPeriodInTicks = xTimerPeriodInTicks;
+ pxNewTimer->uxAutoReload = uxAutoReload;
+ pxNewTimer->pvTimerID = pvTimerID;
+ pxNewTimer->pxCallbackFunction = pxCallbackFunction;
+ vListInitialiseItem( &( pxNewTimer->xTimerListItem ) );
+
+ traceTIMER_CREATE( pxNewTimer );
+ }
+ else
+ {
+ traceTIMER_CREATE_FAILED();
+ }
+ }
+
+ /* 0 is not a valid value for xTimerPeriodInTicks. */
+ configASSERT( ( xTimerPeriodInTicks > 0 ) );
+
+ return ( TimerHandle_t ) pxNewTimer;
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xTimerGenericCommand( TimerHandle_t xTimer, const BaseType_t xCommandID, const TickType_t xOptionalValue, BaseType_t * const pxHigherPriorityTaskWoken, const TickType_t xTicksToWait )
+{
+BaseType_t xReturn = pdFAIL;
+DaemonTaskMessage_t xMessage;
+
+ /* Send a message to the timer service task to perform a particular action
+ on a particular timer definition. */
+ if( xTimerQueue != NULL )
+ {
+ /* Send a command to the timer service task to start the xTimer timer. */
+ xMessage.xMessageID = xCommandID;
+ xMessage.u.xTimerParameters.xMessageValue = xOptionalValue;
+ xMessage.u.xTimerParameters.pxTimer = ( Timer_t * ) xTimer;
+
+ if( xCommandID < tmrFIRST_FROM_ISR_COMMAND )
+ {
+ if( xTaskGetSchedulerState() == taskSCHEDULER_RUNNING )
+ {
+ xReturn = xQueueSendToBack( xTimerQueue, &xMessage, xTicksToWait );
+ }
+ else
+ {
+ xReturn = xQueueSendToBack( xTimerQueue, &xMessage, tmrNO_DELAY );
+ }
+ }
+ else
+ {
+ xReturn = xQueueSendToBackFromISR( xTimerQueue, &xMessage, pxHigherPriorityTaskWoken );
+ }
+
+ traceTIMER_COMMAND_SEND( xTimer, xCommandID, xOptionalValue, xReturn );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+#if ( INCLUDE_xTimerGetTimerDaemonTaskHandle == 1 )
+
+ TaskHandle_t xTimerGetTimerDaemonTaskHandle( void )
+ {
+ /* If xTimerGetTimerDaemonTaskHandle() is called before the scheduler has been
+ started, then xTimerTaskHandle will be NULL. */
+ configASSERT( ( xTimerTaskHandle != NULL ) );
+ return xTimerTaskHandle;
+ }
+
+#endif
+/*-----------------------------------------------------------*/
+
+const char * pcTimerGetTimerName( TimerHandle_t xTimer )
+{
+Timer_t *pxTimer = ( Timer_t * ) xTimer;
+
+ return pxTimer->pcTimerName;
+}
+/*-----------------------------------------------------------*/
+
+static void prvProcessExpiredTimer( const TickType_t xNextExpireTime, const TickType_t xTimeNow )
+{
+BaseType_t xResult;
+Timer_t * const pxTimer = ( Timer_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxCurrentTimerList );
+
+ /* Remove the timer from the list of active timers. A check has already
+ been performed to ensure the list is not empty. */
+ ( void ) uxListRemove( &( pxTimer->xTimerListItem ) );
+ traceTIMER_EXPIRED( pxTimer );
+
+ /* If the timer is an auto reload timer then calculate the next
+ expiry time and re-insert the timer in the list of active timers. */
+ if( pxTimer->uxAutoReload == ( UBaseType_t ) pdTRUE )
+ {
+ /* The timer is inserted into a list using a time relative to anything
+ other than the current time. It will therefore be inserted into the
+ correct list relative to the time this task thinks it is now. */
+ if( prvInsertTimerInActiveList( pxTimer, ( xNextExpireTime + pxTimer->xTimerPeriodInTicks ), xTimeNow, xNextExpireTime ) == pdTRUE )
+ {
+ /* The timer expired before it was added to the active timer
+ list. Reload it now. */
+ xResult = xTimerGenericCommand( pxTimer, tmrCOMMAND_START_DONT_TRACE, xNextExpireTime, NULL, tmrNO_DELAY );
+ configASSERT( xResult );
+ ( void ) xResult;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ /* Call the timer callback. */
+ pxTimer->pxCallbackFunction( ( TimerHandle_t ) pxTimer );
+}
+/*-----------------------------------------------------------*/
+
+static void prvTimerTask( void *pvParameters )
+{
+TickType_t xNextExpireTime;
+BaseType_t xListWasEmpty;
+
+ /* Just to avoid compiler warnings. */
+ ( void ) pvParameters;
+
+ for( ;; )
+ {
+ /* Query the timers list to see if it contains any timers, and if so,
+ obtain the time at which the next timer will expire. */
+ xNextExpireTime = prvGetNextExpireTime( &xListWasEmpty );
+
+ /* If a timer has expired, process it. Otherwise, block this task
+ until either a timer does expire, or a command is received. */
+ prvProcessTimerOrBlockTask( xNextExpireTime, xListWasEmpty );
+
+ /* Empty the command queue. */
+ prvProcessReceivedCommands();
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvProcessTimerOrBlockTask( const TickType_t xNextExpireTime, const BaseType_t xListWasEmpty )
+{
+TickType_t xTimeNow;
+BaseType_t xTimerListsWereSwitched;
+
+ vTaskSuspendAll();
+ {
+ /* Obtain the time now to make an assessment as to whether the timer
+ has expired or not. If obtaining the time causes the lists to switch
+ then don't process this timer as any timers that remained in the list
+ when the lists were switched will have been processed within the
+ prvSampleTimeNow() function. */
+ xTimeNow = prvSampleTimeNow( &xTimerListsWereSwitched );
+ if( xTimerListsWereSwitched == pdFALSE )
+ {
+ /* The tick count has not overflowed, has the timer expired? */
+ if( ( xListWasEmpty == pdFALSE ) && ( xNextExpireTime <= xTimeNow ) )
+ {
+ ( void ) xTaskResumeAll();
+ prvProcessExpiredTimer( xNextExpireTime, xTimeNow );
+ }
+ else
+ {
+ /* The tick count has not overflowed, and the next expire
+ time has not been reached yet. This task should therefore
+ block to wait for the next expire time or a command to be
+ received - whichever comes first. The following line cannot
+ be reached unless xNextExpireTime > xTimeNow, except in the
+ case when the current timer list is empty. */
+ vQueueWaitForMessageRestricted( xTimerQueue, ( xNextExpireTime - xTimeNow ), xListWasEmpty );
+
+ if( xTaskResumeAll() == pdFALSE )
+ {
+ /* Yield to wait for either a command to arrive, or the
+ block time to expire. If a command arrived between the
+ critical section being exited and this yield then the yield
+ will not cause the task to block. */
+ portYIELD_WITHIN_API();
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ }
+ else
+ {
+ ( void ) xTaskResumeAll();
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+static TickType_t prvGetNextExpireTime( BaseType_t * const pxListWasEmpty )
+{
+TickType_t xNextExpireTime;
+
+ /* Timers are listed in expiry time order, with the head of the list
+ referencing the task that will expire first. Obtain the time at which
+ the timer with the nearest expiry time will expire. If there are no
+ active timers then just set the next expire time to 0. That will cause
+ this task to unblock when the tick count overflows, at which point the
+ timer lists will be switched and the next expiry time can be
+ re-assessed. */
+ *pxListWasEmpty = listLIST_IS_EMPTY( pxCurrentTimerList );
+ if( *pxListWasEmpty == pdFALSE )
+ {
+ xNextExpireTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxCurrentTimerList );
+ }
+ else
+ {
+ /* Ensure the task unblocks when the tick count rolls over. */
+ xNextExpireTime = ( TickType_t ) 0U;
+ }
+
+ return xNextExpireTime;
+}
+/*-----------------------------------------------------------*/
+
+static TickType_t prvSampleTimeNow( BaseType_t * const pxTimerListsWereSwitched )
+{
+TickType_t xTimeNow;
+PRIVILEGED_DATA static TickType_t xLastTime = ( TickType_t ) 0U; /*lint !e956 Variable is only accessible to one task. */
+
+ xTimeNow = xTaskGetTickCount();
+
+ if( xTimeNow < xLastTime )
+ {
+ prvSwitchTimerLists();
+ *pxTimerListsWereSwitched = pdTRUE;
+ }
+ else
+ {
+ *pxTimerListsWereSwitched = pdFALSE;
+ }
+
+ xLastTime = xTimeNow;
+
+ return xTimeNow;
+}
+/*-----------------------------------------------------------*/
+
+static BaseType_t prvInsertTimerInActiveList( Timer_t * const pxTimer, const TickType_t xNextExpiryTime, const TickType_t xTimeNow, const TickType_t xCommandTime )
+{
+BaseType_t xProcessTimerNow = pdFALSE;
+
+ listSET_LIST_ITEM_VALUE( &( pxTimer->xTimerListItem ), xNextExpiryTime );
+ listSET_LIST_ITEM_OWNER( &( pxTimer->xTimerListItem ), pxTimer );
+
+ if( xNextExpiryTime <= xTimeNow )
+ {
+ /* Has the expiry time elapsed between the command to start/reset a
+ timer was issued, and the time the command was processed? */
+ if( ( xTimeNow - xCommandTime ) >= pxTimer->xTimerPeriodInTicks )
+ {
+ /* The time between a command being issued and the command being
+ processed actually exceeds the timers period. */
+ xProcessTimerNow = pdTRUE;
+ }
+ else
+ {
+ vListInsert( pxOverflowTimerList, &( pxTimer->xTimerListItem ) );
+ }
+ }
+ else
+ {
+ if( ( xTimeNow < xCommandTime ) && ( xNextExpiryTime >= xCommandTime ) )
+ {
+ /* If, since the command was issued, the tick count has overflowed
+ but the expiry time has not, then the timer must have already passed
+ its expiry time and should be processed immediately. */
+ xProcessTimerNow = pdTRUE;
+ }
+ else
+ {
+ vListInsert( pxCurrentTimerList, &( pxTimer->xTimerListItem ) );
+ }
+ }
+
+ return xProcessTimerNow;
+}
+/*-----------------------------------------------------------*/
+
+static void prvProcessReceivedCommands( void )
+{
+DaemonTaskMessage_t xMessage;
+Timer_t *pxTimer;
+BaseType_t xTimerListsWereSwitched, xResult;
+TickType_t xTimeNow;
+
+ while( xQueueReceive( xTimerQueue, &xMessage, tmrNO_DELAY ) != pdFAIL ) /*lint !e603 xMessage does not have to be initialised as it is passed out, not in, and it is not used unless xQueueReceive() returns pdTRUE. */
+ {
+ #if ( INCLUDE_xTimerPendFunctionCall == 1 )
+ {
+ /* Negative commands are pended function calls rather than timer
+ commands. */
+ if( xMessage.xMessageID < ( BaseType_t ) 0 )
+ {
+ const CallbackParameters_t * const pxCallback = &( xMessage.u.xCallbackParameters );
+
+ /* The timer uses the xCallbackParameters member to request a
+ callback be executed. Check the callback is not NULL. */
+ configASSERT( pxCallback );
+
+ /* Call the function. */
+ pxCallback->pxCallbackFunction( pxCallback->pvParameter1, pxCallback->ulParameter2 );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* INCLUDE_xTimerPendFunctionCall */
+
+ /* Commands that are positive are timer commands rather than pended
+ function calls. */
+ if( xMessage.xMessageID >= ( BaseType_t ) 0 )
+ {
+ /* The messages uses the xTimerParameters member to work on a
+ software timer. */
+ pxTimer = xMessage.u.xTimerParameters.pxTimer;
+
+ if( listIS_CONTAINED_WITHIN( NULL, &( pxTimer->xTimerListItem ) ) == pdFALSE )
+ {
+ /* The timer is in a list, remove it. */
+ ( void ) uxListRemove( &( pxTimer->xTimerListItem ) );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+
+ traceTIMER_COMMAND_RECEIVED( pxTimer, xMessage.xMessageID, xMessage.u.xTimerParameters.xMessageValue );
+
+ /* In this case the xTimerListsWereSwitched parameter is not used, but
+ it must be present in the function call. prvSampleTimeNow() must be
+ called after the message is received from xTimerQueue so there is no
+ possibility of a higher priority task adding a message to the message
+ queue with a time that is ahead of the timer daemon task (because it
+ pre-empted the timer daemon task after the xTimeNow value was set). */
+ xTimeNow = prvSampleTimeNow( &xTimerListsWereSwitched );
+
+ switch( xMessage.xMessageID )
+ {
+ case tmrCOMMAND_START :
+ case tmrCOMMAND_START_FROM_ISR :
+ case tmrCOMMAND_RESET :
+ case tmrCOMMAND_RESET_FROM_ISR :
+ case tmrCOMMAND_START_DONT_TRACE :
+ /* Start or restart a timer. */
+ if( prvInsertTimerInActiveList( pxTimer, xMessage.u.xTimerParameters.xMessageValue + pxTimer->xTimerPeriodInTicks, xTimeNow, xMessage.u.xTimerParameters.xMessageValue ) == pdTRUE )
+ {
+ /* The timer expired before it was added to the active
+ timer list. Process it now. */
+ pxTimer->pxCallbackFunction( ( TimerHandle_t ) pxTimer );
+ traceTIMER_EXPIRED( pxTimer );
+
+ if( pxTimer->uxAutoReload == ( UBaseType_t ) pdTRUE )
+ {
+ xResult = xTimerGenericCommand( pxTimer, tmrCOMMAND_START_DONT_TRACE, xMessage.u.xTimerParameters.xMessageValue + pxTimer->xTimerPeriodInTicks, NULL, tmrNO_DELAY );
+ configASSERT( xResult );
+ ( void ) xResult;
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ break;
+
+ case tmrCOMMAND_STOP :
+ case tmrCOMMAND_STOP_FROM_ISR :
+ /* The timer has already been removed from the active list.
+ There is nothing to do here. */
+ break;
+
+ case tmrCOMMAND_CHANGE_PERIOD :
+ case tmrCOMMAND_CHANGE_PERIOD_FROM_ISR :
+ pxTimer->xTimerPeriodInTicks = xMessage.u.xTimerParameters.xMessageValue;
+ configASSERT( ( pxTimer->xTimerPeriodInTicks > 0 ) );
+
+ /* The new period does not really have a reference, and can be
+ longer or shorter than the old one. The command time is
+ therefore set to the current time, and as the period cannot be
+ zero the next expiry time can only be in the future, meaning
+ (unlike for the xTimerStart() case above) there is no fail case
+ that needs to be handled here. */
+ ( void ) prvInsertTimerInActiveList( pxTimer, ( xTimeNow + pxTimer->xTimerPeriodInTicks ), xTimeNow, xTimeNow );
+ break;
+
+ case tmrCOMMAND_DELETE :
+ /* The timer has already been removed from the active list,
+ just free up the memory. */
+ vPortFree( pxTimer );
+ break;
+
+ default :
+ /* Don't expect to get here. */
+ break;
+ }
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvSwitchTimerLists( void )
+{
+TickType_t xNextExpireTime, xReloadTime;
+List_t *pxTemp;
+Timer_t *pxTimer;
+BaseType_t xResult;
+
+ /* The tick count has overflowed. The timer lists must be switched.
+ If there are any timers still referenced from the current timer list
+ then they must have expired and should be processed before the lists
+ are switched. */
+ while( listLIST_IS_EMPTY( pxCurrentTimerList ) == pdFALSE )
+ {
+ xNextExpireTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxCurrentTimerList );
+
+ /* Remove the timer from the list. */
+ pxTimer = ( Timer_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxCurrentTimerList );
+ ( void ) uxListRemove( &( pxTimer->xTimerListItem ) );
+ traceTIMER_EXPIRED( pxTimer );
+
+ /* Execute its callback, then send a command to restart the timer if
+ it is an auto-reload timer. It cannot be restarted here as the lists
+ have not yet been switched. */
+ pxTimer->pxCallbackFunction( ( TimerHandle_t ) pxTimer );
+
+ if( pxTimer->uxAutoReload == ( UBaseType_t ) pdTRUE )
+ {
+ /* Calculate the reload value, and if the reload value results in
+ the timer going into the same timer list then it has already expired
+ and the timer should be re-inserted into the current list so it is
+ processed again within this loop. Otherwise a command should be sent
+ to restart the timer to ensure it is only inserted into a list after
+ the lists have been swapped. */
+ xReloadTime = ( xNextExpireTime + pxTimer->xTimerPeriodInTicks );
+ if( xReloadTime > xNextExpireTime )
+ {
+ listSET_LIST_ITEM_VALUE( &( pxTimer->xTimerListItem ), xReloadTime );
+ listSET_LIST_ITEM_OWNER( &( pxTimer->xTimerListItem ), pxTimer );
+ vListInsert( pxCurrentTimerList, &( pxTimer->xTimerListItem ) );
+ }
+ else
+ {
+ xResult = xTimerGenericCommand( pxTimer, tmrCOMMAND_START_DONT_TRACE, xNextExpireTime, NULL, tmrNO_DELAY );
+ configASSERT( xResult );
+ ( void ) xResult;
+ }
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+
+ pxTemp = pxCurrentTimerList;
+ pxCurrentTimerList = pxOverflowTimerList;
+ pxOverflowTimerList = pxTemp;
+}
+/*-----------------------------------------------------------*/
+
+static void prvCheckForValidListAndQueue( void )
+{
+ /* Check that the list from which active timers are referenced, and the
+ queue used to communicate with the timer service, have been
+ initialised. */
+ taskENTER_CRITICAL();
+ {
+ if( xTimerQueue == NULL )
+ {
+ vListInitialise( &xActiveTimerList1 );
+ vListInitialise( &xActiveTimerList2 );
+ pxCurrentTimerList = &xActiveTimerList1;
+ pxOverflowTimerList = &xActiveTimerList2;
+ xTimerQueue = xQueueCreate( ( UBaseType_t ) configTIMER_QUEUE_LENGTH, sizeof( DaemonTaskMessage_t ) );
+ configASSERT( xTimerQueue );
+
+ #if ( configQUEUE_REGISTRY_SIZE > 0 )
+ {
+ if( xTimerQueue != NULL )
+ {
+ vQueueAddToRegistry( xTimerQueue, "TmrQ" );
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ #endif /* configQUEUE_REGISTRY_SIZE */
+ }
+ else
+ {
+ mtCOVERAGE_TEST_MARKER();
+ }
+ }
+ taskEXIT_CRITICAL();
+}
+/*-----------------------------------------------------------*/
+
+BaseType_t xTimerIsTimerActive( TimerHandle_t xTimer )
+{
+BaseType_t xTimerIsInActiveList;
+Timer_t *pxTimer = ( Timer_t * ) xTimer;
+
+ /* Is the timer in the list of active timers? */
+ taskENTER_CRITICAL();
+ {
+ /* Checking to see if it is in the NULL list in effect checks to see if
+ it is referenced from either the current or the overflow timer lists in
+ one go, but the logic has to be reversed, hence the '!'. */
+ xTimerIsInActiveList = ( BaseType_t ) !( listIS_CONTAINED_WITHIN( NULL, &( pxTimer->xTimerListItem ) ) );
+ }
+ taskEXIT_CRITICAL();
+
+ return xTimerIsInActiveList;
+} /*lint !e818 Can't be pointer to const due to the typedef. */
+/*-----------------------------------------------------------*/
+
+void *pvTimerGetTimerID( const TimerHandle_t xTimer )
+{
+Timer_t * const pxTimer = ( Timer_t * ) xTimer;
+void *pvReturn;
+
+ configASSERT( xTimer );
+
+ taskENTER_CRITICAL();
+ {
+ pvReturn = pxTimer->pvTimerID;
+ }
+ taskEXIT_CRITICAL();
+
+ return pvReturn;
+}
+/*-----------------------------------------------------------*/
+
+void vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID )
+{
+Timer_t * const pxTimer = ( Timer_t * ) xTimer;
+
+ configASSERT( xTimer );
+
+ taskENTER_CRITICAL();
+ {
+ pxTimer->pvTimerID = pvNewID;
+ }
+ taskEXIT_CRITICAL();
+}
+/*-----------------------------------------------------------*/
+
+#if( INCLUDE_xTimerPendFunctionCall == 1 )
+
+ BaseType_t xTimerPendFunctionCallFromISR( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, BaseType_t *pxHigherPriorityTaskWoken )
+ {
+ DaemonTaskMessage_t xMessage;
+ BaseType_t xReturn;
+
+ /* Complete the message with the function parameters and post it to the
+ daemon task. */
+ xMessage.xMessageID = tmrCOMMAND_EXECUTE_CALLBACK_FROM_ISR;
+ xMessage.u.xCallbackParameters.pxCallbackFunction = xFunctionToPend;
+ xMessage.u.xCallbackParameters.pvParameter1 = pvParameter1;
+ xMessage.u.xCallbackParameters.ulParameter2 = ulParameter2;
+
+ xReturn = xQueueSendFromISR( xTimerQueue, &xMessage, pxHigherPriorityTaskWoken );
+
+ tracePEND_FUNC_CALL_FROM_ISR( xFunctionToPend, pvParameter1, ulParameter2, xReturn );
+
+ return xReturn;
+ }
+
+#endif /* INCLUDE_xTimerPendFunctionCall */
+/*-----------------------------------------------------------*/
+
+#if( INCLUDE_xTimerPendFunctionCall == 1 )
+
+ BaseType_t xTimerPendFunctionCall( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, TickType_t xTicksToWait )
+ {
+ DaemonTaskMessage_t xMessage;
+ BaseType_t xReturn;
+
+ /* This function can only be called after a timer has been created or
+ after the scheduler has been started because, until then, the timer
+ queue does not exist. */
+ configASSERT( xTimerQueue );
+
+ /* Complete the message with the function parameters and post it to the
+ daemon task. */
+ xMessage.xMessageID = tmrCOMMAND_EXECUTE_CALLBACK;
+ xMessage.u.xCallbackParameters.pxCallbackFunction = xFunctionToPend;
+ xMessage.u.xCallbackParameters.pvParameter1 = pvParameter1;
+ xMessage.u.xCallbackParameters.ulParameter2 = ulParameter2;
+
+ xReturn = xQueueSendToBack( xTimerQueue, &xMessage, xTicksToWait );
+
+ tracePEND_FUNC_CALL( xFunctionToPend, pvParameter1, ulParameter2, xReturn );
+
+ return xReturn;
+ }
+
+#endif /* INCLUDE_xTimerPendFunctionCall */
+/*-----------------------------------------------------------*/
+
+/* This entire source file will be skipped if the application is not configured
+to include software timer functionality. If you want to include software timer
+functionality then ensure configUSE_TIMERS is set to 1 in FreeRTOSConfig.h. */
+#endif /* configUSE_TIMERS == 1 */
+
+
+
diff --git a/src/fsm/common.h b/src/common/includes/Core/common.h
index 80739cf..b483dfb 100644
--- a/src/fsm/common.h
+++ b/src/common/includes/Core/common.h
@@ -58,3 +58,4 @@ int random_bool(void);
#define FAULT_SOURCE_USART 4
void trigger_fault(int source);
+void hard_fault_handler_extra();
diff --git a/src/fsm/usart.h b/src/common/includes/Core/usart.h
index 9d9b59c..9d9b59c 100644
--- a/src/fsm/usart.h
+++ b/src/common/includes/Core/usart.h
diff --git a/src/fsm/FreeRTOSConfig.h b/src/common/src/Core/FreeRTOSConfig.h
index 81725ac..b58e2a2 100644
--- a/src/fsm/FreeRTOSConfig.h
+++ b/src/common/src/Core/FreeRTOSConfig.h
@@ -100,7 +100,6 @@
#define configUSE_TICKLESS_IDLE 1
#define configUSE_MUTEXES 1
#define configQUEUE_REGISTRY_SIZE 8
-#define configCHECK_FOR_STACK_OVERFLOW 2 // Default: 2
#define configUSE_RECURSIVE_MUTEXES 1
#define configUSE_MALLOC_FAILED_HOOK 0 // Default: 1
#define configUSE_APPLICATION_TASK_TAG 0
@@ -163,4 +162,3 @@ standard names. */
#define xPortSysTickHandler SysTick_Handler
#endif /* FREERTOS_CONFIG_H */
-
diff --git a/src/common/src/Core/common.c b/src/common/src/Core/common.c
new file mode 100644
index 0000000..2eee88f
--- /dev/null
+++ b/src/common/src/Core/common.c
@@ -0,0 +1,231 @@
+/*
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2016 Matthias P. Braendli
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+*/
+
+#include "Core/common.h"
+#include "Core/usart.h"
+#include "FreeRTOS.h"
+#include "timers.h"
+/* #include "Core/gps.h" */
+#include <time.h>
+
+static uint64_t common_timestamp = 0; // milliseconds since startup
+static TimerHandle_t common_timer;
+
+// The LFSR is used as random number generator
+static const uint16_t lfsr_start_state = 0x12ABu;
+static uint16_t lfsr;
+
+static void common_increase_timestamp(TimerHandle_t t);
+
+int find_last_sunday(const struct tm* time)
+{
+ struct tm t = *time;
+
+ // the last sunday can never be before the 20th
+ t.tm_mday = 20;
+
+ int last_sunday = 1;
+
+ while (t.tm_mon == time->tm_mon) {
+ t.tm_mday++;
+ if (mktime(&t) == (time_t)-1) {
+ // TODO error
+ return -1;
+ }
+
+ const int sunday = 0;
+ if (t.tm_wday == sunday) {
+ last_sunday = t.tm_mday;
+ }
+ }
+
+ return last_sunday;
+}
+
+/* Calculate if we are in daylight saving time.
+ * return 0 if false
+ * 1 if true
+ * -1 in case of error
+ */
+static int is_dst(const struct tm *time)
+{
+ /* DST from 01:00 UTC on last Sunday in March
+ * to 01:00 UTC on last Sunday in October
+ */
+ const int march = 2;
+ const int october = 9;
+ if (time->tm_mon < march) {
+ return 0;
+ }
+ else if (time->tm_mon == march) {
+ int last_sunday = find_last_sunday(time);
+ if (last_sunday == -1) return -1;
+
+ if (time->tm_mday < last_sunday) {
+ return 0;
+ }
+ else if (time->tm_mday == last_sunday) {
+ return (time->tm_hour < 1) ? 0 : 1;
+ }
+ else {
+ return 1;
+ }
+ }
+ else if (time->tm_mon > march && time->tm_mon < october) {
+ return 1;
+ }
+ else if (time->tm_mon == october) {
+ int last_sunday = find_last_sunday(time);
+ if (last_sunday == -1) return -1;
+
+ if (time->tm_mday < last_sunday) {
+ return 1;
+ }
+ else if (time->tm_mday == last_sunday) {
+ return (time->tm_hour < 1) ? 1 : 0;
+ }
+ else {
+ return 0;
+ }
+ }
+ else {
+ return 0;
+ }
+}
+
+int local_time(struct tm *time)
+{
+ const int local_time_offset=1; // hours
+
+ int valid = 0; // TODO gps_utctime(time);
+
+ if (valid) {
+ time->tm_hour += local_time_offset;
+
+ if (is_dst(time)) {
+ time->tm_hour++;
+ time->tm_isdst = 1;
+ }
+
+ // Let mktime fix the struct tm *time
+ if (mktime(time) == (time_t)-1) {
+ // TODO inform about failure
+ valid = 0;
+ }
+ }
+
+ return valid;
+}
+
+
+void common_init(void)
+{
+ common_timer = xTimerCreate("Timer",
+ portTICK_PERIOD_MS,
+ pdTRUE, // Auto-reload
+ NULL, // No unique id
+ common_increase_timestamp
+ );
+
+ xTimerStart(common_timer, 0);
+
+ lfsr = lfsr_start_state;
+}
+
+static void common_increase_timestamp(TimerHandle_t t)
+{
+ common_timestamp++;
+}
+
+uint64_t timestamp_now(void)
+{
+ return common_timestamp;
+}
+
+
+// Return either 0 or 1, somewhat randomly
+int random_bool(void)
+{
+ uint16_t bit;
+
+ /* taps: 16 14 13 11; feedback polynomial: x^16 + x^14 + x^13 + x^11 + 1 */
+ bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5) ) & 1;
+ lfsr = (lfsr >> 1) | (bit << 15);
+
+ return bit;
+}
+
+// For the debugger
+static int faultsource = 0;
+void trigger_fault(int source)
+{
+ usart_debug("Fatal: %d", source);
+
+ __disable_irq();
+
+ faultsource = source;
+
+ while (1) {}
+}
+
+void hard_fault_handler_c(uint32_t *hardfault_args)
+{
+ uint32_t stacked_r0;
+ uint32_t stacked_r1;
+ uint32_t stacked_r2;
+ uint32_t stacked_r3;
+ uint32_t stacked_r12;
+ uint32_t stacked_lr;
+ uint32_t stacked_pc;
+ uint32_t stacked_psr;
+
+ stacked_r0 = hardfault_args[0];
+ stacked_r1 = hardfault_args[1];
+ stacked_r2 = hardfault_args[2];
+ stacked_r3 = hardfault_args[3];
+
+ stacked_r12 = hardfault_args[4];
+ stacked_lr = hardfault_args[5];
+ stacked_pc = hardfault_args[6];
+ stacked_psr = hardfault_args[7];
+
+ usart_debug_puts("\n\n[Hard fault handler - all numbers in hex]\n");
+ usart_debug("R0 = %x\n", stacked_r0);
+ usart_debug("R1 = %x\n", stacked_r1);
+ usart_debug("R2 = %x\n", stacked_r2);
+ usart_debug("R3 = %x\n", stacked_r3);
+ usart_debug("R12 = %x\n", stacked_r12);
+ usart_debug("LR [R14] = %x subroutine call return address\n", stacked_lr);
+ usart_debug("PC [R15] = %x program counter\n", stacked_pc);
+ usart_debug("PSR = %x\n", stacked_psr);
+ usart_debug("BFAR = %x\n", (*((volatile unsigned long *)(0xE000ED38))));
+ usart_debug("CFSR = %x\n", (*((volatile unsigned long *)(0xE000ED28))));
+ usart_debug("HFSR = %x\n", (*((volatile unsigned long *)(0xE000ED2C))));
+ usart_debug("DFSR = %x\n", (*((volatile unsigned long *)(0xE000ED30))));
+ usart_debug("AFSR = %x\n", (*((volatile unsigned long *)(0xE000ED3C))));
+
+ hard_fault_handler_extra();
+
+ while (1);
+}
diff --git a/src/common/src/Core/main.c b/src/common/src/Core/main.c
new file mode 100644
index 0000000..ac41355
--- /dev/null
+++ b/src/common/src/Core/main.c
@@ -0,0 +1,399 @@
+/*
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2016 Matthias P. Braendli, Maximilien Cuony
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <math.h>
+
+/* Kernel includes. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "timers.h"
+#include "semphr.h"
+
+/* Includes */
+/* #include "audio.h" */
+/* #include "cw.h" */
+/* #include "pio.h" */
+/* #include "i2c.h" */
+/* #include "gps.h" */
+/* #include "fsm.h" */
+/* #include "common.h" */
+#include "Core/usart.h"
+/* #include "delay.h" */
+/* #include "temperature.h" */
+#include "vc.h"
+
+
+// Private variables
+static int tm_trigger_button = 0;
+static int tm_trigger = 0;
+
+// Private function prototypes
+void init();
+
+// Tasks
+static void detect_button_press(void *pvParameters);
+static void exercise_fsm(void *pvParameters);
+static void gps_monit_task(void *pvParameters);
+static void launcher_task(void *pvParameters);
+
+// Audio callback function
+static void audio_callback(void* context, int select_buffer);
+
+void vApplicationStackOverflowHook( TaskHandle_t xTask,
+ signed char *pcTaskName )
+{
+ usart_debug("TASK OVERFLOW %s\r\n", pcTaskName);
+ while (1) {};
+}
+
+int main(void) {
+ init();
+ /* delay_init(); */
+ /* usart_init(); */
+ usart_debug_puts("\r\n******* glutt-o-matique version " GIT_VERSION " *******\r\n");
+ /* */
+ /* if (RCC_GetFlagStatus(RCC_FLAG_IWDGRST) != RESET) */
+ /* { */
+ /* usart_debug_puts("WARNING: A IWDG Reset occured!\r\n"); */
+ /* } */
+ /* RCC_ClearFlag(); */
+ /* */
+ /* TaskHandle_t task_handle; */
+ /* xTaskCreate( */
+ /* launcher_task, */
+ /* "Launcher", */
+ /* configMINIMAL_STACK_SIZE, */
+ /* (void*) NULL, */
+ /* tskIDLE_PRIORITY + 2UL, */
+ /* &task_handle); */
+ /* */
+ /* if (!task_handle) { */
+ /* trigger_fault(FAULT_SOURCE_MAIN); */
+ /* } */
+ /* */
+ /* #<{(| Start the RTOS Scheduler |)}># */
+ /* vTaskStartScheduler(); */
+ /* */
+ /* #<{(| HALT |)}># */
+ while(1);
+}
+
+// Launcher task is here to make sure the scheduler is
+// already running when calling the init functions.
+static void launcher_task(void *pvParameters)
+{
+ /* usart_debug_puts("CW init\r\n"); */
+ /* cw_psk31_init(16000); */
+ /* */
+ /* usart_debug_puts("PIO init\r\n"); */
+ /* pio_init(); */
+ /* */
+ /* usart_debug_puts("I2C init\r\n"); */
+ /* i2c_init(); */
+ /* */
+ /* usart_debug_puts("common init\r\n"); */
+ /* common_init(); */
+ /* */
+ /* usart_debug_puts("GPS init\r\n"); */
+ /* gps_init(); */
+ /* */
+ /* usart_debug_puts("DS18B20 init\r\n"); */
+ /* temperature_init(); */
+ /* */
+ /* usart_debug_puts("TaskButton init\r\n"); */
+ /* */
+ /* TaskHandle_t task_handle; */
+ /* xTaskCreate( */
+ /* detect_button_press, */
+ /* "TaskButton", */
+ /* 4*configMINIMAL_STACK_SIZE, */
+ /* (void*) NULL, */
+ /* tskIDLE_PRIORITY + 2UL, */
+ /* &task_handle); */
+ /* */
+ /* if (!task_handle) { */
+ /* trigger_fault(FAULT_SOURCE_MAIN); */
+ /* } */
+ /* */
+ /* usart_debug_puts("TaskFSM init\r\n"); */
+ /* */
+ /* xTaskCreate( */
+ /* exercise_fsm, */
+ /* "TaskFSM", */
+ /* 4*configMINIMAL_STACK_SIZE, */
+ /* (void*) NULL, */
+ /* tskIDLE_PRIORITY + 2UL, */
+ /* &task_handle); */
+ /* */
+ /* if (!task_handle) { */
+ /* trigger_fault(FAULT_SOURCE_MAIN); */
+ /* } */
+ /* */
+ /* usart_debug_puts("TaskGPS init\r\n"); */
+ /* */
+ /* xTaskCreate( */
+ /* gps_monit_task, */
+ /* "TaskGPSMonit", */
+ /* 4*configMINIMAL_STACK_SIZE, */
+ /* (void*) NULL, */
+ /* tskIDLE_PRIORITY + 2UL, */
+ /* &task_handle); */
+ /* */
+ /* if (!task_handle) { */
+ /* trigger_fault(FAULT_SOURCE_MAIN); */
+ /* } */
+ /* */
+ /* usart_debug_puts("Audio init\r\n"); */
+ /* */
+ /* InitializeAudio(Audio16000HzSettings); */
+ /* */
+ /* usart_debug_puts("Audio set volume\r\n"); */
+ /* SetAudioVolume(210); */
+ /* */
+ /* usart_debug_puts("Audio set callback\r\n"); */
+ /* PlayAudioWithCallback(audio_callback, NULL); */
+ /* */
+ /* // By default, let's the audio off to save power */
+ /* AudioOff(); */
+ /* */
+ /* usart_debug_puts("Init done.\r\n"); */
+ /* */
+ /* #<{(| We are done now, suspend this task */
+ /* * With FreeDOS' heap_1.c, we cannot delete it. */
+ /* * See freertos.org -> More Advanced... -> Memory Management */
+ /* * for more info. */
+ /* |)}># */
+ /* while (1) { */
+ /* vTaskSuspend(NULL); */
+ /* } */
+}
+
+static void detect_button_press(void *pvParameters)
+{
+ /* int pin_high_count = 0; */
+ /* int last_pin_high_count = 0; */
+ /* const int pin_high_thresh = 10; */
+ /* while (1) { */
+ /* if (GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0) == Bit_SET) { */
+ /* if (pin_high_count < pin_high_thresh) { */
+ /* pin_high_count++; */
+ /* } */
+ /* } */
+ /* else { */
+ /* if (pin_high_count > 0) { */
+ /* pin_high_count--; */
+ /* } */
+ /* } */
+ /* */
+ /* vTaskDelay(10 / portTICK_RATE_MS); #<{(| Debounce Delay |)}># */
+ /* */
+ /* if (pin_high_count == pin_high_thresh && */
+ /* last_pin_high_count != pin_high_count) { */
+ /* tm_trigger_button = 1; */
+ /* usart_debug_puts("Bouton bleu\r\n"); */
+ /* */
+ /* if (temperature_valid()) { */
+ /* */
+ /* float temp = temperature_get(); */
+ /* */
+ /* usart_debug("Temperature %f\r\n", temp); */
+ /* */
+ /* } else { */
+ /* usart_debug_puts("No temp\r\n"); */
+ /* } */
+ /* } */
+ /* else if (pin_high_count == 0 && */
+ /* last_pin_high_count != pin_high_count) { */
+ /* tm_trigger_button = 0; */
+ /* } */
+ /* */
+ /* last_pin_high_count = pin_high_count; */
+ /* } */
+}
+
+static void audio_callback(void* context, int select_buffer)
+{
+ /* static int16_t audio_buffer0[AUDIO_BUF_LEN]; */
+ /* static int16_t audio_buffer1[AUDIO_BUF_LEN]; */
+ /* int16_t *samples; */
+ /* */
+ /* if (select_buffer == 0) { */
+ /* samples = audio_buffer0; */
+ /* GPIO_ResetBits(GPIOD, GPIOD_BOARD_LED_RED); */
+ /* select_buffer = 1; */
+ /* } else { */
+ /* samples = audio_buffer1; */
+ /* GPIO_SetBits(GPIOD, GPIOD_BOARD_LED_RED); */
+ /* select_buffer = 0; */
+ /* } */
+ /* */
+ /* size_t samples_len = cw_psk31_fill_buffer(samples, AUDIO_BUF_LEN); */
+ /* */
+ /* if (samples_len == 0) { */
+ /* for (int i = 0; i < AUDIO_BUF_LEN; i++) { */
+ /* samples[i] = 0; */
+ /* } */
+ /* */
+ /* samples_len = AUDIO_BUF_LEN; */
+ /* } */
+ /* */
+ /* ProvideAudioBufferWithoutBlocking(samples, samples_len); */
+}
+
+/* static struct tm gps_time; */
+static void gps_monit_task(void *pvParameters) {
+/* GPIO_SetBits(GPIOD, GPIOD_BOARD_LED_BLUE); */
+/* */
+/* int t_gps_print_latch = 0; */
+/* */
+/* while (1) { */
+/* struct tm time; */
+/* int time_valid = local_time(&time); */
+/* */
+/* if (time_valid) { */
+/* if (time.tm_sec % 4 >= 2) { */
+/* GPIO_SetBits(GPIOD, GPIOD_BOARD_LED_BLUE); */
+/* } */
+/* else { */
+/* GPIO_ResetBits(GPIOD, GPIOD_BOARD_LED_BLUE); */
+/* } */
+/* */
+/* // Even hours: tm_trigger=1, odd hours: tm_trigger=0 */
+/* tm_trigger = (time.tm_hour + 1) % 2; */
+/* } */
+/* */
+/* gps_utctime(&gps_time); */
+/* */
+/* if (gps_time.tm_sec % 30 == 0 && t_gps_print_latch == 0) { */
+/* usart_debug("T_GPS %04d-%02d-%02d %02d:%02d:%02d\r\n", */
+/* gps_time.tm_year, gps_time.tm_mon, gps_time.tm_mday, */
+/* gps_time.tm_hour, gps_time.tm_min, gps_time.tm_sec); */
+/* */
+/* usart_debug("TIME %04d-%02d-%02d %02d:%02d:%02d\r\n", */
+/* time.tm_year, time.tm_mon, time.tm_mday, */
+/* time.tm_hour, time.tm_min, time.tm_sec); */
+/* */
+/* t_gps_print_latch = 1; */
+/* } */
+/* if (gps_time.tm_sec % 30 > 0) { */
+/* t_gps_print_latch = 0; */
+/* } */
+/* */
+/* vTaskDelay(100 / portTICK_RATE_MS); */
+/* */
+/* // Reload watchdog */
+/* IWDG_ReloadCounter(); */
+/* } */
+}
+
+/* static struct fsm_input_signals_t fsm_input; */
+static void exercise_fsm(void *pvParameters)
+{
+ /* int cw_last_trigger = 0; */
+ /* int last_tm_trigger = 0; */
+ /* int last_tm_trigger_button = 0; */
+ /* */
+ /* int last_sq = 0; */
+ /* int last_1750 = 0; */
+ /* int last_qrp = 0; */
+ /* int last_cw_done = 0; */
+ /* */
+ /* fsm_input.humidity = 0; */
+ /* fsm_input.temp = 15; */
+ /* fsm_input.swr_high = 0; */
+ /* fsm_input.sstv_mode = 0; */
+ /* fsm_input.wind_generator_ok = 1; */
+ /* while (1) { */
+ /* vTaskDelay(10 / portTICK_RATE_MS); */
+ /* */
+ /* pio_set_fsm_signals(&fsm_input); */
+ /* */
+ /* if (last_sq != fsm_input.sq) { */
+ /* last_sq = fsm_input.sq; */
+ /* usart_debug("In SQ %d\r\n", last_sq); */
+ /* } */
+ /* if (last_1750 != fsm_input.tone_1750) { */
+ /* last_1750 = fsm_input.tone_1750; */
+ /* usart_debug("In 1750 %d\r\n", last_1750); */
+ /* } */
+ /* if (last_qrp != fsm_input.qrp) { */
+ /* last_qrp = fsm_input.qrp; */
+ /* usart_debug("In QRP %d\r\n", last_qrp); */
+ /* } */
+ /* */
+ /* */
+ /* if (tm_trigger_button == 1 && last_tm_trigger_button == 0) { */
+ /* fsm_input.start_tm = 1; */
+ /* } */
+ /* last_tm_trigger_button = tm_trigger_button; */
+ /* */
+ /* if (tm_trigger == 1 && last_tm_trigger == 0) { */
+ /* fsm_input.start_tm = 1; */
+ /* } */
+ /* last_tm_trigger = tm_trigger; */
+ /* */
+ /* int cw_done = !cw_psk31_busy(); */
+ /* if (last_cw_done != cw_done) { */
+ /* usart_debug("In CW done %d\r\n", cw_done); */
+ /* last_cw_done = cw_done; */
+ /* */
+ /* fsm_input.cw_psk31_done = cw_done; */
+ /* } */
+ /* else { */
+ /* fsm_input.cw_psk31_done = 0; */
+ /* } */
+ /* */
+ /* if (fsm_input.cw_psk31_done) { */
+ /* GPIO_ResetBits(GPIOD, GPIOD_BOARD_LED_ORANGE); */
+ /* } */
+ /* else { */
+ /* GPIO_SetBits(GPIOD, GPIOD_BOARD_LED_ORANGE); */
+ /* } */
+ /* */
+ /* fsm_update_inputs(&fsm_input); */
+ /* fsm_update(); */
+ /* */
+ /* struct fsm_output_signals_t fsm_out; */
+ /* fsm_get_outputs(&fsm_out); */
+ /* */
+ /* pio_set_tx(fsm_out.tx_on); */
+ /* pio_set_mod_off(!fsm_out.modulation); */
+ /* pio_set_qrp(fsm_out.qrp); // TODO move out of FSM */
+ /* */
+ /* // Add message to CW generator only on rising edge of trigger */
+ /* if (fsm_out.cw_psk31_trigger && !cw_last_trigger) { */
+ /* cw_psk31_push_message(fsm_out.msg, fsm_out.cw_dit_duration, fsm_out.msg_frequency); */
+ /* */
+ /* usart_debug_puts("Out CW trigger\r\n"); */
+ /* } */
+ /* cw_last_trigger = fsm_out.cw_psk31_trigger; */
+ /* */
+ /* if (fsm_out.ack_start_tm) { */
+ /* fsm_input.start_tm = 0; */
+ /* } */
+ /* } */
+}
diff --git a/src/fsm/main.c b/src/fsm/main.c
deleted file mode 100644
index a68a5cb..0000000
--- a/src/fsm/main.c
+++ /dev/null
@@ -1,445 +0,0 @@
-/*
- * The MIT License (MIT)
- *
- * Copyright (c) 2016 Matthias P. Braendli
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
-*/
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <stdint.h>
-#include <math.h>
-#include "stm32f4xx_conf.h"
-#include "audio.h"
-
-/* Kernel includes. */
-#include "FreeRTOS.h"
-#include "task.h"
-#include "timers.h"
-#include "semphr.h"
-#include "cw.h"
-#include "pio.h"
-#include "i2c.h"
-#include "gps.h"
-#include "fsm.h"
-#include "common.h"
-#include "usart.h"
-#include "delay.h"
-#include "temperature.h"
-#include "vc.h"
-
-#define GPIOD_BOARD_LED_GREEN GPIO_Pin_12
-#define GPIOD_BOARD_LED_ORANGE GPIO_Pin_13
-#define GPIOD_BOARD_LED_RED GPIO_Pin_14
-#define GPIOD_BOARD_LED_BLUE GPIO_Pin_15
-
-// Private variables
-static int tm_trigger_button = 0;
-static int tm_trigger = 0;
-
-// Private function prototypes
-void init();
-
-// Tasks
-static void detect_button_press(void *pvParameters);
-static void exercise_fsm(void *pvParameters);
-static void gps_monit_task(void *pvParameters);
-static void launcher_task(void *pvParameters);
-
-// Audio callback function
-static void audio_callback(void* context, int select_buffer);
-
-void vApplicationStackOverflowHook( TaskHandle_t xTask,
- signed char *pcTaskName )
-{
- usart_debug("TASK OVERFLOW %s\r\n", pcTaskName);
- while (1) {};
-}
-
-int main(void) {
- init();
- delay_init();
- usart_init();
- usart_debug_puts("\r\n******* glutt-o-matique version " GIT_VERSION " *******\r\n");
-
- if (RCC_GetFlagStatus(RCC_FLAG_IWDGRST) != RESET)
- {
- usart_debug_puts("WARNING: A IWDG Reset occured!\r\n");
- }
- RCC_ClearFlag();
-
- TaskHandle_t task_handle;
- xTaskCreate(
- launcher_task,
- "Launcher",
- configMINIMAL_STACK_SIZE,
- (void*) NULL,
- tskIDLE_PRIORITY + 2UL,
- &task_handle);
-
- if (!task_handle) {
- trigger_fault(FAULT_SOURCE_MAIN);
- }
-
- /* Start the RTOS Scheduler */
- vTaskStartScheduler();
-
- /* HALT */
- while(1);
-}
-
-// Launcher task is here to make sure the scheduler is
-// already running when calling the init functions.
-static void launcher_task(void *pvParameters)
-{
- usart_debug_puts("CW init\r\n");
- cw_psk31_init(16000);
-
- usart_debug_puts("PIO init\r\n");
- pio_init();
-
- usart_debug_puts("I2C init\r\n");
- i2c_init();
-
- usart_debug_puts("common init\r\n");
- common_init();
-
- usart_debug_puts("GPS init\r\n");
- gps_init();
-
- usart_debug_puts("DS18B20 init\r\n");
- temperature_init();
-
- usart_debug_puts("TaskButton init\r\n");
-
- TaskHandle_t task_handle;
- xTaskCreate(
- detect_button_press,
- "TaskButton",
- 4*configMINIMAL_STACK_SIZE,
- (void*) NULL,
- tskIDLE_PRIORITY + 2UL,
- &task_handle);
-
- if (!task_handle) {
- trigger_fault(FAULT_SOURCE_MAIN);
- }
-
- usart_debug_puts("TaskFSM init\r\n");
-
- xTaskCreate(
- exercise_fsm,
- "TaskFSM",
- 4*configMINIMAL_STACK_SIZE,
- (void*) NULL,
- tskIDLE_PRIORITY + 2UL,
- &task_handle);
-
- if (!task_handle) {
- trigger_fault(FAULT_SOURCE_MAIN);
- }
-
- usart_debug_puts("TaskGPS init\r\n");
-
- xTaskCreate(
- gps_monit_task,
- "TaskGPSMonit",
- 4*configMINIMAL_STACK_SIZE,
- (void*) NULL,
- tskIDLE_PRIORITY + 2UL,
- &task_handle);
-
- if (!task_handle) {
- trigger_fault(FAULT_SOURCE_MAIN);
- }
-
- usart_debug_puts("Audio init\r\n");
-
- InitializeAudio(Audio16000HzSettings);
-
- usart_debug_puts("Audio set volume\r\n");
- SetAudioVolume(210);
-
- usart_debug_puts("Audio set callback\r\n");
- PlayAudioWithCallback(audio_callback, NULL);
-
- // By default, let's the audio off to save power
- AudioOff();
-
- usart_debug_puts("Init done.\r\n");
-
- /* We are done now, suspend this task
- * With FreeDOS' heap_1.c, we cannot delete it.
- * See freertos.org -> More Advanced... -> Memory Management
- * for more info.
- */
- while (1) {
- vTaskSuspend(NULL);
- }
-}
-
-static void detect_button_press(void *pvParameters)
-{
- int pin_high_count = 0;
- int last_pin_high_count = 0;
- const int pin_high_thresh = 10;
- while (1) {
- if (GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0) == Bit_SET) {
- if (pin_high_count < pin_high_thresh) {
- pin_high_count++;
- }
- }
- else {
- if (pin_high_count > 0) {
- pin_high_count--;
- }
- }
-
- vTaskDelay(10 / portTICK_RATE_MS); /* Debounce Delay */
-
- if (pin_high_count == pin_high_thresh &&
- last_pin_high_count != pin_high_count) {
- tm_trigger_button = 1;
- usart_debug_puts("Bouton bleu\r\n");
-
- if (temperature_valid()) {
-
- float temp = temperature_get();
-
- usart_debug("Temperature %f\r\n", temp);
-
- } else {
- usart_debug_puts("No temp\r\n");
- }
- }
- else if (pin_high_count == 0 &&
- last_pin_high_count != pin_high_count) {
- tm_trigger_button = 0;
- }
-
- last_pin_high_count = pin_high_count;
- }
-}
-
-static void audio_callback(void* context, int select_buffer)
-{
- static int16_t audio_buffer0[AUDIO_BUF_LEN];
- static int16_t audio_buffer1[AUDIO_BUF_LEN];
- int16_t *samples;
-
- if (select_buffer == 0) {
- samples = audio_buffer0;
- GPIO_ResetBits(GPIOD, GPIOD_BOARD_LED_RED);
- select_buffer = 1;
- } else {
- samples = audio_buffer1;
- GPIO_SetBits(GPIOD, GPIOD_BOARD_LED_RED);
- select_buffer = 0;
- }
-
- size_t samples_len = cw_psk31_fill_buffer(samples, AUDIO_BUF_LEN);
-
- if (samples_len == 0) {
- for (int i = 0; i < AUDIO_BUF_LEN; i++) {
- samples[i] = 0;
- }
-
- samples_len = AUDIO_BUF_LEN;
- }
-
- ProvideAudioBufferWithoutBlocking(samples, samples_len);
-}
-
-static struct tm gps_time;
-static void gps_monit_task(void *pvParameters)
-{
- GPIO_SetBits(GPIOD, GPIOD_BOARD_LED_BLUE);
-
- int t_gps_print_latch = 0;
-
- while (1) {
- struct tm time;
- int time_valid = local_time(&time);
-
- if (time_valid) {
- if (time.tm_sec % 4 >= 2) {
- GPIO_SetBits(GPIOD, GPIOD_BOARD_LED_BLUE);
- }
- else {
- GPIO_ResetBits(GPIOD, GPIOD_BOARD_LED_BLUE);
- }
-
- // Even hours: tm_trigger=1, odd hours: tm_trigger=0
- tm_trigger = (time.tm_hour + 1) % 2;
- }
-
- gps_utctime(&gps_time);
-
- if (gps_time.tm_sec % 30 == 0 && t_gps_print_latch == 0) {
- usart_debug("T_GPS %04d-%02d-%02d %02d:%02d:%02d\r\n",
- gps_time.tm_year, gps_time.tm_mon, gps_time.tm_mday,
- gps_time.tm_hour, gps_time.tm_min, gps_time.tm_sec);
-
- usart_debug("TIME %04d-%02d-%02d %02d:%02d:%02d\r\n",
- time.tm_year, time.tm_mon, time.tm_mday,
- time.tm_hour, time.tm_min, time.tm_sec);
-
- t_gps_print_latch = 1;
- }
- if (gps_time.tm_sec % 30 > 0) {
- t_gps_print_latch = 0;
- }
-
- vTaskDelay(100 / portTICK_RATE_MS);
-
- // Reload watchdog
- IWDG_ReloadCounter();
- }
-}
-
-static struct fsm_input_signals_t fsm_input;
-static void exercise_fsm(void *pvParameters)
-{
- int cw_last_trigger = 0;
- int last_tm_trigger = 0;
- int last_tm_trigger_button = 0;
-
- int last_sq = 0;
- int last_1750 = 0;
- int last_qrp = 0;
- int last_cw_done = 0;
-
- fsm_input.humidity = 0;
- fsm_input.temp = 15;
- fsm_input.swr_high = 0;
- fsm_input.sstv_mode = 0;
- fsm_input.wind_generator_ok = 1;
- while (1) {
- vTaskDelay(10 / portTICK_RATE_MS);
-
- pio_set_fsm_signals(&fsm_input);
-
- if (last_sq != fsm_input.sq) {
- last_sq = fsm_input.sq;
- usart_debug("In SQ %d\r\n", last_sq);
- }
- if (last_1750 != fsm_input.tone_1750) {
- last_1750 = fsm_input.tone_1750;
- usart_debug("In 1750 %d\r\n", last_1750);
- }
- if (last_qrp != fsm_input.qrp) {
- last_qrp = fsm_input.qrp;
- usart_debug("In QRP %d\r\n", last_qrp);
- }
-
-
- if (tm_trigger_button == 1 && last_tm_trigger_button == 0) {
- fsm_input.start_tm = 1;
- }
- last_tm_trigger_button = tm_trigger_button;
-
- if (tm_trigger == 1 && last_tm_trigger == 0) {
- fsm_input.start_tm = 1;
- }
- last_tm_trigger = tm_trigger;
-
- int cw_done = !cw_psk31_busy();
- if (last_cw_done != cw_done) {
- usart_debug("In CW done %d\r\n", cw_done);
- last_cw_done = cw_done;
-
- fsm_input.cw_psk31_done = cw_done;
- }
- else {
- fsm_input.cw_psk31_done = 0;
- }
-
- if (fsm_input.cw_psk31_done) {
- GPIO_ResetBits(GPIOD, GPIOD_BOARD_LED_ORANGE);
- }
- else {
- GPIO_SetBits(GPIOD, GPIOD_BOARD_LED_ORANGE);
- }
-
- fsm_update_inputs(&fsm_input);
- fsm_update();
-
- struct fsm_output_signals_t fsm_out;
- fsm_get_outputs(&fsm_out);
-
- pio_set_tx(fsm_out.tx_on);
- pio_set_mod_off(!fsm_out.modulation);
- pio_set_qrp(fsm_out.qrp); // TODO move out of FSM
-
- // Add message to CW generator only on rising edge of trigger
- if (fsm_out.cw_psk31_trigger && !cw_last_trigger) {
- cw_psk31_push_message(fsm_out.msg, fsm_out.cw_dit_duration, fsm_out.msg_frequency);
-
- usart_debug_puts("Out CW trigger\r\n");
- }
- cw_last_trigger = fsm_out.cw_psk31_trigger;
-
- if (fsm_out.ack_start_tm) {
- fsm_input.start_tm = 0;
- }
- }
-}
-
-
-void init() {
- /* Initialise the onboard peripherals
- * Four LEDs and one push-button
- */
- RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
- RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
-
- // Configure PD12, PD13, PD14 and PD15 in output pushpull mode
- GPIO_InitTypeDef GPIO_InitStructure;
- GPIO_InitStructure.GPIO_Pin =
- GPIOD_BOARD_LED_GREEN |
- GPIOD_BOARD_LED_ORANGE |
- GPIOD_BOARD_LED_RED |
- GPIOD_BOARD_LED_BLUE;
-
- GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
- GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
- GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
- GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
- GPIO_Init(GPIOD, &GPIO_InitStructure);
-
- // Init PushButton
- GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
- GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
- GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; // TODO is there an external pullup ?
- GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
- GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
- GPIO_Init(GPIOA, &GPIO_InitStructure);
-
-
- /* Setup Watchdog
- * The IWDG runs at 32kHz. With a prescaler of 32 -> 1kHz.
- * Counting to 2000 / 1000 = 2 seconds
- */
- IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
- IWDG_SetPrescaler(IWDG_Prescaler_32);
- IWDG_SetReload(2000);
- IWDG_Enable();
-}
-
diff --git a/src/simulator/.gitignore b/src/simulator/.gitignore
new file mode 100644
index 0000000..02e1499
--- /dev/null
+++ b/src/simulator/.gitignore
@@ -0,0 +1 @@
+FreeRTOS-Sim
diff --git a/src/simulator/Makefile b/src/simulator/Makefile
new file mode 100644
index 0000000..4e74498
--- /dev/null
+++ b/src/simulator/Makefile
@@ -0,0 +1,134 @@
+
+######## Build options ########
+
+verbose = 0
+
+######## Build setup ########
+
+# SRCROOT should always be the current directory
+SRCROOT = $(CURDIR)
+
+# .o directory
+ODIR = obj
+
+# Source VPATHS
+VPATH += $(SRCROOT)/Source
+VPATH += $(SRCROOT)/Source/portable/MemMang
+VPATH += $(SRCROOT)/Source/portable/GCC/POSIX
+VPATH += $(SRCROOT)/src/Core
+
+# FreeRTOS Objects
+C_FILES += croutine.c
+C_FILES += event_groups.c
+C_FILES += list.c
+C_FILES += queue.c
+C_FILES += tasks.c
+C_FILES += timers.c
+
+# portable Objects
+C_FILES += heap_3.c
+C_FILES += port.c
+
+# Main Object
+SRC_SOURCES+=$(shell find -L src/ -name '*.c')
+C_FILES += $(SRC_SOURCES)
+
+# Include Paths
+INCLUDES += -I$(SRCROOT)/Source/include
+INCLUDES += -I$(SRCROOT)/Source/portable/GCC/POSIX/
+INCLUDES += -I$(SRCROOT)/src/Core
+INCLUDES += -I$(SRCROOT)/../common/includes/
+INCLUDES += -I$(SRCROOT)
+
+# Generate OBJS names
+OBJS = $(patsubst %.c,%.o,$(C_FILES))
+
+######## C Flags ########
+
+# Warnings
+CWARNS += -W
+CWARNS += -Wall
+# CWARNS += -Werror
+CWARNS += -Wextra
+CWARNS += -Wformat
+CWARNS += -Wmissing-braces
+CWARNS += -Wno-cast-align
+CWARNS += -Wparentheses
+CWARNS += -Wshadow
+CWARNS += -Wno-sign-compare
+CWARNS += -Wswitch
+CWARNS += -Wuninitialized
+CWARNS += -Wunknown-pragmas
+CWARNS += -Wunused-function
+CWARNS += -Wunused-label
+CWARNS += -Wunused-parameter
+CWARNS += -Wunused-value
+CWARNS += -Wunused-variable
+CWARNS += -Wmissing-prototypes
+
+CFLAGS += -m32
+CFLAGS += -DDEBUG=1
+CFLAGS += -g -DUSE_STDIO=1 -D__GCC_POSIX__=1 -lX11 -lm -lGL -lm -lGLU
+ifneq ($(shell uname), Darwin)
+CFLAGS += -pthread
+endif
+
+# MAX_NUMBER_OF_TASKS = max pthreads used in the POSIX port.
+# Default value is 64 (_POSIX_THREAD_THREADS_MAX), the minimum number required by POSIX.
+CFLAGS += -DMAX_NUMBER_OF_TASKS=300 -DSIMULATOR
+
+CFLAGS += $(INCLUDES) $(CWARNS) -O2
+
+######## Makefile targets ########
+
+# Rules
+.PHONY : all
+all: vc.h setup FreeRTOS-Sim
+
+.PHONY : setup
+setup:
+# Make obj directory
+ @mkdir -p $(ODIR)
+
+# Fix to place .o files in ODIR
+_OBJS = $(patsubst %,$(ODIR)/%,$(OBJS))
+
+dir_guard=@mkdir -p $(@D)
+
+$(ODIR)/%.o: %.c
+ $(dir_guard)
+# If verbose, print gcc execution, else hide
+ifeq ($(verbose),1)
+ @echo ">> Compiling $<"
+ $(CC) $(CFLAGS) -c -o $@ $<
+else
+ @echo ">> Compiling $(notdir $<)"
+ @$(CC) $(CFLAGS) -c -o $@ $<
+endif
+
+
+vc.h: ../../.git/logs/HEAD
+ echo "// This file is generated by Makefile." > vc.h
+ echo "// Do not edit this file!" >> vc.h
+ git log -1 --format="format:#define GIT_VERSION \"%h\"" >> vc.h
+ echo >> vc.h
+ echo >> vc.h
+
+FreeRTOS-Sim: $(_OBJS)
+ @echo ">> Linking $@..."
+ifeq ($(verbose),1)
+ $(CC) $(CFLAGS) $^ $(LINKFLAGS) $(LIBS) -o $@
+else
+ @$(CC) $(CFLAGS) $^ $(LINKFLAGS) $(LIBS) -o $@
+endif
+
+ @echo "-------------------------"
+ @echo "BUILD COMPLETE: $@"
+ @echo "-------------------------"
+
+.PHONY : clean
+clean:
+ @-rm -rf $(ODIR) FreeRTOS-Sim
+ @echo "--------------"
+ @echo "CLEAN COMPLETE"
+ @echo "--------------"
diff --git a/src/simulator/Source b/src/simulator/Source
new file mode 120000
index 0000000..5f455fb
--- /dev/null
+++ b/src/simulator/Source
@@ -0,0 +1 @@
+../FreeRTOS-Sim-master/Source \ No newline at end of file
diff --git a/src/simulator/src/Core/FreeRTOSConfig.h b/src/simulator/src/Core/FreeRTOSConfig.h
new file mode 100644
index 0000000..19086b7
--- /dev/null
+++ b/src/simulator/src/Core/FreeRTOSConfig.h
@@ -0,0 +1,4 @@
+#include "../../../common/src/Core/FreeRTOSConfig.h"
+
+
+#define configCHECK_FOR_STACK_OVERFLOW 0 /* Do not use this option on the PC port. */
diff --git a/src/simulator/src/Core/common.c b/src/simulator/src/Core/common.c
new file mode 100644
index 0000000..00afc2c
--- /dev/null
+++ b/src/simulator/src/Core/common.c
@@ -0,0 +1,7 @@
+void __disable_irq() {
+}
+
+#include "../../../common/src/Core/common.c"
+
+void hard_fault_handler_extra() {
+}
diff --git a/src/simulator/src/Core/main.c b/src/simulator/src/Core/main.c
new file mode 100644
index 0000000..7e93176
--- /dev/null
+++ b/src/simulator/src/Core/main.c
@@ -0,0 +1,37 @@
+/*
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2016 Matthias P. Braendli, Maximilien Cuony
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+*/
+
+#include "../../../common/src/Core/main.c"
+
+#include <pthread.h>
+
+
+void *threadFunc(void *arg) {
+ main2();
+}
+
+void init() {
+ pthread_t pth;
+ pthread_create(&pth, NULL, threadFunc, "processing...");
+}
diff --git a/src/simulator/src/Core/usart.c b/src/simulator/src/Core/usart.c
new file mode 100644
index 0000000..bd91428
--- /dev/null
+++ b/src/simulator/src/Core/usart.c
@@ -0,0 +1,190 @@
+
+/*
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2016 Matthias P. Braendli
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+*/
+
+#include <stdio.h>
+#include <stdarg.h>
+#include <string.h>
+#include <inttypes.h>
+#include "Core/common.h"
+#include "Core/usart.h"
+#include "FreeRTOS.h"
+#include "task.h"
+#include "queue.h"
+
+// The ISR writes into this buffer
+static char nmea_sentence[MAX_NMEA_SENTENCE_LEN];
+static int nmea_sentence_last_written = 0;
+
+// Once a completed NMEA sentence is received in the ISR,
+// it is appended to this queue
+static QueueHandle_t usart_nmea_queue;
+
+#define USART_TypeDef void
+
+int _USART2 = 2;
+int _USART3 = 3;
+
+#define USART2 &_USART2
+#define USART3 &_USART3
+
+void usart_init() {
+}
+
+void usart_gps_init() {
+ usart_nmea_queue = xQueueCreate(15, MAX_NMEA_SENTENCE_LEN);
+ if (usart_nmea_queue == 0) {
+ while(1); /* fatal error */
+ }
+
+}
+
+// Make sure Tasks are suspended when this is called!
+static void usart_puts(USART_TypeDef* USART, const char* str)
+{
+ while(*str) {
+ // TODO
+ putchar(*str);
+ str++;
+ }
+}
+
+void usart_gps_puts(const char* str)
+{
+ vTaskSuspendAll();
+ return usart_puts(USART3, str);
+ xTaskResumeAll();
+}
+
+#define MAX_MSG_LEN 80
+static char usart_debug_message[MAX_MSG_LEN];
+
+void usart_debug_timestamp() {
+ // Don't call printf here, to reduce stack usage
+ uint64_t now = timestamp_now();
+ if (now == 0) {
+ usart_puts(USART2, "[0] ");
+ }
+ else {
+ char ts_str[64];
+ int i = 63;
+
+ ts_str[i--] = '\0';
+ ts_str[i--] = ' ';
+ ts_str[i--] = ']';
+
+ while (now > 0 && i >= 0) {
+ ts_str[i--] = '0' + (now % 10);
+ now /= 10;
+ }
+ ts_str[i] = '[';
+
+ usart_puts(USART2, &ts_str[i]);
+ }
+}
+
+void usart_debug(const char *format, ...)
+{
+ va_list list;
+ va_start(list, format);
+ vsnprintf(usart_debug_message, MAX_MSG_LEN-1, format, list);
+
+ vTaskSuspendAll();
+ usart_debug_timestamp();
+ usart_puts(USART2, usart_debug_message);
+ xTaskResumeAll();
+
+ va_end(list);
+}
+
+void usart_debug_puts(const char* str)
+{
+ vTaskSuspendAll();
+ usart_debug_timestamp();
+ usart_puts(USART2, str);
+ xTaskResumeAll();
+}
+
+int usart_get_nmea_sentence(char* nmea)
+{
+ return xQueueReceive(usart_nmea_queue, nmea, portMAX_DELAY);
+}
+
+
+static void usart_clear_nmea_buffer(void)
+{
+ for (int i = 0; i < MAX_NMEA_SENTENCE_LEN; i++) {
+ nmea_sentence[i] = '\0';
+ }
+ nmea_sentence_last_written = 0;
+}
+
+/* void USART3_IRQHandler(void) */
+/* { */
+/* if (USART_GetITStatus(USART3, USART_IT_RXNE)) { */
+/* char t = USART3->DR; */
+/* */
+/* if (nmea_sentence_last_written == 0) { */
+/* if (t == '$') { */
+/* // Likely new start of sentence */
+/* nmea_sentence[nmea_sentence_last_written] = t; */
+/* nmea_sentence_last_written++; */
+/* } */
+/* } */
+/* else if (nmea_sentence_last_written < MAX_NMEA_SENTENCE_LEN) { */
+/* nmea_sentence[nmea_sentence_last_written] = t; */
+/* nmea_sentence_last_written++; */
+/* */
+/* if (t == '\n') { */
+/* int success = xQueueSendToBackFromISR( */
+/* usart_nmea_queue, */
+/* nmea_sentence, */
+/* NULL); */
+/* */
+/* if (success == pdFALSE) { */
+/* trigger_fault(FAULT_SOURCE_USART); */
+/* } */
+/* */
+/* usart_clear_nmea_buffer(); */
+/* } */
+/* } */
+/* else { */
+/* // Buffer overrun without a meaningful NMEA message. */
+/* usart_clear_nmea_buffer(); */
+/* } */
+/* } */
+/* } */
+/* */
+/* void USART2_IRQHandler(void) */
+/* { */
+/* if (USART_GetITStatus(USART2, USART_IT_RXNE)) { */
+/* char t = USART2->DR; */
+/* if (t == 'h') { */
+/* usart_debug_puts("help: no commands supported yet!\r\n"); */
+/* } */
+/* else { */
+/* usart_debug("Unknown command %c\r\n", t); */
+/* } */
+/* } */
+/* } */
diff --git a/src/simulator/src/Gui/nuklear.h b/src/simulator/src/Gui/nuklear.h
new file mode 100644
index 0000000..5602251
--- /dev/null
+++ b/src/simulator/src/Gui/nuklear.h
@@ -0,0 +1,19765 @@
+/*
+ Nuklear - v1.00 - public domain
+ no warrenty implied; use at your own risk.
+ authored from 2015-2016 by Micha Mettke
+
+ABOUT:
+ This is a minimal state immediate mode graphical user interface single header
+ toolkit written in ANSI C and licensed under public domain.
+ It was designed as a simple embeddable user interface for application and does
+ not have any dependencies, a default renderbackend or OS window and input handling
+ but instead provides a very modular library approach by using simple input state
+ for input and draw commands describing primitive shapes as output.
+ So instead of providing a layered library that tries to abstract over a number
+ of platform and render backends it only focuses on the actual UI.
+
+VALUES:
+ - Immediate mode graphical user interface toolkit
+ - Single header library
+ - Written in C89 (ANSI C)
+ - Small codebase (~15kLOC)
+ - Focus on portability, efficiency and simplicity
+ - No dependencies (not even the standard library if not wanted)
+ - Fully skinnable and customizable
+ - Low memory footprint with total memory control if needed or wanted
+ - UTF-8 support
+ - No global or hidden state
+ - Customizable library modules (you can compile and use only what you need)
+ - Optional font baker and vertex buffer output
+
+USAGE:
+ This library is self contained in one single header file and can be used either
+ in header only mode or in implementation mode. The header only mode is used
+ by default when included and allows including this header in other headers
+ and does not contain the actual implementation.
+
+ The implementation mode requires to define the preprocessor macro
+ NK_IMPLEMENTATION in *one* .c/.cpp file before #includeing this file, e.g.:
+
+ #define NK_IMPLEMENTATION
+ #include "nuklear.h"
+
+ Also optionally define the symbols listed in the section "OPTIONAL DEFINES"
+ below in implementation mode if you want to use additional functionality
+ or need more control over the library.
+
+FEATURES:
+ - Absolutely no platform dependent code
+ - Memory management control ranging from/to
+ - Ease of use by allocating everything from the standard library
+ - Control every byte of memory inside the library
+ - Font handling control ranging from/to
+ - Use your own font implementation to draw shapes/vertexes
+ - Use this libraries internal font baking and handling API
+ - Drawing output control ranging from/to
+ - Simple shapes for more high level APIs which already having drawing capabilities
+ - Hardware accessible anti-aliased vertex buffer output
+ - Customizable colors and properties ranging from/to
+ - Simple changes to color by filling a simple color table
+ - Complete control with ability to use skinning to decorate widgets
+ - Bendable UI library with widget ranging from/to
+ - Basic widgets like buttons, checkboxes, slider, ...
+ - Advanced widget like abstract comboboxes, contextual menus,...
+ - Compile time configuration to only compile what you need
+ - Subset which can be used if you do not want to link or use the standard library
+ - Can be easily modified only update on user input instead of frame updates
+
+OPTIONAL DEFINES:
+ NK_PRIVATE
+ If defined declares all functions as static, so they can only be accessed
+ for the file that creates the implementation
+
+ NK_INCLUDE_FIXED_TYPES
+ If defined it will include header <stdint.h> for fixed sized types
+ otherwise you have to select the correct types.
+
+ NK_INCLUDE_DEFAULT_ALLOCATOR
+ if defined it will include header <stdlib.h> and provide additional functions
+ to use this library without caring for memory allocation control and therefore
+ ease memory management.
+ IMPORTANT: this adds the standard library with malloc and free so don't define
+ if you don't want to link to the standard library!
+
+ NK_INCLUDE_STANDARD_IO
+ if defined it will include header <stdio.h> and <stdarg.h> and provide
+ additional functions depending on file loading and variable arguments
+ IMPORTANT: this adds the standard library with fopen, fclose,...
+ as well as va_list,... so don't define this
+ if you don't want to link to the standard library!
+
+ NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+ Defining this adds a vertex draw command list backend to this
+ library, which allows you to convert queue commands into vertex draw commands.
+ This is mainly if you need a hardware accessible format for OpenGL, DirectX,
+ Vulkan, Metal,...
+
+ NK_INCLUDE_FONT_BAKING
+ Defining this adds the `stb_truetype` and `stb_rect_pack` implementation
+ to this library and provides a default font for font loading and rendering.
+ If you already have font handling or do not want to use this font handler
+ you don't have to define it.
+
+ NK_INCLUDE_DEFAULT_FONT
+ Defining this adds the default font: ProggyClean.ttf font into this library
+ which can be loaded into a font atlas and allows using this library without
+ having a truetype font
+ IMPORTANT: enabling this adds ~12kb to global stack memory
+
+ NK_INCLUDE_COMMAND_USERDATA
+ Defining this adds a userdata pointer into each command. Can be useful for
+ example if you want to provide custom shader depending on the used widget.
+ Can be combined with the style structures.
+
+ NK_BUTTON_TRIGGER_ON_RELEASE
+ Different platforms require button clicks occuring either on buttons being
+ pressed (up to down) or released (down to up).
+ By default this library will react on buttons being pressed, but if you
+ define this it will only trigger if a button is released.
+
+ NK_ASSERT
+ If you don't define this, nuklear will use <assert.h> with assert().
+ IMPORTANT: it also adds the standard library so define to nothing of not wanted!
+
+ NK_BUFFER_DEFAULT_INITIAL_SIZE
+ Initial buffer size allocated by all buffers while using the default allocator
+ functions included by defining NK_INCLUDE_DEFAULT_ALLOCATOR. If you don't
+ want to allocate the default 4k memory then redefine it.
+
+ NK_MAX_NUMBER_BUFFER
+ Maximum buffer size for the conversion buffer between float and string
+ Under normal circumstances this should be more than sufficient.
+
+ NK_INPUT_MAX
+ Defines the max number of bytes which can be added as text input in one frame.
+ Under normal circumstances this should be more than sufficient.
+
+ NK_MEMSET
+ You can define this to 'memset' or your own memset implementation
+ replacement. If not nuklear will use its own version.
+
+ NK_MEMCOPY
+ You can define this to 'memcpy' or your own memcpy implementation
+ replacement. If not nuklear will use its own version.
+
+ NK_SQRT
+ You can define this to 'sqrt' or your own sqrt implementation
+ replacement. If not nuklear will use its own slow and not highly
+ accurate version.
+
+ NK_SIN
+ You can define this to 'sinf' or your own sine implementation
+ replacement. If not nuklear will use its own approximation implementation.
+
+ NK_COS
+ You can define this to 'cosf' or your own cosine implementation
+ replacement. If not nuklear will use its own approximation implementation.
+
+ NK_BYTE
+ NK_INT16
+ NK_UINT16
+ NK_INT32
+ NK_UINT32
+ NK_SIZE_TYPE
+ NK_POINTER_TYPE
+ If you compile without NK_USE_FIXED_TYPE then a number of standard types
+ will be selected and compile time validated. If they are incorrect you can
+ define the correct types.
+
+CREDITS:
+ Developed by Micha Mettke and every direct or indirect contributor to the GitHub.
+
+ Embeds stb_texedit, stb_truetype and stb_rectpack by Sean Barret (public domain)
+ Embeds ProggyClean.ttf font by Tristan Grimmer (MIT license).
+
+ Big thank you to Omar Cornut (ocornut@github) for his imgui library and
+ giving me the inspiration for this library, Casey Muratori for handmade hero
+ and his original immediate mode graphical user interface idea and Sean
+ Barret for his amazing single header libraries which restored by faith
+ in libraries and brought me to create some of my own.
+
+LICENSE:
+ This software is dual-licensed to the public domain and under the following
+ license: you are granted a perpetual, irrevocable license to copy, modify,
+ publish and distribute this file as you see fit.
+*/
+#ifndef NK_H_
+#define NK_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+/*
+ * ==============================================================
+ *
+ * CONSTANTS
+ *
+ * ===============================================================
+ */
+#define NK_UTF_INVALID 0xFFFD /* internal invalid utf8 rune */
+#define NK_UTF_SIZE 4 /* describes the number of bytes a glyph consists of*/
+#ifndef NK_INPUT_MAX
+#define NK_INPUT_MAX 16
+#endif
+#ifndef NK_MAX_NUMBER_BUFFER
+#define NK_MAX_NUMBER_BUFFER 64
+#endif
+/*
+ * ===============================================================
+ *
+ * BASIC
+ *
+ * ===============================================================
+ */
+#ifdef NK_INCLUDE_FIXED_TYPES
+#include <stdint.h>
+typedef int16_t nk_short;
+typedef uint16_t nk_ushort;
+typedef int32_t nk_int;
+typedef uint32_t nk_uint;
+typedef uint32_t nk_hash;
+typedef uintptr_t nk_size;
+typedef uintptr_t nk_ptr;
+typedef uint32_t nk_flags;
+typedef uint32_t nk_rune;
+typedef uint8_t nk_byte;
+#else
+#ifndef NK_BYTE
+typedef unsigned char nk_byte;
+#else
+typedef NK_BYTE nk_byte;
+#endif
+#ifndef NK_INT16
+typedef short nk_short;
+#else
+typedef NK_INT16 nk_short;
+#endif
+#ifndef NK_UINT16
+typedef unsigned short nk_ushort;
+#else
+typedef NK_UINT16 nk_ushort;
+#endif
+#ifndef NK_INT32
+typedef int nk_int;
+#else
+typedef NK_INT32 nk_int;
+#endif
+#ifndef NK_UINT32
+typedef unsigned int nk_uint;
+#else
+typedef NK_UINT32 nk_uint;
+#endif
+#ifndef NK_SIZE_TYPE
+typedef unsigned long nk_size;
+#else
+typedef NK_SIZE_TYPE nk_size;
+#endif
+#ifndef NK_POINTER_TYPE
+typedef unsigned long nk_ptr;
+#else
+typedef NK_POINTER_TYPE nk_ptr;
+#endif
+typedef NK_UINT32 nk_hash;
+typedef unsigned int nk_flags;
+typedef nk_uint nk_rune;
+typedef unsigned char nk_byte;
+#endif
+
+#ifdef NK_PRIVATE
+#define NK_API static
+#else
+#define NK_API extern
+#endif
+
+#define NK_INTERN static
+#define NK_STORAGE static
+#define NK_GLOBAL static
+
+/* ============================================================================
+ *
+ * API
+ *
+ * =========================================================================== */
+#define NK_UNDEFINED (-1.0f)
+#define NK_FLAG(x) (1 << (x))
+#define NK_STRINGIFY(x) #x
+#define NK_LINE_STR(x) NK_STRINGIFY(x)
+#define NK_FILE_LINE __FILE__":"NK_LINE_STR(__LINE__)
+
+struct nk_buffer;
+struct nk_allocator;
+struct nk_command_buffer;
+struct nk_draw_command;
+struct nk_convert_config;
+struct nk_text_edit;
+struct nk_draw_list;
+struct nk_user_font;
+struct nk_panel;
+struct nk_context;
+
+enum {nk_false, nk_true};
+struct nk_color {nk_byte r,g,b,a;};
+struct nk_vec2 {float x,y;};
+struct nk_vec2i {short x, y;};
+struct nk_rect {float x,y,w,h;};
+struct nk_recti {short x,y,w,h;};
+typedef char nk_glyph[NK_UTF_SIZE];
+typedef union {void *ptr; int id;} nk_handle;
+struct nk_image {nk_handle handle;unsigned short w,h;unsigned short region[4];};
+struct nk_scroll {unsigned short x, y;};
+enum nk_heading {NK_UP, NK_RIGHT, NK_DOWN, NK_LEFT};
+
+typedef int(*nk_filter)(const struct nk_text_edit*, nk_rune unicode);
+typedef void(*nk_paste_f)(nk_handle, struct nk_text_edit*);
+typedef void(*nk_copy_f)(nk_handle, const char*, int len);
+
+enum nk_button_behavior {NK_BUTTON_DEFAULT, NK_BUTTON_REPEATER};
+enum nk_modify {NK_FIXED=nk_false, NK_MODIFIABLE=nk_true};
+enum nk_orientation {NK_VERTICAL, NK_HORIZONTAL};
+enum nk_collapse_states {NK_MINIMIZED=nk_false, NK_MAXIMIZED = nk_true};
+enum nk_show_states {NK_HIDDEN=nk_false, NK_SHOWN=nk_true};
+enum nk_chart_type {NK_CHART_LINES, NK_CHART_COLUMN, NK_CHART_MAX};
+enum nk_chart_event {NK_CHART_HOVERING = 0x01, NK_CHART_CLICKED = 0x02};
+enum nk_color_format {NK_RGB, NK_RGBA};
+enum nk_popup_type {NK_POPUP_STATIC, NK_POPUP_DYNAMIC};
+enum nk_layout_format {NK_DYNAMIC, NK_STATIC};
+enum nk_tree_type {NK_TREE_NODE, NK_TREE_TAB};
+enum nk_anti_aliasing {NK_ANTI_ALIASING_OFF, NK_ANTI_ALIASING_ON};
+
+struct nk_allocator {
+ nk_handle userdata;
+ void*(*alloc)(nk_handle, void *old, nk_size);
+ void(*free)(nk_handle, void*);
+};
+
+struct nk_draw_null_texture {
+ nk_handle texture;/* texture handle to a texture with a white pixel */
+ struct nk_vec2 uv; /* coordinates to a white pixel in the texture */
+};
+struct nk_convert_config {
+ float global_alpha; /* global alpha value */
+ enum nk_anti_aliasing line_AA; /* line anti-aliasing flag can be turned off if you are tight on memory */
+ enum nk_anti_aliasing shape_AA; /* shape anti-aliasing flag can be turned off if you are tight on memory */
+ unsigned int circle_segment_count; /* number of segments used for circles: default to 22 */
+ unsigned int arc_segment_count; /* number of segments used for arcs: default to 22 */
+ unsigned int curve_segment_count; /* number of segments used for curves: default to 22 */
+ struct nk_draw_null_texture null; /* handle to texture with a white pixel for shape drawing */
+};
+
+enum nk_symbol_type {
+ NK_SYMBOL_NONE,
+ NK_SYMBOL_X,
+ NK_SYMBOL_UNDERSCORE,
+ NK_SYMBOL_CIRCLE,
+ NK_SYMBOL_CIRCLE_FILLED,
+ NK_SYMBOL_RECT,
+ NK_SYMBOL_RECT_FILLED,
+ NK_SYMBOL_TRIANGLE_UP,
+ NK_SYMBOL_TRIANGLE_DOWN,
+ NK_SYMBOL_TRIANGLE_LEFT,
+ NK_SYMBOL_TRIANGLE_RIGHT,
+ NK_SYMBOL_PLUS,
+ NK_SYMBOL_MINUS,
+ NK_SYMBOL_MAX
+};
+
+enum nk_keys {
+ NK_KEY_NONE,
+ NK_KEY_SHIFT,
+ NK_KEY_CTRL,
+ NK_KEY_DEL,
+ NK_KEY_ENTER,
+ NK_KEY_TAB,
+ NK_KEY_BACKSPACE,
+ NK_KEY_COPY,
+ NK_KEY_CUT,
+ NK_KEY_PASTE,
+ NK_KEY_UP,
+ NK_KEY_DOWN,
+ NK_KEY_LEFT,
+ NK_KEY_RIGHT,
+ NK_KEY_TEXT_INSERT_MODE,
+ NK_KEY_TEXT_REPLACE_MODE,
+ NK_KEY_TEXT_RESET_MODE,
+ NK_KEY_TEXT_LINE_START,
+ NK_KEY_TEXT_LINE_END,
+ NK_KEY_TEXT_START,
+ NK_KEY_TEXT_END,
+ NK_KEY_TEXT_UNDO,
+ NK_KEY_TEXT_REDO,
+ NK_KEY_TEXT_WORD_LEFT,
+ NK_KEY_TEXT_WORD_RIGHT,
+ NK_KEY_MAX
+};
+
+enum nk_buttons {
+ NK_BUTTON_LEFT,
+ NK_BUTTON_MIDDLE,
+ NK_BUTTON_RIGHT,
+ NK_BUTTON_MAX
+};
+
+enum nk_style_colors {
+ NK_COLOR_TEXT,
+ NK_COLOR_WINDOW,
+ NK_COLOR_HEADER,
+ NK_COLOR_BORDER,
+ NK_COLOR_BUTTON,
+ NK_COLOR_BUTTON_HOVER,
+ NK_COLOR_BUTTON_ACTIVE,
+ NK_COLOR_TOGGLE,
+ NK_COLOR_TOGGLE_HOVER,
+ NK_COLOR_TOGGLE_CURSOR,
+ NK_COLOR_SELECT,
+ NK_COLOR_SELECT_ACTIVE,
+ NK_COLOR_SLIDER,
+ NK_COLOR_SLIDER_CURSOR,
+ NK_COLOR_SLIDER_CURSOR_HOVER,
+ NK_COLOR_SLIDER_CURSOR_ACTIVE,
+ NK_COLOR_PROPERTY,
+ NK_COLOR_EDIT,
+ NK_COLOR_EDIT_CURSOR,
+ NK_COLOR_COMBO,
+ NK_COLOR_CHART,
+ NK_COLOR_CHART_COLOR,
+ NK_COLOR_CHART_COLOR_HIGHLIGHT,
+ NK_COLOR_SCROLLBAR,
+ NK_COLOR_SCROLLBAR_CURSOR,
+ NK_COLOR_SCROLLBAR_CURSOR_HOVER,
+ NK_COLOR_SCROLLBAR_CURSOR_ACTIVE,
+ NK_COLOR_TAB_HEADER,
+ NK_COLOR_COUNT
+};
+
+enum nk_widget_layout_states {
+ NK_WIDGET_INVALID, /* The widget cannot be seen and is completely out of view */
+ NK_WIDGET_VALID, /* The widget is completely inside the window and can be updated and drawn */
+ NK_WIDGET_ROM /* The widget is partially visible and cannot be updated */
+};
+
+/* widget states */
+enum nk_widget_states {
+ NK_WIDGET_STATE_MODIFIED = NK_FLAG(1),
+ NK_WIDGET_STATE_INACTIVE = NK_FLAG(2), /* widget is neither active nor hovered */
+ NK_WIDGET_STATE_ENTERED = NK_FLAG(3), /* widget has been hovered on the current frame */
+ NK_WIDGET_STATE_HOVER = NK_FLAG(4), /* widget is being hovered */
+ NK_WIDGET_STATE_ACTIVED = NK_FLAG(5),/* widget is currently activated */
+ NK_WIDGET_STATE_LEFT = NK_FLAG(6), /* widget is from this frame on not hovered anymore */
+ NK_WIDGET_STATE_HOVERED = NK_WIDGET_STATE_HOVER|NK_WIDGET_STATE_MODIFIED, /* widget is being hovered */
+ NK_WIDGET_STATE_ACTIVE = NK_WIDGET_STATE_ACTIVED|NK_WIDGET_STATE_MODIFIED /* widget is currently activated */
+};
+
+/* text alignment */
+enum nk_text_align {
+ NK_TEXT_ALIGN_LEFT = 0x01,
+ NK_TEXT_ALIGN_CENTERED = 0x02,
+ NK_TEXT_ALIGN_RIGHT = 0x04,
+ NK_TEXT_ALIGN_TOP = 0x08,
+ NK_TEXT_ALIGN_MIDDLE = 0x10,
+ NK_TEXT_ALIGN_BOTTOM = 0x20
+};
+enum nk_text_alignment {
+ NK_TEXT_LEFT = NK_TEXT_ALIGN_MIDDLE|NK_TEXT_ALIGN_LEFT,
+ NK_TEXT_CENTERED = NK_TEXT_ALIGN_MIDDLE|NK_TEXT_ALIGN_CENTERED,
+ NK_TEXT_RIGHT = NK_TEXT_ALIGN_MIDDLE|NK_TEXT_ALIGN_RIGHT
+};
+
+enum nk_edit_flags {
+ NK_EDIT_DEFAULT = 0,
+ NK_EDIT_READ_ONLY = NK_FLAG(0),
+ NK_EDIT_AUTO_SELECT = NK_FLAG(1),
+ NK_EDIT_SIG_ENTER = NK_FLAG(2),
+ NK_EDIT_ALLOW_TAB = NK_FLAG(3),
+ NK_EDIT_NO_CURSOR = NK_FLAG(4),
+ NK_EDIT_SELECTABLE = NK_FLAG(5),
+ NK_EDIT_CLIPBOARD = NK_FLAG(6),
+ NK_EDIT_CTRL_ENTER_NEWLINE = NK_FLAG(7),
+ NK_EDIT_NO_HORIZONTAL_SCROLL = NK_FLAG(8),
+ NK_EDIT_ALWAYS_INSERT_MODE = NK_FLAG(9),
+ NK_EDIT_MULTILINE = NK_FLAG(11)
+};
+enum nk_edit_types {
+ NK_EDIT_SIMPLE = NK_EDIT_ALWAYS_INSERT_MODE,
+ NK_EDIT_FIELD = NK_EDIT_SIMPLE|NK_EDIT_SELECTABLE,
+ NK_EDIT_BOX = NK_EDIT_ALWAYS_INSERT_MODE| NK_EDIT_SELECTABLE|
+ NK_EDIT_MULTILINE|NK_EDIT_ALLOW_TAB,
+ NK_EDIT_EDITOR = NK_EDIT_SELECTABLE|NK_EDIT_MULTILINE|NK_EDIT_ALLOW_TAB|
+ NK_EDIT_CLIPBOARD
+
+};
+enum nk_edit_events {
+ NK_EDIT_ACTIVE = NK_FLAG(0), /* edit widget is currently being modified */
+ NK_EDIT_INACTIVE = NK_FLAG(1), /* edit widget is not active and is not being modified */
+ NK_EDIT_ACTIVATED = NK_FLAG(2), /* edit widget went from state inactive to state active */
+ NK_EDIT_DEACTIVATED = NK_FLAG(3), /* edit widget went from state active to state inactive */
+ NK_EDIT_COMMITED = NK_FLAG(4) /* edit widget has received an enter and lost focus */
+};
+
+enum nk_panel_flags {
+ NK_WINDOW_BORDER = NK_FLAG(0), /* Draws a border around the window to visually separate the window * from the background */
+ NK_WINDOW_BORDER_HEADER = NK_FLAG(1), /* Draws a border between window header and body */
+ NK_WINDOW_MOVABLE = NK_FLAG(2), /* The movable flag indicates that a window can be moved by user input or * by dragging the window header */
+ NK_WINDOW_SCALABLE = NK_FLAG(3), /* The scalable flag indicates that a window can be scaled by user input * by dragging a scaler icon at the button of the window */
+ NK_WINDOW_CLOSABLE = NK_FLAG(4), /* adds a closable icon into the header */
+ NK_WINDOW_MINIMIZABLE = NK_FLAG(5), /* adds a minimize icon into the header */
+ NK_WINDOW_DYNAMIC = NK_FLAG(6), /* special window type growing up in height while being filled to a * certain maximum height */
+ NK_WINDOW_NO_SCROLLBAR = NK_FLAG(7), /* Removes the scrollbar from the window */
+ NK_WINDOW_TITLE = NK_FLAG(8) /* Forces a header at the top at the window showing the title */
+};
+
+/* context */
+#ifdef NK_INCLUDE_DEFAULT_ALLOCATOR
+NK_API int nk_init_default(struct nk_context*, const struct nk_user_font*);
+#endif
+NK_API int nk_init_fixed(struct nk_context*, void *memory, nk_size size, const struct nk_user_font*);
+NK_API int nk_init_custom(struct nk_context*, struct nk_buffer *cmds, struct nk_buffer *pool, const struct nk_user_font*);
+NK_API int nk_init(struct nk_context*, struct nk_allocator*, const struct nk_user_font*);
+NK_API void nk_clear(struct nk_context*);
+NK_API void nk_free(struct nk_context*);
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+NK_API void nk_set_user_data(struct nk_context*, nk_handle handle);
+#endif
+
+/* window */
+NK_API int nk_begin(struct nk_context*, struct nk_panel*, const char *title, struct nk_rect bounds, nk_flags flags);
+NK_API void nk_end(struct nk_context*);
+
+NK_API struct nk_window* nk_window_find(struct nk_context *ctx, const char *name);
+NK_API struct nk_rect nk_window_get_bounds(const struct nk_context*);
+NK_API struct nk_vec2 nk_window_get_position(const struct nk_context*);
+NK_API struct nk_vec2 nk_window_get_size(const struct nk_context*);
+NK_API float nk_window_get_width(const struct nk_context*);
+NK_API float nk_window_get_height(const struct nk_context*);
+NK_API struct nk_panel* nk_window_get_panel(struct nk_context*);
+NK_API struct nk_rect nk_window_get_content_region(struct nk_context*);
+NK_API struct nk_vec2 nk_window_get_content_region_min(struct nk_context*);
+NK_API struct nk_vec2 nk_window_get_content_region_max(struct nk_context*);
+NK_API struct nk_vec2 nk_window_get_content_region_size(struct nk_context*);
+NK_API struct nk_command_buffer* nk_window_get_canvas(struct nk_context*);
+
+NK_API int nk_window_has_focus(const struct nk_context*);
+NK_API int nk_window_is_collapsed(struct nk_context*, const char*);
+NK_API int nk_window_is_closed(struct nk_context*, const char*);
+NK_API int nk_window_is_active(struct nk_context*, const char*);
+NK_API int nk_window_is_hovered(struct nk_context*);
+NK_API int nk_window_is_any_hovered(struct nk_context*);
+NK_API int nk_item_is_any_active(struct nk_context*);
+
+NK_API void nk_window_set_bounds(struct nk_context*, struct nk_rect);
+NK_API void nk_window_set_position(struct nk_context*, struct nk_vec2);
+NK_API void nk_window_set_size(struct nk_context*, struct nk_vec2);
+NK_API void nk_window_set_focus(struct nk_context*, const char *name);
+
+NK_API void nk_window_close(struct nk_context *ctx, const char *name);
+NK_API void nk_window_collapse(struct nk_context*, const char *name, enum nk_collapse_states);
+NK_API void nk_window_collapse_if(struct nk_context*, const char *name, enum nk_collapse_states, int cond);
+NK_API void nk_window_show(struct nk_context*, const char *name, enum nk_show_states);
+NK_API void nk_window_show_if(struct nk_context*, const char *name, enum nk_show_states, int cond);
+
+/* Layout */
+NK_API void nk_layout_row_dynamic(struct nk_context*, float height, int cols);
+NK_API void nk_layout_row_static(struct nk_context*, float height, int item_width, int cols);
+
+NK_API void nk_layout_row_begin(struct nk_context*, enum nk_layout_format, float row_height, int cols);
+NK_API void nk_layout_row_push(struct nk_context*, float value);
+NK_API void nk_layout_row_end(struct nk_context*);
+NK_API void nk_layout_row(struct nk_context*, enum nk_layout_format, float height, int cols, const float *ratio);
+
+NK_API void nk_layout_space_begin(struct nk_context*, enum nk_layout_format, float height, int widget_count);
+NK_API void nk_layout_space_push(struct nk_context*, struct nk_rect);
+NK_API void nk_layout_space_end(struct nk_context*);
+
+NK_API struct nk_rect nk_layout_space_bounds(struct nk_context*);
+NK_API struct nk_vec2 nk_layout_space_to_screen(struct nk_context*, struct nk_vec2);
+NK_API struct nk_vec2 nk_layout_space_to_local(struct nk_context*, struct nk_vec2);
+NK_API struct nk_rect nk_layout_space_rect_to_screen(struct nk_context*, struct nk_rect);
+NK_API struct nk_rect nk_layout_space_rect_to_local(struct nk_context*, struct nk_rect);
+
+/* Layout: Group */
+NK_API int nk_group_begin(struct nk_context*, struct nk_panel*, const char *title, nk_flags);
+NK_API void nk_group_end(struct nk_context*);
+
+/* Layout: Tree */
+#define nk_tree_push(ctx, type, title, state) nk_tree_push_hashed(ctx, type, title, state, __FILE__,nk_strlen(__FILE__),__LINE__)
+#define nk_tree_push_id(ctx, type, title, state, id) nk_tree_push_hashed(ctx, type, title, state, NK_FILE_LINE,nk_strlen(NK_FILE_LINE),id)
+NK_API int nk_tree_push_hashed(struct nk_context*, enum nk_tree_type, const char *title, enum nk_collapse_states initial_state, const char *hash, int len,int seed);
+#define nk_tree_image_push(ctx, type, img, title, state) nk_tree_image_push_hashed(ctx, type, img, title, state, __FILE__,nk_strlen(__FILE__),__LINE__)
+#define nk_tree_image_push_id(ctx, type, img, title, state, id) nk_tree_image_push_hashed(ctx, img, type, title, state, NK_FILE_LINE,nk_strlen(NK_FILE_LINE),id)
+NK_API int nk_tree_image_push_hashed(struct nk_context*, enum nk_tree_type, struct nk_image, const char *title, enum nk_collapse_states initial_state, const char *hash, int len,int seed);
+NK_API void nk_tree_pop(struct nk_context*);
+
+/* Widgets */
+NK_API void nk_text(struct nk_context*, const char*, int, nk_flags);
+NK_API void nk_text_colored(struct nk_context*, const char*, int, nk_flags, struct nk_color);
+NK_API void nk_text_wrap(struct nk_context*, const char*, int);
+NK_API void nk_text_wrap_colored(struct nk_context*, const char*, int, struct nk_color);
+
+NK_API void nk_label(struct nk_context*, const char*, nk_flags align);
+NK_API void nk_label_colored(struct nk_context*, const char*, nk_flags align, struct nk_color);
+NK_API void nk_label_wrap(struct nk_context*, const char*);
+NK_API void nk_label_colored_wrap(struct nk_context*, const char*, struct nk_color);
+NK_API void nk_image(struct nk_context*, struct nk_image);
+#ifdef NK_INCLUDE_STANDARD_IO
+NK_API void nk_labelf(struct nk_context*, nk_flags, const char*, ...);
+NK_API void nk_labelf_colored(struct nk_context*, nk_flags align, struct nk_color, const char*,...);
+NK_API void nk_labelf_wrap(struct nk_context*, const char*,...);
+NK_API void nk_labelf_colored_wrap(struct nk_context*, struct nk_color, const char*,...);
+
+NK_API void nk_value_bool(struct nk_context*, const char *prefix, int);
+NK_API void nk_value_int(struct nk_context*, const char *prefix, int);
+NK_API void nk_value_uint(struct nk_context*, const char *prefix, unsigned int);
+NK_API void nk_value_float(struct nk_context*, const char *prefix, float);
+NK_API void nk_value_color_byte(struct nk_context*, const char *prefix, struct nk_color);
+NK_API void nk_value_color_float(struct nk_context*, const char *prefix, struct nk_color);
+NK_API void nk_value_color_hex(struct nk_context*, const char *prefix, struct nk_color);
+#endif
+
+/* Widgets: Buttons */
+NK_API int nk_button_text(struct nk_context *ctx, const char *title, int len, enum nk_button_behavior);
+NK_API int nk_button_label(struct nk_context *ctx, const char *title, enum nk_button_behavior);
+NK_API int nk_button_color(struct nk_context*, struct nk_color, enum nk_button_behavior);
+NK_API int nk_button_symbol(struct nk_context*, enum nk_symbol_type, enum nk_button_behavior);
+NK_API int nk_button_image(struct nk_context*, struct nk_image img, enum nk_button_behavior);
+NK_API int nk_button_symbol_label(struct nk_context*, enum nk_symbol_type, const char*, nk_flags text_alignment, enum nk_button_behavior);
+NK_API int nk_button_symbol_text(struct nk_context*, enum nk_symbol_type, const char*, int, nk_flags alignment, enum nk_button_behavior);
+NK_API int nk_button_image_label(struct nk_context*, struct nk_image img, const char*, nk_flags text_alignment, enum nk_button_behavior);
+NK_API int nk_button_image_text(struct nk_context*, struct nk_image img, const char*, int, nk_flags alignment, enum nk_button_behavior);
+
+/* Widgets: Checkbox */
+NK_API int nk_check_label(struct nk_context*, const char*, int active);
+NK_API int nk_check_text(struct nk_context*, const char*, int,int active);
+NK_API unsigned nk_check_flags_label(struct nk_context*, const char*, unsigned int flags, unsigned int value);
+NK_API unsigned nk_check_flags_text(struct nk_context*, const char*, int, unsigned int flags, unsigned int value);
+NK_API int nk_checkbox_label(struct nk_context*, const char*, int *active);
+NK_API int nk_checkbox_text(struct nk_context*, const char*, int, int *active);
+NK_API int nk_checkbox_flags_label(struct nk_context*, const char*, unsigned int *flags, unsigned int value);
+NK_API int nk_checkbox_flags_text(struct nk_context*, const char*, int, unsigned int *flags, unsigned int value);
+
+/* Widgets: Radio */
+NK_API int nk_radio_label(struct nk_context*, const char*, int *active);
+NK_API int nk_radio_text(struct nk_context*, const char*, int, int *active);
+NK_API int nk_option_label(struct nk_context*, const char*, int active);
+NK_API int nk_option_text(struct nk_context*, const char*, int, int active);
+
+/* Widgets: Selectable */
+NK_API int nk_selectable_label(struct nk_context*, const char*, nk_flags align, int *value);
+NK_API int nk_selectable_text(struct nk_context*, const char*, int, nk_flags align, int *value);
+NK_API int nk_selectable_image_label(struct nk_context*,struct nk_image, const char*, nk_flags align, int *value);
+NK_API int nk_selectable_image_text(struct nk_context*,struct nk_image, const char*, int, nk_flags align, int *value);
+
+NK_API int nk_select_label(struct nk_context*, const char*, nk_flags align, int value);
+NK_API int nk_select_text(struct nk_context*, const char*, int, nk_flags align, int value);
+NK_API int nk_select_image_label(struct nk_context*, struct nk_image,const char*, nk_flags align, int value);
+NK_API int nk_select_image_text(struct nk_context*, struct nk_image,const char*, int, nk_flags align, int value);
+
+/* Widgets: Slider */
+NK_API float nk_slide_float(struct nk_context*, float min, float val, float max, float step);
+NK_API int nk_slide_int(struct nk_context*, int min, int val, int max, int step);
+NK_API int nk_slider_float(struct nk_context*, float min, float *val, float max, float step);
+NK_API int nk_slider_int(struct nk_context*, int min, int *val, int max, int step);
+
+/* Widgets: Progressbar */
+NK_API int nk_progress(struct nk_context*, nk_size *cur, nk_size max, int modifyable);
+NK_API nk_size nk_prog(struct nk_context*, nk_size cur, nk_size max, int modifyable);
+
+/* Widgets: Color picker */
+NK_API struct nk_color nk_color_picker(struct nk_context*, struct nk_color, enum nk_color_format);
+NK_API int nk_color_pick(struct nk_context*, struct nk_color*, enum nk_color_format);
+
+/* Widgets: Property */
+NK_API void nk_property_float(struct nk_context *layout, const char *name, float min, float *val, float max, float step, float inc_per_pixel);
+NK_API void nk_property_int(struct nk_context *layout, const char *name, int min, int *val, int max, int step, int inc_per_pixel);
+NK_API float nk_propertyf(struct nk_context *layout, const char *name, float min, float val, float max, float step, float inc_per_pixel);
+NK_API int nk_propertyi(struct nk_context *layout, const char *name, int min, int val, int max, int step, int inc_per_pixel);
+
+/* Widgets: TextEdit */
+NK_API nk_flags nk_edit_string(struct nk_context*, nk_flags, char *buffer, int *len, int max, nk_filter);
+NK_API nk_flags nk_edit_buffer(struct nk_context*, nk_flags, struct nk_text_edit*, nk_filter);
+
+/* Chart */
+NK_API int nk_chart_begin(struct nk_context*, enum nk_chart_type, int num, float min, float max);
+NK_API int nk_chart_begin_colored(struct nk_context*, enum nk_chart_type, struct nk_color, struct nk_color active, int num, float min, float max);
+NK_API void nk_chart_add_slot(struct nk_context *ctx, const enum nk_chart_type, int count, float min_value, float max_value);
+NK_API void nk_chart_add_slot_colored(struct nk_context *ctx, const enum nk_chart_type, struct nk_color, struct nk_color active, int count, float min_value, float max_value);
+NK_API nk_flags nk_chart_push(struct nk_context*, float);
+NK_API nk_flags nk_chart_push_slot(struct nk_context*, float, int);
+NK_API void nk_chart_end(struct nk_context*);
+NK_API void nk_plot(struct nk_context*, enum nk_chart_type, const float *values, int count, int offset);
+NK_API void nk_plot_function(struct nk_context*, enum nk_chart_type, void *userdata, float(*value_getter)(void* user, int index), int count, int offset);
+
+/* Popups */
+NK_API int nk_popup_begin(struct nk_context*, struct nk_panel*, enum nk_popup_type, const char*, nk_flags, struct nk_rect bounds);
+NK_API void nk_popup_close(struct nk_context*);
+NK_API void nk_popup_end(struct nk_context*);
+
+/* Combobox */
+NK_API int nk_combo(struct nk_context*, const char **items, int count, int selected, int item_height);
+NK_API int nk_combo_separator(struct nk_context*, const char *items_separated_by_separator, int separator, int selected, int count, int item_height);
+NK_API int nk_combo_string(struct nk_context*, const char *items_separated_by_zeros, int selected, int count, int item_height);
+NK_API int nk_combo_callback(struct nk_context*, void(*item_getter)(void*, int, const char**), void *userdata, int selected, int count, int item_height);
+NK_API void nk_combobox(struct nk_context*, const char **items, int count, int *selected, int item_height);
+NK_API void nk_combobox_string(struct nk_context*, const char *items_separated_by_zeros, int *selected, int count, int item_height);
+NK_API void nk_combobox_separator(struct nk_context*, const char *items_separated_by_separator, int separator,int *selected, int count, int item_height);
+NK_API void nk_combobox_callback(struct nk_context*, void(*item_getter)(void*, int, const char**), void*, int *selected, int count, int item_height);
+
+/* Combobox: abstract */
+NK_API int nk_combo_begin_text(struct nk_context*, struct nk_panel*, const char *selected, int, int max_height);
+NK_API int nk_combo_begin_label(struct nk_context*, struct nk_panel*, const char *selected, int max_height);
+NK_API int nk_combo_begin_color(struct nk_context*, struct nk_panel*, struct nk_color color, int max_height);
+NK_API int nk_combo_begin_symbol(struct nk_context*, struct nk_panel*, enum nk_symbol_type, int max_height);
+NK_API int nk_combo_begin_symbol_label(struct nk_context*, struct nk_panel*, const char *selected, enum nk_symbol_type, int height);
+NK_API int nk_combo_begin_symbol_text(struct nk_context*, struct nk_panel*, const char *selected, int, enum nk_symbol_type, int height);
+NK_API int nk_combo_begin_image(struct nk_context*, struct nk_panel*, struct nk_image img, int max_height);
+NK_API int nk_combo_begin_image_label(struct nk_context*, struct nk_panel*, const char *selected, struct nk_image, int height);
+NK_API int nk_combo_begin_image_text(struct nk_context*, struct nk_panel*, const char *selected, int, struct nk_image, int height);
+NK_API int nk_combo_item_label(struct nk_context*, const char*, nk_flags alignment);
+NK_API int nk_combo_item_text(struct nk_context*, const char*,int, nk_flags alignment);
+NK_API int nk_combo_item_image_label(struct nk_context*, struct nk_image, const char*, nk_flags alignment);
+NK_API int nk_combo_item_image_text(struct nk_context*, struct nk_image, const char*, int,nk_flags alignment);
+NK_API int nk_combo_item_symbol_label(struct nk_context*, enum nk_symbol_type, const char*, nk_flags alignment);
+NK_API int nk_combo_item_symbol_text(struct nk_context*, enum nk_symbol_type, const char*, int, nk_flags alignment);
+NK_API void nk_combo_close(struct nk_context*);
+NK_API void nk_combo_end(struct nk_context*);
+
+/* Contextual */
+NK_API int nk_contextual_begin(struct nk_context*, struct nk_panel*, nk_flags, struct nk_vec2, struct nk_rect trigger_bounds);
+NK_API int nk_contextual_item_text(struct nk_context*, const char*, int,nk_flags align);
+NK_API int nk_contextual_item_label(struct nk_context*, const char*, nk_flags align);
+NK_API int nk_contextual_item_image_label(struct nk_context*, struct nk_image, const char*, nk_flags alignment);
+NK_API int nk_contextual_item_image_text(struct nk_context*, struct nk_image, const char*, int len, nk_flags alignment);
+NK_API int nk_contextual_item_symbol_label(struct nk_context*, enum nk_symbol_type, const char*, nk_flags alignment);
+NK_API int nk_contextual_item_symbol_text(struct nk_context*, enum nk_symbol_type, const char*, int, nk_flags alignment);
+NK_API void nk_contextual_close(struct nk_context*);
+NK_API void nk_contextual_end(struct nk_context*);
+
+/* Tooltip */
+NK_API void nk_tooltip(struct nk_context*, const char*);
+NK_API int nk_tooltip_begin(struct nk_context*, struct nk_panel*, float width);
+NK_API void nk_tooltip_end(struct nk_context*);
+
+/* Menu */
+NK_API void nk_menubar_begin(struct nk_context*);
+NK_API void nk_menubar_end(struct nk_context*);
+NK_API int nk_menu_begin_text(struct nk_context*, struct nk_panel*, const char*, int, nk_flags align, float width);
+NK_API int nk_menu_begin_label(struct nk_context*, struct nk_panel*, const char*, nk_flags align, float width);
+NK_API int nk_menu_begin_image(struct nk_context*, struct nk_panel*, const char*, struct nk_image, float width);
+NK_API int nk_menu_begin_image_text(struct nk_context*, struct nk_panel*, const char*, int,nk_flags align,struct nk_image, float width);
+NK_API int nk_menu_begin_image_label(struct nk_context*, struct nk_panel*, const char*, nk_flags align,struct nk_image, float width);
+NK_API int nk_menu_begin_symbol(struct nk_context*, struct nk_panel*, const char*, enum nk_symbol_type, float width);
+NK_API int nk_menu_begin_symbol_text(struct nk_context*, struct nk_panel*, const char*, int,nk_flags align,enum nk_symbol_type, float width);
+NK_API int nk_menu_begin_symbol_label(struct nk_context*, struct nk_panel*, const char*, nk_flags align,enum nk_symbol_type, float width);
+NK_API int nk_menu_item_text(struct nk_context*, const char*, int,nk_flags align);
+NK_API int nk_menu_item_label(struct nk_context*, const char*, nk_flags alignment);
+NK_API int nk_menu_item_image_label(struct nk_context*, struct nk_image, const char*, nk_flags alignment);
+NK_API int nk_menu_item_image_text(struct nk_context*, struct nk_image, const char*, int len, nk_flags alignment);
+NK_API int nk_menu_item_symbol_text(struct nk_context*, enum nk_symbol_type, const char*, int, nk_flags alignment);
+NK_API int nk_menu_item_symbol_label(struct nk_context*, enum nk_symbol_type, const char*, nk_flags alignment);
+NK_API void nk_menu_close(struct nk_context*);
+NK_API void nk_menu_end(struct nk_context*);
+
+/* Drawing*/
+#define nk_foreach(c, ctx)for((c)=nk__begin(ctx); (c)!=0; (c)=nk__next(ctx, c))
+#ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+NK_API void nk_convert(struct nk_context*, struct nk_buffer *cmds, struct nk_buffer *vertices, struct nk_buffer *elements, const struct nk_convert_config*);
+#define nk_draw_foreach(cmd,ctx, b) for((cmd)=nk__draw_begin(ctx, b); (cmd)!=0; (cmd)=nk__draw_next(cmd, b, ctx))
+#endif
+
+/* User Input */
+NK_API void nk_input_begin(struct nk_context*);
+NK_API void nk_input_motion(struct nk_context*, int x, int y);
+NK_API void nk_input_key(struct nk_context*, enum nk_keys, int down);
+NK_API void nk_input_button(struct nk_context*, enum nk_buttons, int x, int y, int down);
+NK_API void nk_input_scroll(struct nk_context*, float y);
+NK_API void nk_input_char(struct nk_context*, char);
+NK_API void nk_input_glyph(struct nk_context*, const nk_glyph);
+NK_API void nk_input_unicode(struct nk_context*, nk_rune);
+NK_API void nk_input_end(struct nk_context*);
+
+/* Style */
+NK_API void nk_style_default(struct nk_context*);
+NK_API void nk_style_from_table(struct nk_context*, const struct nk_color*);
+NK_API const char* nk_style_color_name(enum nk_style_colors);
+NK_API void nk_style_set_font(struct nk_context*, const struct nk_user_font*);
+
+/* Utilities */
+NK_API struct nk_rect nk_widget_bounds(struct nk_context*);
+NK_API struct nk_vec2 nk_widget_position(struct nk_context*);
+NK_API struct nk_vec2 nk_widget_size(struct nk_context*);
+NK_API int nk_widget_is_hovered(struct nk_context*);
+NK_API int nk_widget_is_mouse_clicked(struct nk_context*, enum nk_buttons);
+NK_API int nk_widget_has_mouse_click_down(struct nk_context*, enum nk_buttons, int down);
+NK_API void nk_spacing(struct nk_context*, int cols);
+
+/* base widget function */
+NK_API enum nk_widget_layout_states nk_widget(struct nk_rect*, const struct nk_context*);
+NK_API enum nk_widget_layout_states nk_widget_fitting(struct nk_rect*, struct nk_context*, struct nk_vec2);
+
+/* color (conversion user --> nuklear) */
+NK_API struct nk_color nk_rgb(int r, int g, int b);
+NK_API struct nk_color nk_rgb_iv(const int *rgb);
+NK_API struct nk_color nk_rgb_bv(const nk_byte* rgb);
+NK_API struct nk_color nk_rgb_f(float r, float g, float b);
+NK_API struct nk_color nk_rgb_fv(const float *rgb);
+NK_API struct nk_color nk_rgb_hex(const char *rgb);
+
+NK_API struct nk_color nk_rgba(int r, int g, int b, int a);
+NK_API struct nk_color nk_rgba_u32(nk_uint);
+NK_API struct nk_color nk_rgba_iv(const int *rgba);
+NK_API struct nk_color nk_rgba_bv(const nk_byte *rgba);
+NK_API struct nk_color nk_rgba_f(float r, float g, float b, float a);
+NK_API struct nk_color nk_rgba_fv(const float *rgba);
+NK_API struct nk_color nk_rgba_hex(const char *rgb);
+
+NK_API struct nk_color nk_hsv(int h, int s, int v);
+NK_API struct nk_color nk_hsv_iv(const int *hsv);
+NK_API struct nk_color nk_hsv_bv(const nk_byte *hsv);
+NK_API struct nk_color nk_hsv_f(float h, float s, float v);
+NK_API struct nk_color nk_hsv_fv(const float *hsv);
+
+NK_API struct nk_color nk_hsva(int h, int s, int v, int a);
+NK_API struct nk_color nk_hsva_iv(const int *hsva);
+NK_API struct nk_color nk_hsva_bv(const nk_byte *hsva);
+NK_API struct nk_color nk_hsva_f(float h, float s, float v, float a);
+NK_API struct nk_color nk_hsva_fv(const float *hsva);
+
+/* color (conversion nuklear --> user) */
+NK_API void nk_color_f(float *r, float *g, float *b, float *a, struct nk_color);
+NK_API void nk_color_fv(float *rgba_out, struct nk_color);
+NK_API nk_uint nk_color_u32(struct nk_color);
+NK_API void nk_color_hex_rgba(char *output, struct nk_color);
+NK_API void nk_color_hex_rgb(char *output, struct nk_color);
+
+NK_API void nk_color_hsv_i(int *out_h, int *out_s, int *out_v, struct nk_color);
+NK_API void nk_color_hsv_b(nk_byte *out_h, nk_byte *out_s, nk_byte *out_v, struct nk_color);
+NK_API void nk_color_hsv_iv(int *hsv_out, struct nk_color);
+NK_API void nk_color_hsv_bv(nk_byte *hsv_out, struct nk_color);
+NK_API void nk_color_hsv_f(float *out_h, float *out_s, float *out_v, struct nk_color);
+NK_API void nk_color_hsv_fv(float *hsv_out, struct nk_color);
+
+NK_API void nk_color_hsva_i(int *h, int *s, int *v, int *a, struct nk_color);
+NK_API void nk_color_hsva_b(nk_byte *h, nk_byte *s, nk_byte *v, nk_byte *a, struct nk_color);
+NK_API void nk_color_hsva_iv(int *hsva_out, struct nk_color);
+NK_API void nk_color_hsva_bv(nk_byte *hsva_out, struct nk_color);
+NK_API void nk_color_hsva_f(float *out_h, float *out_s, float *out_v, float *out_a, struct nk_color);
+NK_API void nk_color_hsva_fv(float *hsva_out, struct nk_color);
+
+/* image */
+NK_API nk_handle nk_handle_ptr(void*);
+NK_API nk_handle nk_handle_id(int);
+NK_API struct nk_image nk_image_ptr(void*);
+NK_API struct nk_image nk_image_id(int);
+NK_API int nk_image_is_subimage(const struct nk_image* img);
+NK_API struct nk_image nk_subimage_ptr(void*, unsigned short w, unsigned short h, struct nk_rect sub_region);
+NK_API struct nk_image nk_subimage_id(int, unsigned short w, unsigned short h, struct nk_rect sub_region);
+
+/* math */
+NK_API nk_hash nk_murmur_hash(const void *key, int len, nk_hash seed);
+NK_API void nk_triangle_from_direction(struct nk_vec2 *result, struct nk_rect r, float pad_x, float pad_y, enum nk_heading);
+
+NK_API struct nk_vec2 nk_vec2(float x, float y);
+NK_API struct nk_vec2 nk_vec2i(int x, int y);
+NK_API struct nk_vec2 nk_vec2v(const float *xy);
+NK_API struct nk_vec2 nk_vec2iv(const int *xy);
+
+NK_API struct nk_rect nk_get_null_rect(void);
+NK_API struct nk_rect nk_rect(float x, float y, float w, float h);
+NK_API struct nk_rect nk_recti(int x, int y, int w, int h);
+NK_API struct nk_rect nk_recta(struct nk_vec2 pos, struct nk_vec2 size);
+NK_API struct nk_rect nk_rectv(const float *xywh);
+NK_API struct nk_rect nk_rectiv(const int *xywh);
+NK_API struct nk_vec2 nk_rect_pos(struct nk_rect);
+NK_API struct nk_vec2 nk_rect_size(struct nk_rect);
+
+/* string*/
+NK_API int nk_strlen(const char *str);
+NK_API int nk_stricmp(const char *s1, const char *s2);
+NK_API int nk_stricmpn(const char *s1, const char *s2, int n);
+NK_API int nk_strtof(float *number, const char *buffer);
+NK_API int nk_strfilter(const char *text, const char *regexp);
+NK_API int nk_strmatch_fuzzy_string(char const *str, char const *pattern, int *out_score);
+NK_API int nk_strmatch_fuzzy_text(const char *txt, int txt_len, const char *pattern, int *out_score);
+#ifdef NK_INCLUDE_STANDARD_IO
+NK_API int nk_strfmt(char *buf, int len, const char *fmt,...);
+#endif
+
+/* UTF-8 */
+NK_API int nk_utf_decode(const char*, nk_rune*, int);
+NK_API int nk_utf_encode(nk_rune, char*, int);
+NK_API int nk_utf_len(const char*, int byte_len);
+NK_API const char* nk_utf_at(const char *buffer, int length, int index, nk_rune *unicode, int *len);
+
+/* ==============================================================
+ *
+ * MEMORY BUFFER
+ *
+ * ===============================================================*/
+/* A basic (double)-buffer with linear allocation and resetting as only
+ freeing policy. The buffers main purpose is to control all memory management
+ inside the GUI toolkit and still leave memory control as much as possible in
+ the hand of the user while also making sure the library is easy to use if
+ not as much control is needed.
+ In general all memory inside this library can be provided from the user in
+ three different ways.
+
+ The first way and the one providing most control is by just passing a fixed
+ size memory block. In this case all control lies in the hand of the user
+ since he can exactly control where the memory comes from and how much memory
+ the library should consume. Of course using the fixed size API removes the
+ ability to automatically resize a buffer if not enough memory is provided so
+ you have to take over the resizing. While being a fixed sized buffer sounds
+ quite limiting, it is very effective in this library since the actual memory
+ consumption is quite stable and has a fixed upper bound for a lot of cases.
+
+ If you don't want to think about how much memory the library should allocate
+ at all time or have a very dynamic UI with unpredictable memory consumption
+ habits but still want control over memory allocation you can use the dynamic
+ allocator based API. The allocator consists of two callbacks for allocating
+ and freeing memory and optional userdata so you can plugin your own allocator.
+
+ The final and easiest way can be used by defining
+ NK_INCLUDE_DEFAULT_ALLOCATOR which uses the standard library memory
+ allocation functions malloc and free and takes over complete control over
+ memory in this library.
+*/
+struct nk_memory_status {
+ void *memory;
+ unsigned int type;
+ nk_size size;
+ nk_size allocated;
+ nk_size needed;
+ nk_size calls;
+};
+
+enum nk_allocation_type {
+ NK_BUFFER_FIXED,
+ NK_BUFFER_DYNAMIC
+};
+
+enum nk_buffer_allocation_type {
+ NK_BUFFER_FRONT,
+ NK_BUFFER_BACK,
+ NK_BUFFER_MAX
+};
+
+struct nk_buffer_marker {
+ int active;
+ nk_size offset;
+};
+
+struct nk_memory {void *ptr;nk_size size;};
+struct nk_buffer {
+ struct nk_buffer_marker marker[NK_BUFFER_MAX];
+ /* buffer marker to free a buffer to a certain offset */
+ struct nk_allocator pool;
+ /* allocator callback for dynamic buffers */
+ enum nk_allocation_type type;
+ /* memory management type */
+ struct nk_memory memory;
+ /* memory and size of the current memory block */
+ float grow_factor;
+ /* growing factor for dynamic memory management */
+ nk_size allocated;
+ /* total amount of memory allocated */
+ nk_size needed;
+ /* totally consumed memory given that enough memory is present */
+ nk_size calls;
+ /* number of allocation calls */
+ nk_size size;
+ /* current size of the buffer */
+};
+
+#ifdef NK_INCLUDE_DEFAULT_ALLOCATOR
+NK_API void nk_buffer_init_default(struct nk_buffer*);
+#endif
+NK_API void nk_buffer_init(struct nk_buffer*, const struct nk_allocator*, nk_size size);
+NK_API void nk_buffer_init_fixed(struct nk_buffer*, void *memory, nk_size size);
+NK_API void nk_buffer_info(struct nk_memory_status*, struct nk_buffer*);
+NK_API void nk_buffer_push(struct nk_buffer*, enum nk_buffer_allocation_type type, void *memory, nk_size size, nk_size align);
+NK_API void nk_buffer_mark(struct nk_buffer*, enum nk_buffer_allocation_type type);
+NK_API void nk_buffer_reset(struct nk_buffer*, enum nk_buffer_allocation_type type);
+NK_API void nk_buffer_clear(struct nk_buffer*);
+NK_API void nk_buffer_free(struct nk_buffer*);
+NK_API void *nk_buffer_memory(struct nk_buffer*);
+NK_API const void *nk_buffer_memory_const(const struct nk_buffer*);
+NK_API nk_size nk_buffer_total(struct nk_buffer*);
+
+/* ==============================================================
+ *
+ * STRING
+ *
+ * ===============================================================*/
+/* Basic string buffer which is only used in context with the text editor
+ * to manage and manipulate dynamic or fixed size string content. This is _NOT_
+ * the default string handling method.*/
+struct nk_str {
+ struct nk_buffer buffer;
+ int len; /* in codepoints/runes/glyphs */
+};
+
+#ifdef NK_INCLUDE_DEFAULT_ALLOCATOR
+NK_API void nk_str_init_default(struct nk_str*);
+#endif
+NK_API void nk_str_init(struct nk_str*, const struct nk_allocator*, nk_size size);
+NK_API void nk_str_init_fixed(struct nk_str*, void *memory, nk_size size);
+NK_API void nk_str_clear(struct nk_str*);
+NK_API void nk_str_free(struct nk_str*);
+
+NK_API int nk_str_append_text_char(struct nk_str*, const char*, int);
+NK_API int nk_str_append_str_char(struct nk_str*, const char*);
+NK_API int nk_str_append_text_utf8(struct nk_str*, const char*, int);
+NK_API int nk_str_append_str_utf8(struct nk_str*, const char*);
+NK_API int nk_str_append_text_runes(struct nk_str*, const nk_rune*, int);
+NK_API int nk_str_append_str_runes(struct nk_str*, const nk_rune*);
+
+NK_API int nk_str_insert_at_char(struct nk_str*, int pos, const char*, int);
+NK_API int nk_str_insert_at_rune(struct nk_str*, int pos, const char*, int);
+
+NK_API int nk_str_insert_text_char(struct nk_str*, int pos, const char*, int);
+NK_API int nk_str_insert_str_char(struct nk_str*, int pos, const char*);
+NK_API int nk_str_insert_text_utf8(struct nk_str*, int pos, const char*, int);
+NK_API int nk_str_insert_str_utf8(struct nk_str*, int pos, const char*);
+NK_API int nk_str_insert_text_runes(struct nk_str*, int pos, const nk_rune*, int);
+NK_API int nk_str_insert_str_runes(struct nk_str*, int pos, const nk_rune*);
+
+NK_API void nk_str_remove_chars(struct nk_str*, int len);
+NK_API void nk_str_remove_runes(struct nk_str *str, int len);
+NK_API void nk_str_delete_chars(struct nk_str*, int pos, int len);
+NK_API void nk_str_delete_runes(struct nk_str*, int pos, int len);
+
+NK_API char *nk_str_at_char(struct nk_str*, int pos);
+NK_API char *nk_str_at_rune(struct nk_str*, int pos, nk_rune *unicode, int *len);
+NK_API nk_rune nk_str_rune_at(const struct nk_str*, int pos);
+NK_API const char *nk_str_at_char_const(const struct nk_str*, int pos);
+NK_API const char *nk_str_at_const(const struct nk_str*, int pos, nk_rune *unicode, int *len);
+
+NK_API char *nk_str_get(struct nk_str*);
+NK_API const char *nk_str_get_const(const struct nk_str*);
+NK_API int nk_str_len(struct nk_str*);
+NK_API int nk_str_len_char(struct nk_str*);
+
+/*===============================================================
+ *
+ * TEXT EDITOR
+ *
+ * ===============================================================*/
+/* Editing text in this library is handled by either `nk_edit_string` or
+ * `nk_edit_buffer`. But like almost everything in this library there are multiple
+ * ways of doing it and a balance between control and ease of use with memory
+ * as well as functionality controlled by flags.
+ *
+ * This library generally allows three different levels of memory control:
+ * First of is the most basic way of just providing a simple char array with
+ * string length. This method is probably the easiest way of handling simple
+ * user text input. Main upside is complete control over memory while the biggest
+ * downside in comparsion with the other two approaches is missing undo/redo.
+ *
+ * For UIs that require undo/redo the second way was created. It is based on
+ * a fixed size nk_text_edit struct, which has an internal undo/redo stack.
+ * This is mainly useful if you want something more like a text editor but don't want
+ * to have a dynamically growing buffer.
+ *
+ * The final ways is using a dynamically growing nk_text_edit struct, which
+ * has both a default version if you don't care were memory comes from and a
+ * allocator version if you do. While the text editor is quite powerful for its
+ * complexity I would not recommend editing gigabytes of data with it.
+ * It is rather designed for uses cases which make sense for a GUI library not for
+ * an full blown text editor.
+ */
+#ifndef NK_TEXTEDIT_UNDOSTATECOUNT
+#define NK_TEXTEDIT_UNDOSTATECOUNT 99
+#endif
+
+#ifndef NK_TEXTEDIT_UNDOCHARCOUNT
+#define NK_TEXTEDIT_UNDOCHARCOUNT 999
+#endif
+
+struct nk_text_edit;
+struct nk_clipboard {
+ nk_handle userdata;
+ nk_paste_f paste;
+ nk_copy_f copy;
+};
+
+struct nk_text_undo_record {
+ int where;
+ short insert_length;
+ short delete_length;
+ short char_storage;
+};
+
+struct nk_text_undo_state {
+ struct nk_text_undo_record undo_rec[NK_TEXTEDIT_UNDOSTATECOUNT];
+ nk_rune undo_char[NK_TEXTEDIT_UNDOCHARCOUNT];
+ short undo_point;
+ short redo_point;
+ short undo_char_point;
+ short redo_char_point;
+};
+
+enum nk_text_edit_type {
+ NK_TEXT_EDIT_SINGLE_LINE,
+ NK_TEXT_EDIT_MULTI_LINE
+};
+
+enum nk_text_edit_mode {
+ NK_TEXT_EDIT_MODE_VIEW,
+ NK_TEXT_EDIT_MODE_INSERT,
+ NK_TEXT_EDIT_MODE_REPLACE
+};
+
+struct nk_text_edit {
+ struct nk_clipboard clip;
+ struct nk_str string;
+ nk_filter filter;
+ struct nk_vec2 scrollbar;
+
+ int cursor;
+ int select_start;
+ int select_end;
+ unsigned char mode;
+ unsigned char cursor_at_end_of_line;
+ unsigned char initialized;
+ unsigned char has_preferred_x;
+ unsigned char single_line;
+ unsigned char active;
+ unsigned char padding1;
+ float preferred_x;
+ struct nk_text_undo_state undo;
+};
+
+/* filter function */
+NK_API int nk_filter_default(const struct nk_text_edit*, nk_rune unicode);
+NK_API int nk_filter_ascii(const struct nk_text_edit*, nk_rune unicode);
+NK_API int nk_filter_float(const struct nk_text_edit*, nk_rune unicode);
+NK_API int nk_filter_decimal(const struct nk_text_edit*, nk_rune unicode);
+NK_API int nk_filter_hex(const struct nk_text_edit*, nk_rune unicode);
+NK_API int nk_filter_oct(const struct nk_text_edit*, nk_rune unicode);
+NK_API int nk_filter_binary(const struct nk_text_edit*, nk_rune unicode);
+
+/* text editor */
+#ifdef NK_INCLUDE_DEFAULT_ALLOCATOR
+NK_API void nk_textedit_init_default(struct nk_text_edit*);
+#endif
+NK_API void nk_textedit_init(struct nk_text_edit*, struct nk_allocator*, nk_size size);
+NK_API void nk_textedit_init_fixed(struct nk_text_edit*, void *memory, nk_size size);
+NK_API void nk_textedit_free(struct nk_text_edit*);
+NK_API void nk_textedit_text(struct nk_text_edit*, const char*, int total_len);
+NK_API void nk_textedit_delete(struct nk_text_edit*, int where, int len);
+NK_API void nk_textedit_delete_selection(struct nk_text_edit*);
+NK_API void nk_textedit_select_all(struct nk_text_edit*);
+NK_API int nk_textedit_cut(struct nk_text_edit*);
+NK_API int nk_textedit_paste(struct nk_text_edit*, char const*, int len);
+NK_API void nk_textedit_undo(struct nk_text_edit*);
+NK_API void nk_textedit_redo(struct nk_text_edit*);
+
+/* ===============================================================
+ *
+ * FONT
+ *
+ * ===============================================================*/
+/* Font handling in this library was designed to be quite customizable and lets
+ you decide what you want to use and what you want to provide. In this sense
+ there are four different degrees between control and ease of use and two
+ different drawing APIs to provide for.
+
+ So first of the easiest way to do font handling is by just providing a
+ `nk_user_font` struct which only requires the height in pixel of the used
+ font and a callback to calculate the width of a string. This way of handling
+ fonts is best fitted for using the normal draw shape command API were you
+ do all the text drawing yourself and the library does not require any kind
+ of deeper knowledge about which font handling mechanism you use.
+
+ While the first approach works fine if you don't want to use the optional
+ vertex buffer output it is not enough if you do. To get font handling working
+ for these cases you have to provide two additional parameter inside the
+ `nk_user_font`. First a texture atlas handle used to draw text as subimages
+ of a bigger font atlas texture and a callback to query a characters glyph
+ information (offset, size, ...). So it is still possible to provide your own
+ font and use the vertex buffer output.
+
+ The final approach if you do not have a font handling functionality or don't
+ want to use it in this library is by using the optional font baker. This API
+ is divided into a high- and low-level API with different priorities between
+ ease of use and control. Both API's can be used to create a font and
+ font atlas texture and can even be used with or without the vertex buffer
+ output. So it still uses the `nk_user_font` struct and the two different
+ approaches previously stated still work.
+ Now to the difference between the low level API and the high level API. The low
+ level API provides a lot of control over the baking process of the font and
+ provides total control over memory. It consists of a number of functions that
+ need to be called from begin to end and each step requires some additional
+ configuration, so it is a lot more complex than the high-level API.
+ If you don't want to do all the work required for using the low-level API
+ you can use the font atlas API. It provides the same functionality as the
+ low-level API but takes away some configuration and all of memory control and
+ in term provides a easier to use API.
+*/
+struct nk_user_font_glyph;
+typedef float(*nk_text_width_f)(nk_handle, float h, const char*, int len);
+typedef void(*nk_query_font_glyph_f)(nk_handle handle, float font_height,
+ struct nk_user_font_glyph *glyph,
+ nk_rune codepoint, nk_rune next_codepoint);
+
+#ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+struct nk_user_font_glyph {
+ struct nk_vec2 uv[2];
+ /* texture coordinates */
+ struct nk_vec2 offset;
+ /* offset between top left and glyph */
+ float width, height;
+ /* size of the glyph */
+ float xadvance;
+ /* offset to the next glyph */
+};
+#endif
+
+struct nk_user_font {
+ nk_handle userdata;
+ /* user provided font handle */
+ float height;
+ /* max height of the font */
+ nk_text_width_f width;
+ /* font string width in pixel callback */
+#ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+ nk_query_font_glyph_f query;
+ /* font glyph callback to query drawing info */
+ nk_handle texture;
+ /* texture handle to the used font atlas or texture */
+#endif
+};
+
+#ifdef NK_INCLUDE_FONT_BAKING
+enum nk_font_coord_type {
+ NK_COORD_UV,
+ /* texture coordinates inside font glyphs are clamped between 0-1 */
+ NK_COORD_PIXEL
+ /* texture coordinates inside font glyphs are in absolute pixel */
+};
+
+struct nk_baked_font {
+ float height;
+ /* height of the font */
+ float ascent, descent;
+ /* font glyphs ascent and descent */
+ nk_rune glyph_offset;
+ /* glyph array offset inside the font glyph baking output array */
+ nk_rune glyph_count;
+ /* number of glyphs of this font inside the glyph baking array output */
+ const nk_rune *ranges;
+ /* font codepoint ranges as pairs of (from/to) and 0 as last element */
+};
+
+struct nk_font_config {
+ void *ttf_blob;
+ /* pointer to loaded TTF file memory block.
+ * NOTE: not needed for nk_font_atlas_add_from_memory and nk_font_atlas_add_from_file. */
+ nk_size ttf_size;
+ /* size of the loaded TTF file memory block
+ * NOTE: not needed for nk_font_atlas_add_from_memory and nk_font_atlas_add_from_file. */
+
+ unsigned char ttf_data_owned_by_atlas;
+ /* used inside font atlas: default to: 0*/
+ unsigned char merge_mode;
+ /* merges this font into the last font */
+ unsigned char pixel_snap;
+ /* align very character to pixel boundary (if true set oversample (1,1)) */
+ unsigned char oversample_v, oversample_h;
+ /* rasterize at hight quality for sub-pixel position */
+ unsigned char padding[3];
+
+ float size;
+ /* baked pixel height of the font */
+ enum nk_font_coord_type coord_type;
+ /* texture coordinate format with either pixel or UV coordinates */
+ struct nk_vec2 spacing;
+ /* extra pixel spacing between glyphs */
+ const nk_rune *range;
+ /* list of unicode ranges (2 values per range, zero terminated) */
+ struct nk_baked_font *font;
+ /* font to setup in the baking process: NOTE: not needed for font atlas */
+ nk_rune fallback_glyph;
+ /* fallback glyph to use if a given rune is not found */
+};
+
+struct nk_font_glyph {
+ nk_rune codepoint;
+ float xadvance;
+ float x0, y0, x1, y1, w, h;
+ float u0, v0, u1, v1;
+};
+
+struct nk_font {
+ struct nk_user_font handle;
+ struct nk_baked_font info;
+ float scale;
+ struct nk_font_glyph *glyphs;
+ const struct nk_font_glyph *fallback;
+ nk_rune fallback_codepoint;
+ nk_handle texture;
+ int config;
+};
+
+enum nk_font_atlas_format {
+ NK_FONT_ATLAS_ALPHA8,
+ NK_FONT_ATLAS_RGBA32
+};
+
+struct nk_font_atlas {
+ void *pixel;
+ int tex_width;
+ int tex_height;
+ struct nk_allocator alloc;
+ struct nk_recti custom;
+
+ int glyph_count;
+ struct nk_font *default_font;
+ struct nk_font_glyph *glyphs;
+ struct nk_font **fonts;
+ struct nk_font_config *config;
+ int font_num, font_cap;
+};
+
+/* some language glyph codepoint ranges */
+NK_API const nk_rune *nk_font_default_glyph_ranges(void);
+NK_API const nk_rune *nk_font_chinese_glyph_ranges(void);
+NK_API const nk_rune *nk_font_cyrillic_glyph_ranges(void);
+NK_API const nk_rune *nk_font_korean_glyph_ranges(void);
+
+/* Font Atlas
+ * ---------------------------------------------------------------
+ * This is the high level font baking and handling API to generate an image
+ * out of font glyphs used to draw text onto the screen. This API takes away
+ * some control over the baking process like fine grained memory control and
+ * custom baking data but provides additional functionality and easier to
+ * use and manage data structures and functions. */
+#ifdef NK_INCLUDE_DEFAULT_ALLOCATOR
+NK_API void nk_font_atlas_init_default(struct nk_font_atlas*);
+#endif
+NK_API void nk_font_atlas_init(struct nk_font_atlas*, struct nk_allocator*);
+NK_API void nk_font_atlas_begin(struct nk_font_atlas*);
+NK_API struct nk_font_config nk_font_config(float pixel_height);
+NK_API struct nk_font *nk_font_atlas_add(struct nk_font_atlas*, const struct nk_font_config*);
+#ifdef NK_INCLUDE_DEFAULT_FONT
+NK_API struct nk_font* nk_font_atlas_add_default(struct nk_font_atlas*, float height, const struct nk_font_config*);
+#endif
+NK_API struct nk_font* nk_font_atlas_add_from_memory(struct nk_font_atlas *atlas, void *memory, nk_size size, float height, const struct nk_font_config *config);
+#ifdef NK_INCLUDE_STANDARD_IO
+NK_API struct nk_font* nk_font_atlas_add_from_file(struct nk_font_atlas *atlas, const char *file_path, float height, const struct nk_font_config*);
+#endif
+NK_API struct nk_font *nk_font_atlas_add_compressed(struct nk_font_atlas*, void *memory, nk_size size, float height, const struct nk_font_config*);
+NK_API struct nk_font* nk_font_atlas_add_compressed_base85(struct nk_font_atlas*, const char *data, float height, const struct nk_font_config *config);
+NK_API const void* nk_font_atlas_bake(struct nk_font_atlas*, int *width, int *height, enum nk_font_atlas_format);
+NK_API void nk_font_atlas_end(struct nk_font_atlas*, nk_handle tex, struct nk_draw_null_texture*);
+NK_API void nk_font_atlas_clear(struct nk_font_atlas*);
+
+/* Font
+ * -----------------------------------------------------------------
+ * The font structure is just a simple container to hold the output of a baking
+ * process in the low level API. */
+NK_API void nk_font_init(struct nk_font*, float pixel_height, nk_rune fallback_codepoint, struct nk_font_glyph*, const struct nk_baked_font*, nk_handle atlas);
+NK_API const struct nk_font_glyph* nk_font_find_glyph(struct nk_font*, nk_rune unicode);
+
+/* Font baking (needs to be called sequentially top to bottom)
+ * --------------------------------------------------------------------
+ * This is a low level API to bake font glyphs into an image and is more
+ * complex than the atlas API but provides more control over the baking
+ * process with custom bake data and memory management. */
+NK_API void nk_font_bake_memory(nk_size *temporary_memory, int *glyph_count, struct nk_font_config*, int count);
+NK_API int nk_font_bake_pack(nk_size *img_memory, int *img_width, int *img_height, struct nk_recti *custom_space, void *temporary_memory, nk_size temporary_size, const struct nk_font_config*, int font_count, struct nk_allocator *alloc);
+NK_API void nk_font_bake(void *image_memory, int image_width, int image_height, void *temporary_memory, nk_size temporary_memory_size, struct nk_font_glyph*, int glyphs_count, const struct nk_font_config*, int font_count);
+NK_API void nk_font_bake_custom_data(void *img_memory, int img_width, int img_height, struct nk_recti img_dst, const char *image_data_mask, int tex_width, int tex_height,char white,char black);
+NK_API void nk_font_bake_convert(void *out_memory, int image_width, int image_height, const void *in_memory);
+
+#endif
+
+/* ===============================================================
+ *
+ * DRAWING
+ *
+ * ===============================================================*/
+/* This library was designed to be render backend agnostic so it does
+ not draw anything to screen. Instead all drawn shapes, widgets
+ are made of, are buffered into memory and make up a command queue.
+ Each frame therefore fills the command buffer with draw commands
+ that then need to be executed by the user and his own render backend.
+ After that the command buffer needs to be cleared and a new frame can be
+ started. It is probably important to note that the command buffer is the main
+ drawing API and the optional vertex buffer API only takes this format and
+ converts it into a hardware accessible format.
+
+ Draw commands are divided into filled shapes and shape outlines but only
+ filled shapes as well as line, curves and scissor are required to be provided.
+ All other shape drawing commands can be used but are not required. This was
+ done to allow the maximum number of render backends to be able to use this
+ library without you having to do additional work.
+*/
+enum nk_command_type {
+ NK_COMMAND_NOP,
+ NK_COMMAND_SCISSOR,
+ NK_COMMAND_LINE,
+ NK_COMMAND_CURVE,
+ NK_COMMAND_RECT,
+ NK_COMMAND_RECT_FILLED,
+ NK_COMMAND_RECT_MULTI_COLOR,
+ NK_COMMAND_CIRCLE,
+ NK_COMMAND_CIRCLE_FILLED,
+ NK_COMMAND_ARC,
+ NK_COMMAND_ARC_FILLED,
+ NK_COMMAND_TRIANGLE,
+ NK_COMMAND_TRIANGLE_FILLED,
+ NK_COMMAND_POLYGON,
+ NK_COMMAND_POLYGON_FILLED,
+ NK_COMMAND_POLYLINE,
+ NK_COMMAND_TEXT,
+ NK_COMMAND_IMAGE
+};
+
+/* command base and header of every command inside the buffer */
+struct nk_command {
+ enum nk_command_type type;
+ nk_size next;
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+ nk_handle userdata;
+#endif
+};
+
+struct nk_command_scissor {
+ struct nk_command header;
+ short x, y;
+ unsigned short w, h;
+};
+
+struct nk_command_line {
+ struct nk_command header;
+ unsigned short line_thickness;
+ struct nk_vec2i begin;
+ struct nk_vec2i end;
+ struct nk_color color;
+};
+
+struct nk_command_curve {
+ struct nk_command header;
+ unsigned short line_thickness;
+ struct nk_vec2i begin;
+ struct nk_vec2i end;
+ struct nk_vec2i ctrl[2];
+ struct nk_color color;
+};
+
+struct nk_command_rect {
+ struct nk_command header;
+ unsigned short rounding;
+ unsigned short line_thickness;
+ short x, y;
+ unsigned short w, h;
+ struct nk_color color;
+};
+
+struct nk_command_rect_filled {
+ struct nk_command header;
+ unsigned short rounding;
+ short x, y;
+ unsigned short w, h;
+ struct nk_color color;
+};
+
+struct nk_command_rect_multi_color {
+ struct nk_command header;
+ short x, y;
+ unsigned short w, h;
+ struct nk_color left;
+ struct nk_color top;
+ struct nk_color bottom;
+ struct nk_color right;
+};
+
+struct nk_command_triangle {
+ struct nk_command header;
+ unsigned short line_thickness;
+ struct nk_vec2i a;
+ struct nk_vec2i b;
+ struct nk_vec2i c;
+ struct nk_color color;
+};
+
+struct nk_command_triangle_filled {
+ struct nk_command header;
+ struct nk_vec2i a;
+ struct nk_vec2i b;
+ struct nk_vec2i c;
+ struct nk_color color;
+};
+
+struct nk_command_circle {
+ struct nk_command header;
+ short x, y;
+ unsigned short line_thickness;
+ unsigned short w, h;
+ struct nk_color color;
+};
+
+struct nk_command_circle_filled {
+ struct nk_command header;
+ short x, y;
+ unsigned short w, h;
+ struct nk_color color;
+};
+
+struct nk_command_arc {
+ struct nk_command header;
+ short cx, cy;
+ unsigned short r;
+ unsigned short line_thickness;
+ float a[2];
+ struct nk_color color;
+};
+
+struct nk_command_arc_filled {
+ struct nk_command header;
+ short cx, cy;
+ unsigned short r;
+ float a[2];
+ struct nk_color color;
+};
+
+struct nk_command_polygon {
+ struct nk_command header;
+ struct nk_color color;
+ unsigned short line_thickness;
+ unsigned short point_count;
+ struct nk_vec2i points[1];
+};
+
+struct nk_command_polygon_filled {
+ struct nk_command header;
+ struct nk_color color;
+ unsigned short point_count;
+ struct nk_vec2i points[1];
+};
+
+struct nk_command_polyline {
+ struct nk_command header;
+ struct nk_color color;
+ unsigned short line_thickness;
+ unsigned short point_count;
+ struct nk_vec2i points[1];
+};
+
+struct nk_command_image {
+ struct nk_command header;
+ short x, y;
+ unsigned short w, h;
+ struct nk_image img;
+};
+
+struct nk_command_text {
+ struct nk_command header;
+ const struct nk_user_font *font;
+ struct nk_color background;
+ struct nk_color foreground;
+ short x, y;
+ unsigned short w, h;
+ float height;
+ int length;
+ char string[1];
+};
+
+enum nk_command_clipping {
+ NK_CLIPPING_OFF = nk_false,
+ NK_CLIPPING_ON = nk_true
+};
+
+struct nk_command_buffer {
+ struct nk_buffer *base;
+ struct nk_rect clip;
+ int use_clipping;
+ nk_handle userdata;
+ nk_size begin, end, last;
+};
+
+/* shape outlines */
+NK_API void nk_stroke_line(struct nk_command_buffer *b, float x0, float y0, float x1, float y1, float line_thickness, struct nk_color);
+NK_API void nk_stroke_curve(struct nk_command_buffer*, float, float, float, float, float, float, float, float, float line_thickness, struct nk_color);
+NK_API void nk_stroke_rect(struct nk_command_buffer*, struct nk_rect, float rounding, float line_thickness, struct nk_color);
+NK_API void nk_stroke_circle(struct nk_command_buffer*, struct nk_rect, float line_thickness, struct nk_color);
+NK_API void nk_stroke_arc(struct nk_command_buffer*, float cx, float cy, float radius, float a_min, float a_max, float line_thickness, struct nk_color);
+NK_API void nk_stroke_triangle(struct nk_command_buffer*, float, float, float, float, float, float, float line_thichness, struct nk_color);
+NK_API void nk_stroke_polyline(struct nk_command_buffer*, float *points, int point_count, float line_thickness, struct nk_color col);
+NK_API void nk_stroke_polygon(struct nk_command_buffer*, float*, int point_count, float line_thickness, struct nk_color);
+
+/* filled shades */
+NK_API void nk_fill_rect(struct nk_command_buffer*, struct nk_rect, float rounding, struct nk_color);
+NK_API void nk_fill_rect_multi_color(struct nk_command_buffer*, struct nk_rect, struct nk_color left, struct nk_color top, struct nk_color right, struct nk_color bottom);
+NK_API void nk_fill_circle(struct nk_command_buffer*, struct nk_rect, struct nk_color);
+NK_API void nk_fill_arc(struct nk_command_buffer*, float cx, float cy, float radius, float a_min, float a_max, struct nk_color);
+NK_API void nk_fill_triangle(struct nk_command_buffer*, float x0, float y0, float x1, float y1, float x2, float y2, struct nk_color);
+NK_API void nk_fill_polygon(struct nk_command_buffer*, float*, int point_count, struct nk_color);
+
+/* misc */
+NK_API void nk_push_scissor(struct nk_command_buffer*, struct nk_rect);
+NK_API void nk_draw_image(struct nk_command_buffer*, struct nk_rect, const struct nk_image*);
+NK_API void nk_draw_text(struct nk_command_buffer*, struct nk_rect, const char *text, int len, const struct nk_user_font*, struct nk_color, struct nk_color);
+NK_API const struct nk_command* nk__next(struct nk_context*, const struct nk_command*);
+NK_API const struct nk_command* nk__begin(struct nk_context*);
+
+/* ===============================================================
+ *
+ * INPUT
+ *
+ * ===============================================================*/
+struct nk_mouse_button {
+ int down;
+ unsigned int clicked;
+ struct nk_vec2 clicked_pos;
+};
+
+struct nk_mouse {
+ struct nk_mouse_button buttons[NK_BUTTON_MAX];
+ struct nk_vec2 pos;
+ struct nk_vec2 prev;
+ struct nk_vec2 delta;
+ float scroll_delta;
+ unsigned char grab;
+ unsigned char grabbed;
+ unsigned char ungrab;
+};
+
+struct nk_key {
+ int down;
+ unsigned int clicked;
+};
+
+struct nk_keyboard {
+ struct nk_key keys[NK_KEY_MAX];
+ char text[NK_INPUT_MAX];
+ int text_len;
+};
+
+struct nk_input {
+ struct nk_keyboard keyboard;
+ struct nk_mouse mouse;
+};
+
+NK_API int nk_input_has_mouse_click(const struct nk_input*, enum nk_buttons);
+NK_API int nk_input_has_mouse_click_in_rect(const struct nk_input*, enum nk_buttons, struct nk_rect);
+NK_API int nk_input_has_mouse_click_down_in_rect(const struct nk_input*, enum nk_buttons, struct nk_rect, int down);
+NK_API int nk_input_is_mouse_click_in_rect(const struct nk_input*, enum nk_buttons, struct nk_rect);
+NK_API int nk_input_is_mouse_click_down_in_rect(const struct nk_input *i, enum nk_buttons id, struct nk_rect b, int down);
+NK_API int nk_input_any_mouse_click_in_rect(const struct nk_input*, struct nk_rect);
+NK_API int nk_input_is_mouse_prev_hovering_rect(const struct nk_input*, struct nk_rect);
+NK_API int nk_input_is_mouse_hovering_rect(const struct nk_input*, struct nk_rect);
+NK_API int nk_input_mouse_clicked(const struct nk_input*, enum nk_buttons, struct nk_rect);
+NK_API int nk_input_is_mouse_down(const struct nk_input*, enum nk_buttons);
+NK_API int nk_input_is_mouse_pressed(const struct nk_input*, enum nk_buttons);
+NK_API int nk_input_is_mouse_released(const struct nk_input*, enum nk_buttons);
+NK_API int nk_input_is_key_pressed(const struct nk_input*, enum nk_keys);
+NK_API int nk_input_is_key_released(const struct nk_input*, enum nk_keys);
+NK_API int nk_input_is_key_down(const struct nk_input*, enum nk_keys);
+
+
+/* ===============================================================
+ *
+ * DRAW LIST
+ *
+ * ===============================================================*/
+#ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+/* The optional vertex buffer draw list provides a 2D drawing context
+ with antialiasing functionality which takes basic filled or outlined shapes
+ or a path and outputs vertexes, elements and draw commands.
+ The actual draw list API is not required to be used directly while using this
+ library since converting the default library draw command output is done by
+ just calling `nk_convert` but I decided to still make this library accessible
+ since it can be useful.
+
+ The draw list is based on a path buffering and polygon and polyline
+ rendering API which allows a lot of ways to draw 2D content to screen.
+ In fact it is probably more powerful than needed but allows even more crazy
+ things than this library provides by default.
+*/
+typedef unsigned short nk_draw_index;
+typedef nk_uint nk_draw_vertex_color;
+
+enum nk_draw_list_stroke {
+ NK_STROKE_OPEN = nk_false,
+ /* build up path has no connection back to the beginning */
+ NK_STROKE_CLOSED = nk_true
+ /* build up path has a connection back to the beginning */
+};
+
+struct nk_draw_vertex {
+ struct nk_vec2 position;
+ struct nk_vec2 uv;
+ nk_draw_vertex_color col;
+};
+
+struct nk_draw_command {
+ unsigned int elem_count;
+ /* number of elements in the current draw batch */
+ struct nk_rect clip_rect;
+ /* current screen clipping rectangle */
+ nk_handle texture;
+ /* current texture to set */
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+ nk_handle userdata;
+#endif
+};
+
+struct nk_draw_list {
+ float global_alpha;
+ enum nk_anti_aliasing shape_AA;
+ enum nk_anti_aliasing line_AA;
+ struct nk_draw_null_texture null;
+ struct nk_rect clip_rect;
+ struct nk_buffer *buffer;
+ struct nk_buffer *vertices;
+ struct nk_buffer *elements;
+ unsigned int element_count;
+ unsigned int vertex_count;
+ nk_size cmd_offset;
+ unsigned int cmd_count;
+ unsigned int path_count;
+ unsigned int path_offset;
+ struct nk_vec2 circle_vtx[12];
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+ nk_handle userdata;
+#endif
+};
+
+/* draw list */
+NK_API void nk_draw_list_init(struct nk_draw_list*);
+NK_API void nk_draw_list_setup(struct nk_draw_list*, float global_alpha, enum nk_anti_aliasing, enum nk_anti_aliasing, struct nk_draw_null_texture, struct nk_buffer *cmds, struct nk_buffer *vert, struct nk_buffer *elem);
+NK_API void nk_draw_list_clear(struct nk_draw_list*);
+
+/* drawing */
+#define nk_draw_list_foreach(cmd, can, b) for((cmd)=nk__draw_list_begin(can, b); (cmd)!=0; (cmd)=nk__draw_list_next(cmd, b, can))
+NK_API const struct nk_draw_command* nk__draw_list_begin(const struct nk_draw_list*, const struct nk_buffer*);
+NK_API const struct nk_draw_command* nk__draw_list_next(const struct nk_draw_command*, const struct nk_buffer*, const struct nk_draw_list*);
+NK_API const struct nk_draw_command* nk__draw_begin(const struct nk_context*, const struct nk_buffer*);
+NK_API const struct nk_draw_command* nk__draw_next(const struct nk_draw_command*, const struct nk_buffer*, const struct nk_context*);
+
+/* path */
+NK_API void nk_draw_list_path_clear(struct nk_draw_list*);
+NK_API void nk_draw_list_path_line_to(struct nk_draw_list *list, struct nk_vec2 pos);
+NK_API void nk_draw_list_path_arc_to_fast(struct nk_draw_list*, struct nk_vec2 center, float radius, int a_min, int a_max);
+NK_API void nk_draw_list_path_arc_to(struct nk_draw_list*, struct nk_vec2 center, float radius, float a_min, float a_max, unsigned int segments);
+NK_API void nk_draw_list_path_rect_to(struct nk_draw_list*, struct nk_vec2 a, struct nk_vec2 b, float rounding);
+NK_API void nk_draw_list_path_curve_to(struct nk_draw_list*, struct nk_vec2 p2, struct nk_vec2 p3, struct nk_vec2 p4, unsigned int num_segments);
+NK_API void nk_draw_list_path_fill(struct nk_draw_list*, struct nk_color);
+NK_API void nk_draw_list_path_stroke(struct nk_draw_list*, struct nk_color, enum nk_draw_list_stroke closed, float thickness);
+
+/* stroke */
+NK_API void nk_draw_list_stroke_line(struct nk_draw_list*, struct nk_vec2 a, struct nk_vec2 b, struct nk_color, float thickness);
+NK_API void nk_draw_list_stroke_rect(struct nk_draw_list*, struct nk_rect rect, struct nk_color, float rounding, float thickness);
+NK_API void nk_draw_list_stroke_triangle(struct nk_draw_list*, struct nk_vec2 a, struct nk_vec2 b, struct nk_vec2 c, struct nk_color, float thickness);
+NK_API void nk_draw_list_stroke_circle(struct nk_draw_list*, struct nk_vec2 center, float radius, struct nk_color, unsigned int segs, float thickness);
+NK_API void nk_draw_list_stroke_curve(struct nk_draw_list*, struct nk_vec2 p0, struct nk_vec2 cp0, struct nk_vec2 cp1, struct nk_vec2 p1, struct nk_color, unsigned int segments, float thickness);
+NK_API void nk_draw_list_stroke_poly_line(struct nk_draw_list*, const struct nk_vec2 *pnts, const unsigned int cnt, struct nk_color, enum nk_draw_list_stroke, float thickness, enum nk_anti_aliasing);
+/* fill */
+NK_API void nk_draw_list_fill_rect(struct nk_draw_list*, struct nk_rect rect, struct nk_color, float rounding);
+NK_API void nk_draw_list_fill_rect_multi_color(struct nk_draw_list *list, struct nk_rect rect, struct nk_color left, struct nk_color top, struct nk_color right, struct nk_color bottom);
+NK_API void nk_draw_list_fill_triangle(struct nk_draw_list*, struct nk_vec2 a, struct nk_vec2 b, struct nk_vec2 c, struct nk_color);
+NK_API void nk_draw_list_fill_circle(struct nk_draw_list*, struct nk_vec2 center, float radius, struct nk_color col, unsigned int segs);
+NK_API void nk_draw_list_fill_poly_convex(struct nk_draw_list*, const struct nk_vec2 *points, const unsigned int count, struct nk_color, enum nk_anti_aliasing);
+
+/* misc */
+NK_API void nk_draw_list_add_image(struct nk_draw_list*, struct nk_image texture, struct nk_rect rect, struct nk_color);
+NK_API void nk_draw_list_add_text(struct nk_draw_list*, const struct nk_user_font*, struct nk_rect, const char *text, int len, float font_height, struct nk_color);
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+NK_API void nk_draw_list_push_userdata(struct nk_draw_list*, nk_handle userdata);
+#endif
+
+#endif
+
+/* ===============================================================
+ *
+ * GUI
+ *
+ * ===============================================================*/
+enum nk_style_item_type {
+ NK_STYLE_ITEM_COLOR,
+ NK_STYLE_ITEM_IMAGE
+};
+
+union nk_style_item_data {
+ struct nk_image image;
+ struct nk_color color;
+};
+
+struct nk_style_item {
+ enum nk_style_item_type type;
+ union nk_style_item_data data;
+};
+
+struct nk_style_text {
+ struct nk_color color;
+ struct nk_vec2 padding;
+};
+
+struct nk_style_button {
+ /* background */
+ struct nk_style_item normal;
+ struct nk_style_item hover;
+ struct nk_style_item active;
+ struct nk_color border_color;
+
+ /* text */
+ struct nk_color text_background;
+ struct nk_color text_normal;
+ struct nk_color text_hover;
+ struct nk_color text_active;
+ nk_flags text_alignment;
+
+ /* properties */
+ float border;
+ float rounding;
+ struct nk_vec2 padding;
+ struct nk_vec2 image_padding;
+ struct nk_vec2 touch_padding;
+
+ /* optional user callbacks */
+ nk_handle userdata;
+ void(*draw_begin)(struct nk_command_buffer*, nk_handle userdata);
+ void(*draw_end)(struct nk_command_buffer*, nk_handle userdata);
+};
+
+struct nk_style_toggle {
+ /* background */
+ struct nk_style_item normal;
+ struct nk_style_item hover;
+ struct nk_style_item active;
+
+ /* cursor */
+ struct nk_style_item cursor_normal;
+ struct nk_style_item cursor_hover;
+
+ /* text */
+ struct nk_color text_normal;
+ struct nk_color text_hover;
+ struct nk_color text_active;
+ struct nk_color text_background;
+ nk_flags text_alignment;
+
+ /* properties */
+ struct nk_vec2 padding;
+ struct nk_vec2 touch_padding;
+
+ /* optional user callbacks */
+ nk_handle userdata;
+ void(*draw_begin)(struct nk_command_buffer*, nk_handle);
+ void(*draw_end)(struct nk_command_buffer*, nk_handle);
+};
+
+struct nk_style_selectable {
+ /* background (inactive) */
+ struct nk_style_item normal;
+ struct nk_style_item hover;
+ struct nk_style_item pressed;
+
+ /* background (active) */
+ struct nk_style_item normal_active;
+ struct nk_style_item hover_active;
+ struct nk_style_item pressed_active;
+
+ /* text color (inactive) */
+ struct nk_color text_normal;
+ struct nk_color text_hover;
+ struct nk_color text_pressed;
+
+ /* text color (active) */
+ struct nk_color text_normal_active;
+ struct nk_color text_hover_active;
+ struct nk_color text_pressed_active;
+ struct nk_color text_background;
+ nk_flags text_alignment;
+
+ /* properties */
+ float rounding;
+ struct nk_vec2 padding;
+ struct nk_vec2 touch_padding;
+ struct nk_vec2 image_padding;
+
+ /* optional user callbacks */
+ nk_handle userdata;
+ void(*draw_begin)(struct nk_command_buffer*, nk_handle);
+ void(*draw_end)(struct nk_command_buffer*, nk_handle);
+};
+
+struct nk_style_slider {
+ /* background */
+ struct nk_style_item normal;
+ struct nk_style_item hover;
+ struct nk_style_item active;
+ struct nk_color border_color;
+
+ /* background bar */
+ struct nk_color bar_normal;
+ struct nk_color bar_hover;
+ struct nk_color bar_active;
+ struct nk_color bar_filled;
+
+ /* cursor */
+ struct nk_style_item cursor_normal;
+ struct nk_style_item cursor_hover;
+ struct nk_style_item cursor_active;
+
+ /* properties */
+ float border;
+ float rounding;
+ float bar_height;
+ struct nk_vec2 padding;
+ struct nk_vec2 spacing;
+ struct nk_vec2 cursor_size;
+
+ /* optional buttons */
+ int show_buttons;
+ struct nk_style_button inc_button;
+ struct nk_style_button dec_button;
+ enum nk_symbol_type inc_symbol;
+ enum nk_symbol_type dec_symbol;
+
+ /* optional user callbacks */
+ nk_handle userdata;
+ void(*draw_begin)(struct nk_command_buffer*, nk_handle);
+ void(*draw_end)(struct nk_command_buffer*, nk_handle);
+};
+
+struct nk_style_progress {
+ /* background */
+ struct nk_style_item normal;
+ struct nk_style_item hover;
+ struct nk_style_item active;
+
+ /* cursor */
+ struct nk_style_item cursor_normal;
+ struct nk_style_item cursor_hover;
+ struct nk_style_item cursor_active;
+
+ /* properties */
+ float rounding;
+ struct nk_vec2 padding;
+
+ /* optional user callbacks */
+ nk_handle userdata;
+ void(*draw_begin)(struct nk_command_buffer*, nk_handle);
+ void(*draw_end)(struct nk_command_buffer*, nk_handle);
+};
+
+struct nk_style_scrollbar {
+ /* background */
+ struct nk_style_item normal;
+ struct nk_style_item hover;
+ struct nk_style_item active;
+ struct nk_color border_color;
+
+ /* cursor */
+ struct nk_style_item cursor_normal;
+ struct nk_style_item cursor_hover;
+ struct nk_style_item cursor_active;
+
+ /* properties */
+ float border;
+ float rounding;
+ struct nk_vec2 padding;
+
+ /* optional buttons */
+ int show_buttons;
+ struct nk_style_button inc_button;
+ struct nk_style_button dec_button;
+ enum nk_symbol_type inc_symbol;
+ enum nk_symbol_type dec_symbol;
+
+ /* optional user callbacks */
+ nk_handle userdata;
+ void(*draw_begin)(struct nk_command_buffer*, nk_handle);
+ void(*draw_end)(struct nk_command_buffer*, nk_handle);
+};
+
+struct nk_style_edit {
+ /* background */
+ struct nk_style_item normal;
+ struct nk_style_item hover;
+ struct nk_style_item active;
+ struct nk_color border_color;
+ struct nk_style_scrollbar scrollbar;
+
+ /* cursor */
+ struct nk_color cursor_normal;
+ struct nk_color cursor_hover;
+ struct nk_color cursor_text_normal;
+ struct nk_color cursor_text_hover;
+
+ /* text (unselected) */
+ struct nk_color text_normal;
+ struct nk_color text_hover;
+ struct nk_color text_active;
+
+ /* text (selected) */
+ struct nk_color selected_normal;
+ struct nk_color selected_hover;
+ struct nk_color selected_text_normal;
+ struct nk_color selected_text_hover;
+
+ /* properties */
+ float border;
+ float rounding;
+ float cursor_size;
+ struct nk_vec2 scrollbar_size;
+ struct nk_vec2 padding;
+ float row_padding;
+};
+
+struct nk_style_property {
+ /* background */
+ struct nk_style_item normal;
+ struct nk_style_item hover;
+ struct nk_style_item active;
+ struct nk_color border_color;
+
+ /* text */
+ struct nk_color label_normal;
+ struct nk_color label_hover;
+ struct nk_color label_active;
+
+ /* symbols */
+ enum nk_symbol_type sym_left;
+ enum nk_symbol_type sym_right;
+
+ /* properties */
+ float border;
+ float rounding;
+ struct nk_vec2 padding;
+
+ struct nk_style_edit edit;
+ struct nk_style_button inc_button;
+ struct nk_style_button dec_button;
+
+ /* optional user callbacks */
+ nk_handle userdata;
+ void(*draw_begin)(struct nk_command_buffer*, nk_handle);
+ void(*draw_end)(struct nk_command_buffer*, nk_handle);
+};
+
+struct nk_style_chart {
+ /* colors */
+ struct nk_style_item background;
+ struct nk_color border_color;
+ struct nk_color selected_color;
+ struct nk_color color;
+
+ /* properties */
+ float border;
+ float rounding;
+ struct nk_vec2 padding;
+};
+
+struct nk_style_combo {
+ /* background */
+ struct nk_style_item normal;
+ struct nk_style_item hover;
+ struct nk_style_item active;
+ struct nk_color border_color;
+
+ /* label */
+ struct nk_color label_normal;
+ struct nk_color label_hover;
+ struct nk_color label_active;
+
+ /* symbol */
+ struct nk_color symbol_normal;
+ struct nk_color symbol_hover;
+ struct nk_color symbol_active;
+
+ /* button */
+ struct nk_style_button button;
+ enum nk_symbol_type sym_normal;
+ enum nk_symbol_type sym_hover;
+ enum nk_symbol_type sym_active;
+
+ /* properties */
+ float border;
+ float rounding;
+ struct nk_vec2 content_padding;
+ struct nk_vec2 button_padding;
+ struct nk_vec2 spacing;
+};
+
+struct nk_style_tab {
+ /* background */
+ struct nk_style_item background;
+ struct nk_color border_color;
+ struct nk_color text;
+
+ /* button */
+ struct nk_style_button tab_button;
+ struct nk_style_button node_button;
+ enum nk_symbol_type sym_minimize;
+ enum nk_symbol_type sym_maximize;
+
+ /* properties */
+ float border;
+ float rounding;
+ struct nk_vec2 padding;
+ struct nk_vec2 spacing;
+};
+
+enum nk_style_header_align {
+ NK_HEADER_LEFT,
+ NK_HEADER_RIGHT
+};
+
+struct nk_style_window_header {
+ /* background */
+ struct nk_style_item normal;
+ struct nk_style_item hover;
+ struct nk_style_item active;
+
+ /* button */
+ struct nk_style_button close_button;
+ struct nk_style_button minimize_button;
+ enum nk_symbol_type close_symbol;
+ enum nk_symbol_type minimize_symbol;
+ enum nk_symbol_type maximize_symbol;
+
+ /* title */
+ struct nk_color label_normal;
+ struct nk_color label_hover;
+ struct nk_color label_active;
+
+ /* properties */
+ enum nk_style_header_align align;
+ struct nk_vec2 padding;
+ struct nk_vec2 label_padding;
+ struct nk_vec2 spacing;
+};
+
+struct nk_style_window {
+ struct nk_style_window_header header;
+ struct nk_style_item fixed_background;
+ struct nk_color background;
+
+ struct nk_color border_color;
+ struct nk_color combo_border_color;
+ struct nk_color contextual_border_color;
+ struct nk_color menu_border_color;
+ struct nk_color group_border_color;
+ struct nk_color tooltip_border_color;
+
+ struct nk_style_item scaler;
+ struct nk_vec2 footer_padding;
+
+ float border;
+ float combo_border;
+ float contextual_border;
+ float menu_border;
+ float group_border;
+ float tooltip_border;
+
+ float rounding;
+ struct nk_vec2 scaler_size;
+ struct nk_vec2 padding;
+ struct nk_vec2 spacing;
+ struct nk_vec2 scrollbar_size;
+ struct nk_vec2 min_size;
+};
+
+struct nk_style {
+ struct nk_user_font font;
+ struct nk_style_text text;
+ struct nk_style_button button;
+ struct nk_style_button contextual_button;
+ struct nk_style_button menu_button;
+ struct nk_style_toggle option;
+ struct nk_style_toggle checkbox;
+ struct nk_style_selectable selectable;
+ struct nk_style_slider slider;
+ struct nk_style_progress progress;
+ struct nk_style_property property;
+ struct nk_style_edit edit;
+ struct nk_style_chart chart;
+ struct nk_style_scrollbar scrollh;
+ struct nk_style_scrollbar scrollv;
+ struct nk_style_tab tab;
+ struct nk_style_combo combo;
+ struct nk_style_window window;
+};
+
+NK_API struct nk_style_item nk_style_item_image(struct nk_image img);
+NK_API struct nk_style_item nk_style_item_color(struct nk_color);
+NK_API struct nk_style_item nk_style_item_hide(void);
+
+/*==============================================================
+ * PANEL
+ * =============================================================*/
+#ifndef NK_CHART_MAX_SLOT
+#define NK_CHART_MAX_SLOT 4
+#endif
+
+struct nk_chart_slot {
+ enum nk_chart_type type;
+ struct nk_color color;
+ struct nk_color highlight;
+ float min, max, range;
+ int count;
+ struct nk_vec2 last;
+ int index;
+};
+
+struct nk_chart {
+ struct nk_chart_slot slots[NK_CHART_MAX_SLOT];
+ int slot;
+ float x, y, w, h;
+};
+
+struct nk_row_layout {
+ int type;
+ int index;
+ float height;
+ int columns;
+ const float *ratio;
+ float item_width, item_height;
+ float item_offset;
+ float filled;
+ struct nk_rect item;
+ int tree_depth;
+};
+
+struct nk_popup_buffer {
+ nk_size begin;
+ nk_size parent;
+ nk_size last;
+ nk_size end;
+ int active;
+};
+
+struct nk_menu_state {
+ float x, y, w, h;
+ struct nk_scroll offset;
+};
+
+struct nk_panel {
+ nk_flags flags;
+ struct nk_rect bounds;
+ struct nk_scroll *offset;
+ float at_x, at_y, max_x;
+ float width, height;
+ float footer_h;
+ float header_h;
+ float border;
+ struct nk_rect clip;
+ struct nk_menu_state menu;
+ struct nk_row_layout row;
+ struct nk_chart chart;
+ struct nk_popup_buffer popup_buffer;
+ struct nk_command_buffer *buffer;
+ struct nk_panel *parent;
+};
+
+/*==============================================================
+ * WINDOW
+ * =============================================================*/
+struct nk_table;
+
+enum nk_window_flags {
+ NK_WINDOW_PRIVATE = NK_FLAG(9),
+ /* dummy flag which mark the beginning of the private window flag part */
+ NK_WINDOW_ROM = NK_FLAG(10),
+ /* sets the window into a read only mode and does not allow input changes */
+ NK_WINDOW_HIDDEN = NK_FLAG(11),
+ /* Hides the window and stops any window interaction and drawing can be set
+ * by user input or by closing the window */
+ NK_WINDOW_MINIMIZED = NK_FLAG(12),
+ /* marks the window as minimized */
+ NK_WINDOW_SUB = NK_FLAG(13),
+ /* Marks the window as subwindow of another window*/
+ NK_WINDOW_GROUP = NK_FLAG(14),
+ /* Marks the window as window widget group */
+ NK_WINDOW_POPUP = NK_FLAG(15),
+ /* Marks the window as a popup window */
+ NK_WINDOW_NONBLOCK = NK_FLAG(16),
+ /* Marks the window as a nonblock popup window */
+ NK_WINDOW_CONTEXTUAL = NK_FLAG(17),
+ /* Marks the window as a combo box or menu */
+ NK_WINDOW_COMBO = NK_FLAG(18),
+ /* Marks the window as a combo box */
+ NK_WINDOW_MENU = NK_FLAG(19),
+ /* Marks the window as a menu */
+ NK_WINDOW_TOOLTIP = NK_FLAG(20),
+ /* Marks the window as a menu */
+ NK_WINDOW_REMOVE_ROM = NK_FLAG(21)
+ /* Removes the read only mode at the end of the window */
+};
+
+struct nk_popup_state {
+ struct nk_window *win;
+ enum nk_window_flags type;
+ nk_hash name;
+ int active;
+ unsigned combo_count;
+ unsigned con_count, con_old;
+ unsigned active_con;
+};
+
+struct nk_edit_state {
+ nk_hash name;
+ unsigned int seq;
+ unsigned int old;
+ int active, prev;
+ int cursor;
+ int sel_start;
+ int sel_end;
+ struct nk_scroll scrollbar;
+ unsigned char mode;
+ unsigned char single_line;
+};
+
+struct nk_property_state {
+ int active, prev;
+ char buffer[NK_MAX_NUMBER_BUFFER];
+ int length;
+ int cursor;
+ nk_hash name;
+ unsigned int seq;
+ unsigned int old;
+ int state;
+};
+
+struct nk_scaling_state {
+ struct nk_vec2 start_size;
+ int active;
+};
+
+struct nk_window {
+ unsigned int seq;
+ nk_hash name;
+ nk_flags flags;
+ struct nk_rect bounds;
+ struct nk_scroll scrollbar;
+ struct nk_command_buffer buffer;
+ struct nk_panel *layout;
+
+ /* persistent widget state */
+ struct nk_property_state property;
+ struct nk_popup_state popup;
+ struct nk_edit_state edit;
+ struct nk_scaling_state scaling;
+
+ struct nk_table *tables;
+ unsigned short table_count;
+ unsigned short table_size;
+
+ /* window list hooks */
+ struct nk_window *next;
+ struct nk_window *prev;
+ struct nk_window *parent;
+};
+
+/*==============================================================
+ * CONTEXT
+ * =============================================================*/
+struct nk_page_element;
+struct nk_context {
+/* public: can be accessed freely */
+ struct nk_input input;
+ struct nk_style style;
+ struct nk_buffer memory;
+ struct nk_clipboard clip;
+ nk_flags last_widget_state;
+
+/* private:
+ should only be accessed if you
+ know what you are doing */
+#ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+ struct nk_draw_list draw_list;
+#endif
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+ nk_handle userdata;
+#endif
+
+ /* text editor objects are quite big because they have a internal
+ * undo/redo stack. It therefore does not make sense to have one for
+ * each window for temporary use cases, so I only provide *one* instance
+ * for all windows. This works because the content is cleared anyway */
+ struct nk_text_edit text_edit;
+
+ /* windows */
+ int build;
+ void *pool;
+ struct nk_window *begin;
+ struct nk_window *end;
+ struct nk_window *active;
+ struct nk_window *current;
+ struct nk_page_element *freelist;
+ unsigned int count;
+ unsigned int seq;
+};
+
+#ifdef __cplusplus
+}
+#endif
+#endif /* NK_H_ */
+
+/*
+ * ==============================================================
+ *
+ * IMPLEMENTATION
+ *
+ * ===============================================================
+ */
+#ifdef NK_IMPLEMENTATION
+
+#ifndef NK_POOL_DEFAULT_CAPACITY
+#define NK_POOL_DEFAULT_CAPACITY 16
+#endif
+
+#ifndef NK_DEFAULT_COMMAND_BUFFER_SIZE
+#define NK_DEFAULT_COMMAND_BUFFER_SIZE (4*1024)
+#endif
+
+#ifndef NK_BUFFER_DEFAULT_INITIAL_SIZE
+#define NK_BUFFER_DEFAULT_INITIAL_SIZE (4*1024)
+#endif
+
+#ifdef NK_INCLUDE_DEFAULT_ALLOCATOR
+#include <stdlib.h> /* malloc, free */
+#endif
+#ifdef NK_INCLUDE_STANDARD_IO
+#include <stdio.h> /* fopen, fclose,... */
+#include <stdarg.h>
+#endif
+
+#ifndef NK_ASSERT
+#include <assert.h>
+#define NK_ASSERT(expr) assert(expr)
+#endif
+
+#ifndef NK_MEMSET
+#define NK_MEMSET nk_memset
+#endif
+#ifndef NK_MEMCPY
+#define NK_MEMCPY nk_memcopy
+#endif
+#ifndef NK_SQRT
+#define NK_SQRT nk_sqrt
+#endif
+#ifndef NK_SIN
+#define NK_SIN nk_sin
+#endif
+#ifndef NK_COS
+#define NK_COS nk_cos
+#endif
+
+/* ==============================================================
+ * MATH
+ * =============================================================== */
+#define NK_MIN(a,b) ((a) < (b) ? (a) : (b))
+#define NK_MAX(a,b) ((a) < (b) ? (b) : (a))
+#define NK_CLAMP(i,v,x) (NK_MAX(NK_MIN(v,x), i))
+
+#define NK_PI 3.141592654f
+#define NK_UTF_INVALID 0xFFFD
+#define NK_MAX_FLOAT_PRECISION 2
+
+#define NK_UNUSED(x) ((void)(x))
+#define NK_SATURATE(x) (NK_MAX(0, NK_MIN(1.0f, x)))
+#define NK_LEN(a) (sizeof(a)/sizeof(a)[0])
+#define NK_ABS(a) (((a) < 0) ? -(a) : (a))
+#define NK_BETWEEN(x, a, b) ((a) <= (x) && (x) <= (b))
+#define NK_INBOX(px, py, x, y, w, h)\
+ (NK_BETWEEN(px,x,x+w) && NK_BETWEEN(py,y,y+h))
+#define NK_INTERSECT(x0, y0, w0, h0, x1, y1, w1, h1) \
+ (!(((x1 > (x0 + w0)) || ((x1 + w1) < x0) || (y1 > (y0 + h0)) || (y1 + h1) < y0)))
+#define NK_CONTAINS(x, y, w, h, bx, by, bw, bh)\
+ (NK_INBOX(x,y, bx, by, bw, bh) && NK_INBOX(x+w,y+h, bx, by, bw, bh))
+
+#define nk_vec2_sub(a, b) nk_vec2((a).x - (b).x, (a).y - (b).y)
+#define nk_vec2_add(a, b) nk_vec2((a).x + (b).x, (a).y + (b).y)
+#define nk_vec2_len_sqr(a) ((a).x*(a).x+(a).y*(a).y)
+#define nk_vec2_muls(a, t) nk_vec2((a).x * (t), (a).y * (t))
+
+#define nk_ptr_add(t, p, i) ((t*)((void*)((nk_byte*)(p) + (i))))
+#define nk_ptr_add_const(t, p, i) ((const t*)((const void*)((const nk_byte*)(p) + (i))))
+#define nk_zero_struct(s) nk_zero(&s, sizeof(s))
+
+/* ==============================================================
+ * ALIGNMENT
+ * =============================================================== */
+/* Pointer to Integer type conversion for pointer alignment */
+#if defined(__PTRDIFF_TYPE__) /* This case should work for GCC*/
+# define NK_UINT_TO_PTR(x) ((void*)(__PTRDIFF_TYPE__)(x))
+# define NK_PTR_TO_UINT(x) ((nk_size)(__PTRDIFF_TYPE__)(x))
+#elif !defined(__GNUC__) /* works for compilers other than LLVM */
+# define NK_UINT_TO_PTR(x) ((void*)&((char*)0)[x])
+# define NK_PTR_TO_UINT(x) ((nk_size)(((char*)x)-(char*)0))
+#elif defined(NK_USE_FIXED_TYPES) /* used if we have <stdint.h> */
+# define NK_UINT_TO_PTR(x) ((void*)(uintptr_t)(x))
+# define NK_PTR_TO_UINT(x) ((uintptr_t)(x))
+#else /* generates warning but works */
+# define NK_UINT_TO_PTR(x) ((void*)(x))
+# define NK_PTR_TO_UINT(x) ((nk_size)(x))
+#endif
+
+#define NK_ALIGN_PTR(x, mask)\
+ (NK_UINT_TO_PTR((NK_PTR_TO_UINT((nk_byte*)(x) + (mask-1)) & ~(mask-1))))
+#define NK_ALIGN_PTR_BACK(x, mask)\
+ (NK_UINT_TO_PTR((NK_PTR_TO_UINT((nk_byte*)(x)) & ~(mask-1))))
+
+#define NK_OFFSETOF(st,m) ((nk_ptr)&(((st*)0)->m))
+#define NK_CONTAINER_OF(ptr,type,member)\
+ (type*)((void*)((char*)(1 ? (ptr): &((type*)0)->member) - NK_OFFSETOF(type, member)))
+
+#ifdef __cplusplus
+template<typename T> struct nk_alignof;
+template<typename T, int size_diff> struct nk_helper{enum {value = size_diff};};
+template<typename T> struct nk_helper<T,0>{enum {value = nk_alignof<T>::value};};
+template<typename T> struct nk_alignof{struct Big {T x; char c;}; enum {
+ diff = sizeof(Big) - sizeof(T), value = nk_helper<Big, diff>::value};};
+#define NK_ALIGNOF(t) (nk_alignof<t>::value);
+#else
+#define NK_ALIGNOF(t) ((char*)(&((struct {char c; t _h;}*)0)->_h) - (char*)0)
+#endif
+
+/* make sure correct type size */
+typedef int nk__check_size[(sizeof(nk_size) >= sizeof(void*)) ? 1 : -1];
+typedef int nk__check_ptr[(sizeof(nk_ptr) == sizeof(void*)) ? 1 : -1];
+typedef int nk__check_flags[(sizeof(nk_flags) >= 4) ? 1 : -1];
+typedef int nk__check_rune[(sizeof(nk_rune) >= 4) ? 1 : -1];
+typedef int nk__check_ushort[(sizeof(nk_ushort) == 2) ? 1 : -1];
+typedef int nk__check_short[(sizeof(nk_short) == 2) ? 1 : -1];
+typedef int nk__check_uint[(sizeof(nk_uint) == 4) ? 1 : -1];
+typedef int nk__check_int[(sizeof(nk_int) == 4) ? 1 : -1];
+typedef int nk__check_byte[(sizeof(nk_byte) == 1) ? 1 : -1];
+
+NK_GLOBAL const struct nk_rect nk_null_rect = {-8192.0f, -8192.0f, 16384, 16384};
+NK_GLOBAL const float NK_FLOAT_PRECISION = 0.00000000000001f;
+/*
+ * ==============================================================
+ *
+ * MATH
+ *
+ * ===============================================================
+ */
+/* Since nuklear is supposed to work on all systems providing floating point
+ math without any dependencies I also had to implement my own math functions
+ for sqrt, sin and cos. Since the actual highly accurate implementations for
+ the standard library functions are quite complex and I do not need high
+ precision for my use cases I use approximations.
+
+ Sqrt
+ ----
+ For square root nuklear uses the famous fast inverse square root:
+ https://en.wikipedia.org/wiki/Fast_inverse_square_root with
+ slightly tweaked magic constant. While on todays hardware it is
+ probably not faster it is still fast and accurate enough for
+ nuklear's use cases. IMPORTANT: this requires float format IEEE 754
+
+ Sine/Cosine
+ -----------
+ All constants inside both function are generated Remez's minimax
+ approximations for value range 0...2*PI. The reason why I decided to
+ approximate exactly that range is that nuklear only needs sine and
+ cosine to generate circles which only requires that exact range.
+ In addition I used Remez instead of Taylor for additional precision:
+ www.lolengine.net/blog/2011/12/21/better-function-approximatations.
+
+ The tool I used to generate constants for both sine and cosine
+ (it can actually approximate a lot more functions) can be
+ found here: www.lolengine.net/wiki/oss/lolremez
+*/
+NK_INTERN float
+nk_inv_sqrt(float number)
+{
+ float x2;
+ const float threehalfs = 1.5f;
+ union {nk_uint i; float f;} conv = {0};
+ conv.f = number;
+ x2 = number * 0.5f;
+ conv.i = 0x5f375A84 - (conv.i >> 1);
+ conv.f = conv.f * (threehalfs - (x2 * conv.f * conv.f));
+ return conv.f;
+}
+
+NK_INTERN float
+nk_sqrt(float x)
+{
+ return x * nk_inv_sqrt(x);
+}
+
+NK_INTERN float
+nk_sin(float x)
+{
+ NK_STORAGE const float a0 = +1.91059300966915117e-31f;
+ NK_STORAGE const float a1 = +1.00086760103908896f;
+ NK_STORAGE const float a2 = -1.21276126894734565e-2f;
+ NK_STORAGE const float a3 = -1.38078780785773762e-1f;
+ NK_STORAGE const float a4 = -2.67353392911981221e-2f;
+ NK_STORAGE const float a5 = +2.08026600266304389e-2f;
+ NK_STORAGE const float a6 = -3.03996055049204407e-3f;
+ NK_STORAGE const float a7 = +1.38235642404333740e-4f;
+ return a0 + x*(a1 + x*(a2 + x*(a3 + x*(a4 + x*(a5 + x*(a6 + x*a7))))));
+}
+
+NK_INTERN float
+nk_cos(float x)
+{
+ NK_STORAGE const float a0 = +1.00238601909309722f;
+ NK_STORAGE const float a1 = -3.81919947353040024e-2f;
+ NK_STORAGE const float a2 = -3.94382342128062756e-1f;
+ NK_STORAGE const float a3 = -1.18134036025221444e-1f;
+ NK_STORAGE const float a4 = +1.07123798512170878e-1f;
+ NK_STORAGE const float a5 = -1.86637164165180873e-2f;
+ NK_STORAGE const float a6 = +9.90140908664079833e-4f;
+ NK_STORAGE const float a7 = -5.23022132118824778e-14f;
+ return a0 + x*(a1 + x*(a2 + x*(a3 + x*(a4 + x*(a5 + x*(a6 + x*a7))))));
+}
+
+NK_INTERN nk_uint
+nk_round_up_pow2(nk_uint v)
+{
+ v--;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ v++;
+ return v;
+}
+
+NK_API struct nk_rect
+nk_get_null_rect(void)
+{
+ return nk_null_rect;
+}
+
+NK_API struct nk_rect
+nk_rect(float x, float y, float w, float h)
+{
+ struct nk_rect r;
+ r.x = x, r.y = y;
+ r.w = w, r.h = h;
+ return r;
+}
+
+NK_API struct nk_rect
+nk_recti(int x, int y, int w, int h)
+{
+ struct nk_rect r;
+ r.x = (float)x;
+ r.y = (float)y;
+ r.w = (float)w;
+ r.h = (float)h;
+ return r;
+}
+
+NK_API struct nk_rect
+nk_recta(struct nk_vec2 pos, struct nk_vec2 size)
+{
+ return nk_rect(pos.x, pos.y, size.x, size.y);
+}
+
+NK_API struct nk_rect
+nk_rectv(const float *r)
+{
+ return nk_rect(r[0], r[1], r[2], r[3]);
+}
+
+NK_API struct nk_rect
+nk_rectiv(const int *r)
+{
+ return nk_recti(r[0], r[1], r[2], r[3]);
+}
+
+NK_API struct nk_vec2
+nk_rect_pos(struct nk_rect r)
+{
+ struct nk_vec2 ret;
+ ret.x = r.x; ret.y = r.y;
+ return ret;
+}
+
+NK_API struct nk_vec2
+nk_rect_size(struct nk_rect r)
+{
+ struct nk_vec2 ret;
+ ret.x = r.w; ret.y = r.h;
+ return ret;
+}
+
+NK_INTERN struct nk_rect
+nk_shrink_rect(struct nk_rect r, float amount)
+{
+ struct nk_rect res;
+ r.w = NK_MAX(r.w, 2 * amount);
+ r.h = NK_MAX(r.h, 2 * amount);
+ res.x = r.x + amount;
+ res.y = r.y + amount;
+ res.w = r.w - 2 * amount;
+ res.h = r.h - 2 * amount;
+ return res;
+}
+
+NK_INTERN struct nk_rect
+nk_pad_rect(struct nk_rect r, struct nk_vec2 pad)
+{
+ r.w = NK_MAX(r.w, 2 * pad.x);
+ r.h = NK_MAX(r.h, 2 * pad.y);
+ r.x += pad.x; r.y += pad.y;
+ r.w -= 2 * pad.x;
+ r.h -= 2 * pad.y;
+ return r;
+}
+
+NK_API struct nk_vec2
+nk_vec2(float x, float y)
+{
+ struct nk_vec2 ret;
+ ret.x = x; ret.y = y;
+ return ret;
+}
+
+NK_API struct nk_vec2
+nk_vec2i(int x, int y)
+{
+ struct nk_vec2 ret;
+ ret.x = (float)x;
+ ret.y = (float)y;
+ return ret;
+}
+
+NK_API struct nk_vec2
+nk_vec2v(const float *v)
+{
+ return nk_vec2(v[0], v[1]);
+}
+
+NK_API struct nk_vec2
+nk_vec2iv(const int *v)
+{
+ return nk_vec2i(v[0], v[1]);
+}
+
+/*
+ * ==============================================================
+ *
+ * UTIL
+ *
+ * ===============================================================
+ */
+NK_INTERN int nk_str_match_here(const char *regexp, const char *text);
+NK_INTERN int nk_str_match_star(int c, const char *regexp, const char *text);
+NK_INTERN int nk_is_lower(int c) {return (c >= 'a' && c <= 'z') || (c >= 0xE0 && c <= 0xFF);}
+NK_INTERN int nk_is_upper(int c){return (c >= 'A' && c <= 'Z') || (c >= 0xC0 && c <= 0xDF);}
+NK_INTERN int nk_to_upper(int c) {return (c >= 'a' && c <= 'z') ? (c - ('a' - 'A')) : c;}
+NK_INTERN int nk_to_lower(int c) {return (c >= 'A' && c <= 'Z') ? (c - ('a' + 'A')) : c;}
+
+NK_INTERN void*
+nk_memcopy(void *dst0, const void *src0, nk_size length)
+{
+ nk_ptr t;
+ char *dst = (char*)dst0;
+ const char *src = (const char*)src0;
+ if (length == 0 || dst == src)
+ goto done;
+
+ #define nk_word int
+ #define nk_wsize sizeof(nk_word)
+ #define nk_wmask (nk_wsize-1)
+ #define NK_TLOOP(s) if (t) NK_TLOOP1(s)
+ #define NK_TLOOP1(s) do { s; } while (--t)
+
+ if (dst < src) {
+ t = (nk_ptr)src; /* only need low bits */
+ if ((t | (nk_ptr)dst) & nk_wmask) {
+ if ((t ^ (nk_ptr)dst) & nk_wmask || length < nk_wsize)
+ t = length;
+ else
+ t = nk_wsize - (t & nk_wmask);
+ length -= t;
+ NK_TLOOP1(*dst++ = *src++);
+ }
+ t = length / nk_wsize;
+ NK_TLOOP(*(nk_word*)(void*)dst = *(const nk_word*)(const void*)src;
+ src += nk_wsize; dst += nk_wsize);
+ t = length & nk_wmask;
+ NK_TLOOP(*dst++ = *src++);
+ } else {
+ src += length;
+ dst += length;
+ t = (nk_ptr)src;
+ if ((t | (nk_ptr)dst) & nk_wmask) {
+ if ((t ^ (nk_ptr)dst) & nk_wmask || length <= nk_wsize)
+ t = length;
+ else
+ t &= nk_wmask;
+ length -= t;
+ NK_TLOOP1(*--dst = *--src);
+ }
+ t = length / nk_wsize;
+ NK_TLOOP(src -= nk_wsize; dst -= nk_wsize;
+ *(nk_word*)(void*)dst = *(const nk_word*)(const void*)src);
+ t = length & nk_wmask;
+ NK_TLOOP(*--dst = *--src);
+ }
+ #undef nk_word
+ #undef nk_wsize
+ #undef nk_wmask
+ #undef NK_TLOOP
+ #undef NK_TLOOP1
+done:
+ return (dst0);
+}
+
+NK_INTERN void
+nk_memset(void *ptr, int c0, nk_size size)
+{
+ #define nk_word unsigned
+ #define nk_wsize sizeof(nk_word)
+ #define nk_wmask (nk_wsize - 1)
+ nk_byte *dst = (nk_byte*)ptr;
+ unsigned c = 0;
+ nk_size t = 0;
+
+ if ((c = (nk_byte)c0) != 0) {
+ c = (c << 8) | c; /* at least 16-bits */
+ if (sizeof(unsigned int) > 2)
+ c = (c << 16) | c; /* at least 32-bits*/
+ }
+
+ /* too small of a word count */
+ dst = (nk_byte*)ptr;
+ if (size < 3 * nk_wsize) {
+ while (size--) *dst++ = (nk_byte)c0;
+ return;
+ }
+
+ /* align destination */
+ if ((t = NK_PTR_TO_UINT(dst) & nk_wmask) != 0) {
+ t = nk_wsize -t;
+ size -= t;
+ do {
+ *dst++ = (nk_byte)c0;
+ } while (--t != 0);
+ }
+
+ /* fill word */
+ t = size / nk_wsize;
+ do {
+ *(nk_word*)((void*)dst) = c;
+ dst += nk_wsize;
+ } while (--t != 0);
+
+ /* fill trailing bytes */
+ t = (size & nk_wmask);
+ if (t != 0) {
+ do {
+ *dst++ = (nk_byte)c0;
+ } while (--t != 0);
+ }
+
+ #undef nk_word
+ #undef nk_wsize
+ #undef nk_wmask
+}
+
+NK_INTERN void
+nk_zero(void *ptr, nk_size size)
+{
+ NK_ASSERT(ptr);
+ NK_MEMSET(ptr, 0, size);
+}
+
+NK_API int
+nk_strlen(const char *str)
+{
+ int siz = 0;
+ NK_ASSERT(str);
+ while (str && *str++ != '\0') siz++;
+ return siz;
+}
+
+NK_API int
+nk_strtof(float *number, const char *buffer)
+{
+ float m;
+ float neg = 1.0f;
+ const char *p = buffer;
+ float floatvalue = 0;
+
+ NK_ASSERT(number);
+ NK_ASSERT(buffer);
+ if (!number || !buffer) return 0;
+ *number = 0;
+
+ /* skip whitespace */
+ while (*p && *p == ' ') p++;
+ if (*p == '-') {
+ neg = -1.0f;
+ p++;
+ }
+
+ while( *p && *p != '.' && *p != 'e' ) {
+ floatvalue = floatvalue * 10.0f + (float) (*p - '0');
+ p++;
+ }
+
+ if ( *p == '.' ) {
+ p++;
+ for(m = 0.1f; *p && *p != 'e'; p++ ) {
+ floatvalue = floatvalue + (float) (*p - '0') * m;
+ m *= 0.1f;
+ }
+ }
+ if ( *p == 'e' ) {
+ int i, pow, div;
+ p++;
+ if ( *p == '-' ) {
+ div = nk_true;
+ p++;
+ } else if ( *p == '+' ) {
+ div = nk_false;
+ p++;
+ } else div = nk_false;
+
+ for ( pow = 0; *p; p++ )
+ pow = pow * 10 + (int) (*p - '0');
+
+ for ( m = 1.0, i = 0; i < pow; i++ )
+ m *= 10.0f;
+
+ if ( div )
+ floatvalue /= m;
+ else floatvalue *= m;
+ }
+ *number = floatvalue * neg;
+ return 1;
+}
+
+NK_API int
+nk_stricmp(const char *s1, const char *s2)
+{
+ nk_int c1,c2,d;
+ do {
+ c1 = *s1++;
+ c2 = *s2++;
+ d = c1 - c2;
+ while (d) {
+ if (c1 <= 'Z' && c1 >= 'A') {
+ d += ('a' - 'A');
+ if (!d) break;
+ }
+ if (c2 <= 'Z' && c2 >= 'A') {
+ d -= ('a' - 'A');
+ if (!d) break;
+ }
+ return ((d >= 0) << 1) - 1;
+ }
+ } while (c1);
+ return 0;
+}
+
+NK_API int
+nk_stricmpn(const char *s1, const char *s2, int n)
+{
+ int c1,c2,d;
+ NK_ASSERT(n >= 0);
+ do {
+ c1 = *s1++;
+ c2 = *s2++;
+ if (!n--) return 0;
+
+ d = c1 - c2;
+ while (d) {
+ if (c1 <= 'Z' && c1 >= 'A') {
+ d += ('a' - 'A');
+ if (!d) break;
+ }
+ if (c2 <= 'Z' && c2 >= 'A') {
+ d -= ('a' - 'A');
+ if (!d) break;
+ }
+ return ((d >= 0) << 1) - 1;
+ }
+ } while (c1);
+ return 0;
+}
+
+NK_INTERN int
+nk_str_match_here(const char *regexp, const char *text)
+{
+ if (regexp[0] == '\0')
+ return 1;
+ if (regexp[1] == '*')
+ return nk_str_match_star(regexp[0], regexp+2, text);
+ if (regexp[0] == '$' && regexp[1] == '\0')
+ return *text == '\0';
+ if (*text!='\0' && (regexp[0]=='.' || regexp[0]==*text))
+ return nk_str_match_here(regexp+1, text+1);
+ return 0;
+}
+
+NK_INTERN int
+nk_str_match_star(int c, const char *regexp, const char *text)
+{
+ do {/* a '* matches zero or more instances */
+ if (nk_str_match_here(regexp, text))
+ return 1;
+ } while (*text != '\0' && (*text++ == c || c == '.'));
+ return 0;
+}
+
+NK_API int
+nk_strfilter(const char *text, const char *regexp)
+{
+ /*
+ c matches any literal character c
+ . matches any single character
+ ^ matches the beginning of the input string
+ $ matches the end of the input string
+ * matches zero or more occurrences of the previous character*/
+ if (regexp[0] == '^')
+ return nk_str_match_here(regexp+1, text);
+ do { /* must look even if string is empty */
+ if (nk_str_match_here(regexp, text))
+ return 1;
+ } while (*text++ != '\0');
+ return 0;
+}
+
+NK_API int
+nk_strmatch_fuzzy_text(const char *str, int str_len,
+ const char *pattern, int *out_score)
+{
+ /* Returns true if each character in pattern is found sequentially within str
+ * if found then outScore is also set. Score value has no intrinsic meaning.
+ * Range varies with pattern. Can only compare scores with same search pattern. */
+
+ /* ------- scores --------- */
+ /* bonus for adjacent matches */
+ #define NK_ADJACENCY_BONUS 5
+ /* bonus if match occurs after a separator */
+ #define NK_SEPARATOR_BONUS 10
+ /* bonus if match is uppercase and prev is lower */
+ #define NK_CAMEL_BONUS 10
+ /* penalty applied for every letter in str before the first match */
+ #define NK_LEADING_LETTER_PENALTY (-3)
+ /* maximum penalty for leading letters */
+ #define NK_MAX_LEADING_LETTER_PENALTY (-9)
+ /* penalty for every letter that doesn't matter */
+ #define NK_UNMATCHED_LETTER_PENALTY (-1)
+
+
+ /* loop variables */
+ int score = 0;
+ char const * pattern_iter = pattern;
+ int str_iter = 0;
+ int prev_matched = nk_false;
+ int prev_lower = nk_false;
+ /* true so if first letter match gets separator bonus*/
+ int prev_separator = nk_true;
+
+ /* use "best" matched letter if multiple string letters match the pattern */
+ char const * best_letter = 0;
+ int best_letter_score = 0;
+
+ /* loop over strings */
+ NK_ASSERT(str);
+ NK_ASSERT(pattern);
+ if (!str || !str_len || !pattern) return 0;
+ while (str_iter < str_len)
+ {
+ const char pattern_letter = *pattern_iter;
+ const char str_letter = str[str_iter];
+
+ int next_match = *pattern_iter != '\0' &&
+ nk_to_lower(pattern_letter) == nk_to_lower(str_letter);
+ int rematch = best_letter && nk_to_lower(*best_letter) == nk_to_lower(str_letter);
+
+ int advanced = next_match && best_letter;
+ int pattern_repeat = best_letter && *pattern_iter != '\0';
+ pattern_repeat = pattern_repeat &&
+ nk_to_lower(*best_letter) == nk_to_lower(pattern_letter);
+
+ if (advanced || pattern_repeat) {
+ score += best_letter_score;
+ best_letter = 0;
+ best_letter_score = 0;
+ }
+
+ if (next_match || rematch)
+ {
+ int new_score = 0;
+ /* Apply penalty for each letter before the first pattern match */
+ if (pattern_iter == pattern)
+ {
+ int count = (int)(&str[str_iter] - str);
+ int penalty = NK_LEADING_LETTER_PENALTY * count;
+ if (penalty < NK_MAX_LEADING_LETTER_PENALTY)
+ penalty = NK_MAX_LEADING_LETTER_PENALTY;
+
+ score += penalty;
+ }
+
+ /* apply bonus for consecutive bonuses */
+ if (prev_matched)
+ new_score += NK_ADJACENCY_BONUS;
+
+ /* apply bonus for matches after a separator */
+ if (prev_separator)
+ new_score += NK_SEPARATOR_BONUS;
+
+ /* apply bonus across camel case boundaries */
+ if (prev_lower && nk_is_upper(str_letter))
+ new_score += NK_CAMEL_BONUS;
+
+ /* update pattern iter IFF the next pattern letter was matched */
+ if (next_match)
+ ++pattern_iter;
+
+ /* update best letter in str which may be for a "next" letter or a rematch */
+ if (new_score >= best_letter_score)
+ {
+ /* apply penalty for now skipped letter */
+ if (best_letter != 0)
+ score += NK_UNMATCHED_LETTER_PENALTY;
+
+ best_letter = &str[str_iter];
+ best_letter_score = new_score;
+ }
+
+ prev_matched = nk_true;
+ }
+ else
+ {
+ score += NK_UNMATCHED_LETTER_PENALTY;
+ prev_matched = nk_false;
+ }
+
+ /* separators should be more easily defined */
+ prev_lower = nk_is_lower(str_letter) != 0;
+ prev_separator = str_letter == '_' || str_letter == ' ';
+
+ ++str_iter;
+ }
+
+ /* apply score for last match */
+ if (best_letter)
+ score += best_letter_score;
+
+ /* did not match full pattern */
+ if (*pattern_iter != '\0')
+ return nk_false;
+
+ if (out_score)
+ *out_score = score;
+ return nk_true;
+}
+
+NK_API int
+nk_strmatch_fuzzy_string(char const *str, char const *pattern, int *out_score)
+{return nk_strmatch_fuzzy_text(str, nk_strlen(str), pattern, out_score);}
+
+#ifdef NK_INCLUDE_STANDARD_IO
+NK_API int
+nk_strfmt(char *buf, int buf_size, const char *fmt,...)
+{
+ int w;
+ va_list args;
+ va_start(args, fmt);
+ w = vsnprintf(buf, (nk_size)buf_size, fmt, args);
+ va_end(args);
+ buf[buf_size-1] = 0;
+ return (w == -1) ?(int)buf_size:w;
+}
+
+NK_INTERN int
+nk_strfmtv(char *buf, int buf_size, const char *fmt, va_list args)
+{
+ int w = vsnprintf(buf, (nk_size)buf_size, fmt, args);
+ buf[buf_size-1] = 0;
+ return (w == -1) ? (int)buf_size:w;
+}
+#endif
+
+NK_INTERN int
+nk_string_float_limit(char *string, int prec)
+{
+ int dot = 0;
+ char *c = string;
+ while (*c) {
+ if (*c == '.') {
+ dot = 1;
+ c++;
+ continue;
+ }
+ if (dot == (prec+1)) {
+ *c = 0;
+ break;
+ }
+ if (dot > 0) dot++;
+ c++;
+ }
+ return (int)(c - string);
+}
+
+NK_INTERN float
+nk_pow(float x, int n)
+{
+ /* check the sign of n */
+ float r = 1;
+ int plus = n >= 0;
+ n = (plus) ? n : -n;
+ while (n > 0) {
+ if ((n & 1) == 1)
+ r *= x;
+ n /= 2;
+ x *= x;
+ }
+ return plus ? r : 1.0f / r;
+}
+
+NK_INTERN int
+nk_ifloor(float x)
+{
+ x = (float)((int)x - ((x < 0.0) ? 1 : 0));
+ return (int)x;
+}
+
+NK_INTERN int
+nk_iceil(float x)
+{
+ if (x >= 0) {
+ int i = (int)x;
+ return i;
+ } else {
+ int t = (int)x;
+ float r = x - (float)t;
+ return (r > 0.0f) ? t+1: t;
+ }
+}
+
+NK_INTERN int
+nk_log10(float n)
+{
+ int neg;
+ int ret;
+ int exp = 0;
+
+ neg = (n < 0) ? 1 : 0;
+ ret = (neg) ? (int)-n : (int)n;
+ while ((ret / 10) > 0) {
+ ret /= 10;
+ exp++;
+ }
+ if (neg) exp = -exp;
+ return exp;
+}
+
+NK_INTERN int
+nk_ftos(char *s, float n)
+{
+ int useExp = 0;
+ int digit = 0, m = 0, m1 = 0;
+ char *c = s;
+ int neg = 0;
+
+ if (n == 0.0f) {
+ s[0] = '0'; s[1] = '\0';
+ return 1;
+ }
+
+ neg = (n < 0);
+ if (neg) n = -n;
+
+ /* calculate magnitude */
+ m = nk_log10(n);
+ useExp = (m >= 14 || (neg && m >= 9) || m <= -9);
+ if (neg) *(c++) = '-';
+
+ /* set up for scientific notation */
+ if (useExp) {
+ if (m < 0)
+ m -= 1;
+ n = n / nk_pow(10.0, m);
+ m1 = m;
+ m = 0;
+ }
+ if (m < 1.0) {
+ m = 0;
+ }
+
+ /* convert the number */
+ while (n > NK_FLOAT_PRECISION || m >= 0) {
+ float weight = nk_pow(10.0, m);
+ if (weight > 0) {
+ float t = (float)n / weight;
+ digit = nk_ifloor(t);
+ n -= ((float)digit * weight);
+ *(c++) = (char)('0' + (char)digit);
+ }
+ if (m == 0 && n > 0)
+ *(c++) = '.';
+ m--;
+ }
+
+ if (useExp) {
+ /* convert the exponent */
+ int i, j;
+ *(c++) = 'e';
+ if (m1 > 0) {
+ *(c++) = '+';
+ } else {
+ *(c++) = '-';
+ m1 = -m1;
+ }
+ m = 0;
+ while (m1 > 0) {
+ *(c++) = (char)('0' + (char)(m1 % 10));
+ m1 /= 10;
+ m++;
+ }
+ c -= m;
+ for (i = 0, j = m-1; i<j; i++, j--) {
+ /* swap without temporary */
+ c[i] ^= c[j];
+ c[j] ^= c[i];
+ c[i] ^= c[j];
+ }
+ c += m;
+ }
+ *(c) = '\0';
+ return (int)(c - s);
+}
+
+NK_API nk_hash
+nk_murmur_hash(const void * key, int len, nk_hash seed)
+{
+ /* 32-Bit MurmurHash3: https://code.google.com/p/smhasher/wiki/MurmurHash3*/
+ #define NK_ROTL(x,r) ((x) << (r) | ((x) >> (32 - r)))
+ union {const nk_uint *i; const nk_byte *b;} conv = {0};
+ const nk_byte *data = (const nk_byte*)key;
+ const int nblocks = len/4;
+ nk_uint h1 = seed;
+ const nk_uint c1 = 0xcc9e2d51;
+ const nk_uint c2 = 0x1b873593;
+ const nk_byte *tail;
+ const nk_uint *blocks;
+ nk_uint k1;
+ int i;
+
+ /* body */
+ if (!key) return 0;
+ conv.b = (data + nblocks*4);
+ blocks = (const nk_uint*)conv.i;
+ for (i = -nblocks; i; ++i) {
+ k1 = blocks[i];
+ k1 *= c1;
+ k1 = NK_ROTL(k1,15);
+ k1 *= c2;
+
+ h1 ^= k1;
+ h1 = NK_ROTL(h1,13);
+ h1 = h1*5+0xe6546b64;
+ }
+
+ /* tail */
+ tail = (const nk_byte*)(data + nblocks*4);
+ k1 = 0;
+ switch (len & 3) {
+ case 3: k1 ^= (nk_uint)(tail[2] << 16);
+ case 2: k1 ^= (nk_uint)(tail[1] << 8u);
+ case 1: k1 ^= tail[0];
+ k1 *= c1;
+ k1 = NK_ROTL(k1,15);
+ k1 *= c2;
+ h1 ^= k1;
+ default: break;
+ }
+
+ /* finalization */
+ h1 ^= (nk_uint)len;
+ /* fmix32 */
+ h1 ^= h1 >> 16;
+ h1 *= 0x85ebca6b;
+ h1 ^= h1 >> 13;
+ h1 *= 0xc2b2ae35;
+ h1 ^= h1 >> 16;
+
+ #undef NK_ROTL
+ return h1;
+}
+
+#ifdef NK_INCLUDE_STANDARD_IO
+NK_INTERN char*
+nk_file_load(const char* path, nk_size* siz, struct nk_allocator *alloc)
+{
+ char *buf;
+ FILE *fd;
+ long ret;
+
+ NK_ASSERT(path);
+ NK_ASSERT(siz);
+ NK_ASSERT(alloc);
+ if (!path || !siz || !alloc)
+ return 0;
+
+ fd = fopen(path, "rb");
+ if (!fd) return 0;
+ fseek(fd, 0, SEEK_END);
+ ret = ftell(fd);
+ if (ret < 0) {
+ fclose(fd);
+ return 0;
+ }
+ *siz = (nk_size)ret;
+ fseek(fd, 0, SEEK_SET);
+ buf = (char*)alloc->alloc(alloc->userdata,0, *siz);
+ NK_ASSERT(buf);
+ if (!buf) {
+ fclose(fd);
+ return 0;
+ }
+ *siz = (nk_size)fread(buf, *siz, 1, fd);
+ fclose(fd);
+ return buf;
+}
+#endif
+
+/*
+ * ==============================================================
+ *
+ * COLOR
+ *
+ * ===============================================================
+ */
+NK_INTERN int
+nk_parse_hex(const char *p, int length)
+{
+ int i = 0;
+ int len = 0;
+ while (len < length) {
+ i <<= 4;
+ if (p[len] >= 'a' && p[len] <= 'f')
+ i += ((p[len] - 'a') + 10);
+ else if (p[len] >= 'A' && p[len] <= 'F') {
+ i += ((p[len] - 'A') + 10);
+ } else i += (p[len] - '0');
+ len++;
+ }
+ return i;
+}
+
+NK_API struct nk_color
+nk_rgba(int r, int g, int b, int a)
+{
+ struct nk_color ret;
+ ret.r = (nk_byte)NK_CLAMP(0, r, 255);
+ ret.g = (nk_byte)NK_CLAMP(0, g, 255);
+ ret.b = (nk_byte)NK_CLAMP(0, b, 255);
+ ret.a = (nk_byte)NK_CLAMP(0, a, 255);
+ return ret;
+}
+
+NK_API struct nk_color
+nk_rgb_hex(const char *rgb)
+{
+ struct nk_color col;
+ const char *c = rgb;
+ if (*c == '#') c++;
+ col.r = (nk_byte)nk_parse_hex(c, 2);
+ col.g = (nk_byte)nk_parse_hex(c+2, 2);
+ col.b = (nk_byte)nk_parse_hex(c+4, 2);
+ col.a = 255;
+ return col;
+}
+
+NK_API struct nk_color
+nk_rgba_hex(const char *rgb)
+{
+ struct nk_color col;
+ const char *c = rgb;
+ if (*c == '#') c++;
+ col.r = (nk_byte)nk_parse_hex(c, 2);
+ col.g = (nk_byte)nk_parse_hex(c+2, 2);
+ col.b = (nk_byte)nk_parse_hex(c+4, 2);
+ col.a = (nk_byte)nk_parse_hex(c+6, 2);
+ return col;
+}
+
+NK_API void
+nk_color_hex_rgba(char *output, struct nk_color col)
+{
+ #define NK_TO_HEX(i) ((i) <= 9 ? '0' + (i): 'A' - 10 + (i))
+ output[0] = (char)NK_TO_HEX((col.r & 0x0F));
+ output[1] = (char)NK_TO_HEX((col.r & 0xF0) >> 4);
+ output[2] = (char)NK_TO_HEX((col.g & 0x0F));
+ output[3] = (char)NK_TO_HEX((col.g & 0xF0) >> 4);
+ output[4] = (char)NK_TO_HEX((col.b & 0x0F));
+ output[5] = (char)NK_TO_HEX((col.b & 0xF0) >> 4);
+ output[6] = (char)NK_TO_HEX((col.a & 0x0F));
+ output[7] = (char)NK_TO_HEX((col.a & 0xF0) >> 4);
+ output[8] = '\0';
+ #undef NK_TO_HEX
+}
+
+NK_API void
+nk_color_hex_rgb(char *output, struct nk_color col)
+{
+ #define NK_TO_HEX(i) ((i) <= 9 ? '0' + (i): 'A' - 10 + (i))
+ output[0] = (char)NK_TO_HEX((col.r & 0x0F));
+ output[1] = (char)NK_TO_HEX((col.r & 0xF0) >> 4);
+ output[2] = (char)NK_TO_HEX((col.g & 0x0F));
+ output[3] = (char)NK_TO_HEX((col.g & 0xF0) >> 4);
+ output[4] = (char)NK_TO_HEX((col.b & 0x0F));
+ output[5] = (char)NK_TO_HEX((col.b & 0xF0) >> 4);
+ output[6] = '\0';
+ #undef NK_TO_HEX
+}
+
+NK_API struct nk_color
+nk_rgba_iv(const int *c)
+{
+ return nk_rgba(c[0], c[1], c[2], c[3]);
+}
+
+NK_API struct nk_color
+nk_rgba_bv(const nk_byte *c)
+{
+ return nk_rgba(c[0], c[1], c[2], c[3]);
+}
+
+NK_API struct nk_color
+nk_rgb(int r, int g, int b)
+{
+ struct nk_color ret;
+ ret.r =(nk_byte)NK_CLAMP(0, r, 255);
+ ret.g =(nk_byte)NK_CLAMP(0, g, 255);
+ ret.b =(nk_byte)NK_CLAMP(0, b, 255);
+ ret.a =(nk_byte)255;
+ return ret;
+}
+
+NK_API struct nk_color
+nk_rgb_iv(const int *c)
+{
+ return nk_rgb(c[0], c[1], c[2]);
+}
+
+NK_API struct nk_color
+nk_rgb_bv(const nk_byte* c)
+{
+ return nk_rgb(c[0], c[1], c[2]);
+}
+
+NK_API struct nk_color
+nk_rgba_u32(nk_uint in)
+{
+ struct nk_color ret;
+ ret.r = (in & 0xFF);
+ ret.g = ((in >> 8) & 0xFF);
+ ret.b = ((in >> 16) & 0xFF);
+ ret.a = (nk_byte)((in >> 24) & 0xFF);
+ return ret;
+}
+
+NK_API struct nk_color
+nk_rgba_f(float r, float g, float b, float a)
+{
+ struct nk_color ret;
+ ret.r = (nk_byte)(NK_SATURATE(r) * 255.0f);
+ ret.g = (nk_byte)(NK_SATURATE(g) * 255.0f);
+ ret.b = (nk_byte)(NK_SATURATE(b) * 255.0f);
+ ret.a = (nk_byte)(NK_SATURATE(a) * 255.0f);
+ return ret;
+}
+
+NK_API struct nk_color
+nk_rgba_fv(const float *c)
+{
+ return nk_rgba_f(c[0], c[1], c[2], c[3]);
+}
+
+NK_API struct nk_color
+nk_rgb_f(float r, float g, float b)
+{
+ struct nk_color ret;
+ ret.r = (nk_byte)(NK_SATURATE(r) * 255.0f);
+ ret.g = (nk_byte)(NK_SATURATE(g) * 255.0f);
+ ret.b = (nk_byte)(NK_SATURATE(b) * 255.0f);
+ ret.a = 255;
+ return ret;
+}
+
+NK_API struct nk_color
+nk_rgb_fv(const float *c)
+{
+ return nk_rgb_f(c[0], c[1], c[2]);
+}
+
+NK_API struct nk_color
+nk_hsv(int h, int s, int v)
+{
+ return nk_hsva(h, s, v, 255);
+}
+
+NK_API struct nk_color
+nk_hsv_iv(const int *c)
+{
+ return nk_hsv(c[0], c[1], c[2]);
+}
+
+NK_API struct nk_color
+nk_hsv_bv(const nk_byte *c)
+{
+ return nk_hsv(c[0], c[1], c[2]);
+}
+
+NK_API struct nk_color
+nk_hsv_f(float h, float s, float v)
+{
+ return nk_hsva_f(h, s, v, 1.0f);
+}
+
+NK_API struct nk_color
+nk_hsv_fv(const float *c)
+{
+ return nk_hsv_f(c[0], c[1], c[2]);
+}
+
+NK_API struct nk_color
+nk_hsva(int h, int s, int v, int a)
+{
+ float hf = ((float)NK_CLAMP(0, h, 255)) / 255.0f;
+ float sf = ((float)NK_CLAMP(0, s, 255)) / 255.0f;
+ float vf = ((float)NK_CLAMP(0, v, 255)) / 255.0f;
+ float af = ((float)NK_CLAMP(0, a, 255)) / 255.0f;
+ return nk_hsva_f(hf, sf, vf, af);
+}
+
+NK_API struct nk_color
+nk_hsva_iv(const int *c)
+{
+ return nk_hsva(c[0], c[1], c[2], c[3]);
+}
+
+NK_API struct nk_color
+nk_hsva_bv(const nk_byte *c)
+{
+ return nk_hsva(c[0], c[1], c[2], c[3]);
+}
+
+NK_API struct nk_color
+nk_hsva_f(float h, float s, float v, float a)
+{
+ struct nk_colorf {float r,g,b;} out = {0,0,0};
+ float p, q, t, f;
+ int i;
+
+ if (s <= 0.0f) {
+ out.r = v; out.g = v; out.b = v;
+ return nk_rgb_f(out.r, out.g, out.b);
+ }
+
+ h = h / (60.0f/360.0f);
+ i = (int)h;
+ f = h - (float)i;
+ p = v * (1.0f - s);
+ q = v * (1.0f - (s * f));
+ t = v * (1.0f - s * (1.0f - f));
+
+ switch (i) {
+ case 0: out.r = v; out.g = t; out.b = p; break;
+ case 1: out.r = q; out.g = v; out.b = p; break;
+ case 2: out.r = p; out.g = v; out.b = t; break;
+ case 3: out.r = p; out.g = q; out.b = v; break;
+ case 4: out.r = t; out.g = p; out.b = v; break;
+ case 5: default: out.r = v; out.g = p; out.b = q; break;
+ }
+ return nk_rgba_f(out.r, out.g, out.b, a);
+}
+
+NK_API struct nk_color
+nk_hsva_fv(const float *c)
+{
+ return nk_hsva_f(c[0], c[1], c[2], c[3]);
+}
+
+NK_API nk_uint
+nk_color_u32(struct nk_color in)
+{
+ nk_uint out = (nk_uint)in.r;
+ out |= ((nk_uint)in.g << 8);
+ out |= ((nk_uint)in.b << 16);
+ out |= ((nk_uint)in.a << 24);
+ return out;
+}
+
+NK_API void
+nk_color_f(float *r, float *g, float *b, float *a, struct nk_color in)
+{
+ NK_STORAGE const float s = 1.0f/255.0f;
+ *r = (float)in.r * s;
+ *g = (float)in.g * s;
+ *b = (float)in.b * s;
+ *a = (float)in.a * s;
+}
+
+NK_API void
+nk_color_fv(float *c, struct nk_color in)
+{
+ nk_color_f(&c[0], &c[1], &c[2], &c[3], in);
+}
+
+NK_API void
+nk_color_hsv_f(float *out_h, float *out_s, float *out_v, struct nk_color in)
+{
+ float a;
+ nk_color_hsva_f(out_h, out_s, out_v, &a, in);
+}
+
+NK_API void
+nk_color_hsv_fv(float *out, struct nk_color in)
+{
+ float a;
+ nk_color_hsva_f(&out[0], &out[1], &out[2], &a, in);
+}
+
+NK_API void
+nk_color_hsva_f(float *out_h, float *out_s,
+ float *out_v, float *out_a, struct nk_color in)
+{
+ float chroma;
+ float K = 0.0f;
+ float r,g,b,a;
+
+ nk_color_f(&r,&g,&b,&a, in);
+ if (g < b) {
+ const float t = g; g = b; b = t;
+ K = -1.f;
+ }
+ if (r < g) {
+ const float t = r; r = g; g = t;
+ K = -2.f/6.0f - K;
+ }
+ chroma = r - ((g < b) ? g: b);
+ *out_h = NK_ABS(K + (g - b)/(6.0f * chroma + 1e-20f));
+ *out_s = chroma / (r + 1e-20f);
+ *out_v = r;
+ *out_a = (float)in.a / 255.0f;
+}
+
+NK_API void
+nk_color_hsva_fv(float *out, struct nk_color in)
+{
+ nk_color_hsva_f(&out[0], &out[1], &out[2], &out[3], in);
+}
+
+NK_API void
+nk_color_hsva_i(int *out_h, int *out_s, int *out_v,
+ int *out_a, struct nk_color in)
+{
+ float h,s,v,a;
+ nk_color_hsva_f(&h, &s, &v, &a, in);
+ *out_h = (nk_byte)(h * 255.0f);
+ *out_s = (nk_byte)(s * 255.0f);
+ *out_v = (nk_byte)(v * 255.0f);
+ *out_a = (nk_byte)(a * 255.0f);
+}
+
+NK_API void
+nk_color_hsva_iv(int *out, struct nk_color in)
+{
+ nk_color_hsva_i(&out[0], &out[1], &out[2], &out[3], in);
+}
+
+NK_API void
+nk_color_hsva_bv(nk_byte *out, struct nk_color in)
+{
+ int tmp[4];
+ nk_color_hsva_i(&tmp[0], &tmp[1], &tmp[2], &tmp[3], in);
+ out[0] = (nk_byte)tmp[0];
+ out[1] = (nk_byte)tmp[1];
+ out[2] = (nk_byte)tmp[2];
+ out[3] = (nk_byte)tmp[3];
+}
+
+NK_API void
+nk_color_hsva_b(nk_byte *h, nk_byte *s, nk_byte *v, nk_byte *a, struct nk_color in)
+{
+ int tmp[4];
+ nk_color_hsva_i(&tmp[0], &tmp[1], &tmp[2], &tmp[3], in);
+ *h = (nk_byte)tmp[0];
+ *s = (nk_byte)tmp[1];
+ *v = (nk_byte)tmp[2];
+ *a = (nk_byte)tmp[3];
+}
+
+NK_API void
+nk_color_hsv_i(int *out_h, int *out_s, int *out_v, struct nk_color in)
+{
+ int a;
+ nk_color_hsva_i(out_h, out_s, out_v, &a, in);
+}
+
+NK_API void
+nk_color_hsv_b(nk_byte *out_h, nk_byte *out_s, nk_byte *out_v, struct nk_color in)
+{
+ int tmp[4];
+ nk_color_hsva_i(&tmp[0], &tmp[1], &tmp[2], &tmp[3], in);
+ *out_h = (nk_byte)tmp[0];
+ *out_s = (nk_byte)tmp[1];
+ *out_v = (nk_byte)tmp[2];
+}
+
+NK_API void
+nk_color_hsv_iv(int *out, struct nk_color in)
+{
+ nk_color_hsv_i(&out[0], &out[1], &out[2], in);
+}
+
+NK_API void
+nk_color_hsv_bv(nk_byte *out, struct nk_color in)
+{
+ int tmp[4];
+ nk_color_hsv_i(&tmp[0], &tmp[1], &tmp[2], in);
+ out[0] = (nk_byte)tmp[0];
+ out[1] = (nk_byte)tmp[1];
+ out[2] = (nk_byte)tmp[2];
+}
+/*
+ * ==============================================================
+ *
+ * IMAGE
+ *
+ * ===============================================================
+ */
+NK_API nk_handle
+nk_handle_ptr(void *ptr)
+{
+ nk_handle handle = {0};
+ handle.ptr = ptr;
+ return handle;
+}
+
+NK_API nk_handle
+nk_handle_id(int id)
+{
+ nk_handle handle;
+ nk_zero_struct(handle);
+ handle.id = id;
+ return handle;
+}
+
+NK_API struct nk_image
+nk_subimage_ptr(void *ptr, unsigned short w, unsigned short h, struct nk_rect r)
+{
+ struct nk_image s;
+ nk_zero(&s, sizeof(s));
+ s.handle.ptr = ptr;
+ s.w = w; s.h = h;
+ s.region[0] = (unsigned short)r.x;
+ s.region[1] = (unsigned short)r.y;
+ s.region[2] = (unsigned short)r.w;
+ s.region[3] = (unsigned short)r.h;
+ return s;
+}
+
+NK_API struct nk_image
+nk_subimage_id(int id, unsigned short w, unsigned short h, struct nk_rect r)
+{
+ struct nk_image s;
+ nk_zero(&s, sizeof(s));
+ s.handle.id = id;
+ s.w = w; s.h = h;
+ s.region[0] = (unsigned short)r.x;
+ s.region[1] = (unsigned short)r.y;
+ s.region[2] = (unsigned short)r.w;
+ s.region[3] = (unsigned short)r.h;
+ return s;
+}
+
+NK_API struct nk_image
+nk_image_ptr(void *ptr)
+{
+ struct nk_image s;
+ nk_zero(&s, sizeof(s));
+ NK_ASSERT(ptr);
+ s.handle.ptr = ptr;
+ s.w = 0; s.h = 0;
+ s.region[0] = 0;
+ s.region[1] = 0;
+ s.region[2] = 0;
+ s.region[3] = 0;
+ return s;
+}
+
+NK_API struct nk_image
+nk_image_id(int id)
+{
+ struct nk_image s;
+ nk_zero(&s, sizeof(s));
+ s.handle.id = id;
+ s.w = 0; s.h = 0;
+ s.region[0] = 0;
+ s.region[1] = 0;
+ s.region[2] = 0;
+ s.region[3] = 0;
+ return s;
+}
+
+NK_API int
+nk_image_is_subimage(const struct nk_image* img)
+{
+ NK_ASSERT(img);
+ return !(img->w == 0 && img->h == 0);
+}
+
+NK_INTERN void
+nk_unify(struct nk_rect *clip, const struct nk_rect *a, float x0, float y0,
+ float x1, float y1)
+{
+ NK_ASSERT(a);
+ NK_ASSERT(clip);
+ clip->x = NK_MAX(a->x, x0);
+ clip->y = NK_MAX(a->y, y0);
+ clip->w = NK_MIN(a->x + a->w, x1) - clip->x;
+ clip->h = NK_MIN(a->y + a->h, y1) - clip->y;
+ clip->w = NK_MAX(0, clip->w);
+ clip->h = NK_MAX(0, clip->h);
+}
+
+NK_API void
+nk_triangle_from_direction(struct nk_vec2 *result, struct nk_rect r,
+ float pad_x, float pad_y, enum nk_heading direction)
+{
+ float w_half, h_half;
+ NK_ASSERT(result);
+
+ r.w = NK_MAX(2 * pad_x, r.w);
+ r.h = NK_MAX(2 * pad_y, r.h);
+ r.w = r.w - 2 * pad_x;
+ r.h = r.h - 2 * pad_y;
+
+ r.x = r.x + pad_x;
+ r.y = r.y + pad_y;
+
+ w_half = r.w / 2.0f;
+ h_half = r.h / 2.0f;
+
+ if (direction == NK_UP) {
+ result[0] = nk_vec2(r.x + w_half, r.y);
+ result[1] = nk_vec2(r.x + r.w, r.y + r.h);
+ result[2] = nk_vec2(r.x, r.y + r.h);
+ } else if (direction == NK_RIGHT) {
+ result[0] = nk_vec2(r.x, r.y);
+ result[1] = nk_vec2(r.x + r.w, r.y + h_half);
+ result[2] = nk_vec2(r.x, r.y + r.h);
+ } else if (direction == NK_DOWN) {
+ result[0] = nk_vec2(r.x, r.y);
+ result[1] = nk_vec2(r.x + r.w, r.y);
+ result[2] = nk_vec2(r.x + w_half, r.y + r.h);
+ } else {
+ result[0] = nk_vec2(r.x, r.y + h_half);
+ result[1] = nk_vec2(r.x + r.w, r.y);
+ result[2] = nk_vec2(r.x + r.w, r.y + r.h);
+ }
+}
+
+NK_INTERN int
+nk_text_clamp(const struct nk_user_font *font, const char *text,
+ int text_len, float space, int *glyphs, float *text_width)
+{
+ int glyph_len = 0;
+ float last_width = 0;
+ nk_rune unicode = 0;
+ float width = 0;
+ int len = 0;
+ int g = 0;
+
+ glyph_len = nk_utf_decode(text, &unicode, text_len);
+ while (glyph_len && (width < space) && (len < text_len)) {
+ float s;
+ len += glyph_len;
+ s = font->width(font->userdata, font->height, text, len);
+
+ last_width = width;
+ width = s;
+ glyph_len = nk_utf_decode(&text[len], &unicode, text_len - len);
+ g++;
+ }
+
+ *glyphs = g;
+ *text_width = last_width;
+ return len;
+}
+
+enum {NK_DO_NOT_STOP_ON_NEW_LINE, NK_STOP_ON_NEW_LINE};
+NK_INTERN struct nk_vec2
+nk_text_calculate_text_bounds(const struct nk_user_font *font,
+ const char *begin, int byte_len, float row_height, const char **remaining,
+ struct nk_vec2 *out_offset, int *glyphs, int op)
+{
+ float line_height = row_height;
+ struct nk_vec2 text_size = nk_vec2(0,0);
+ float line_width = 0.0f;
+
+ float glyph_width;
+ int glyph_len = 0;
+ nk_rune unicode = 0;
+ int text_len = 0;
+ if (!begin || byte_len <= 0 || !font)
+ return nk_vec2(0,row_height);
+
+ glyph_len = nk_utf_decode(begin, &unicode, byte_len);
+ if (!glyph_len) return text_size;
+ glyph_width = font->width(font->userdata, font->height, begin, glyph_len);
+
+ *glyphs = 0;
+ while ((text_len < byte_len) && glyph_len) {
+ if (unicode == '\n') {
+ text_size.x = NK_MAX(text_size.x, line_width);
+ text_size.y += line_height;
+ line_width = 0;
+ *glyphs+=1;
+ if (op == NK_STOP_ON_NEW_LINE)
+ break;
+
+ text_len++;
+ glyph_len = nk_utf_decode(begin + text_len, &unicode, byte_len-text_len);
+ continue;
+ }
+
+ if (unicode == '\r') {
+ text_len++;
+ *glyphs+=1;
+ glyph_len = nk_utf_decode(begin + text_len, &unicode, byte_len-text_len);
+ continue;
+ }
+
+ *glyphs = *glyphs + 1;
+ text_len += glyph_len;
+ line_width += (float)glyph_width;
+ glyph_width = font->width(font->userdata, font->height, begin+text_len, glyph_len);
+ glyph_len = nk_utf_decode(begin + text_len, &unicode, byte_len-text_len);
+ continue;
+ }
+
+ if (text_size.x < line_width)
+ text_size.x = line_width;
+ if (out_offset)
+ *out_offset = nk_vec2(line_width, text_size.y + line_height);
+ if (line_width > 0 || text_size.y == 0.0f)
+ text_size.y += line_height;
+ if (remaining)
+ *remaining = begin+text_len;
+ return text_size;
+}
+
+/* ==============================================================
+ *
+ * UTF-8
+ *
+ * ===============================================================*/
+NK_GLOBAL const nk_byte nk_utfbyte[NK_UTF_SIZE+1] = {0x80, 0, 0xC0, 0xE0, 0xF0};
+NK_GLOBAL const nk_byte nk_utfmask[NK_UTF_SIZE+1] = {0xC0, 0x80, 0xE0, 0xF0, 0xF8};
+NK_GLOBAL const nk_uint nk_utfmin[NK_UTF_SIZE+1] = {0, 0, 0x80, 0x800, 0x10000};
+NK_GLOBAL const nk_uint nk_utfmax[NK_UTF_SIZE+1] = {0x10FFFF, 0x7F, 0x7FF, 0xFFFF, 0x10FFFF};
+
+NK_INTERN int
+nk_utf_validate(nk_rune *u, int i)
+{
+ NK_ASSERT(u);
+ if (!u) return 0;
+ if (!NK_BETWEEN(*u, nk_utfmin[i], nk_utfmax[i]) ||
+ NK_BETWEEN(*u, 0xD800, 0xDFFF))
+ *u = NK_UTF_INVALID;
+ for (i = 1; *u > nk_utfmax[i]; ++i);
+ return i;
+}
+
+NK_INTERN nk_rune
+nk_utf_decode_byte(char c, int *i)
+{
+ NK_ASSERT(i);
+ if (!i) return 0;
+ for(*i = 0; *i < (int)NK_LEN(nk_utfmask); ++(*i)) {
+ if (((nk_byte)c & nk_utfmask[*i]) == nk_utfbyte[*i])
+ return (nk_byte)(c & ~nk_utfmask[*i]);
+ }
+ return 0;
+}
+
+NK_API int
+nk_utf_decode(const char *c, nk_rune *u, int clen)
+{
+ int i, j, len, type=0;
+ nk_rune udecoded;
+
+ NK_ASSERT(c);
+ NK_ASSERT(u);
+
+ if (!c || !u) return 0;
+ if (!clen) return 0;
+ *u = NK_UTF_INVALID;
+
+ udecoded = nk_utf_decode_byte(c[0], &len);
+ if (!NK_BETWEEN(len, 1, NK_UTF_SIZE))
+ return 1;
+
+ for (i = 1, j = 1; i < clen && j < len; ++i, ++j) {
+ udecoded = (udecoded << 6) | nk_utf_decode_byte(c[i], &type);
+ if (type != 0)
+ return j;
+ }
+ if (j < len)
+ return 0;
+ *u = udecoded;
+ nk_utf_validate(u, len);
+ return len;
+}
+
+NK_INTERN char
+nk_utf_encode_byte(nk_rune u, int i)
+{
+ return (char)((nk_utfbyte[i]) | ((nk_byte)u & ~nk_utfmask[i]));
+}
+
+NK_API int
+nk_utf_encode(nk_rune u, char *c, int clen)
+{
+ int len, i;
+ len = nk_utf_validate(&u, 0);
+ if (clen < len || !len || len > NK_UTF_SIZE)
+ return 0;
+
+ for (i = len - 1; i != 0; --i) {
+ c[i] = nk_utf_encode_byte(u, 0);
+ u >>= 6;
+ }
+ c[0] = nk_utf_encode_byte(u, len);
+ return len;
+}
+
+NK_API int
+nk_utf_len(const char *str, int len)
+{
+ const char *text;
+ int glyphs = 0;
+ int text_len;
+ int glyph_len;
+ int src_len = 0;
+ nk_rune unicode;
+
+ NK_ASSERT(str);
+ if (!str || !len) return 0;
+
+ text = str;
+ text_len = len;
+ glyph_len = nk_utf_decode(text, &unicode, text_len);
+ while (glyph_len && src_len < len) {
+ glyphs++;
+ src_len = src_len + glyph_len;
+ glyph_len = nk_utf_decode(text + src_len, &unicode, text_len - src_len);
+ }
+ return glyphs;
+}
+
+NK_API const char*
+nk_utf_at(const char *buffer, int length, int index,
+ nk_rune *unicode, int *len)
+{
+ int i = 0;
+ int src_len = 0;
+ int glyph_len = 0;
+ const char *text;
+ int text_len;
+
+ NK_ASSERT(buffer);
+ NK_ASSERT(unicode);
+ NK_ASSERT(len);
+
+ if (!buffer || !unicode || !len) return 0;
+ if (index < 0) {
+ *unicode = NK_UTF_INVALID;
+ *len = 0;
+ return 0;
+ }
+
+ text = buffer;
+ text_len = length;
+ glyph_len = nk_utf_decode(text, unicode, text_len);
+ while (glyph_len) {
+ if (i == index) {
+ *len = glyph_len;
+ break;
+ }
+
+ i++;
+ src_len = src_len + glyph_len;
+ glyph_len = nk_utf_decode(text + src_len, unicode, text_len - src_len);
+ }
+ if (i != index) return 0;
+ return buffer + src_len;
+}
+
+/* ==============================================================
+ *
+ * BUFFER
+ *
+ * ===============================================================*/
+#ifdef NK_INCLUDE_DEFAULT_ALLOCATOR
+NK_INTERN void* nk_malloc(nk_handle unused, void *old,nk_size size)
+{NK_UNUSED(unused); NK_UNUSED(old); return malloc(size);}
+NK_INTERN void nk_mfree(nk_handle unused, void *ptr)
+{NK_UNUSED(unused); free(ptr);}
+
+NK_API void
+nk_buffer_init_default(struct nk_buffer *buffer)
+{
+ struct nk_allocator alloc;
+ alloc.userdata.ptr = 0;
+ alloc.alloc = nk_malloc;
+ alloc.free = nk_mfree;
+ nk_buffer_init(buffer, &alloc, NK_BUFFER_DEFAULT_INITIAL_SIZE);
+}
+#endif
+
+NK_API void
+nk_buffer_init(struct nk_buffer *b, const struct nk_allocator *a,
+ nk_size initial_size)
+{
+ NK_ASSERT(b);
+ NK_ASSERT(a);
+ NK_ASSERT(initial_size);
+ if (!b || !a || !initial_size) return;
+
+ nk_zero(b, sizeof(*b));
+ b->type = NK_BUFFER_DYNAMIC;
+ b->memory.ptr = a->alloc(a->userdata,0, initial_size);
+ b->memory.size = initial_size;
+ b->size = initial_size;
+ b->grow_factor = 2.0f;
+ b->pool = *a;
+}
+
+NK_API void
+nk_buffer_init_fixed(struct nk_buffer *b, void *m, nk_size size)
+{
+ NK_ASSERT(b);
+ NK_ASSERT(m);
+ NK_ASSERT(size);
+ if (!b || !m || !size) return;
+
+ nk_zero(b, sizeof(*b));
+ b->type = NK_BUFFER_FIXED;
+ b->memory.ptr = m;
+ b->memory.size = size;
+ b->size = size;
+}
+
+NK_INTERN void*
+nk_buffer_align(void *unaligned, nk_size align, nk_size *alignment,
+ enum nk_buffer_allocation_type type)
+{
+ void *memory = 0;
+ switch (type) {
+ default:
+ case NK_BUFFER_MAX:
+ case NK_BUFFER_FRONT:
+ if (align) {
+ memory = NK_ALIGN_PTR(unaligned, align);
+ *alignment = (nk_size)((nk_byte*)memory - (nk_byte*)unaligned);
+ } else {
+ memory = unaligned;
+ *alignment = 0;
+ }
+ break;
+ case NK_BUFFER_BACK:
+ if (align) {
+ memory = NK_ALIGN_PTR_BACK(unaligned, align);
+ *alignment = (nk_size)((nk_byte*)unaligned - (nk_byte*)memory);
+ } else {
+ memory = unaligned;
+ *alignment = 0;
+ }
+ break;
+ }
+ return memory;
+}
+
+NK_INTERN void*
+nk_buffer_realloc(struct nk_buffer *b, nk_size capacity, nk_size *size)
+{
+ void *temp;
+ nk_size buffer_size;
+
+ NK_ASSERT(b);
+ NK_ASSERT(size);
+ if (!b || !size || !b->pool.alloc || !b->pool.free)
+ return 0;
+
+ buffer_size = b->memory.size;
+ temp = b->pool.alloc(b->pool.userdata, b->memory.ptr, capacity);
+ NK_ASSERT(temp);
+ if (!temp) return 0;
+
+ *size = capacity;
+ if (temp != b->memory.ptr) {
+ NK_MEMCPY(temp, b->memory.ptr, buffer_size);
+ b->pool.free(b->pool.userdata, b->memory.ptr);
+ }
+
+ if (b->size == buffer_size) {
+ /* no back buffer so just set correct size */
+ b->size = capacity;
+ return temp;
+ } else {
+ /* copy back buffer to the end of the new buffer */
+ void *dst, *src;
+ nk_size back_size;
+ back_size = buffer_size - b->size;
+ dst = nk_ptr_add(void, temp, capacity - back_size);
+ src = nk_ptr_add(void, temp, b->size);
+ NK_MEMCPY(dst, src, back_size);
+ b->size = capacity - back_size;
+ }
+ return temp;
+}
+
+NK_INTERN void*
+nk_buffer_alloc(struct nk_buffer *b, enum nk_buffer_allocation_type type,
+ nk_size size, nk_size align)
+{
+ int full;
+ nk_size alignment;
+ void *unaligned;
+ void *memory;
+
+ NK_ASSERT(b);
+ NK_ASSERT(size);
+ if (!b || !size) return 0;
+ b->needed += size;
+
+ /* calculate total size with needed alignment + size */
+ if (type == NK_BUFFER_FRONT)
+ unaligned = nk_ptr_add(void, b->memory.ptr, b->allocated);
+ else unaligned = nk_ptr_add(void, b->memory.ptr, b->size - size);
+ memory = nk_buffer_align(unaligned, align, &alignment, type);
+
+ /* check if buffer has enough memory*/
+ if (type == NK_BUFFER_FRONT)
+ full = ((b->allocated + size + alignment) > b->size);
+ else full = ((b->size - (size + alignment)) <= b->allocated);
+
+ if (full) {
+ nk_size capacity;
+ NK_ASSERT(b->type == NK_BUFFER_DYNAMIC);
+ NK_ASSERT(b->pool.alloc && b->pool.free);
+ if (b->type != NK_BUFFER_DYNAMIC || !b->pool.alloc || !b->pool.free)
+ return 0;
+
+ /* buffer is full so allocate bigger buffer if dynamic */
+ capacity = (nk_size)((float)b->memory.size * b->grow_factor);
+ capacity = NK_MAX(capacity, nk_round_up_pow2((nk_uint)(b->allocated + size)));
+ b->memory.ptr = nk_buffer_realloc(b, capacity, &b->memory.size);
+ if (!b->memory.ptr) return 0;
+
+ /* align newly allocated pointer */
+ if (type == NK_BUFFER_FRONT)
+ unaligned = nk_ptr_add(void, b->memory.ptr, b->allocated);
+ else unaligned = nk_ptr_add(void, b->memory.ptr, b->size);
+ memory = nk_buffer_align(unaligned, align, &alignment, type);
+ }
+
+ if (type == NK_BUFFER_FRONT)
+ b->allocated += size + alignment;
+ else b->size -= (size + alignment);
+ b->needed += alignment;
+ b->calls++;
+ return memory;
+}
+
+NK_API void
+nk_buffer_push(struct nk_buffer *b, enum nk_buffer_allocation_type type,
+ void *memory, nk_size size, nk_size align)
+{
+ void *mem = nk_buffer_alloc(b, type, size, align);
+ if (!mem) return;
+ NK_MEMCPY(mem, memory, size);
+}
+
+NK_API void
+nk_buffer_mark(struct nk_buffer *buffer, enum nk_buffer_allocation_type type)
+{
+ NK_ASSERT(buffer);
+ if (!buffer) return;
+ buffer->marker[type].active = nk_true;
+ if (type == NK_BUFFER_BACK)
+ buffer->marker[type].offset = buffer->size;
+ else buffer->marker[type].offset = buffer->allocated;
+}
+
+NK_API void
+nk_buffer_reset(struct nk_buffer *buffer, enum nk_buffer_allocation_type type)
+{
+ NK_ASSERT(buffer);
+ if (!buffer) return;
+ if (type == NK_BUFFER_BACK) {
+ /* reset back buffer either back to marker or empty */
+ buffer->needed -= (buffer->memory.size - buffer->marker[type].offset);
+ if (buffer->marker[type].active)
+ buffer->size = buffer->marker[type].offset;
+ else buffer->size = buffer->memory.size;
+ buffer->marker[type].active = nk_false;
+ } else {
+ /* reset front buffer either back to back marker or empty */
+ buffer->needed -= (buffer->allocated - buffer->marker[type].offset);
+ if (buffer->marker[type].active)
+ buffer->allocated = buffer->marker[type].offset;
+ else buffer->allocated = 0;
+ buffer->marker[type].active = nk_false;
+ }
+}
+
+NK_API void
+nk_buffer_clear(struct nk_buffer *b)
+{
+ NK_ASSERT(b);
+ if (!b) return;
+ b->allocated = 0;
+ b->size = b->memory.size;
+ b->calls = 0;
+ b->needed = 0;
+}
+
+NK_API void
+nk_buffer_free(struct nk_buffer *b)
+{
+ NK_ASSERT(b);
+ if (!b || !b->memory.ptr) return;
+ if (b->type == NK_BUFFER_FIXED) return;
+ if (!b->pool.free) return;
+ NK_ASSERT(b->pool.free);
+ b->pool.free(b->pool.userdata, b->memory.ptr);
+}
+
+NK_API void
+nk_buffer_info(struct nk_memory_status *s, struct nk_buffer *b)
+{
+ NK_ASSERT(b);
+ NK_ASSERT(s);
+ if (!s || !b) return;
+ s->allocated = b->allocated;
+ s->size = b->memory.size;
+ s->needed = b->needed;
+ s->memory = b->memory.ptr;
+ s->calls = b->calls;
+}
+
+NK_API void*
+nk_buffer_memory(struct nk_buffer *buffer)
+{
+ NK_ASSERT(buffer);
+ if (!buffer) return 0;
+ return buffer->memory.ptr;
+}
+
+NK_API const void*
+nk_buffer_memory_const(const struct nk_buffer *buffer)
+{
+ NK_ASSERT(buffer);
+ if (!buffer) return 0;
+ return buffer->memory.ptr;
+}
+
+NK_API nk_size
+nk_buffer_total(struct nk_buffer *buffer)
+{
+ NK_ASSERT(buffer);
+ if (!buffer) return 0;
+ return buffer->memory.size;
+}
+
+/*
+ * ==============================================================
+ *
+ * STRING
+ *
+ * ===============================================================
+ */
+#ifdef NK_INCLUDE_DEFAULT_ALLOCATOR
+NK_API void
+nk_str_init_default(struct nk_str *str)
+{
+ struct nk_allocator alloc;
+ alloc.userdata.ptr = 0;
+ alloc.alloc = nk_malloc;
+ alloc.free = nk_mfree;
+ nk_buffer_init(&str->buffer, &alloc, 32);
+ str->len = 0;
+}
+#endif
+
+NK_API void
+nk_str_init(struct nk_str *str, const struct nk_allocator *alloc, nk_size size)
+{
+ nk_buffer_init(&str->buffer, alloc, size);
+ str->len = 0;
+}
+
+NK_API void
+nk_str_init_fixed(struct nk_str *str, void *memory, nk_size size)
+{
+ nk_buffer_init_fixed(&str->buffer, memory, size);
+ str->len = 0;
+}
+
+NK_API int
+nk_str_append_text_char(struct nk_str *s, const char *str, int len)
+{
+ char *mem;
+ NK_ASSERT(s);
+ NK_ASSERT(str);
+ if (!s || !str || !len) return 0;
+ mem = (char*)nk_buffer_alloc(&s->buffer, NK_BUFFER_FRONT, (nk_size)len * sizeof(char), 0);
+ if (!mem) return 0;
+ NK_MEMCPY(mem, str, (nk_size)len * sizeof(char));
+ s->len += nk_utf_len(str, len);
+ return len;
+}
+
+NK_API int
+nk_str_append_str_char(struct nk_str *s, const char *str)
+{
+ return nk_str_append_text_char(s, str, nk_strlen(str));
+}
+
+NK_API int
+nk_str_append_text_utf8(struct nk_str *str, const char *text, int len)
+{
+ int i = 0;
+ int byte_len = 0;
+ nk_rune unicode;
+ if (!str || !text || !len) return 0;
+ for (i = 0; i < len; ++i)
+ byte_len += nk_utf_decode(text+byte_len, &unicode, 4);
+ nk_str_append_text_char(str, text, byte_len);
+ return len;
+}
+
+NK_API int
+nk_str_append_str_utf8(struct nk_str *str, const char *text)
+{
+ int runes = 0;
+ int byte_len = 0;
+ int num_runes = 0;
+ int glyph_len = 0;
+ nk_rune unicode;
+ if (!str || !text) return 0;
+
+ glyph_len = byte_len = nk_utf_decode(text+byte_len, &unicode, 4);
+ while (unicode != '\0' && glyph_len) {
+ glyph_len = nk_utf_decode(text+byte_len, &unicode, 4);
+ byte_len += glyph_len;
+ num_runes++;
+ }
+ nk_str_append_text_char(str, text, byte_len);
+ return runes;
+}
+
+NK_API int
+nk_str_append_text_runes(struct nk_str *str, const nk_rune *text, int len)
+{
+ int i = 0;
+ int byte_len = 0;
+ nk_glyph glyph;
+
+ NK_ASSERT(str);
+ if (!str || !text || !len) return 0;
+ for (i = 0; i < len; ++i) {
+ byte_len = nk_utf_encode(text[i], glyph, NK_UTF_SIZE);
+ if (!byte_len) break;
+ nk_str_append_text_char(str, glyph, byte_len);
+ }
+ return len;
+}
+
+NK_API int
+nk_str_append_str_runes(struct nk_str *str, const nk_rune *runes)
+{
+ int i = 0;
+ nk_glyph glyph;
+ int byte_len;
+ NK_ASSERT(str);
+ if (!str || !runes) return 0;
+ while (runes[i] != '\0') {
+ byte_len = nk_utf_encode(runes[i], glyph, NK_UTF_SIZE);
+ nk_str_append_text_char(str, glyph, byte_len);
+ i++;
+ }
+ return i;
+}
+
+NK_API int
+nk_str_insert_at_char(struct nk_str *s, int pos, const char *str, int len)
+{
+ int i;
+ void *mem;
+ char *src;
+ char *dst;
+
+ int copylen;
+ NK_ASSERT(s);
+ NK_ASSERT(str);
+ NK_ASSERT(len >= 0);
+ if (!s || !str || !len || (nk_size)pos > s->buffer.allocated) return 0;
+ if ((s->buffer.allocated + (nk_size)len >= s->buffer.memory.size) &&
+ (s->buffer.type == NK_BUFFER_FIXED)) return 0;
+
+ copylen = (int)s->buffer.allocated - pos;
+ if (!copylen) {
+ nk_str_append_text_char(s, str, len);
+ return 1;
+ }
+ mem = nk_buffer_alloc(&s->buffer, NK_BUFFER_FRONT, (nk_size)len * sizeof(char), 0);
+ if (!mem) return 0;
+
+ /* memmove */
+ NK_ASSERT(((int)pos + (int)len + ((int)copylen - 1)) >= 0);
+ NK_ASSERT(((int)pos + ((int)copylen - 1)) >= 0);
+ dst = nk_ptr_add(char, s->buffer.memory.ptr, pos + len + (copylen - 1));
+ src = nk_ptr_add(char, s->buffer.memory.ptr, pos + (copylen-1));
+ for (i = 0; i < copylen; ++i) *dst-- = *src--;
+ mem = nk_ptr_add(void, s->buffer.memory.ptr, pos);
+ NK_MEMCPY(mem, str, (nk_size)len * sizeof(char));
+ s->len = nk_utf_len((char *)s->buffer.memory.ptr, (int)s->buffer.allocated);
+ return 1;
+}
+
+NK_API int
+nk_str_insert_at_rune(struct nk_str *str, int pos, const char *cstr, int len)
+{
+ int glyph_len;
+ nk_rune unicode;
+ const char *begin;
+ const char *buffer;
+
+ NK_ASSERT(str);
+ NK_ASSERT(cstr);
+ NK_ASSERT(len);
+ if (!str || !cstr || !len) return 0;
+ begin = nk_str_at_rune(str, pos, &unicode, &glyph_len);
+ buffer = nk_str_get_const(str);
+ if (!begin) return 0;
+ return nk_str_insert_text_char(str, (int)(begin - buffer), cstr, len);
+}
+
+NK_API int nk_str_insert_text_char(struct nk_str *str, int pos, const char *text, int len)
+{return nk_str_insert_at_char(str, pos, text, len);}
+
+NK_API int nk_str_insert_str_char(struct nk_str *str, int pos, const char *text)
+{return nk_str_insert_at_char(str, pos, text, nk_strlen(text));}
+
+NK_API int
+nk_str_insert_text_utf8(struct nk_str *str, int pos, const char *text, int len)
+{
+ int i = 0;
+ int byte_len = 0;
+ nk_rune unicode;
+
+ NK_ASSERT(str);
+ NK_ASSERT(text);
+ if (!str || !text || !len) return 0;
+ for (i = 0; i < len; ++i)
+ byte_len += nk_utf_decode(text+byte_len, &unicode, 4);
+ nk_str_insert_at_rune(str, pos, text, byte_len);
+ return len;
+}
+
+NK_API int
+nk_str_insert_str_utf8(struct nk_str *str, int pos, const char *text)
+{
+ int runes = 0;
+ int byte_len = 0;
+ int num_runes = 0;
+ int glyph_len = 0;
+ nk_rune unicode;
+ if (!str || !text) return 0;
+
+ glyph_len = byte_len = nk_utf_decode(text+byte_len, &unicode, 4);
+ while (unicode != '\0' && glyph_len) {
+ glyph_len = nk_utf_decode(text+byte_len, &unicode, 4);
+ byte_len += glyph_len;
+ num_runes++;
+ }
+ nk_str_insert_at_rune(str, pos, text, byte_len);
+ return runes;
+}
+
+NK_API int
+nk_str_insert_text_runes(struct nk_str *str, int pos, const nk_rune *runes, int len)
+{
+ int i = 0;
+ int byte_len = 0;
+ nk_glyph glyph;
+
+ NK_ASSERT(str);
+ if (!str || !runes || !len) return 0;
+ for (i = 0; i < len; ++i) {
+ byte_len = nk_utf_encode(runes[i], glyph, NK_UTF_SIZE);
+ if (!byte_len) break;
+ nk_str_insert_at_rune(str, pos+i, glyph, byte_len);
+ }
+ return len;
+}
+
+NK_API int
+nk_str_insert_str_runes(struct nk_str *str, int pos, const nk_rune *runes)
+{
+ int i = 0;
+ nk_glyph glyph;
+ int byte_len;
+ NK_ASSERT(str);
+ if (!str || !runes) return 0;
+ while (runes[i] != '\0') {
+ byte_len = nk_utf_encode(runes[i], glyph, NK_UTF_SIZE);
+ nk_str_insert_at_rune(str, pos+i, glyph, byte_len);
+ i++;
+ }
+ return i;
+}
+
+NK_API void
+nk_str_remove_chars(struct nk_str *s, int len)
+{
+ NK_ASSERT(s);
+ NK_ASSERT(len >= 0);
+ if (!s || len < 0 || (nk_size)len > s->buffer.allocated) return;
+ NK_ASSERT(((int)s->buffer.allocated - (int)len) >= 0);
+ s->buffer.allocated -= (nk_size)len;
+ s->len = nk_utf_len((char *)s->buffer.memory.ptr, (int)s->buffer.allocated);
+}
+
+NK_API void
+nk_str_remove_runes(struct nk_str *str, int len)
+{
+ int index;
+ const char *begin;
+ const char *end;
+ nk_rune unicode;
+
+ NK_ASSERT(str);
+ NK_ASSERT(len >= 0);
+ if (!str || len < 0) return;
+ if (len >= str->len) {
+ str->len = 0;
+ return;
+ }
+
+ index = str->len - len;
+ begin = nk_str_at_rune(str, index, &unicode, &len);
+ end = (const char*)str->buffer.memory.ptr + str->buffer.allocated;
+ nk_str_remove_chars(str, (int)(end-begin)+1);
+}
+
+NK_API void
+nk_str_delete_chars(struct nk_str *s, int pos, int len)
+{
+ NK_ASSERT(s);
+ if (!s || !len || (nk_size)pos > s->buffer.allocated ||
+ (nk_size)(pos + len) > s->buffer.allocated) return;
+
+ if ((nk_size)(pos + len) < s->buffer.allocated) {
+ /* memmove */
+ char *dst = nk_ptr_add(char, s->buffer.memory.ptr, pos);
+ char *src = nk_ptr_add(char, s->buffer.memory.ptr, pos + len);
+ NK_MEMCPY(dst, src, s->buffer.allocated - (nk_size)(pos + len));
+ NK_ASSERT(((int)s->buffer.allocated - (int)len) >= 0);
+ s->buffer.allocated -= (nk_size)len;
+ } else nk_str_remove_chars(s, len);
+ s->len = nk_utf_len((char *)s->buffer.memory.ptr, (int)s->buffer.allocated);
+}
+
+NK_API void
+nk_str_delete_runes(struct nk_str *s, int pos, int len)
+{
+ char *temp;
+ nk_rune unicode;
+ char *begin;
+ char *end;
+ int unused;
+
+ NK_ASSERT(s);
+ NK_ASSERT(s->len >= pos + len);
+ if (s->len < pos + len)
+ len = NK_CLAMP(0, (s->len - pos), s->len);
+ if (!len) return;
+
+ temp = (char *)s->buffer.memory.ptr;
+ begin = nk_str_at_rune(s, pos, &unicode, &unused);
+ if (!begin) return;
+ s->buffer.memory.ptr = begin;
+ end = nk_str_at_rune(s, len, &unicode, &unused);
+ s->buffer.memory.ptr = temp;
+ if (!end) return;
+ nk_str_delete_chars(s, (int)(begin - temp), (int)(end - begin));
+}
+
+NK_API char*
+nk_str_at_char(struct nk_str *s, int pos)
+{
+ NK_ASSERT(s);
+ if (!s || pos > (int)s->buffer.allocated) return 0;
+ return nk_ptr_add(char, s->buffer.memory.ptr, pos);
+}
+
+NK_API char*
+nk_str_at_rune(struct nk_str *str, int pos, nk_rune *unicode, int *len)
+{
+ int i = 0;
+ int src_len = 0;
+ int glyph_len = 0;
+ char *text;
+ int text_len;
+
+ NK_ASSERT(str);
+ NK_ASSERT(unicode);
+ NK_ASSERT(len);
+
+ if (!str || !unicode || !len) return 0;
+ if (pos < 0) {
+ *unicode = 0;
+ *len = 0;
+ return 0;
+ }
+
+ text = (char*)str->buffer.memory.ptr;
+ text_len = (int)str->buffer.allocated;
+ glyph_len = nk_utf_decode(text, unicode, text_len);
+ while (glyph_len) {
+ if (i == pos) {
+ *len = glyph_len;
+ break;
+ }
+
+ i+= glyph_len;
+ src_len = src_len + glyph_len;
+ glyph_len = nk_utf_decode(text + src_len, unicode, text_len - src_len);
+ }
+ if (i != pos) return 0;
+ return text + src_len;
+}
+
+NK_API const char*
+nk_str_at_char_const(const struct nk_str *s, int pos)
+{
+ NK_ASSERT(s);
+ if (!s || pos > (int)s->buffer.allocated) return 0;
+ return nk_ptr_add(char, s->buffer.memory.ptr, pos);
+}
+
+NK_API const char*
+nk_str_at_const(const struct nk_str *str, int pos, nk_rune *unicode, int *len)
+{
+ int i = 0;
+ int src_len = 0;
+ int glyph_len = 0;
+ char *text;
+ int text_len;
+
+ NK_ASSERT(str);
+ NK_ASSERT(unicode);
+ NK_ASSERT(len);
+
+ if (!str || !unicode || !len) return 0;
+ if (pos < 0) {
+ *unicode = 0;
+ *len = 0;
+ return 0;
+ }
+
+ text = (char*)str->buffer.memory.ptr;
+ text_len = (int)str->buffer.allocated;
+ glyph_len = nk_utf_decode(text, unicode, text_len);
+ while (glyph_len) {
+ if (i == pos) {
+ *len = glyph_len;
+ break;
+ }
+
+ i++;
+ src_len = src_len + glyph_len;
+ glyph_len = nk_utf_decode(text + src_len, unicode, text_len - src_len);
+ }
+ if (i != pos) return 0;
+ return text + src_len;
+}
+
+NK_API nk_rune
+nk_str_rune_at(const struct nk_str *str, int pos)
+{
+ int len;
+ nk_rune unicode = 0;
+ nk_str_at_const(str, pos, &unicode, &len);
+ return unicode;
+}
+
+NK_API char*
+nk_str_get(struct nk_str *s)
+{
+ NK_ASSERT(s);
+ if (!s || !s->len || !s->buffer.allocated) return 0;
+ return (char*)s->buffer.memory.ptr;
+}
+
+NK_API const char*
+nk_str_get_const(const struct nk_str *s)
+{
+ NK_ASSERT(s);
+ if (!s || !s->len || !s->buffer.allocated) return 0;
+ return (const char*)s->buffer.memory.ptr;
+}
+
+NK_API int
+nk_str_len(struct nk_str *s)
+{
+ NK_ASSERT(s);
+ if (!s || !s->len || !s->buffer.allocated) return 0;
+ return s->len;
+}
+
+NK_API int
+nk_str_len_char(struct nk_str *s)
+{
+ NK_ASSERT(s);
+ if (!s || !s->len || !s->buffer.allocated) return 0;
+ return (int)s->buffer.allocated;
+}
+
+NK_API void
+nk_str_clear(struct nk_str *str)
+{
+ NK_ASSERT(str);
+ nk_buffer_clear(&str->buffer);
+ str->len = 0;
+}
+
+NK_API void
+nk_str_free(struct nk_str *str)
+{
+ NK_ASSERT(str);
+ nk_buffer_free(&str->buffer);
+ str->len = 0;
+}
+
+/*
+ * ==============================================================
+ *
+ * Command buffer
+ *
+ * ===============================================================
+*/
+NK_INTERN void
+nk_command_buffer_init(struct nk_command_buffer *cmdbuf,
+ struct nk_buffer *buffer, enum nk_command_clipping clip)
+{
+ NK_ASSERT(cmdbuf);
+ NK_ASSERT(buffer);
+ if (!cmdbuf || !buffer) return;
+ cmdbuf->base = buffer;
+ cmdbuf->use_clipping = clip;
+ cmdbuf->begin = buffer->allocated;
+ cmdbuf->end = buffer->allocated;
+ cmdbuf->last = buffer->allocated;
+}
+
+NK_INTERN void
+nk_command_buffer_reset(struct nk_command_buffer *buffer)
+{
+ NK_ASSERT(buffer);
+ if (!buffer) return;
+ buffer->begin = 0;
+ buffer->end = 0;
+ buffer->last = 0;
+ buffer->clip = nk_null_rect;
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+ buffer->userdata.ptr = 0;
+#endif
+}
+
+NK_INTERN void*
+nk_command_buffer_push(struct nk_command_buffer* b,
+ enum nk_command_type t, nk_size size)
+{
+ NK_STORAGE const nk_size align = NK_ALIGNOF(struct nk_command);
+ struct nk_command *cmd;
+ nk_size alignment;
+ void *unaligned;
+ void *memory;
+
+ NK_ASSERT(b);
+ NK_ASSERT(b->base);
+ if (!b) return 0;
+
+ cmd = (struct nk_command*)nk_buffer_alloc(b->base,NK_BUFFER_FRONT,size,align);
+ if (!cmd) return 0;
+
+ /* make sure the offset to the next command is aligned */
+ b->last = (nk_size)((nk_byte*)cmd - (nk_byte*)b->base->memory.ptr);
+ unaligned = (nk_byte*)cmd + size;
+ memory = NK_ALIGN_PTR(unaligned, align);
+ alignment = (nk_size)((nk_byte*)memory - (nk_byte*)unaligned);
+
+ cmd->type = t;
+ cmd->next = b->base->allocated + alignment;
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+ cmd->userdata = b->userdata;
+#endif
+ b->end = cmd->next;
+ return cmd;
+}
+
+NK_API void
+nk_push_scissor(struct nk_command_buffer *b, struct nk_rect r)
+{
+ struct nk_command_scissor *cmd;
+ NK_ASSERT(b);
+ if (!b) return;
+
+ b->clip.x = r.x;
+ b->clip.y = r.y;
+ b->clip.w = r.w;
+ b->clip.h = r.h;
+ cmd = (struct nk_command_scissor*)
+ nk_command_buffer_push(b, NK_COMMAND_SCISSOR, sizeof(*cmd));
+
+ if (!cmd) return;
+ cmd->x = (short)r.x;
+ cmd->y = (short)r.y;
+ cmd->w = (unsigned short)NK_MAX(0, r.w);
+ cmd->h = (unsigned short)NK_MAX(0, r.h);
+}
+
+NK_API void
+nk_stroke_line(struct nk_command_buffer *b, float x0, float y0,
+ float x1, float y1, float line_thickness, struct nk_color c)
+{
+ struct nk_command_line *cmd;
+ NK_ASSERT(b);
+ if (!b) return;
+ cmd = (struct nk_command_line*)
+ nk_command_buffer_push(b, NK_COMMAND_LINE, sizeof(*cmd));
+ if (!cmd) return;
+ cmd->line_thickness = (unsigned short)line_thickness;
+ cmd->begin.x = (short)x0;
+ cmd->begin.y = (short)y0;
+ cmd->end.x = (short)x1;
+ cmd->end.y = (short)y1;
+ cmd->color = c;
+}
+
+NK_API void
+nk_stroke_curve(struct nk_command_buffer *b, float ax, float ay,
+ float ctrl0x, float ctrl0y, float ctrl1x, float ctrl1y,
+ float bx, float by, float line_thickness, struct nk_color col)
+{
+ struct nk_command_curve *cmd;
+ NK_ASSERT(b);
+ if (!b || col.a == 0) return;
+
+ cmd = (struct nk_command_curve*)
+ nk_command_buffer_push(b, NK_COMMAND_CURVE, sizeof(*cmd));
+ if (!cmd) return;
+ cmd->line_thickness = (unsigned short)line_thickness;
+ cmd->begin.x = (short)ax;
+ cmd->begin.y = (short)ay;
+ cmd->ctrl[0].x = (short)ctrl0x;
+ cmd->ctrl[0].y = (short)ctrl0y;
+ cmd->ctrl[1].x = (short)ctrl1x;
+ cmd->ctrl[1].y = (short)ctrl1y;
+ cmd->end.x = (short)bx;
+ cmd->end.y = (short)by;
+ cmd->color = col;
+}
+
+NK_API void
+nk_stroke_rect(struct nk_command_buffer *b, struct nk_rect rect,
+ float rounding, float line_thickness, struct nk_color c)
+{
+ struct nk_command_rect *cmd;
+ NK_ASSERT(b);
+ if (!b || c.a == 0) return;
+ if (b->use_clipping) {
+ const struct nk_rect *clip = &b->clip;
+ if (!NK_INTERSECT(rect.x, rect.y, rect.w, rect.h,
+ clip->x, clip->y, clip->w, clip->h)) return;
+ }
+
+ cmd = (struct nk_command_rect*)
+ nk_command_buffer_push(b, NK_COMMAND_RECT, sizeof(*cmd));
+ if (!cmd) return;
+ cmd->rounding = (unsigned short)rounding;
+ cmd->line_thickness = (unsigned short)line_thickness;
+ cmd->x = (short)rect.x;
+ cmd->y = (short)rect.y;
+ cmd->w = (unsigned short)NK_MAX(0, rect.w);
+ cmd->h = (unsigned short)NK_MAX(0, rect.h);
+ cmd->color = c;
+}
+
+NK_API void
+nk_fill_rect(struct nk_command_buffer *b, struct nk_rect rect,
+ float rounding, struct nk_color c)
+{
+ struct nk_command_rect_filled *cmd;
+ NK_ASSERT(b);
+ if (!b || c.a == 0) return;
+ if (b->use_clipping) {
+ const struct nk_rect *clip = &b->clip;
+ if (!NK_INTERSECT(rect.x, rect.y, rect.w, rect.h,
+ clip->x, clip->y, clip->w, clip->h)) return;
+ }
+
+ cmd = (struct nk_command_rect_filled*)
+ nk_command_buffer_push(b, NK_COMMAND_RECT_FILLED, sizeof(*cmd));
+ if (!cmd) return;
+ cmd->rounding = (unsigned short)rounding;
+ cmd->x = (short)rect.x;
+ cmd->y = (short)rect.y;
+ cmd->w = (unsigned short)NK_MAX(0, rect.w);
+ cmd->h = (unsigned short)NK_MAX(0, rect.h);
+ cmd->color = c;
+}
+
+NK_API void
+nk_fill_rect_multi_color(struct nk_command_buffer *b, struct nk_rect rect,
+ struct nk_color left, struct nk_color top, struct nk_color right,
+ struct nk_color bottom)
+{
+ struct nk_command_rect_multi_color *cmd;
+ NK_ASSERT(b);
+ if (!b) return;
+ if (b->use_clipping) {
+ const struct nk_rect *clip = &b->clip;
+ if (!NK_INTERSECT(rect.x, rect.y, rect.w, rect.h,
+ clip->x, clip->y, clip->w, clip->h)) return;
+ }
+
+ cmd = (struct nk_command_rect_multi_color*)
+ nk_command_buffer_push(b, NK_COMMAND_RECT_MULTI_COLOR, sizeof(*cmd));
+ if (!cmd) return;
+ cmd->x = (short)rect.x;
+ cmd->y = (short)rect.y;
+ cmd->w = (unsigned short)NK_MAX(0, rect.w);
+ cmd->h = (unsigned short)NK_MAX(0, rect.h);
+ cmd->left = left;
+ cmd->top = top;
+ cmd->right = right;
+ cmd->bottom = bottom;
+}
+
+NK_API void
+nk_stroke_circle(struct nk_command_buffer *b, struct nk_rect r,
+ float line_thickness, struct nk_color c)
+{
+ struct nk_command_circle *cmd;
+ if (!b || c.a == 0) return;
+ if (b->use_clipping) {
+ const struct nk_rect *clip = &b->clip;
+ if (!NK_INTERSECT(r.x, r.y, r.w, r.h, clip->x, clip->y, clip->w, clip->h))
+ return;
+ }
+
+ cmd = (struct nk_command_circle*)
+ nk_command_buffer_push(b, NK_COMMAND_CIRCLE, sizeof(*cmd));
+ if (!cmd) return;
+ cmd->line_thickness = (unsigned short)line_thickness;
+ cmd->x = (short)r.x;
+ cmd->y = (short)r.y;
+ cmd->w = (unsigned short)NK_MAX(r.w, 0);
+ cmd->h = (unsigned short)NK_MAX(r.h, 0);
+ cmd->color = c;
+}
+
+NK_API void
+nk_fill_circle(struct nk_command_buffer *b, struct nk_rect r, struct nk_color c)
+{
+ struct nk_command_circle_filled *cmd;
+ NK_ASSERT(b);
+ if (!b || c.a == 0) return;
+ if (b->use_clipping) {
+ const struct nk_rect *clip = &b->clip;
+ if (!NK_INTERSECT(r.x, r.y, r.w, r.h, clip->x, clip->y, clip->w, clip->h))
+ return;
+ }
+
+ cmd = (struct nk_command_circle_filled*)
+ nk_command_buffer_push(b, NK_COMMAND_CIRCLE_FILLED, sizeof(*cmd));
+ if (!cmd) return;
+ cmd->x = (short)r.x;
+ cmd->y = (short)r.y;
+ cmd->w = (unsigned short)NK_MAX(r.w, 0);
+ cmd->h = (unsigned short)NK_MAX(r.h, 0);
+ cmd->color = c;
+}
+
+NK_API void
+nk_stroke_arc(struct nk_command_buffer *b, float cx, float cy, float radius,
+ float a_min, float a_max, float line_thickness, struct nk_color c)
+{
+ struct nk_command_arc *cmd;
+ if (!b || c.a == 0) return;
+ cmd = (struct nk_command_arc*)
+ nk_command_buffer_push(b, NK_COMMAND_ARC, sizeof(*cmd));
+ if (!cmd) return;
+ cmd->line_thickness = (unsigned short)line_thickness;
+ cmd->cx = (short)cx;
+ cmd->cy = (short)cy;
+ cmd->r = (unsigned short)radius;
+ cmd->a[0] = a_min;
+ cmd->a[1] = a_max;
+ cmd->color = c;
+}
+
+NK_API void
+nk_fill_arc(struct nk_command_buffer *b, float cx, float cy, float radius,
+ float a_min, float a_max, struct nk_color c)
+{
+ struct nk_command_arc_filled *cmd;
+ NK_ASSERT(b);
+ if (!b || c.a == 0) return;
+ cmd = (struct nk_command_arc_filled*)
+ nk_command_buffer_push(b, NK_COMMAND_ARC_FILLED, sizeof(*cmd));
+ if (!cmd) return;
+ cmd->cx = (short)cx;
+ cmd->cy = (short)cy;
+ cmd->r = (unsigned short)radius;
+ cmd->a[0] = a_min;
+ cmd->a[1] = a_max;
+ cmd->color = c;
+}
+
+NK_API void
+nk_stroke_triangle(struct nk_command_buffer *b, float x0, float y0, float x1,
+ float y1, float x2, float y2, float line_thickness, struct nk_color c)
+{
+ struct nk_command_triangle *cmd;
+ NK_ASSERT(b);
+ if (!b || c.a == 0) return;
+ if (b->use_clipping) {
+ const struct nk_rect *clip = &b->clip;
+ if (!NK_INBOX(x0, y0, clip->x, clip->y, clip->w, clip->h) &&
+ !NK_INBOX(x1, y1, clip->x, clip->y, clip->w, clip->h) &&
+ !NK_INBOX(x2, y2, clip->x, clip->y, clip->w, clip->h))
+ return;
+ }
+
+ cmd = (struct nk_command_triangle*)
+ nk_command_buffer_push(b, NK_COMMAND_TRIANGLE, sizeof(*cmd));
+ if (!cmd) return;
+ cmd->line_thickness = (unsigned short)line_thickness;
+ cmd->a.x = (short)x0;
+ cmd->a.y = (short)y0;
+ cmd->b.x = (short)x1;
+ cmd->b.y = (short)y1;
+ cmd->c.x = (short)x2;
+ cmd->c.y = (short)y2;
+ cmd->color = c;
+}
+
+NK_API void
+nk_fill_triangle(struct nk_command_buffer *b, float x0, float y0, float x1,
+ float y1, float x2, float y2, struct nk_color c)
+{
+ struct nk_command_triangle_filled *cmd;
+ NK_ASSERT(b);
+ if (!b || c.a == 0) return;
+ if (!b) return;
+ if (b->use_clipping) {
+ const struct nk_rect *clip = &b->clip;
+ if (!NK_INBOX(x0, y0, clip->x, clip->y, clip->w, clip->h) &&
+ !NK_INBOX(x1, y1, clip->x, clip->y, clip->w, clip->h) &&
+ !NK_INBOX(x2, y2, clip->x, clip->y, clip->w, clip->h))
+ return;
+ }
+
+ cmd = (struct nk_command_triangle_filled*)
+ nk_command_buffer_push(b, NK_COMMAND_TRIANGLE_FILLED, sizeof(*cmd));
+ if (!cmd) return;
+ cmd->a.x = (short)x0;
+ cmd->a.y = (short)y0;
+ cmd->b.x = (short)x1;
+ cmd->b.y = (short)y1;
+ cmd->c.x = (short)x2;
+ cmd->c.y = (short)y2;
+ cmd->color = c;
+}
+
+NK_API void
+nk_stroke_polygon(struct nk_command_buffer *b, float *points, int point_count,
+ float line_thickness, struct nk_color col)
+{
+ int i;
+ nk_size size = 0;
+ struct nk_command_polygon *cmd;
+
+ NK_ASSERT(b);
+ if (!b || col.a == 0) return;
+ size = sizeof(*cmd) + sizeof(short) * 2 * (nk_size)point_count;
+ cmd = (struct nk_command_polygon*) nk_command_buffer_push(b, NK_COMMAND_POLYGON, size);
+ if (!cmd) return;
+ cmd->line_thickness = (unsigned short)line_thickness;
+ cmd->color = col;
+ cmd->point_count = (unsigned short)point_count;
+ for (i = 0; i < point_count; ++i) {
+ cmd->points[i].x = (short)points[i*2];
+ cmd->points[i].y = (short)points[i*2+1];
+ }
+}
+
+NK_API void
+nk_fill_polygon(struct nk_command_buffer *b, float *points, int point_count,
+ struct nk_color col)
+{
+ int i;
+ nk_size size = 0;
+ struct nk_command_polygon_filled *cmd;
+
+ NK_ASSERT(b);
+ if (!b || col.a == 0) return;
+ size = sizeof(*cmd) + sizeof(short) * 2 * (nk_size)point_count;
+ cmd = (struct nk_command_polygon_filled*)
+ nk_command_buffer_push(b, NK_COMMAND_POLYGON_FILLED, size);
+ if (!cmd) return;
+ cmd->color = col;
+ cmd->point_count = (unsigned short)point_count;
+ for (i = 0; i < point_count; ++i) {
+ cmd->points[i].x = (short)points[i*2];
+ cmd->points[i].y = (short)points[i*2+1];
+ }
+}
+
+NK_API void
+nk_stroke_polyline(struct nk_command_buffer *b, float *points, int point_count,
+ float line_thickness, struct nk_color col)
+{
+ int i;
+ nk_size size = 0;
+ struct nk_command_polyline *cmd;
+
+ NK_ASSERT(b);
+ if (!b || col.a == 0) return;
+ size = sizeof(*cmd) + sizeof(short) * 2 * (nk_size)point_count;
+ cmd = (struct nk_command_polyline*) nk_command_buffer_push(b, NK_COMMAND_POLYLINE, size);
+ if (!cmd) return;
+ cmd->color = col;
+ cmd->point_count = (unsigned short)point_count;
+ cmd->line_thickness = (unsigned short)line_thickness;
+ for (i = 0; i < point_count; ++i) {
+ cmd->points[i].x = (short)points[i*2];
+ cmd->points[i].y = (short)points[i*2+1];
+ }
+}
+
+NK_API void
+nk_draw_image(struct nk_command_buffer *b, struct nk_rect r,
+ const struct nk_image *img)
+{
+ struct nk_command_image *cmd;
+ NK_ASSERT(b);
+ if (!b) return;
+ if (b->use_clipping) {
+ const struct nk_rect *c = &b->clip;
+ if (!c->w || !c->h || !NK_INTERSECT(r.x, r.y, r.w, r.h, c->x, c->y, c->w, c->h))
+ return;
+ }
+
+ cmd = (struct nk_command_image*)
+ nk_command_buffer_push(b, NK_COMMAND_IMAGE, sizeof(*cmd));
+ if (!cmd) return;
+ cmd->x = (short)r.x;
+ cmd->y = (short)r.y;
+ cmd->w = (unsigned short)NK_MAX(0, r.w);
+ cmd->h = (unsigned short)NK_MAX(0, r.h);
+ cmd->img = *img;
+}
+
+NK_API void
+nk_draw_text(struct nk_command_buffer *b, struct nk_rect r,
+ const char *string, int length, const struct nk_user_font *font,
+ struct nk_color bg, struct nk_color fg)
+{
+ float text_width = 0;
+ struct nk_command_text *cmd;
+
+ NK_ASSERT(b);
+ NK_ASSERT(font);
+ if (!b || !string || !length || (bg.a == 0 && fg.a == 0)) return;
+ if (b->use_clipping) {
+ const struct nk_rect *c = &b->clip;
+ if (!c->w || !c->h || !NK_INTERSECT(r.x, r.y, r.w, r.h, c->x, c->y, c->w, c->h))
+ return;
+ }
+
+ /* make sure text fits inside bounds */
+ text_width = font->width(font->userdata, font->height, string, length);
+ if (text_width > r.w){
+ int glyphs = 0;
+ float txt_width = (float)text_width;
+ length = nk_text_clamp(font, string, length, r.w, &glyphs, &txt_width);
+ }
+
+ if (!length) return;
+ cmd = (struct nk_command_text*)
+ nk_command_buffer_push(b, NK_COMMAND_TEXT, sizeof(*cmd) + (nk_size)(length + 1));
+ if (!cmd) return;
+ cmd->x = (short)r.x;
+ cmd->y = (short)r.y;
+ cmd->w = (unsigned short)r.w;
+ cmd->h = (unsigned short)r.h;
+ cmd->background = bg;
+ cmd->foreground = fg;
+ cmd->font = font;
+ cmd->length = length;
+ cmd->height = font->height;
+ NK_MEMCPY(cmd->string, string, (nk_size)length);
+ cmd->string[length] = '\0';
+}
+
+/* ==============================================================
+ *
+ * DRAW LIST
+ *
+ * ===============================================================*/
+#ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+NK_API void
+nk_draw_list_init(struct nk_draw_list *list)
+{
+ nk_size i = 0;
+ nk_zero(list, sizeof(*list));
+ for (i = 0; i < NK_LEN(list->circle_vtx); ++i) {
+ const float a = ((float)i / (float)NK_LEN(list->circle_vtx)) * 2 * NK_PI;
+ list->circle_vtx[i].x = (float)NK_COS(a);
+ list->circle_vtx[i].y = (float)NK_SIN(a);
+ }
+}
+
+NK_API void
+nk_draw_list_setup(struct nk_draw_list *canvas, float global_alpha,
+ enum nk_anti_aliasing line_AA, enum nk_anti_aliasing shape_AA,
+ struct nk_draw_null_texture null, struct nk_buffer *cmds,
+ struct nk_buffer *vertices, struct nk_buffer *elements)
+{
+ canvas->null = null;
+ canvas->clip_rect = nk_null_rect;
+ canvas->vertices = vertices;
+ canvas->elements = elements;
+ canvas->buffer = cmds;
+ canvas->line_AA = line_AA;
+ canvas->shape_AA = shape_AA;
+ canvas->global_alpha = global_alpha;
+}
+
+NK_API const struct nk_draw_command*
+nk__draw_list_begin(const struct nk_draw_list *canvas, const struct nk_buffer *buffer)
+{
+ nk_byte *memory;
+ nk_size offset;
+ const struct nk_draw_command *cmd;
+
+ NK_ASSERT(buffer);
+ if (!buffer || !buffer->size || !canvas->cmd_count)
+ return 0;
+
+ memory = (nk_byte*)buffer->memory.ptr;
+ offset = buffer->memory.size - canvas->cmd_offset;
+ cmd = nk_ptr_add(const struct nk_draw_command, memory, offset);
+ return cmd;
+}
+
+NK_API const struct nk_draw_command*
+nk__draw_list_next(const struct nk_draw_command *cmd,
+ const struct nk_buffer *buffer, const struct nk_draw_list *canvas)
+{
+ nk_byte *memory;
+ nk_size size;
+ nk_size offset;
+ const struct nk_draw_command *end;
+
+ NK_ASSERT(buffer);
+ NK_ASSERT(canvas);
+ if (!cmd || !buffer || !canvas)
+ return 0;
+
+ memory = (nk_byte*)buffer->memory.ptr;
+ size = buffer->memory.size;
+ offset = size - canvas->cmd_offset;
+ end = nk_ptr_add(const struct nk_draw_command, memory, offset);
+ end -= (canvas->cmd_count-1);
+
+ if (cmd <= end) return 0;
+ return (cmd-1);
+}
+
+NK_API void
+nk_draw_list_clear(struct nk_draw_list *list)
+{
+ NK_ASSERT(list);
+ if (!list) return;
+ if (list->buffer)
+ nk_buffer_clear(list->buffer);
+ if (list->elements)
+ nk_buffer_clear(list->vertices);
+ if (list->vertices)
+ nk_buffer_clear(list->elements);
+
+ list->element_count = 0;
+ list->vertex_count = 0;
+ list->cmd_offset = 0;
+ list->cmd_count = 0;
+ list->path_count = 0;
+ list->vertices = 0;
+ list->elements = 0;
+ list->clip_rect = nk_null_rect;
+}
+
+NK_INTERN struct nk_vec2*
+nk_draw_list_alloc_path(struct nk_draw_list *list, int count)
+{
+ struct nk_vec2 *points;
+ NK_STORAGE const nk_size point_align = NK_ALIGNOF(struct nk_vec2);
+ NK_STORAGE const nk_size point_size = sizeof(struct nk_vec2);
+ points = (struct nk_vec2*)
+ nk_buffer_alloc(list->buffer, NK_BUFFER_FRONT,
+ point_size * (nk_size)count, point_align);
+
+ if (!points) return 0;
+ if (!list->path_offset) {
+ void *memory = nk_buffer_memory(list->buffer);
+ list->path_offset = (unsigned int)((nk_byte*)points - (nk_byte*)memory);
+ }
+ list->path_count += (unsigned int)count;
+ return points;
+}
+
+NK_INTERN struct nk_vec2
+nk_draw_list_path_last(struct nk_draw_list *list)
+{
+ void *memory;
+ struct nk_vec2 *point;
+ NK_ASSERT(list->path_count);
+ memory = nk_buffer_memory(list->buffer);
+ point = nk_ptr_add(struct nk_vec2, memory, list->path_offset);
+ point += (list->path_count-1);
+ return *point;
+}
+
+NK_INTERN struct nk_draw_command*
+nk_draw_list_push_command(struct nk_draw_list *list, struct nk_rect clip,
+ nk_handle texture)
+{
+ NK_STORAGE const nk_size cmd_align = NK_ALIGNOF(struct nk_draw_command);
+ NK_STORAGE const nk_size cmd_size = sizeof(struct nk_draw_command);
+ struct nk_draw_command *cmd;
+
+ NK_ASSERT(list);
+ cmd = (struct nk_draw_command*)
+ nk_buffer_alloc(list->buffer, NK_BUFFER_BACK, cmd_size, cmd_align);
+
+ if (!cmd) return 0;
+ if (!list->cmd_count) {
+ nk_byte *memory = (nk_byte*)nk_buffer_memory(list->buffer);
+ nk_size total = nk_buffer_total(list->buffer);
+ memory = nk_ptr_add(nk_byte, memory, total);
+ list->cmd_offset = (nk_size)(memory - (nk_byte*)cmd);
+ }
+
+ cmd->elem_count = 0;
+ cmd->clip_rect = clip;
+ cmd->texture = texture;
+
+ list->cmd_count++;
+ list->clip_rect = clip;
+ return cmd;
+}
+
+NK_INTERN struct nk_draw_command*
+nk_draw_list_command_last(struct nk_draw_list *list)
+{
+ void *memory;
+ nk_size size;
+ struct nk_draw_command *cmd;
+ NK_ASSERT(list->cmd_count);
+
+ memory = nk_buffer_memory(list->buffer);
+ size = nk_buffer_total(list->buffer);
+ cmd = nk_ptr_add(struct nk_draw_command, memory, size - list->cmd_offset);
+ return (cmd - (list->cmd_count-1));
+}
+
+NK_INTERN void
+nk_draw_list_add_clip(struct nk_draw_list *list, struct nk_rect rect)
+{
+ NK_ASSERT(list);
+ if (!list) return;
+ if (!list->cmd_count) {
+ nk_draw_list_push_command(list, rect, list->null.texture);
+ } else {
+ struct nk_draw_command *prev = nk_draw_list_command_last(list);
+ if (prev->elem_count == 0)
+ prev->clip_rect = rect;
+ nk_draw_list_push_command(list, rect, prev->texture);
+ }
+}
+
+NK_INTERN void
+nk_draw_list_push_image(struct nk_draw_list *list, nk_handle texture)
+{
+ NK_ASSERT(list);
+ if (!list) return;
+ if (!list->cmd_count) {
+ nk_draw_list_push_command(list, nk_null_rect, texture);
+ } else {
+ struct nk_draw_command *prev = nk_draw_list_command_last(list);
+ if (prev->elem_count == 0)
+ prev->texture = texture;
+ else if (prev->texture.id != texture.id)
+ nk_draw_list_push_command(list, prev->clip_rect, texture);
+ }
+}
+
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+NK_API void
+nk_draw_list_push_userdata(struct nk_draw_list *list, nk_handle userdata)
+{
+ NK_ASSERT(list);
+ if (!list) return;
+ if (!list->cmd_count) {
+ struct nk_draw_command *prev;
+ nk_draw_list_push_command(list, nk_null_rect, list->null.texture);
+ prev = nk_draw_list_command_last(list);
+ prev->userdata = userdata;
+ } else {
+ struct nk_draw_command *prev = nk_draw_list_command_last(list);
+ if (prev->elem_count == 0) {
+ prev->userdata = userdata;
+ } else if (prev->userdata.ptr != userdata.ptr) {
+ nk_draw_list_push_command(list, prev->clip_rect, prev->texture);
+ prev = nk_draw_list_command_last(list);
+ prev->userdata = userdata;
+ }
+ }
+}
+#endif
+
+NK_INTERN struct nk_draw_vertex*
+nk_draw_list_alloc_vertices(struct nk_draw_list *list, nk_size count)
+{
+ struct nk_draw_vertex *vtx;
+ NK_STORAGE const nk_size vtx_align = NK_ALIGNOF(struct nk_draw_vertex);
+ NK_STORAGE const nk_size vtx_size = sizeof(struct nk_draw_vertex);
+ NK_ASSERT(list);
+ if (!list) return 0;
+
+ vtx = (struct nk_draw_vertex*)
+ nk_buffer_alloc(list->vertices, NK_BUFFER_FRONT, vtx_size*count, vtx_align);
+ if (!vtx) return 0;
+ list->vertex_count += (unsigned int)count;
+ return vtx;
+}
+
+NK_INTERN nk_draw_index*
+nk_draw_list_alloc_elements(struct nk_draw_list *list, nk_size count)
+{
+ nk_draw_index *ids;
+ struct nk_draw_command *cmd;
+ NK_STORAGE const nk_size elem_align = NK_ALIGNOF(nk_draw_index);
+ NK_STORAGE const nk_size elem_size = sizeof(nk_draw_index);
+ NK_ASSERT(list);
+ if (!list) return 0;
+
+ ids = (nk_draw_index*)
+ nk_buffer_alloc(list->elements, NK_BUFFER_FRONT, elem_size*count, elem_align);
+ if (!ids) return 0;
+ cmd = nk_draw_list_command_last(list);
+ list->element_count += (unsigned int)count;
+ cmd->elem_count += (unsigned int)count;
+ return ids;
+}
+
+NK_INTERN struct nk_draw_vertex
+nk_draw_vertex(struct nk_vec2 pos, struct nk_vec2 uv, nk_draw_vertex_color col)
+{
+ struct nk_draw_vertex out;
+ out.position = pos;
+ out.uv = uv;
+ out.col = col;
+ return out;
+}
+
+NK_API void
+nk_draw_list_stroke_poly_line(struct nk_draw_list *list, const struct nk_vec2 *points,
+ const unsigned int points_count, struct nk_color color, enum nk_draw_list_stroke closed,
+ float thickness, enum nk_anti_aliasing aliasing)
+{
+ nk_size count;
+ int thick_line;
+ nk_draw_vertex_color col;
+ NK_ASSERT(list);
+ if (!list || points_count < 2) return;
+
+ color.a = (nk_byte)((float)color.a * list->global_alpha);
+ col = nk_color_u32(color);
+ count = points_count;
+ if (!closed) count = points_count-1;
+ thick_line = thickness > 1.0f;
+
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+ nk_draw_list_push_userdata(list, list->userdata);
+#endif
+
+ if (aliasing == NK_ANTI_ALIASING_ON) {
+ /* ANTI-ALIASED STROKE */
+ const float AA_SIZE = 1.0f;
+ NK_STORAGE const nk_size pnt_align = NK_ALIGNOF(struct nk_vec2);
+ NK_STORAGE const nk_size pnt_size = sizeof(struct nk_vec2);
+ const nk_draw_vertex_color col_trans = col & 0x00ffffff;
+
+ /* allocate vertices and elements */
+ nk_size i1 = 0;
+ nk_size vertex_offset;
+ nk_size index = list->vertex_count;
+ const nk_size idx_count = (thick_line) ? (count * 18) : (count * 12);
+ const nk_size vtx_count = (thick_line) ? (points_count * 4): (points_count *3);
+ struct nk_draw_vertex *vtx = nk_draw_list_alloc_vertices(list, vtx_count);
+ nk_draw_index *ids = nk_draw_list_alloc_elements(list, idx_count);
+
+ nk_size size;
+ struct nk_vec2 *normals, *temp;
+ NK_ASSERT(vtx && ids);
+ if (!vtx || !ids) return;
+
+ /* temporary allocate normals + points */
+ vertex_offset = (nk_size)((nk_byte*)vtx - (nk_byte*)list->vertices->memory.ptr);
+ nk_buffer_mark(list->vertices, NK_BUFFER_FRONT);
+ size = pnt_size * ((thick_line) ? 5 : 3) * points_count;
+ normals = (struct nk_vec2*)
+ nk_buffer_alloc(list->vertices, NK_BUFFER_FRONT, size, pnt_align);
+ NK_ASSERT(normals);
+ if (!normals) return;
+ vtx = (struct nk_draw_vertex*)(void*)((nk_byte*)list->vertices->memory.ptr + vertex_offset);
+ temp = normals + points_count;
+
+ /* calculate normals */
+ for (i1 = 0; i1 < count; ++i1) {
+ const nk_size i2 = ((i1 + 1) == points_count) ? 0 : (i1 + 1);
+ struct nk_vec2 diff = nk_vec2_sub(points[i2], points[i1]);
+ float len;
+
+ /* vec2 inverted length */
+ len = nk_vec2_len_sqr(diff);
+ if (len != 0.0f)
+ len = nk_inv_sqrt(len);
+ else len = 1.0f;
+
+ diff = nk_vec2_muls(diff, len);
+ normals[i1].x = diff.y;
+ normals[i1].y = -diff.x;
+ }
+
+ if (!closed)
+ normals[points_count-1] = normals[points_count-2];
+
+ if (!thick_line) {
+ nk_size idx1, i;
+ if (!closed) {
+ struct nk_vec2 d;
+ temp[0] = nk_vec2_add(points[0], nk_vec2_muls(normals[0], AA_SIZE));
+ temp[1] = nk_vec2_sub(points[0], nk_vec2_muls(normals[0], AA_SIZE));
+ d = nk_vec2_muls(normals[points_count-1], AA_SIZE);
+ temp[(points_count-1) * 2 + 0] = nk_vec2_add(points[points_count-1], d);
+ temp[(points_count-1) * 2 + 1] = nk_vec2_sub(points[points_count-1], d);
+ }
+
+ /* fill elements */
+ idx1 = index;
+ for (i1 = 0; i1 < count; i1++) {
+ struct nk_vec2 dm;
+ float dmr2;
+ nk_size i2 = ((i1 + 1) == points_count) ? 0 : (i1 + 1);
+ nk_size idx2 = ((i1+1) == points_count) ? index: (idx1 + 3);
+
+ /* average normals */
+ dm = nk_vec2_muls(nk_vec2_add(normals[i1], normals[i2]), 0.5f);
+ dmr2 = dm.x * dm.x + dm.y* dm.y;
+ if (dmr2 > 0.000001f) {
+ float scale = 1.0f/dmr2;
+ scale = NK_MIN(100.0f, scale);
+ dm = nk_vec2_muls(dm, scale);
+ }
+
+ dm = nk_vec2_muls(dm, AA_SIZE);
+ temp[i2*2+0] = nk_vec2_add(points[i2], dm);
+ temp[i2*2+1] = nk_vec2_sub(points[i2], dm);
+
+ ids[0] = (nk_draw_index)(idx2 + 0); ids[1] = (nk_draw_index)(idx1+0);
+ ids[2] = (nk_draw_index)(idx1 + 2); ids[3] = (nk_draw_index)(idx1+2);
+ ids[4] = (nk_draw_index)(idx2 + 2); ids[5] = (nk_draw_index)(idx2+0);
+ ids[6] = (nk_draw_index)(idx2 + 1); ids[7] = (nk_draw_index)(idx1+1);
+ ids[8] = (nk_draw_index)(idx1 + 0); ids[9] = (nk_draw_index)(idx1+0);
+ ids[10]= (nk_draw_index)(idx2 + 0); ids[11]= (nk_draw_index)(idx2+1);
+ ids += 12;
+ idx1 = idx2;
+ }
+
+ /* fill vertices */
+ for (i = 0; i < points_count; ++i) {
+ const struct nk_vec2 uv = list->null.uv;
+ vtx[0] = nk_draw_vertex(points[i], uv, col);
+ vtx[1] = nk_draw_vertex(temp[i*2+0], uv, col_trans);
+ vtx[2] = nk_draw_vertex(temp[i*2+1], uv, col_trans);
+ vtx += 3;
+ }
+ } else {
+ nk_size idx1, i;
+ const float half_inner_thickness = (thickness - AA_SIZE) * 0.5f;
+ if (!closed) {
+ struct nk_vec2 d1 = nk_vec2_muls(normals[0], half_inner_thickness + AA_SIZE);
+ struct nk_vec2 d2 = nk_vec2_muls(normals[0], half_inner_thickness);
+
+ temp[0] = nk_vec2_add(points[0], d1);
+ temp[1] = nk_vec2_add(points[0], d2);
+ temp[2] = nk_vec2_sub(points[0], d2);
+ temp[3] = nk_vec2_sub(points[0], d1);
+
+ d1 = nk_vec2_muls(normals[points_count-1], half_inner_thickness + AA_SIZE);
+ d2 = nk_vec2_muls(normals[points_count-1], half_inner_thickness);
+
+ temp[(points_count-1)*4+0] = nk_vec2_add(points[points_count-1], d1);
+ temp[(points_count-1)*4+1] = nk_vec2_add(points[points_count-1], d2);
+ temp[(points_count-1)*4+2] = nk_vec2_sub(points[points_count-1], d2);
+ temp[(points_count-1)*4+3] = nk_vec2_sub(points[points_count-1], d1);
+ }
+
+ /* add all elements */
+ idx1 = index;
+ for (i1 = 0; i1 < count; ++i1) {
+ struct nk_vec2 dm_out, dm_in;
+ const nk_size i2 = ((i1+1) == points_count) ? 0: (i1 + 1);
+ nk_size idx2 = ((i1+1) == points_count) ? index: (idx1 + 4);
+
+ /* average normals */
+ struct nk_vec2 dm = nk_vec2_muls(nk_vec2_add(normals[i1], normals[i2]), 0.5f);
+ float dmr2 = dm.x * dm.x + dm.y* dm.y;
+ if (dmr2 > 0.000001f) {
+ float scale = 1.0f/dmr2;
+ scale = NK_MIN(100.0f, scale);
+ dm = nk_vec2_muls(dm, scale);
+ }
+
+ dm_out = nk_vec2_muls(dm, ((half_inner_thickness) + AA_SIZE));
+ dm_in = nk_vec2_muls(dm, half_inner_thickness);
+ temp[i2*4+0] = nk_vec2_add(points[i2], dm_out);
+ temp[i2*4+1] = nk_vec2_add(points[i2], dm_in);
+ temp[i2*4+2] = nk_vec2_sub(points[i2], dm_in);
+ temp[i2*4+3] = nk_vec2_sub(points[i2], dm_out);
+
+ /* add indexes */
+ ids[0] = (nk_draw_index)(idx2 + 1); ids[1] = (nk_draw_index)(idx1+1);
+ ids[2] = (nk_draw_index)(idx1 + 2); ids[3] = (nk_draw_index)(idx1+2);
+ ids[4] = (nk_draw_index)(idx2 + 2); ids[5] = (nk_draw_index)(idx2+1);
+ ids[6] = (nk_draw_index)(idx2 + 1); ids[7] = (nk_draw_index)(idx1+1);
+ ids[8] = (nk_draw_index)(idx1 + 0); ids[9] = (nk_draw_index)(idx1+0);
+ ids[10]= (nk_draw_index)(idx2 + 0); ids[11] = (nk_draw_index)(idx2+1);
+ ids[12]= (nk_draw_index)(idx2 + 2); ids[13] = (nk_draw_index)(idx1+2);
+ ids[14]= (nk_draw_index)(idx1 + 3); ids[15] = (nk_draw_index)(idx1+3);
+ ids[16]= (nk_draw_index)(idx2 + 3); ids[17] = (nk_draw_index)(idx2+2);
+ ids += 18;
+ idx1 = idx2;
+ }
+
+ /* add vertices */
+ for (i = 0; i < points_count; ++i) {
+ const struct nk_vec2 uv = list->null.uv;
+ vtx[0] = nk_draw_vertex(temp[i*4+0], uv, col_trans);
+ vtx[1] = nk_draw_vertex(temp[i*4+1], uv, col);
+ vtx[2] = nk_draw_vertex(temp[i*4+2], uv, col);
+ vtx[3] = nk_draw_vertex(temp[i*4+3], uv, col_trans);
+ vtx += 4;
+ }
+ }
+
+ /* free temporary normals + points */
+ nk_buffer_reset(list->vertices, NK_BUFFER_FRONT);
+ } else {
+ /* NON ANTI-ALIASED STROKE */
+ nk_size i1 = 0;
+ nk_size idx = list->vertex_count;
+ const nk_size idx_count = count * 6;
+ const nk_size vtx_count = count * 4;
+ struct nk_draw_vertex *vtx = nk_draw_list_alloc_vertices(list, vtx_count);
+ nk_draw_index *ids = nk_draw_list_alloc_elements(list, idx_count);
+ if (!vtx || !ids) return;
+
+ for (i1 = 0; i1 < count; ++i1) {
+ float dx, dy;
+ const struct nk_vec2 uv = list->null.uv;
+ const nk_size i2 = ((i1+1) == points_count) ? 0 : i1 + 1;
+ const struct nk_vec2 p1 = points[i1];
+ const struct nk_vec2 p2 = points[i2];
+ struct nk_vec2 diff = nk_vec2_sub(p2, p1);
+ float len;
+
+ /* vec2 inverted length */
+ len = nk_vec2_len_sqr(diff);
+ if (len != 0.0f)
+ len = nk_inv_sqrt(len);
+ else len = 1.0f;
+ diff = nk_vec2_muls(diff, len);
+
+ /* add vertices */
+ dx = diff.x * (thickness * 0.5f);
+ dy = diff.y * (thickness * 0.5f);
+
+ vtx[0] = nk_draw_vertex(nk_vec2(p1.x + dy, p1.y - dx), uv, col);
+ vtx[1] = nk_draw_vertex(nk_vec2(p2.x + dy, p2.y - dx), uv, col);
+ vtx[2] = nk_draw_vertex(nk_vec2(p2.x - dy, p2.y + dx), uv, col);
+ vtx[3] = nk_draw_vertex(nk_vec2(p1.x - dy, p1.y + dx), uv, col);
+ vtx += 4;
+
+ ids[0] = (nk_draw_index)(idx+0); ids[1] = (nk_draw_index)(idx+1);
+ ids[2] = (nk_draw_index)(idx+2); ids[3] = (nk_draw_index)(idx+0);
+ ids[4] = (nk_draw_index)(idx+2); ids[5] = (nk_draw_index)(idx+3);
+ ids += 6;
+ idx += 4;
+ }
+ }
+}
+
+NK_API void
+nk_draw_list_fill_poly_convex(struct nk_draw_list *list,
+ const struct nk_vec2 *points, const unsigned int points_count,
+ struct nk_color color, enum nk_anti_aliasing aliasing)
+{
+ NK_STORAGE const nk_size pnt_align = NK_ALIGNOF(struct nk_vec2);
+ NK_STORAGE const nk_size pnt_size = sizeof(struct nk_vec2);
+ nk_draw_vertex_color col;
+ NK_ASSERT(list);
+ if (!list || points_count < 3) return;
+
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+ nk_draw_list_push_userdata(list, list->userdata);
+#endif
+
+ color.a = (nk_byte)((float)color.a * list->global_alpha);
+ col = nk_color_u32(color);
+ if (aliasing == NK_ANTI_ALIASING_ON) {
+ nk_size i = 0;
+ nk_size i0 = 0;
+ nk_size i1 = 0;
+
+ const float AA_SIZE = 1.0f;
+ nk_size vertex_offset = 0;
+ const nk_draw_vertex_color col_trans = col & 0x00ffffff;
+ nk_size index = list->vertex_count;
+ const nk_size idx_count = (points_count-2)*3 + points_count*6;
+ const nk_size vtx_count = (points_count*2);
+ struct nk_draw_vertex *vtx = nk_draw_list_alloc_vertices(list, vtx_count);
+ nk_draw_index *ids = nk_draw_list_alloc_elements(list, idx_count);
+
+ unsigned int vtx_inner_idx = (unsigned int)(index + 0);
+ unsigned int vtx_outer_idx = (unsigned int)(index + 1);
+ struct nk_vec2 *normals = 0;
+ nk_size size = 0;
+ if (!vtx || !ids) return;
+
+ /* temporary allocate normals */
+ vertex_offset = (nk_size)((nk_byte*)vtx - (nk_byte*)list->vertices->memory.ptr);
+ nk_buffer_mark(list->vertices, NK_BUFFER_FRONT);
+ size = pnt_size * points_count;
+ normals = (struct nk_vec2*)
+ nk_buffer_alloc(list->vertices, NK_BUFFER_FRONT, size, pnt_align);
+ NK_ASSERT(normals);
+ if (!normals) return;
+ vtx = (struct nk_draw_vertex*)(void*)((nk_byte*)list->vertices->memory.ptr + vertex_offset);
+
+ /* add elements */
+ for (i = 2; i < points_count; i++) {
+ ids[0] = (nk_draw_index)(vtx_inner_idx);
+ ids[1] = (nk_draw_index)(vtx_inner_idx + ((i-1) << 1));
+ ids[2] = (nk_draw_index)(vtx_inner_idx + (i << 1));
+ ids += 3;
+ }
+
+ /* compute normals */
+ for (i0 = points_count-1, i1 = 0; i1 < points_count; i0 = i1++) {
+ struct nk_vec2 p0 = points[i0];
+ struct nk_vec2 p1 = points[i1];
+ struct nk_vec2 diff = nk_vec2_sub(p1, p0);
+
+ /* vec2 inverted length */
+ float len = nk_vec2_len_sqr(diff);
+ if (len != 0.0f)
+ len = nk_inv_sqrt(len);
+ else len = 1.0f;
+ diff = nk_vec2_muls(diff, len);
+
+ normals[i0].x = diff.y;
+ normals[i0].y = -diff.x;
+ }
+
+ /* add vertices + indexes */
+ for (i0 = points_count-1, i1 = 0; i1 < points_count; i0 = i1++) {
+ const struct nk_vec2 uv = list->null.uv;
+ struct nk_vec2 n0 = normals[i0];
+ struct nk_vec2 n1 = normals[i1];
+ struct nk_vec2 dm = nk_vec2_muls(nk_vec2_add(n0, n1), 0.5f);
+
+ float dmr2 = dm.x*dm.x + dm.y*dm.y;
+ if (dmr2 > 0.000001f) {
+ float scale = 1.0f / dmr2;
+ scale = NK_MIN(scale, 100.0f);
+ dm = nk_vec2_muls(dm, scale);
+ }
+ dm = nk_vec2_muls(dm, AA_SIZE * 0.5f);
+
+ /* add vertices */
+ vtx[0] = nk_draw_vertex(nk_vec2_sub(points[i1], dm), uv, col);
+ vtx[1] = nk_draw_vertex(nk_vec2_add(points[i1], dm), uv, col_trans);
+ vtx += 2;
+
+ /* add indexes */
+ ids[0] = (nk_draw_index)(vtx_inner_idx+(i1<<1));
+ ids[1] = (nk_draw_index)(vtx_inner_idx+(i0<<1));
+ ids[2] = (nk_draw_index)(vtx_outer_idx+(i0<<1));
+ ids[3] = (nk_draw_index)(vtx_outer_idx+(i0<<1));
+ ids[4] = (nk_draw_index)(vtx_outer_idx+(i1<<1));
+ ids[5] = (nk_draw_index)(vtx_inner_idx+(i1<<1));
+ ids += 6;
+ }
+ /* free temporary normals + points */
+ nk_buffer_reset(list->vertices, NK_BUFFER_FRONT);
+ } else {
+ nk_size i = 0;
+ nk_size index = list->vertex_count;
+ const nk_size idx_count = (points_count-2)*3;
+ const nk_size vtx_count = points_count;
+ struct nk_draw_vertex *vtx = nk_draw_list_alloc_vertices(list, vtx_count);
+ nk_draw_index *ids = nk_draw_list_alloc_elements(list, idx_count);
+ if (!vtx || !ids) return;
+ for (i = 0; i < vtx_count; ++i) {
+ vtx[0] = nk_draw_vertex(points[i], list->null.uv, col);
+ vtx++;
+ }
+ for (i = 2; i < points_count; ++i) {
+ ids[0] = (nk_draw_index)index;
+ ids[1] = (nk_draw_index)(index+ i - 1);
+ ids[2] = (nk_draw_index)(index+i);
+ ids += 3;
+ }
+ }
+}
+
+NK_API void
+nk_draw_list_path_clear(struct nk_draw_list *list)
+{
+ NK_ASSERT(list);
+ if (!list) return;
+ nk_buffer_reset(list->buffer, NK_BUFFER_FRONT);
+ list->path_count = 0;
+ list->path_offset = 0;
+}
+
+NK_API void
+nk_draw_list_path_line_to(struct nk_draw_list *list, struct nk_vec2 pos)
+{
+ struct nk_vec2 *points = 0;
+ struct nk_draw_command *cmd = 0;
+ NK_ASSERT(list);
+ if (!list) return;
+ if (!list->cmd_count)
+ nk_draw_list_add_clip(list, nk_null_rect);
+
+ cmd = nk_draw_list_command_last(list);
+ if (cmd && cmd->texture.ptr != list->null.texture.ptr)
+ nk_draw_list_push_image(list, list->null.texture);
+
+ points = nk_draw_list_alloc_path(list, 1);
+ if (!points) return;
+ points[0] = pos;
+}
+
+NK_API void
+nk_draw_list_path_arc_to_fast(struct nk_draw_list *list, struct nk_vec2 center,
+ float radius, int a_min, int a_max)
+{
+ NK_ASSERT(list);
+ if (!list) return;
+ if (a_min <= a_max) {
+ int a = 0;
+ for (a = a_min; a <= a_max; a++) {
+ const struct nk_vec2 c = list->circle_vtx[(nk_size)a % NK_LEN(list->circle_vtx)];
+ const float x = center.x + c.x * radius;
+ const float y = center.y + c.y * radius;
+ nk_draw_list_path_line_to(list, nk_vec2(x, y));
+ }
+ }
+}
+
+NK_API void
+nk_draw_list_path_arc_to(struct nk_draw_list *list, struct nk_vec2 center,
+ float radius, float a_min, float a_max, unsigned int segments)
+{
+ unsigned int i = 0;
+ NK_ASSERT(list);
+ if (!list) return;
+ if (radius == 0.0f) return;
+ for (i = 0; i <= segments; ++i) {
+ const float a = a_min + ((float)i / ((float)segments) * (a_max - a_min));
+ const float x = center.x + (float)NK_COS(a) * radius;
+ const float y = center.y + (float)NK_SIN(a) * radius;
+ nk_draw_list_path_line_to(list, nk_vec2(x, y));
+ }
+}
+
+NK_API void
+nk_draw_list_path_rect_to(struct nk_draw_list *list, struct nk_vec2 a,
+ struct nk_vec2 b, float rounding)
+{
+ float r;
+ NK_ASSERT(list);
+ if (!list) return;
+ r = rounding;
+ r = NK_MIN(r, ((b.x-a.x) < 0) ? -(b.x-a.x): (b.x-a.x));
+ r = NK_MIN(r, ((b.y-a.y) < 0) ? -(b.y-a.y): (b.y-a.y));
+
+ if (r == 0.0f) {
+ nk_draw_list_path_line_to(list, a);
+ nk_draw_list_path_line_to(list, nk_vec2(b.x,a.y));
+ nk_draw_list_path_line_to(list, b);
+ nk_draw_list_path_line_to(list, nk_vec2(a.x,b.y));
+ } else {
+ nk_draw_list_path_arc_to_fast(list, nk_vec2(a.x + r, a.y + r), r, 6, 9);
+ nk_draw_list_path_arc_to_fast(list, nk_vec2(b.x - r, a.y + r), r, 9, 12);
+ nk_draw_list_path_arc_to_fast(list, nk_vec2(b.x - r, b.y - r), r, 0, 3);
+ nk_draw_list_path_arc_to_fast(list, nk_vec2(a.x + r, b.y - r), r, 3, 6);
+ }
+}
+
+NK_API void
+nk_draw_list_path_curve_to(struct nk_draw_list *list, struct nk_vec2 p2,
+ struct nk_vec2 p3, struct nk_vec2 p4, unsigned int num_segments)
+{
+ unsigned int i_step;
+ float t_step;
+ struct nk_vec2 p1;
+
+ NK_ASSERT(list);
+ NK_ASSERT(list->path_count);
+ if (!list || !list->path_count) return;
+ num_segments = NK_MAX(num_segments, 1);
+
+ p1 = nk_draw_list_path_last(list);
+ t_step = 1.0f/(float)num_segments;
+ for (i_step = 1; i_step <= num_segments; ++i_step) {
+ float t = t_step * (float)i_step;
+ float u = 1.0f - t;
+ float w1 = u*u*u;
+ float w2 = 3*u*u*t;
+ float w3 = 3*u*t*t;
+ float w4 = t * t *t;
+ float x = w1 * p1.x + w2 * p2.x + w3 * p3.x + w4 * p4.x;
+ float y = w1 * p1.y + w2 * p2.y + w3 * p3.y + w4 * p4.y;
+ nk_draw_list_path_line_to(list, nk_vec2(x,y));
+ }
+}
+
+NK_API void
+nk_draw_list_path_fill(struct nk_draw_list *list, struct nk_color color)
+{
+ struct nk_vec2 *points;
+ NK_ASSERT(list);
+ if (!list) return;
+ points = (struct nk_vec2*)nk_buffer_memory(list->buffer);
+ nk_draw_list_fill_poly_convex(list, points, list->path_count, color, list->shape_AA);
+ nk_draw_list_path_clear(list);
+}
+
+NK_API void
+nk_draw_list_path_stroke(struct nk_draw_list *list, struct nk_color color,
+ enum nk_draw_list_stroke closed, float thickness)
+{
+ struct nk_vec2 *points;
+ NK_ASSERT(list);
+ if (!list) return;
+ points = (struct nk_vec2*)nk_buffer_memory(list->buffer);
+ nk_draw_list_stroke_poly_line(list, points, list->path_count, color,
+ closed, thickness, list->line_AA);
+ nk_draw_list_path_clear(list);
+}
+
+NK_API void
+nk_draw_list_stroke_line(struct nk_draw_list *list, struct nk_vec2 a,
+ struct nk_vec2 b, struct nk_color col, float thickness)
+{
+ NK_ASSERT(list);
+ if (!list || !col.a) return;
+ nk_draw_list_path_line_to(list, nk_vec2_add(a, nk_vec2(0.5f, 0.5f)));
+ nk_draw_list_path_line_to(list, nk_vec2_add(b, nk_vec2(0.5f, 0.5f)));
+ nk_draw_list_path_stroke(list, col, NK_STROKE_OPEN, thickness);
+}
+
+NK_API void
+nk_draw_list_fill_rect(struct nk_draw_list *list, struct nk_rect rect,
+ struct nk_color col, float rounding)
+{
+ NK_ASSERT(list);
+ if (!list || !col.a) return;
+ nk_draw_list_path_rect_to(list, nk_vec2(rect.x + 0.5f, rect.y + 0.5f),
+ nk_vec2(rect.x + rect.w + 0.5f, rect.y + rect.h + 0.5f), rounding);
+ nk_draw_list_path_fill(list, col);
+}
+
+NK_API void
+nk_draw_list_stroke_rect(struct nk_draw_list *list, struct nk_rect rect,
+ struct nk_color col, float rounding, float thickness)
+{
+ NK_ASSERT(list);
+ if (!list || !col.a) return;
+ nk_draw_list_path_rect_to(list, nk_vec2(rect.x + 0.5f, rect.y + 0.5f),
+ nk_vec2(rect.x + rect.w + 0.5f, rect.y + rect.h + 0.5f), rounding);
+ nk_draw_list_path_stroke(list, col, NK_STROKE_CLOSED, thickness);
+}
+
+NK_API void
+nk_draw_list_fill_rect_multi_color(struct nk_draw_list *list, struct nk_rect rect,
+ struct nk_color left, struct nk_color top, struct nk_color right,
+ struct nk_color bottom)
+{
+ nk_draw_vertex_color col_left = nk_color_u32(left);
+ nk_draw_vertex_color col_top = nk_color_u32(top);
+ nk_draw_vertex_color col_right = nk_color_u32(right);
+ nk_draw_vertex_color col_bottom = nk_color_u32(bottom);
+
+ struct nk_draw_vertex *vtx;
+ nk_draw_index *idx;
+ nk_draw_index index;
+ NK_ASSERT(list);
+ if (!list) return;
+
+ nk_draw_list_push_image(list, list->null.texture);
+ index = (nk_draw_index)list->vertex_count;
+ vtx = nk_draw_list_alloc_vertices(list, 4);
+ idx = nk_draw_list_alloc_elements(list, 6);
+ if (!vtx || !idx) return;
+
+ idx[0] = (nk_draw_index)(index+0); idx[1] = (nk_draw_index)(index+1);
+ idx[2] = (nk_draw_index)(index+2); idx[3] = (nk_draw_index)(index+0);
+ idx[4] = (nk_draw_index)(index+2); idx[5] = (nk_draw_index)(index+3);
+
+ vtx[0] = nk_draw_vertex(nk_vec2(rect.x, rect.y), list->null.uv, col_left);
+ vtx[1] = nk_draw_vertex(nk_vec2(rect.x + rect.w, rect.y), list->null.uv, col_top);
+ vtx[2] = nk_draw_vertex(nk_vec2(rect.x + rect.w, rect.y + rect.h), list->null.uv, col_right);
+ vtx[3] = nk_draw_vertex(nk_vec2(rect.x, rect.y + rect.h), list->null.uv, col_bottom);
+}
+
+NK_API void
+nk_draw_list_fill_triangle(struct nk_draw_list *list, struct nk_vec2 a,
+ struct nk_vec2 b, struct nk_vec2 c, struct nk_color col)
+{
+ NK_ASSERT(list);
+ if (!list || !col.a) return;
+ nk_draw_list_path_line_to(list, a);
+ nk_draw_list_path_line_to(list, b);
+ nk_draw_list_path_line_to(list, c);
+ nk_draw_list_path_fill(list, col);
+}
+
+NK_API void
+nk_draw_list_stroke_triangle(struct nk_draw_list *list, struct nk_vec2 a,
+ struct nk_vec2 b, struct nk_vec2 c, struct nk_color col, float thickness)
+{
+ NK_ASSERT(list);
+ if (!list || !col.a) return;
+ nk_draw_list_path_line_to(list, a);
+ nk_draw_list_path_line_to(list, b);
+ nk_draw_list_path_line_to(list, c);
+ nk_draw_list_path_stroke(list, col, NK_STROKE_CLOSED, thickness);
+}
+
+NK_API void
+nk_draw_list_fill_circle(struct nk_draw_list *list, struct nk_vec2 center,
+ float radius, struct nk_color col, unsigned int segs)
+{
+ float a_max;
+ NK_ASSERT(list);
+ if (!list || !col.a) return;
+ a_max = NK_PI * 2.0f * ((float)segs - 1.0f) / (float)segs;
+ nk_draw_list_path_arc_to(list, center, radius, 0.0f, a_max, segs);
+ nk_draw_list_path_fill(list, col);
+}
+
+NK_API void
+nk_draw_list_stroke_circle(struct nk_draw_list *list, struct nk_vec2 center,
+ float radius, struct nk_color col, unsigned int segs, float thickness)
+{
+ float a_max;
+ NK_ASSERT(list);
+ if (!list || !col.a) return;
+ a_max = NK_PI * 2.0f * ((float)segs - 1.0f) / (float)segs;
+ nk_draw_list_path_arc_to(list, center, radius, 0.0f, a_max, segs);
+ nk_draw_list_path_stroke(list, col, NK_STROKE_CLOSED, thickness);
+}
+
+NK_API void
+nk_draw_list_stroke_curve(struct nk_draw_list *list, struct nk_vec2 p0,
+ struct nk_vec2 cp0, struct nk_vec2 cp1, struct nk_vec2 p1,
+ struct nk_color col, unsigned int segments, float thickness)
+{
+ NK_ASSERT(list);
+ if (!list || !col.a) return;
+ nk_draw_list_path_line_to(list, p0);
+ nk_draw_list_path_curve_to(list, cp0, cp1, p1, segments);
+ nk_draw_list_path_stroke(list, col, NK_STROKE_OPEN, thickness);
+}
+
+NK_INTERN void
+nk_draw_list_push_rect_uv(struct nk_draw_list *list, struct nk_vec2 a,
+ struct nk_vec2 c, struct nk_vec2 uva, struct nk_vec2 uvc,
+ struct nk_color color)
+{
+ nk_draw_vertex_color col = nk_color_u32(color);
+ struct nk_draw_vertex *vtx;
+ struct nk_vec2 uvb;
+ struct nk_vec2 uvd;
+ struct nk_vec2 b;
+ struct nk_vec2 d;
+ nk_draw_index *idx;
+ nk_draw_index index;
+ NK_ASSERT(list);
+ if (!list) return;
+
+ uvb = nk_vec2(uvc.x, uva.y);
+ uvd = nk_vec2(uva.x, uvc.y);
+ b = nk_vec2(c.x, a.y);
+ d = nk_vec2(a.x, c.y);
+
+ index = (nk_draw_index)list->vertex_count;
+ vtx = nk_draw_list_alloc_vertices(list, 4);
+ idx = nk_draw_list_alloc_elements(list, 6);
+ if (!vtx || !idx) return;
+
+ idx[0] = (nk_draw_index)(index+0); idx[1] = (nk_draw_index)(index+1);
+ idx[2] = (nk_draw_index)(index+2); idx[3] = (nk_draw_index)(index+0);
+ idx[4] = (nk_draw_index)(index+2); idx[5] = (nk_draw_index)(index+3);
+
+ vtx[0] = nk_draw_vertex(a, uva, col);
+ vtx[1] = nk_draw_vertex(b, uvb, col);
+ vtx[2] = nk_draw_vertex(c, uvc, col);
+ vtx[3] = nk_draw_vertex(d, uvd, col);
+}
+
+NK_API void
+nk_draw_list_add_image(struct nk_draw_list *list, struct nk_image texture,
+ struct nk_rect rect, struct nk_color color)
+{
+ NK_ASSERT(list);
+ if (!list) return;
+ /* push new command with given texture */
+ nk_draw_list_push_image(list, texture.handle);
+ if (nk_image_is_subimage(&texture)) {
+ /* add region inside of the texture */
+ struct nk_vec2 uv[2];
+ uv[0].x = (float)texture.region[0]/(float)texture.w;
+ uv[0].y = (float)texture.region[1]/(float)texture.h;
+ uv[1].x = (float)(texture.region[0] + texture.region[2])/(float)texture.w;
+ uv[1].y = (float)(texture.region[1] + texture.region[3])/(float)texture.h;
+ nk_draw_list_push_rect_uv(list, nk_vec2(rect.x, rect.y),
+ nk_vec2(rect.x + rect.w, rect.y + rect.h), uv[0], uv[1], color);
+ } else nk_draw_list_push_rect_uv(list, nk_vec2(rect.x, rect.y),
+ nk_vec2(rect.x + rect.w, rect.y + rect.h),
+ nk_vec2(0.0f, 0.0f), nk_vec2(1.0f, 1.0f),color);
+}
+
+NK_API void
+nk_draw_list_add_text(struct nk_draw_list *list, const struct nk_user_font *font,
+ struct nk_rect rect, const char *text, int len, float font_height,
+ struct nk_color fg)
+{
+ float x = 0;
+ int text_len = 0;
+ nk_rune unicode = 0;
+ nk_rune next = 0;
+ int glyph_len = 0;
+ int next_glyph_len = 0;
+ struct nk_user_font_glyph g;
+
+ NK_ASSERT(list);
+ if (!list || !len || !text) return;
+ if (rect.x > (list->clip_rect.x + list->clip_rect.w) ||
+ rect.y > (list->clip_rect.y + list->clip_rect.h) ||
+ rect.x < list->clip_rect.x || rect.y < list->clip_rect.y)
+ return;
+
+ nk_draw_list_push_image(list, font->texture);
+ x = rect.x;
+ glyph_len = text_len = nk_utf_decode(text, &unicode, len);
+ if (!glyph_len) return;
+
+ /* draw every glyph image */
+ while (text_len <= len && glyph_len) {
+ float gx, gy, gh, gw;
+ float char_width = 0;
+ if (unicode == NK_UTF_INVALID) break;
+
+ /* query currently drawn glyph information */
+ next_glyph_len = nk_utf_decode(text + text_len, &next, (int)len - text_len);
+ font->query(font->userdata, font_height, &g, unicode,
+ (next == NK_UTF_INVALID) ? '\0' : next);
+
+ /* calculate and draw glyph drawing rectangle and image */
+ gx = x + g.offset.x;
+ /*gy = rect.y + (rect.h/2) - (font->height/2) + g.offset.y;*/
+ gy = rect.y + g.offset.y;
+ gw = g.width; gh = g.height;
+ char_width = g.xadvance;
+ fg.a = (nk_byte)((float)fg.a * list->global_alpha);
+ nk_draw_list_push_rect_uv(list, nk_vec2(gx,gy), nk_vec2(gx + gw, gy+ gh),
+ g.uv[0], g.uv[1], fg);
+
+ /* offset next glyph */
+ text_len += glyph_len;
+ x += char_width;
+ glyph_len = next_glyph_len;
+ unicode = next;
+ }
+}
+
+NK_API void
+nk_convert(struct nk_context *ctx, struct nk_buffer *cmds,
+ struct nk_buffer *vertices, struct nk_buffer *elements,
+ const struct nk_convert_config *config)
+{
+ const struct nk_command *cmd;
+ NK_ASSERT(ctx);
+ NK_ASSERT(cmds);
+ NK_ASSERT(vertices);
+ NK_ASSERT(elements);
+ if (!ctx || !cmds || !vertices || !elements)
+ return;
+
+ nk_draw_list_setup(&ctx->draw_list, config->global_alpha, config->line_AA,
+ config->shape_AA, config->null, cmds, vertices, elements);
+ nk_foreach(cmd, ctx)
+ {
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+ list->userdata = cmd->userdata;
+#endif
+ switch (cmd->type) {
+ case NK_COMMAND_NOP: break;
+ case NK_COMMAND_SCISSOR: {
+ const struct nk_command_scissor *s = (const struct nk_command_scissor*)cmd;
+ nk_draw_list_add_clip(&ctx->draw_list, nk_rect(s->x, s->y, s->w, s->h));
+ } break;
+ case NK_COMMAND_LINE: {
+ const struct nk_command_line *l = (const struct nk_command_line*)cmd;
+ nk_draw_list_stroke_line(&ctx->draw_list, nk_vec2(l->begin.x, l->begin.y),
+ nk_vec2(l->end.x, l->end.y), l->color, l->line_thickness);
+ } break;
+ case NK_COMMAND_CURVE: {
+ const struct nk_command_curve *q = (const struct nk_command_curve*)cmd;
+ nk_draw_list_stroke_curve(&ctx->draw_list, nk_vec2(q->begin.x, q->begin.y),
+ nk_vec2(q->ctrl[0].x, q->ctrl[0].y), nk_vec2(q->ctrl[1].x,
+ q->ctrl[1].y), nk_vec2(q->end.x, q->end.y), q->color,
+ config->curve_segment_count, q->line_thickness);
+ } break;
+ case NK_COMMAND_RECT: {
+ const struct nk_command_rect *r = (const struct nk_command_rect*)cmd;
+ nk_draw_list_stroke_rect(&ctx->draw_list, nk_rect(r->x, r->y, r->w, r->h),
+ r->color, (float)r->rounding, r->line_thickness);
+ } break;
+ case NK_COMMAND_RECT_FILLED: {
+ const struct nk_command_rect_filled *r = (const struct nk_command_rect_filled*)cmd;
+ nk_draw_list_fill_rect(&ctx->draw_list, nk_rect(r->x, r->y, r->w, r->h),
+ r->color, (float)r->rounding);
+ } break;
+ case NK_COMMAND_RECT_MULTI_COLOR: {
+ const struct nk_command_rect_multi_color *r = (const struct nk_command_rect_multi_color*)cmd;
+ nk_draw_list_fill_rect_multi_color(&ctx->draw_list, nk_rect(r->x, r->y, r->w, r->h),
+ r->left, r->top, r->right, r->bottom);
+ } break;
+ case NK_COMMAND_CIRCLE: {
+ const struct nk_command_circle *c = (const struct nk_command_circle*)cmd;
+ nk_draw_list_stroke_circle(&ctx->draw_list, nk_vec2((float)c->x + (float)c->w/2,
+ (float)c->y + (float)c->h/2), (float)c->w/2, c->color,
+ config->circle_segment_count, c->line_thickness);
+ } break;
+ case NK_COMMAND_CIRCLE_FILLED: {
+ const struct nk_command_circle_filled *c = (const struct nk_command_circle_filled *)cmd;
+ nk_draw_list_fill_circle(&ctx->draw_list, nk_vec2((float)c->x + (float)c->w/2,
+ (float)c->y + (float)c->h/2), (float)c->w/2, c->color,
+ config->circle_segment_count);
+ } break;
+ case NK_COMMAND_ARC: {
+ const struct nk_command_arc *c = (const struct nk_command_arc*)cmd;
+ nk_draw_list_path_line_to(&ctx->draw_list, nk_vec2(c->cx, c->cy));
+ nk_draw_list_path_arc_to(&ctx->draw_list, nk_vec2(c->cx, c->cy), c->r,
+ c->a[0], c->a[1], config->arc_segment_count);
+ nk_draw_list_path_stroke(&ctx->draw_list, c->color, NK_STROKE_CLOSED, c->line_thickness);
+ } break;
+ case NK_COMMAND_ARC_FILLED: {
+ const struct nk_command_arc_filled *c = (const struct nk_command_arc_filled*)cmd;
+ nk_draw_list_path_line_to(&ctx->draw_list, nk_vec2(c->cx, c->cy));
+ nk_draw_list_path_arc_to(&ctx->draw_list, nk_vec2(c->cx, c->cy), c->r,
+ c->a[0], c->a[1], config->arc_segment_count);
+ nk_draw_list_path_fill(&ctx->draw_list, c->color);
+ } break;
+ case NK_COMMAND_TRIANGLE: {
+ const struct nk_command_triangle *t = (const struct nk_command_triangle*)cmd;
+ nk_draw_list_stroke_triangle(&ctx->draw_list, nk_vec2(t->a.x, t->a.y),
+ nk_vec2(t->b.x, t->b.y), nk_vec2(t->c.x, t->c.y), t->color,
+ t->line_thickness);
+ } break;
+ case NK_COMMAND_TRIANGLE_FILLED: {
+ const struct nk_command_triangle_filled *t = (const struct nk_command_triangle_filled*)cmd;
+ nk_draw_list_fill_triangle(&ctx->draw_list, nk_vec2(t->a.x, t->a.y),
+ nk_vec2(t->b.x, t->b.y), nk_vec2(t->c.x, t->c.y), t->color);
+ } break;
+ case NK_COMMAND_POLYGON: {
+ int i;
+ const struct nk_command_polygon*p = (const struct nk_command_polygon*)cmd;
+ for (i = 0; i < p->point_count; ++i) {
+ struct nk_vec2 pnt = nk_vec2((float)p->points[i].x, (float)p->points[i].y);
+ nk_draw_list_path_line_to(&ctx->draw_list, pnt);
+ }
+ nk_draw_list_path_stroke(&ctx->draw_list, p->color, NK_STROKE_CLOSED, p->line_thickness);
+ } break;
+ case NK_COMMAND_POLYGON_FILLED: {
+ int i;
+ const struct nk_command_polygon_filled *p = (const struct nk_command_polygon_filled*)cmd;
+ for (i = 0; i < p->point_count; ++i) {
+ struct nk_vec2 pnt = nk_vec2((float)p->points[i].x, (float)p->points[i].y);
+ nk_draw_list_path_line_to(&ctx->draw_list, pnt);
+ }
+ nk_draw_list_path_fill(&ctx->draw_list, p->color);
+ } break;
+ case NK_COMMAND_POLYLINE: {
+ int i;
+ const struct nk_command_polyline *p = (const struct nk_command_polyline*)cmd;
+ for (i = 0; i < p->point_count; ++i) {
+ struct nk_vec2 pnt = nk_vec2((float)p->points[i].x, (float)p->points[i].y);
+ nk_draw_list_path_line_to(&ctx->draw_list, pnt);
+ }
+ nk_draw_list_path_stroke(&ctx->draw_list, p->color, NK_STROKE_OPEN, p->line_thickness);
+ } break;
+ case NK_COMMAND_TEXT: {
+ const struct nk_command_text *t = (const struct nk_command_text*)cmd;
+ nk_draw_list_add_text(&ctx->draw_list, t->font, nk_rect(t->x, t->y, t->w, t->h),
+ t->string, t->length, t->height, t->foreground);
+ } break;
+ case NK_COMMAND_IMAGE: {
+ const struct nk_command_image *i = (const struct nk_command_image*)cmd;
+ nk_draw_list_add_image(&ctx->draw_list, i->img, nk_rect(i->x, i->y, i->w, i->h),
+ nk_rgb(255, 255, 255));
+ } break;
+ default: break;
+ }
+ }
+}
+
+NK_API const struct nk_draw_command*
+nk__draw_begin(const struct nk_context *ctx,
+ const struct nk_buffer *buffer)
+{return nk__draw_list_begin(&ctx->draw_list, buffer);}
+
+NK_API const struct nk_draw_command*
+nk__draw_next(const struct nk_draw_command *cmd,
+ const struct nk_buffer *buffer, const struct nk_context *ctx)
+{return nk__draw_list_next(cmd, buffer, &ctx->draw_list);}
+
+#endif
+
+/*
+ * ==============================================================
+ *
+ * FONT HANDLING
+ *
+ * ===============================================================
+ */
+#ifdef NK_INCLUDE_FONT_BAKING
+/* -------------------------------------------------------------
+ *
+ * RECT PACK
+ *
+ * --------------------------------------------------------------*/
+/* stb_rect_pack.h - v0.05 - public domain - rectangle packing */
+/* Sean Barrett 2014 */
+#define NK_RP__MAXVAL 0xffff
+typedef unsigned short nk_rp_coord;
+
+struct nk_rp_rect {
+ /* reserved for your use: */
+ int id;
+ /* input: */
+ nk_rp_coord w, h;
+ /* output: */
+ nk_rp_coord x, y;
+ int was_packed;
+ /* non-zero if valid packing */
+}; /* 16 bytes, nominally */
+
+struct nk_rp_node {
+ nk_rp_coord x,y;
+ struct nk_rp_node *next;
+};
+
+struct nk_rp_context {
+ int width;
+ int height;
+ int align;
+ int init_mode;
+ int heuristic;
+ int num_nodes;
+ struct nk_rp_node *active_head;
+ struct nk_rp_node *free_head;
+ struct nk_rp_node extra[2];
+ /* we allocate two extra nodes so optimal user-node-count is 'width' not 'width+2' */
+};
+
+struct nk_rp__findresult {
+ int x,y;
+ struct nk_rp_node **prev_link;
+};
+
+enum NK_RP_HEURISTIC {
+ NK_RP_HEURISTIC_Skyline_default=0,
+ NK_RP_HEURISTIC_Skyline_BL_sortHeight = NK_RP_HEURISTIC_Skyline_default,
+ NK_RP_HEURISTIC_Skyline_BF_sortHeight
+};
+enum NK_RP_INIT_STATE{NK_RP__INIT_skyline = 1};
+
+NK_INTERN void
+nk_rp_setup_allow_out_of_mem(struct nk_rp_context *context, int allow_out_of_mem)
+{
+ if (allow_out_of_mem)
+ /* if it's ok to run out of memory, then don't bother aligning them; */
+ /* this gives better packing, but may fail due to OOM (even though */
+ /* the rectangles easily fit). @TODO a smarter approach would be to only */
+ /* quantize once we've hit OOM, then we could get rid of this parameter. */
+ context->align = 1;
+ else {
+ /* if it's not ok to run out of memory, then quantize the widths */
+ /* so that num_nodes is always enough nodes. */
+ /* */
+ /* I.e. num_nodes * align >= width */
+ /* align >= width / num_nodes */
+ /* align = ceil(width/num_nodes) */
+ context->align = (context->width + context->num_nodes-1) / context->num_nodes;
+ }
+}
+
+NK_INTERN void
+nk_rp_init_target(struct nk_rp_context *context, int width, int height,
+ struct nk_rp_node *nodes, int num_nodes)
+{
+ int i;
+#ifndef STBRP_LARGE_RECTS
+ NK_ASSERT(width <= 0xffff && height <= 0xffff);
+#endif
+
+ for (i=0; i < num_nodes-1; ++i)
+ nodes[i].next = &nodes[i+1];
+ nodes[i].next = 0;
+ context->init_mode = NK_RP__INIT_skyline;
+ context->heuristic = NK_RP_HEURISTIC_Skyline_default;
+ context->free_head = &nodes[0];
+ context->active_head = &context->extra[0];
+ context->width = width;
+ context->height = height;
+ context->num_nodes = num_nodes;
+ nk_rp_setup_allow_out_of_mem(context, 0);
+
+ /* node 0 is the full width, node 1 is the sentinel (lets us not store width explicitly) */
+ context->extra[0].x = 0;
+ context->extra[0].y = 0;
+ context->extra[0].next = &context->extra[1];
+ context->extra[1].x = (nk_rp_coord) width;
+ context->extra[1].y = 65535;
+ context->extra[1].next = 0;
+}
+
+/* find minimum y position if it starts at x1 */
+NK_INTERN int
+nk_rp__skyline_find_min_y(struct nk_rp_context *c, struct nk_rp_node *first,
+ int x0, int width, int *pwaste)
+{
+ struct nk_rp_node *node = first;
+ int x1 = x0 + width;
+ int min_y, visited_width, waste_area;
+ NK_ASSERT(first->x <= x0);
+ NK_UNUSED(c);
+
+ NK_ASSERT(node->next->x > x0);
+ /* we ended up handling this in the caller for efficiency */
+ NK_ASSERT(node->x <= x0);
+
+ min_y = 0;
+ waste_area = 0;
+ visited_width = 0;
+ while (node->x < x1)
+ {
+ if (node->y > min_y) {
+ /* raise min_y higher. */
+ /* we've accounted for all waste up to min_y, */
+ /* but we'll now add more waste for everything we've visited */
+ waste_area += visited_width * (node->y - min_y);
+ min_y = node->y;
+ /* the first time through, visited_width might be reduced */
+ if (node->x < x0)
+ visited_width += node->next->x - x0;
+ else
+ visited_width += node->next->x - node->x;
+ } else {
+ /* add waste area */
+ int under_width = node->next->x - node->x;
+ if (under_width + visited_width > width)
+ under_width = width - visited_width;
+ waste_area += under_width * (min_y - node->y);
+ visited_width += under_width;
+ }
+ node = node->next;
+ }
+ *pwaste = waste_area;
+ return min_y;
+}
+
+NK_INTERN struct nk_rp__findresult
+nk_rp__skyline_find_best_pos(struct nk_rp_context *c, int width, int height)
+{
+ int best_waste = (1<<30), best_x, best_y = (1 << 30);
+ struct nk_rp__findresult fr;
+ struct nk_rp_node **prev, *node, *tail, **best = 0;
+
+ /* align to multiple of c->align */
+ width = (width + c->align - 1);
+ width -= width % c->align;
+ NK_ASSERT(width % c->align == 0);
+
+ node = c->active_head;
+ prev = &c->active_head;
+ while (node->x + width <= c->width) {
+ int y,waste;
+ y = nk_rp__skyline_find_min_y(c, node, node->x, width, &waste);
+ /* actually just want to test BL */
+ if (c->heuristic == NK_RP_HEURISTIC_Skyline_BL_sortHeight) {
+ /* bottom left */
+ if (y < best_y) {
+ best_y = y;
+ best = prev;
+ }
+ } else {
+ /* best-fit */
+ if (y + height <= c->height) {
+ /* can only use it if it first vertically */
+ if (y < best_y || (y == best_y && waste < best_waste)) {
+ best_y = y;
+ best_waste = waste;
+ best = prev;
+ }
+ }
+ }
+ prev = &node->next;
+ node = node->next;
+ }
+ best_x = (best == 0) ? 0 : (*best)->x;
+
+ /* if doing best-fit (BF), we also have to try aligning right edge to each node position */
+ /* */
+ /* e.g, if fitting */
+ /* */
+ /* ____________________ */
+ /* |____________________| */
+ /* */
+ /* into */
+ /* */
+ /* | | */
+ /* | ____________| */
+ /* |____________| */
+ /* */
+ /* then right-aligned reduces waste, but bottom-left BL is always chooses left-aligned */
+ /* */
+ /* This makes BF take about 2x the time */
+ if (c->heuristic == NK_RP_HEURISTIC_Skyline_BF_sortHeight)
+ {
+ tail = c->active_head;
+ node = c->active_head;
+ prev = &c->active_head;
+ /* find first node that's admissible */
+ while (tail->x < width)
+ tail = tail->next;
+ while (tail)
+ {
+ int xpos = tail->x - width;
+ int y,waste;
+ NK_ASSERT(xpos >= 0);
+ /* find the left position that matches this */
+ while (node->next->x <= xpos) {
+ prev = &node->next;
+ node = node->next;
+ }
+ NK_ASSERT(node->next->x > xpos && node->x <= xpos);
+ y = nk_rp__skyline_find_min_y(c, node, xpos, width, &waste);
+ if (y + height < c->height) {
+ if (y <= best_y) {
+ if (y < best_y || waste < best_waste || (waste==best_waste && xpos < best_x)) {
+ best_x = xpos;
+ NK_ASSERT(y <= best_y);
+ best_y = y;
+ best_waste = waste;
+ best = prev;
+ }
+ }
+ }
+ tail = tail->next;
+ }
+ }
+ fr.prev_link = best;
+ fr.x = best_x;
+ fr.y = best_y;
+ return fr;
+}
+
+NK_INTERN struct nk_rp__findresult
+nk_rp__skyline_pack_rectangle(struct nk_rp_context *context, int width, int height)
+{
+ /* find best position according to heuristic */
+ struct nk_rp__findresult res = nk_rp__skyline_find_best_pos(context, width, height);
+ struct nk_rp_node *node, *cur;
+
+ /* bail if: */
+ /* 1. it failed */
+ /* 2. the best node doesn't fit (we don't always check this) */
+ /* 3. we're out of memory */
+ if (res.prev_link == 0 || res.y + height > context->height || context->free_head == 0) {
+ res.prev_link = 0;
+ return res;
+ }
+
+ /* on success, create new node */
+ node = context->free_head;
+ node->x = (nk_rp_coord) res.x;
+ node->y = (nk_rp_coord) (res.y + height);
+
+ context->free_head = node->next;
+
+ /* insert the new node into the right starting point, and */
+ /* let 'cur' point to the remaining nodes needing to be */
+ /* stitched back in */
+ cur = *res.prev_link;
+ if (cur->x < res.x) {
+ /* preserve the existing one, so start testing with the next one */
+ struct nk_rp_node *next = cur->next;
+ cur->next = node;
+ cur = next;
+ } else {
+ *res.prev_link = node;
+ }
+
+ /* from here, traverse cur and free the nodes, until we get to one */
+ /* that shouldn't be freed */
+ while (cur->next && cur->next->x <= res.x + width) {
+ struct nk_rp_node *next = cur->next;
+ /* move the current node to the free list */
+ cur->next = context->free_head;
+ context->free_head = cur;
+ cur = next;
+ }
+ /* stitch the list back in */
+ node->next = cur;
+
+ if (cur->x < res.x + width)
+ cur->x = (nk_rp_coord) (res.x + width);
+ return res;
+}
+
+NK_INTERN int
+nk_rect_height_compare(const void *a, const void *b)
+{
+ const struct nk_rp_rect *p = (const struct nk_rp_rect *) a;
+ const struct nk_rp_rect *q = (const struct nk_rp_rect *) b;
+ if (p->h > q->h)
+ return -1;
+ if (p->h < q->h)
+ return 1;
+ return (p->w > q->w) ? -1 : (p->w < q->w);
+}
+
+NK_INTERN int
+nk_rect_original_order(const void *a, const void *b)
+{
+ const struct nk_rp_rect *p = (const struct nk_rp_rect *) a;
+ const struct nk_rp_rect *q = (const struct nk_rp_rect *) b;
+ return (p->was_packed < q->was_packed) ? -1 : (p->was_packed > q->was_packed);
+}
+
+static void
+nk_rp_qsort(struct nk_rp_rect *array, unsigned int len, int(*cmp)(const void*,const void*))
+{
+ /* iterative quick sort */
+ #define NK_MAX_SORT_STACK 64
+ unsigned right, left = 0, stack[NK_MAX_SORT_STACK], pos = 0;
+ unsigned seed = len/2 * 69069+1;
+ for (;;) {
+ for (; left+1 < len; len++) {
+ struct nk_rp_rect pivot, tmp;
+ if (pos == NK_MAX_SORT_STACK) len = stack[pos = 0];
+ pivot = array[left+seed%(len-left)];
+ seed = seed * 69069 + 1;
+ stack[pos++] = len;
+ for (right = left-1;;) {
+ while (cmp(&array[++right], &pivot) < 0);
+ while (cmp(&pivot, &array[--len]) < 0);
+ if (right >= len) break;
+ tmp = array[right];
+ array[right] = array[len];
+ array[len] = tmp;
+ }
+ }
+ if (pos == 0) break;
+ left = len;
+ len = stack[--pos];
+ }
+ #undef NK_MAX_SORT_STACK
+}
+
+NK_INTERN void
+nk_rp_pack_rects(struct nk_rp_context *context, struct nk_rp_rect *rects, int num_rects)
+{
+ int i;
+ /* we use the 'was_packed' field internally to allow sorting/unsorting */
+ for (i=0; i < num_rects; ++i) {
+ rects[i].was_packed = i;
+ }
+
+ /* sort according to heuristic */
+ nk_rp_qsort(rects, (unsigned)num_rects, nk_rect_height_compare);
+
+ for (i=0; i < num_rects; ++i) {
+ struct nk_rp__findresult fr = nk_rp__skyline_pack_rectangle(context, rects[i].w, rects[i].h);
+ if (fr.prev_link) {
+ rects[i].x = (nk_rp_coord) fr.x;
+ rects[i].y = (nk_rp_coord) fr.y;
+ } else {
+ rects[i].x = rects[i].y = NK_RP__MAXVAL;
+ }
+ }
+
+ /* unsort */
+ nk_rp_qsort(rects, (unsigned)num_rects, nk_rect_original_order);
+
+ /* set was_packed flags */
+ for (i=0; i < num_rects; ++i)
+ rects[i].was_packed = !(rects[i].x == NK_RP__MAXVAL && rects[i].y == NK_RP__MAXVAL);
+}
+
+/*
+ * ==============================================================
+ *
+ * TRUETYPE
+ *
+ * ===============================================================
+ */
+/* stb_truetype.h - v1.07 - public domain */
+#define NK_TT_MAX_OVERSAMPLE 8
+#define NK_TT__OVER_MASK (NK_TT_MAX_OVERSAMPLE-1)
+
+struct nk_tt_bakedchar {
+ unsigned short x0,y0,x1,y1;
+ /* coordinates of bbox in bitmap */
+ float xoff,yoff,xadvance;
+};
+
+struct nk_tt_aligned_quad{
+ float x0,y0,s0,t0; /* top-left */
+ float x1,y1,s1,t1; /* bottom-right */
+};
+
+struct nk_tt_packedchar {
+ unsigned short x0,y0,x1,y1;
+ /* coordinates of bbox in bitmap */
+ float xoff,yoff,xadvance;
+ float xoff2,yoff2;
+};
+
+struct nk_tt_pack_range {
+ float font_size;
+ int first_unicode_codepoint_in_range;
+ /* if non-zero, then the chars are continuous, and this is the first codepoint */
+ int *array_of_unicode_codepoints;
+ /* if non-zero, then this is an array of unicode codepoints */
+ int num_chars;
+ struct nk_tt_packedchar *chardata_for_range; /* output */
+ unsigned char h_oversample, v_oversample;
+ /* don't set these, they're used internally */
+};
+
+struct nk_tt_pack_context {
+ void *pack_info;
+ int width;
+ int height;
+ int stride_in_bytes;
+ int padding;
+ unsigned int h_oversample, v_oversample;
+ unsigned char *pixels;
+ void *nodes;
+};
+
+struct nk_tt_fontinfo {
+ const unsigned char* data; /* pointer to .ttf file */
+ int fontstart;/* offset of start of font */
+ int numGlyphs;/* number of glyphs, needed for range checking */
+ int loca,head,glyf,hhea,hmtx,kern; /* table locations as offset from start of .ttf */
+ int index_map; /* a cmap mapping for our chosen character encoding */
+ int indexToLocFormat; /* format needed to map from glyph index to glyph */
+};
+
+enum {
+ NK_TT_vmove=1,
+ NK_TT_vline,
+ NK_TT_vcurve
+};
+
+struct nk_tt_vertex {
+ short x,y,cx,cy;
+ unsigned char type,padding;
+};
+
+struct nk_tt__bitmap{
+ int w,h,stride;
+ unsigned char *pixels;
+};
+
+struct nk_tt__hheap_chunk {
+ struct nk_tt__hheap_chunk *next;
+};
+struct nk_tt__hheap {
+ struct nk_allocator alloc;
+ struct nk_tt__hheap_chunk *head;
+ void *first_free;
+ int num_remaining_in_head_chunk;
+};
+
+struct nk_tt__edge {
+ float x0,y0, x1,y1;
+ int invert;
+};
+
+struct nk_tt__active_edge {
+ struct nk_tt__active_edge *next;
+ float fx,fdx,fdy;
+ float direction;
+ float sy;
+ float ey;
+};
+struct nk_tt__point {float x,y;};
+
+#define NK_TT_MACSTYLE_DONTCARE 0
+#define NK_TT_MACSTYLE_BOLD 1
+#define NK_TT_MACSTYLE_ITALIC 2
+#define NK_TT_MACSTYLE_UNDERSCORE 4
+#define NK_TT_MACSTYLE_NONE 8
+/* <= not same as 0, this makes us check the bitfield is 0 */
+
+enum { /* platformID */
+ NK_TT_PLATFORM_ID_UNICODE =0,
+ NK_TT_PLATFORM_ID_MAC =1,
+ NK_TT_PLATFORM_ID_ISO =2,
+ NK_TT_PLATFORM_ID_MICROSOFT =3
+};
+
+enum { /* encodingID for NK_TT_PLATFORM_ID_UNICODE */
+ NK_TT_UNICODE_EID_UNICODE_1_0 =0,
+ NK_TT_UNICODE_EID_UNICODE_1_1 =1,
+ NK_TT_UNICODE_EID_ISO_10646 =2,
+ NK_TT_UNICODE_EID_UNICODE_2_0_BMP=3,
+ NK_TT_UNICODE_EID_UNICODE_2_0_FULL=4
+};
+
+enum { /* encodingID for NK_TT_PLATFORM_ID_MICROSOFT */
+ NK_TT_MS_EID_SYMBOL =0,
+ NK_TT_MS_EID_UNICODE_BMP =1,
+ NK_TT_MS_EID_SHIFTJIS =2,
+ NK_TT_MS_EID_UNICODE_FULL =10
+};
+
+enum { /* encodingID for NK_TT_PLATFORM_ID_MAC; same as Script Manager codes */
+ NK_TT_MAC_EID_ROMAN =0, NK_TT_MAC_EID_ARABIC =4,
+ NK_TT_MAC_EID_JAPANESE =1, NK_TT_MAC_EID_HEBREW =5,
+ NK_TT_MAC_EID_CHINESE_TRAD =2, NK_TT_MAC_EID_GREEK =6,
+ NK_TT_MAC_EID_KOREAN =3, NK_TT_MAC_EID_RUSSIAN =7
+};
+
+enum { /* languageID for NK_TT_PLATFORM_ID_MICROSOFT; same as LCID... */
+ /* problematic because there are e.g. 16 english LCIDs and 16 arabic LCIDs */
+ NK_TT_MS_LANG_ENGLISH =0x0409, NK_TT_MS_LANG_ITALIAN =0x0410,
+ NK_TT_MS_LANG_CHINESE =0x0804, NK_TT_MS_LANG_JAPANESE =0x0411,
+ NK_TT_MS_LANG_DUTCH =0x0413, NK_TT_MS_LANG_KOREAN =0x0412,
+ NK_TT_MS_LANG_FRENCH =0x040c, NK_TT_MS_LANG_RUSSIAN =0x0419,
+ NK_TT_MS_LANG_GERMAN =0x0407, NK_TT_MS_LANG_SPANISH =0x0409,
+ NK_TT_MS_LANG_HEBREW =0x040d, NK_TT_MS_LANG_SWEDISH =0x041D
+};
+
+enum { /* languageID for NK_TT_PLATFORM_ID_MAC */
+ NK_TT_MAC_LANG_ENGLISH =0 , NK_TT_MAC_LANG_JAPANESE =11,
+ NK_TT_MAC_LANG_ARABIC =12, NK_TT_MAC_LANG_KOREAN =23,
+ NK_TT_MAC_LANG_DUTCH =4 , NK_TT_MAC_LANG_RUSSIAN =32,
+ NK_TT_MAC_LANG_FRENCH =1 , NK_TT_MAC_LANG_SPANISH =6 ,
+ NK_TT_MAC_LANG_GERMAN =2 , NK_TT_MAC_LANG_SWEDISH =5 ,
+ NK_TT_MAC_LANG_HEBREW =10, NK_TT_MAC_LANG_CHINESE_SIMPLIFIED =33,
+ NK_TT_MAC_LANG_ITALIAN =3 , NK_TT_MAC_LANG_CHINESE_TRAD =19
+};
+
+#define nk_ttBYTE(p) (* (const nk_byte *) (p))
+#define nk_ttCHAR(p) (* (const char *) (p))
+
+#if defined(NK_BIGENDIAN) && !defined(NK_ALLOW_UNALIGNED_TRUETYPE)
+ #define nk_ttUSHORT(p) (* (nk_ushort *) (p))
+ #define nk_ttSHORT(p) (* (nk_short *) (p))
+ #define nk_ttULONG(p) (* (nk_uint *) (p))
+ #define nk_ttLONG(p) (* (nk_int *) (p))
+#else
+ static nk_ushort nk_ttUSHORT(const nk_byte *p) { return (nk_ushort)(p[0]*256 + p[1]); }
+ static nk_short nk_ttSHORT(const nk_byte *p) { return (nk_short)(p[0]*256 + p[1]); }
+ static nk_uint nk_ttULONG(const nk_byte *p) { return (nk_uint)((p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]); }
+#endif
+
+#define nk_tt_tag4(p,c0,c1,c2,c3)\
+ ((p)[0] == (c0) && (p)[1] == (c1) && (p)[2] == (c2) && (p)[3] == (c3))
+#define nk_tt_tag(p,str) nk_tt_tag4(p,str[0],str[1],str[2],str[3])
+
+NK_INTERN int nk_tt_GetGlyphShape(const struct nk_tt_fontinfo *info, struct nk_allocator *alloc,
+ int glyph_index, struct nk_tt_vertex **pvertices);
+
+NK_INTERN nk_uint
+nk_tt__find_table(const nk_byte *data, nk_uint fontstart, const char *tag)
+{
+ /* @OPTIMIZE: binary search */
+ nk_int num_tables = nk_ttUSHORT(data+fontstart+4);
+ nk_uint tabledir = fontstart + 12;
+ nk_int i;
+ for (i = 0; i < num_tables; ++i) {
+ nk_uint loc = tabledir + (nk_uint)(16*i);
+ if (nk_tt_tag(data+loc+0, tag))
+ return nk_ttULONG(data+loc+8);
+ }
+ return 0;
+}
+
+NK_INTERN int
+nk_tt_InitFont(struct nk_tt_fontinfo *info, const unsigned char *data2, int fontstart)
+{
+ nk_uint cmap, t;
+ nk_int i,numTables;
+ const nk_byte *data = (const nk_byte *) data2;
+
+ info->data = data;
+ info->fontstart = fontstart;
+
+ cmap = nk_tt__find_table(data, (nk_uint)fontstart, "cmap"); /* required */
+ info->loca = (int)nk_tt__find_table(data, (nk_uint)fontstart, "loca"); /* required */
+ info->head = (int)nk_tt__find_table(data, (nk_uint)fontstart, "head"); /* required */
+ info->glyf = (int)nk_tt__find_table(data, (nk_uint)fontstart, "glyf"); /* required */
+ info->hhea = (int)nk_tt__find_table(data, (nk_uint)fontstart, "hhea"); /* required */
+ info->hmtx = (int)nk_tt__find_table(data, (nk_uint)fontstart, "hmtx"); /* required */
+ info->kern = (int)nk_tt__find_table(data, (nk_uint)fontstart, "kern"); /* not required */
+ if (!cmap || !info->loca || !info->head || !info->glyf || !info->hhea || !info->hmtx)
+ return 0;
+
+ t = nk_tt__find_table(data, (nk_uint)fontstart, "maxp");
+ if (t) info->numGlyphs = nk_ttUSHORT(data+t+4);
+ else info->numGlyphs = 0xffff;
+
+ /* find a cmap encoding table we understand *now* to avoid searching */
+ /* later. (todo: could make this installable) */
+ /* the same regardless of glyph. */
+ numTables = nk_ttUSHORT(data + cmap + 2);
+ info->index_map = 0;
+ for (i=0; i < numTables; ++i)
+ {
+ nk_uint encoding_record = cmap + 4 + 8 * (nk_uint)i;
+ /* find an encoding we understand: */
+ switch(nk_ttUSHORT(data+encoding_record)) {
+ case NK_TT_PLATFORM_ID_MICROSOFT:
+ switch (nk_ttUSHORT(data+encoding_record+2)) {
+ case NK_TT_MS_EID_UNICODE_BMP:
+ case NK_TT_MS_EID_UNICODE_FULL:
+ /* MS/Unicode */
+ info->index_map = (int)(cmap + nk_ttULONG(data+encoding_record+4));
+ break;
+ default: break;
+ } break;
+ case NK_TT_PLATFORM_ID_UNICODE:
+ /* Mac/iOS has these */
+ /* all the encodingIDs are unicode, so we don't bother to check it */
+ info->index_map = (int)(cmap + nk_ttULONG(data+encoding_record+4));
+ break;
+ default: break;
+ }
+ }
+ if (info->index_map == 0)
+ return 0;
+ info->indexToLocFormat = nk_ttUSHORT(data+info->head + 50);
+ return 1;
+}
+
+NK_INTERN int
+nk_tt_FindGlyphIndex(const struct nk_tt_fontinfo *info, int unicode_codepoint)
+{
+ const nk_byte *data = info->data;
+ nk_uint index_map = (nk_uint)info->index_map;
+
+ nk_ushort format = nk_ttUSHORT(data + index_map + 0);
+ if (format == 0) { /* apple byte encoding */
+ nk_int bytes = nk_ttUSHORT(data + index_map + 2);
+ if (unicode_codepoint < bytes-6)
+ return nk_ttBYTE(data + index_map + 6 + unicode_codepoint);
+ return 0;
+ } else if (format == 6) {
+ nk_uint first = nk_ttUSHORT(data + index_map + 6);
+ nk_uint count = nk_ttUSHORT(data + index_map + 8);
+ if ((nk_uint) unicode_codepoint >= first && (nk_uint) unicode_codepoint < first+count)
+ return nk_ttUSHORT(data + index_map + 10 + (unicode_codepoint - (int)first)*2);
+ return 0;
+ } else if (format == 2) {
+ NK_ASSERT(0); /* @TODO: high-byte mapping for japanese/chinese/korean */
+ return 0;
+ } else if (format == 4) { /* standard mapping for windows fonts: binary search collection of ranges */
+ nk_ushort segcount = nk_ttUSHORT(data+index_map+6) >> 1;
+ nk_ushort searchRange = nk_ttUSHORT(data+index_map+8) >> 1;
+ nk_ushort entrySelector = nk_ttUSHORT(data+index_map+10);
+ nk_ushort rangeShift = nk_ttUSHORT(data+index_map+12) >> 1;
+
+ /* do a binary search of the segments */
+ nk_uint endCount = index_map + 14;
+ nk_uint search = endCount;
+
+ if (unicode_codepoint > 0xffff)
+ return 0;
+
+ /* they lie from endCount .. endCount + segCount */
+ /* but searchRange is the nearest power of two, so... */
+ if (unicode_codepoint >= nk_ttUSHORT(data + search + rangeShift*2))
+ search += (nk_uint)(rangeShift*2);
+
+ /* now decrement to bias correctly to find smallest */
+ search -= 2;
+ while (entrySelector) {
+ nk_ushort end;
+ searchRange >>= 1;
+ end = nk_ttUSHORT(data + search + searchRange*2);
+ if (unicode_codepoint > end)
+ search += (nk_uint)(searchRange*2);
+ --entrySelector;
+ }
+ search += 2;
+
+ {
+ nk_ushort offset, start;
+ nk_ushort item = (nk_ushort) ((search - endCount) >> 1);
+
+ NK_ASSERT(unicode_codepoint <= nk_ttUSHORT(data + endCount + 2*item));
+ start = nk_ttUSHORT(data + index_map + 14 + segcount*2 + 2 + 2*item);
+ if (unicode_codepoint < start)
+ return 0;
+
+ offset = nk_ttUSHORT(data + index_map + 14 + segcount*6 + 2 + 2*item);
+ if (offset == 0)
+ return (nk_ushort) (unicode_codepoint + nk_ttSHORT(data + index_map + 14 + segcount*4 + 2 + 2*item));
+
+ return nk_ttUSHORT(data + offset + (unicode_codepoint-start)*2 + index_map + 14 + segcount*6 + 2 + 2*item);
+ }
+ } else if (format == 12 || format == 13) {
+ nk_uint ngroups = nk_ttULONG(data+index_map+12);
+ nk_int low,high;
+ low = 0; high = (nk_int)ngroups;
+ /* Binary search the right group. */
+ while (low < high) {
+ nk_int mid = low + ((high-low) >> 1); /* rounds down, so low <= mid < high */
+ nk_uint start_char = nk_ttULONG(data+index_map+16+mid*12);
+ nk_uint end_char = nk_ttULONG(data+index_map+16+mid*12+4);
+ if ((nk_uint) unicode_codepoint < start_char)
+ high = mid;
+ else if ((nk_uint) unicode_codepoint > end_char)
+ low = mid+1;
+ else {
+ nk_uint start_glyph = nk_ttULONG(data+index_map+16+mid*12+8);
+ if (format == 12)
+ return (int)start_glyph + (int)unicode_codepoint - (int)start_char;
+ else /* format == 13 */
+ return (int)start_glyph;
+ }
+ }
+ return 0; /* not found */
+ }
+ /* @TODO */
+ NK_ASSERT(0);
+ return 0;
+}
+
+NK_INTERN void
+nk_tt_setvertex(struct nk_tt_vertex *v, nk_byte type, nk_int x, nk_int y, nk_int cx, nk_int cy)
+{
+ v->type = type;
+ v->x = (nk_short) x;
+ v->y = (nk_short) y;
+ v->cx = (nk_short) cx;
+ v->cy = (nk_short) cy;
+}
+
+NK_INTERN int
+nk_tt__GetGlyfOffset(const struct nk_tt_fontinfo *info, int glyph_index)
+{
+ int g1,g2;
+ if (glyph_index >= info->numGlyphs) return -1; /* glyph index out of range */
+ if (info->indexToLocFormat >= 2) return -1; /* unknown index->glyph map format */
+
+ if (info->indexToLocFormat == 0) {
+ g1 = info->glyf + nk_ttUSHORT(info->data + info->loca + glyph_index * 2) * 2;
+ g2 = info->glyf + nk_ttUSHORT(info->data + info->loca + glyph_index * 2 + 2) * 2;
+ } else {
+ g1 = info->glyf + (int)nk_ttULONG (info->data + info->loca + glyph_index * 4);
+ g2 = info->glyf + (int)nk_ttULONG (info->data + info->loca + glyph_index * 4 + 4);
+ }
+ return g1==g2 ? -1 : g1; /* if length is 0, return -1 */
+}
+
+NK_INTERN int
+nk_tt_GetGlyphBox(const struct nk_tt_fontinfo *info, int glyph_index,
+ int *x0, int *y0, int *x1, int *y1)
+{
+ int g = nk_tt__GetGlyfOffset(info, glyph_index);
+ if (g < 0) return 0;
+
+ if (x0) *x0 = nk_ttSHORT(info->data + g + 2);
+ if (y0) *y0 = nk_ttSHORT(info->data + g + 4);
+ if (x1) *x1 = nk_ttSHORT(info->data + g + 6);
+ if (y1) *y1 = nk_ttSHORT(info->data + g + 8);
+ return 1;
+}
+
+NK_INTERN int
+stbtt__close_shape(struct nk_tt_vertex *vertices, int num_vertices, int was_off,
+ int start_off, nk_int sx, nk_int sy, nk_int scx, nk_int scy, nk_int cx, nk_int cy)
+{
+ if (start_off) {
+ if (was_off)
+ nk_tt_setvertex(&vertices[num_vertices++], NK_TT_vcurve, (cx+scx)>>1, (cy+scy)>>1, cx,cy);
+ nk_tt_setvertex(&vertices[num_vertices++], NK_TT_vcurve, sx,sy,scx,scy);
+ } else {
+ if (was_off)
+ nk_tt_setvertex(&vertices[num_vertices++], NK_TT_vcurve,sx,sy,cx,cy);
+ else
+ nk_tt_setvertex(&vertices[num_vertices++], NK_TT_vline,sx,sy,0,0);
+ }
+ return num_vertices;
+}
+
+NK_INTERN int
+nk_tt_GetGlyphShape(const struct nk_tt_fontinfo *info, struct nk_allocator *alloc,
+ int glyph_index, struct nk_tt_vertex **pvertices)
+{
+ nk_short numberOfContours;
+ const nk_byte *endPtsOfContours;
+ const nk_byte *data = info->data;
+ struct nk_tt_vertex *vertices=0;
+ int num_vertices=0;
+ int g = nk_tt__GetGlyfOffset(info, glyph_index);
+ *pvertices = 0;
+
+ if (g < 0) return 0;
+ numberOfContours = nk_ttSHORT(data + g);
+ if (numberOfContours > 0) {
+ nk_byte flags=0,flagcount;
+ nk_int ins, i,j=0,m,n, next_move, was_off=0, off, start_off=0;
+ nk_int x,y,cx,cy,sx,sy, scx,scy;
+ const nk_byte *points;
+ endPtsOfContours = (data + g + 10);
+ ins = nk_ttUSHORT(data + g + 10 + numberOfContours * 2);
+ points = data + g + 10 + numberOfContours * 2 + 2 + ins;
+
+ n = 1+nk_ttUSHORT(endPtsOfContours + numberOfContours*2-2);
+ m = n + 2*numberOfContours; /* a loose bound on how many vertices we might need */
+ vertices = (struct nk_tt_vertex *)alloc->alloc(alloc->userdata, 0, (nk_size)m * sizeof(vertices[0]));
+ if (vertices == 0)
+ return 0;
+
+ next_move = 0;
+ flagcount=0;
+
+ /* in first pass, we load uninterpreted data into the allocated array */
+ /* above, shifted to the end of the array so we won't overwrite it when */
+ /* we create our final data starting from the front */
+ off = m - n; /* starting offset for uninterpreted data, regardless of how m ends up being calculated */
+
+ /* first load flags */
+ for (i=0; i < n; ++i) {
+ if (flagcount == 0) {
+ flags = *points++;
+ if (flags & 8)
+ flagcount = *points++;
+ } else --flagcount;
+ vertices[off+i].type = flags;
+ }
+
+ /* now load x coordinates */
+ x=0;
+ for (i=0; i < n; ++i) {
+ flags = vertices[off+i].type;
+ if (flags & 2) {
+ nk_short dx = *points++;
+ x += (flags & 16) ? dx : -dx; /* ??? */
+ } else {
+ if (!(flags & 16)) {
+ x = x + (nk_short) (points[0]*256 + points[1]);
+ points += 2;
+ }
+ }
+ vertices[off+i].x = (nk_short) x;
+ }
+
+ /* now load y coordinates */
+ y=0;
+ for (i=0; i < n; ++i) {
+ flags = vertices[off+i].type;
+ if (flags & 4) {
+ nk_short dy = *points++;
+ y += (flags & 32) ? dy : -dy; /* ??? */
+ } else {
+ if (!(flags & 32)) {
+ y = y + (nk_short) (points[0]*256 + points[1]);
+ points += 2;
+ }
+ }
+ vertices[off+i].y = (nk_short) y;
+ }
+
+ /* now convert them to our format */
+ num_vertices=0;
+ sx = sy = cx = cy = scx = scy = 0;
+ for (i=0; i < n; ++i)
+ {
+ flags = vertices[off+i].type;
+ x = (nk_short) vertices[off+i].x;
+ y = (nk_short) vertices[off+i].y;
+
+ if (next_move == i) {
+ if (i != 0)
+ num_vertices = stbtt__close_shape(vertices, num_vertices, was_off, start_off, sx,sy,scx,scy,cx,cy);
+
+ /* now start the new one */
+ start_off = !(flags & 1);
+ if (start_off) {
+ /* if we start off with an off-curve point, then when we need to find a point on the curve */
+ /* where we can start, and we need to save some state for when we wraparound. */
+ scx = x;
+ scy = y;
+ if (!(vertices[off+i+1].type & 1)) {
+ /* next point is also a curve point, so interpolate an on-point curve */
+ sx = (x + (nk_int) vertices[off+i+1].x) >> 1;
+ sy = (y + (nk_int) vertices[off+i+1].y) >> 1;
+ } else {
+ /* otherwise just use the next point as our start point */
+ sx = (nk_int) vertices[off+i+1].x;
+ sy = (nk_int) vertices[off+i+1].y;
+ ++i; /* we're using point i+1 as the starting point, so skip it */
+ }
+ } else {
+ sx = x;
+ sy = y;
+ }
+ nk_tt_setvertex(&vertices[num_vertices++], NK_TT_vmove,sx,sy,0,0);
+ was_off = 0;
+ next_move = 1 + nk_ttUSHORT(endPtsOfContours+j*2);
+ ++j;
+ } else {
+ if (!(flags & 1))
+ { /* if it's a curve */
+ if (was_off) /* two off-curve control points in a row means interpolate an on-curve midpoint */
+ nk_tt_setvertex(&vertices[num_vertices++], NK_TT_vcurve, (cx+x)>>1, (cy+y)>>1, cx, cy);
+ cx = x;
+ cy = y;
+ was_off = 1;
+ } else {
+ if (was_off)
+ nk_tt_setvertex(&vertices[num_vertices++], NK_TT_vcurve, x,y, cx, cy);
+ else nk_tt_setvertex(&vertices[num_vertices++], NK_TT_vline, x,y,0,0);
+ was_off = 0;
+ }
+ }
+ }
+ num_vertices = stbtt__close_shape(vertices, num_vertices, was_off, start_off, sx,sy,scx,scy,cx,cy);
+ } else if (numberOfContours == -1) {
+ /* Compound shapes. */
+ int more = 1;
+ const nk_byte *comp = data + g + 10;
+ num_vertices = 0;
+ vertices = 0;
+
+ while (more)
+ {
+ nk_ushort flags, gidx;
+ int comp_num_verts = 0, i;
+ struct nk_tt_vertex *comp_verts = 0, *tmp = 0;
+ float mtx[6] = {1,0,0,1,0,0}, m, n;
+
+ flags = (nk_ushort)nk_ttSHORT(comp); comp+=2;
+ gidx = (nk_ushort)nk_ttSHORT(comp); comp+=2;
+
+ if (flags & 2) { /* XY values */
+ if (flags & 1) { /* shorts */
+ mtx[4] = nk_ttSHORT(comp); comp+=2;
+ mtx[5] = nk_ttSHORT(comp); comp+=2;
+ } else {
+ mtx[4] = nk_ttCHAR(comp); comp+=1;
+ mtx[5] = nk_ttCHAR(comp); comp+=1;
+ }
+ } else {
+ /* @TODO handle matching point */
+ NK_ASSERT(0);
+ }
+ if (flags & (1<<3)) { /* WE_HAVE_A_SCALE */
+ mtx[0] = mtx[3] = nk_ttSHORT(comp)/16384.0f; comp+=2;
+ mtx[1] = mtx[2] = 0;
+ } else if (flags & (1<<6)) { /* WE_HAVE_AN_X_AND_YSCALE */
+ mtx[0] = nk_ttSHORT(comp)/16384.0f; comp+=2;
+ mtx[1] = mtx[2] = 0;
+ mtx[3] = nk_ttSHORT(comp)/16384.0f; comp+=2;
+ } else if (flags & (1<<7)) { /* WE_HAVE_A_TWO_BY_TWO */
+ mtx[0] = nk_ttSHORT(comp)/16384.0f; comp+=2;
+ mtx[1] = nk_ttSHORT(comp)/16384.0f; comp+=2;
+ mtx[2] = nk_ttSHORT(comp)/16384.0f; comp+=2;
+ mtx[3] = nk_ttSHORT(comp)/16384.0f; comp+=2;
+ }
+
+ /* Find transformation scales. */
+ m = (float) NK_SQRT(mtx[0]*mtx[0] + mtx[1]*mtx[1]);
+ n = (float) NK_SQRT(mtx[2]*mtx[2] + mtx[3]*mtx[3]);
+
+ /* Get indexed glyph. */
+ comp_num_verts = nk_tt_GetGlyphShape(info, alloc, gidx, &comp_verts);
+ if (comp_num_verts > 0)
+ {
+ /* Transform vertices. */
+ for (i = 0; i < comp_num_verts; ++i) {
+ struct nk_tt_vertex* v = &comp_verts[i];
+ short x,y;
+ x=v->x; y=v->y;
+ v->x = (short)(m * (mtx[0]*x + mtx[2]*y + mtx[4]));
+ v->y = (short)(n * (mtx[1]*x + mtx[3]*y + mtx[5]));
+ x=v->cx; y=v->cy;
+ v->cx = (short)(m * (mtx[0]*x + mtx[2]*y + mtx[4]));
+ v->cy = (short)(n * (mtx[1]*x + mtx[3]*y + mtx[5]));
+ }
+ /* Append vertices. */
+ tmp = (struct nk_tt_vertex*)alloc->alloc(alloc->userdata, 0,
+ (nk_size)(num_vertices+comp_num_verts)*sizeof(struct nk_tt_vertex));
+ if (!tmp) {
+ if (vertices) alloc->free(alloc->userdata, vertices);
+ if (comp_verts) alloc->free(alloc->userdata, comp_verts);
+ return 0;
+ }
+ if (num_vertices > 0) NK_MEMCPY(tmp, vertices, (nk_size)num_vertices*sizeof(struct nk_tt_vertex));
+ NK_MEMCPY(tmp+num_vertices, comp_verts, (nk_size)comp_num_verts*sizeof(struct nk_tt_vertex));
+ if (vertices) alloc->free(alloc->userdata,vertices);
+ vertices = tmp;
+ alloc->free(alloc->userdata,comp_verts);
+ num_vertices += comp_num_verts;
+ }
+ /* More components ? */
+ more = flags & (1<<5);
+ }
+ } else if (numberOfContours < 0) {
+ /* @TODO other compound variations? */
+ NK_ASSERT(0);
+ } else {
+ /* numberOfCounters == 0, do nothing */
+ }
+ *pvertices = vertices;
+ return num_vertices;
+}
+
+NK_INTERN void
+nk_tt_GetGlyphHMetrics(const struct nk_tt_fontinfo *info, int glyph_index,
+ int *advanceWidth, int *leftSideBearing)
+{
+ nk_ushort numOfLongHorMetrics = nk_ttUSHORT(info->data+info->hhea + 34);
+ if (glyph_index < numOfLongHorMetrics) {
+ if (advanceWidth)
+ *advanceWidth = nk_ttSHORT(info->data + info->hmtx + 4*glyph_index);
+ if (leftSideBearing)
+ *leftSideBearing = nk_ttSHORT(info->data + info->hmtx + 4*glyph_index + 2);
+ } else {
+ if (advanceWidth)
+ *advanceWidth = nk_ttSHORT(info->data + info->hmtx + 4*(numOfLongHorMetrics-1));
+ if (leftSideBearing)
+ *leftSideBearing = nk_ttSHORT(info->data + info->hmtx + 4*numOfLongHorMetrics + 2*(glyph_index - numOfLongHorMetrics));
+ }
+}
+
+NK_INTERN void
+nk_tt_GetFontVMetrics(const struct nk_tt_fontinfo *info,
+ int *ascent, int *descent, int *lineGap)
+{
+ if (ascent ) *ascent = nk_ttSHORT(info->data+info->hhea + 4);
+ if (descent) *descent = nk_ttSHORT(info->data+info->hhea + 6);
+ if (lineGap) *lineGap = nk_ttSHORT(info->data+info->hhea + 8);
+}
+
+NK_INTERN float
+nk_tt_ScaleForPixelHeight(const struct nk_tt_fontinfo *info, float height)
+{
+ int fheight = nk_ttSHORT(info->data + info->hhea + 4) - nk_ttSHORT(info->data + info->hhea + 6);
+ return (float) height / (float)fheight;
+}
+
+NK_INTERN float
+nk_tt_ScaleForMappingEmToPixels(const struct nk_tt_fontinfo *info, float pixels)
+{
+ int unitsPerEm = nk_ttUSHORT(info->data + info->head + 18);
+ return pixels / (float)unitsPerEm;
+}
+
+/*-------------------------------------------------------------
+ * antialiasing software rasterizer
+ * --------------------------------------------------------------*/
+NK_INTERN void
+nk_tt_GetGlyphBitmapBoxSubpixel(const struct nk_tt_fontinfo *font,
+ int glyph, float scale_x, float scale_y,float shift_x, float shift_y,
+ int *ix0, int *iy0, int *ix1, int *iy1)
+{
+ int x0,y0,x1,y1;
+ if (!nk_tt_GetGlyphBox(font, glyph, &x0,&y0,&x1,&y1)) {
+ /* e.g. space character */
+ if (ix0) *ix0 = 0;
+ if (iy0) *iy0 = 0;
+ if (ix1) *ix1 = 0;
+ if (iy1) *iy1 = 0;
+ } else {
+ /* move to integral bboxes (treating pixels as little squares, what pixels get touched)? */
+ if (ix0) *ix0 = nk_ifloor((float)x0 * scale_x + shift_x);
+ if (iy0) *iy0 = nk_ifloor((float)-y1 * scale_y + shift_y);
+ if (ix1) *ix1 = nk_iceil ((float)x1 * scale_x + shift_x);
+ if (iy1) *iy1 = nk_iceil ((float)-y0 * scale_y + shift_y);
+ }
+}
+
+NK_INTERN void
+nk_tt_GetGlyphBitmapBox(const struct nk_tt_fontinfo *font, int glyph,
+ float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1)
+{
+ nk_tt_GetGlyphBitmapBoxSubpixel(font, glyph, scale_x, scale_y,0.0f,0.0f, ix0, iy0, ix1, iy1);
+}
+
+/*-------------------------------------------------------------
+ * Rasterizer
+ * --------------------------------------------------------------*/
+NK_INTERN void*
+nk_tt__hheap_alloc(struct nk_tt__hheap *hh, nk_size size)
+{
+ if (hh->first_free) {
+ void *p = hh->first_free;
+ hh->first_free = * (void **) p;
+ return p;
+ } else {
+ if (hh->num_remaining_in_head_chunk == 0) {
+ int count = (size < 32 ? 2000 : size < 128 ? 800 : 100);
+ struct nk_tt__hheap_chunk *c = (struct nk_tt__hheap_chunk *)
+ hh->alloc.alloc(hh->alloc.userdata, 0,
+ sizeof(struct nk_tt__hheap_chunk) + size * (nk_size)count);
+ if (c == 0) return 0;
+ c->next = hh->head;
+ hh->head = c;
+ hh->num_remaining_in_head_chunk = count;
+ }
+ --hh->num_remaining_in_head_chunk;
+ return (char *) (hh->head) + size * (nk_size)hh->num_remaining_in_head_chunk;
+ }
+}
+
+NK_INTERN void
+nk_tt__hheap_free(struct nk_tt__hheap *hh, void *p)
+{
+ *(void **) p = hh->first_free;
+ hh->first_free = p;
+}
+
+NK_INTERN void
+nk_tt__hheap_cleanup(struct nk_tt__hheap *hh)
+{
+ struct nk_tt__hheap_chunk *c = hh->head;
+ while (c) {
+ struct nk_tt__hheap_chunk *n = c->next;
+ hh->alloc.free(hh->alloc.userdata, c);
+ c = n;
+ }
+}
+
+NK_INTERN struct nk_tt__active_edge*
+nk_tt__new_active(struct nk_tt__hheap *hh, struct nk_tt__edge *e,
+ int off_x, float start_point)
+{
+ struct nk_tt__active_edge *z = (struct nk_tt__active_edge *)
+ nk_tt__hheap_alloc(hh, sizeof(*z));
+ float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0);
+ /*STBTT_assert(e->y0 <= start_point); */
+ if (!z) return z;
+ z->fdx = dxdy;
+ z->fdy = (dxdy != 0) ? (1/dxdy): 0;
+ z->fx = e->x0 + dxdy * (start_point - e->y0);
+ z->fx -= (float)off_x;
+ z->direction = e->invert ? 1.0f : -1.0f;
+ z->sy = e->y0;
+ z->ey = e->y1;
+ z->next = 0;
+ return z;
+}
+
+NK_INTERN void
+nk_tt__handle_clipped_edge(float *scanline, int x, struct nk_tt__active_edge *e,
+ float x0, float y0, float x1, float y1)
+{
+ if (y0 == y1) return;
+ NK_ASSERT(y0 < y1);
+ NK_ASSERT(e->sy <= e->ey);
+ if (y0 > e->ey) return;
+ if (y1 < e->sy) return;
+ if (y0 < e->sy) {
+ x0 += (x1-x0) * (e->sy - y0) / (y1-y0);
+ y0 = e->sy;
+ }
+ if (y1 > e->ey) {
+ x1 += (x1-x0) * (e->ey - y1) / (y1-y0);
+ y1 = e->ey;
+ }
+
+ if (x0 == x) NK_ASSERT(x1 <= x+1);
+ else if (x0 == x+1) NK_ASSERT(x1 >= x);
+ else if (x0 <= x) NK_ASSERT(x1 <= x);
+ else if (x0 >= x+1) NK_ASSERT(x1 >= x+1);
+ else NK_ASSERT(x1 >= x && x1 <= x+1);
+
+ if (x0 <= x && x1 <= x)
+ scanline[x] += e->direction * (y1-y0);
+ else if (x0 >= x+1 && x1 >= x+1);
+ else {
+ NK_ASSERT(x0 >= x && x0 <= x+1 && x1 >= x && x1 <= x+1);
+ /* coverage = 1 - average x position */
+ scanline[x] += (float)e->direction * (float)(y1-y0) * (1.0f-((x0-(float)x)+(x1-(float)x))/2.0f);
+ }
+}
+
+NK_INTERN void
+nk_tt__fill_active_edges_new(float *scanline, float *scanline_fill, int len,
+ struct nk_tt__active_edge *e, float y_top)
+{
+ float y_bottom = y_top+1;
+ while (e)
+ {
+ /* brute force every pixel */
+ /* compute intersection points with top & bottom */
+ NK_ASSERT(e->ey >= y_top);
+ if (e->fdx == 0) {
+ float x0 = e->fx;
+ if (x0 < len) {
+ if (x0 >= 0) {
+ nk_tt__handle_clipped_edge(scanline,(int) x0,e, x0,y_top, x0,y_bottom);
+ nk_tt__handle_clipped_edge(scanline_fill-1,(int) x0+1,e, x0,y_top, x0,y_bottom);
+ } else {
+ nk_tt__handle_clipped_edge(scanline_fill-1,0,e, x0,y_top, x0,y_bottom);
+ }
+ }
+ } else {
+ float x0 = e->fx;
+ float dx = e->fdx;
+ float xb = x0 + dx;
+ float x_top, x_bottom;
+ float y0,y1;
+ float dy = e->fdy;
+ NK_ASSERT(e->sy <= y_bottom && e->ey >= y_top);
+
+ /* compute endpoints of line segment clipped to this scanline (if the */
+ /* line segment starts on this scanline. x0 is the intersection of the */
+ /* line with y_top, but that may be off the line segment. */
+ if (e->sy > y_top) {
+ x_top = x0 + dx * (e->sy - y_top);
+ y0 = e->sy;
+ } else {
+ x_top = x0;
+ y0 = y_top;
+ }
+
+ if (e->ey < y_bottom) {
+ x_bottom = x0 + dx * (e->ey - y_top);
+ y1 = e->ey;
+ } else {
+ x_bottom = xb;
+ y1 = y_bottom;
+ }
+
+ if (x_top >= 0 && x_bottom >= 0 && x_top < len && x_bottom < len)
+ {
+ /* from here on, we don't have to range check x values */
+ if ((int) x_top == (int) x_bottom) {
+ float height;
+ /* simple case, only spans one pixel */
+ int x = (int) x_top;
+ height = y1 - y0;
+ NK_ASSERT(x >= 0 && x < len);
+ scanline[x] += e->direction * (1.0f-(((float)x_top - (float)x) + ((float)x_bottom-(float)x))/2.0f) * (float)height;
+ scanline_fill[x] += e->direction * (float)height; /* everything right of this pixel is filled */
+ } else {
+ int x,x1,x2;
+ float y_crossing, step, sign, area;
+ /* covers 2+ pixels */
+ if (x_top > x_bottom)
+ {
+ /* flip scanline vertically; signed area is the same */
+ float t;
+ y0 = y_bottom - (y0 - y_top);
+ y1 = y_bottom - (y1 - y_top);
+ t = y0, y0 = y1, y1 = t;
+ t = x_bottom, x_bottom = x_top, x_top = t;
+ dx = -dx;
+ dy = -dy;
+ t = x0, x0 = xb, xb = t;
+ }
+
+ x1 = (int) x_top;
+ x2 = (int) x_bottom;
+ /* compute intersection with y axis at x1+1 */
+ y_crossing = ((float)x1+1 - (float)x0) * (float)dy + (float)y_top;
+
+ sign = e->direction;
+ /* area of the rectangle covered from y0..y_crossing */
+ area = sign * (y_crossing-y0);
+ /* area of the triangle (x_top,y0), (x+1,y0), (x+1,y_crossing) */
+ scanline[x1] += area * (1.0f-((float)((float)x_top - (float)x1)+(float)(x1+1-x1))/2.0f);
+
+ step = sign * dy;
+ for (x = x1+1; x < x2; ++x) {
+ scanline[x] += area + step/2;
+ area += step;
+ }
+ y_crossing += (float)dy * (float)(x2 - (x1+1));
+
+ scanline[x2] += area + sign * (1.0f-((float)(x2-x2)+((float)x_bottom-(float)x2))/2.0f) * (y1-y_crossing);
+ scanline_fill[x2] += sign * (y1-y0);
+ }
+ }
+ else
+ {
+ /* if edge goes outside of box we're drawing, we require */
+ /* clipping logic. since this does not match the intended use */
+ /* of this library, we use a different, very slow brute */
+ /* force implementation */
+ int x;
+ for (x=0; x < len; ++x)
+ {
+ /* cases: */
+ /* */
+ /* there can be up to two intersections with the pixel. any intersection */
+ /* with left or right edges can be handled by splitting into two (or three) */
+ /* regions. intersections with top & bottom do not necessitate case-wise logic. */
+ /* */
+ /* the old way of doing this found the intersections with the left & right edges, */
+ /* then used some simple logic to produce up to three segments in sorted order */
+ /* from top-to-bottom. however, this had a problem: if an x edge was epsilon */
+ /* across the x border, then the corresponding y position might not be distinct */
+ /* from the other y segment, and it might ignored as an empty segment. to avoid */
+ /* that, we need to explicitly produce segments based on x positions. */
+
+ /* rename variables to clear pairs */
+ float ya = y_top;
+ float x1 = (float) (x);
+ float x2 = (float) (x+1);
+ float x3 = xb;
+ float y3 = y_bottom;
+ float yb,y2;
+
+ yb = ((float)x - x0) / dx + y_top;
+ y2 = ((float)x+1 - x0) / dx + y_top;
+
+ if (x0 < x1 && x3 > x2) { /* three segments descending down-right */
+ nk_tt__handle_clipped_edge(scanline,x,e, x0,ya, x1,yb);
+ nk_tt__handle_clipped_edge(scanline,x,e, x1,yb, x2,y2);
+ nk_tt__handle_clipped_edge(scanline,x,e, x2,y2, x3,y3);
+ } else if (x3 < x1 && x0 > x2) { /* three segments descending down-left */
+ nk_tt__handle_clipped_edge(scanline,x,e, x0,ya, x2,y2);
+ nk_tt__handle_clipped_edge(scanline,x,e, x2,y2, x1,yb);
+ nk_tt__handle_clipped_edge(scanline,x,e, x1,yb, x3,y3);
+ } else if (x0 < x1 && x3 > x1) { /* two segments across x, down-right */
+ nk_tt__handle_clipped_edge(scanline,x,e, x0,ya, x1,yb);
+ nk_tt__handle_clipped_edge(scanline,x,e, x1,yb, x3,y3);
+ } else if (x3 < x1 && x0 > x1) { /* two segments across x, down-left */
+ nk_tt__handle_clipped_edge(scanline,x,e, x0,ya, x1,yb);
+ nk_tt__handle_clipped_edge(scanline,x,e, x1,yb, x3,y3);
+ } else if (x0 < x2 && x3 > x2) { /* two segments across x+1, down-right */
+ nk_tt__handle_clipped_edge(scanline,x,e, x0,ya, x2,y2);
+ nk_tt__handle_clipped_edge(scanline,x,e, x2,y2, x3,y3);
+ } else if (x3 < x2 && x0 > x2) { /* two segments across x+1, down-left */
+ nk_tt__handle_clipped_edge(scanline,x,e, x0,ya, x2,y2);
+ nk_tt__handle_clipped_edge(scanline,x,e, x2,y2, x3,y3);
+ } else { /* one segment */
+ nk_tt__handle_clipped_edge(scanline,x,e, x0,ya, x3,y3);
+ }
+ }
+ }
+ }
+ e = e->next;
+ }
+}
+
+/* directly AA rasterize edges w/o supersampling */
+NK_INTERN void
+nk_tt__rasterize_sorted_edges(struct nk_tt__bitmap *result, struct nk_tt__edge *e,
+ int n, int vsubsample, int off_x, int off_y, struct nk_allocator *alloc)
+{
+ struct nk_tt__hheap hh;
+ struct nk_tt__active_edge *active = 0;
+ int y,j=0, i;
+ float scanline_data[129], *scanline, *scanline2;
+
+ NK_UNUSED(vsubsample);
+ nk_zero_struct(hh);
+ hh.alloc = *alloc;
+
+ if (result->w > 64)
+ scanline = (float *) alloc->alloc(alloc->userdata,0, (nk_size)(result->w*2+1) * sizeof(float));
+ else scanline = scanline_data;
+
+ scanline2 = scanline + result->w;
+ y = off_y;
+ e[n].y0 = (float) (off_y + result->h) + 1;
+
+ while (j < result->h)
+ {
+ /* find center of pixel for this scanline */
+ float scan_y_top = (float)y + 0.0f;
+ float scan_y_bottom = (float)y + 1.0f;
+ struct nk_tt__active_edge **step = &active;
+
+ NK_MEMSET(scanline , 0, (nk_size)result->w*sizeof(scanline[0]));
+ NK_MEMSET(scanline2, 0, (nk_size)(result->w+1)*sizeof(scanline[0]));
+
+ /* update all active edges; */
+ /* remove all active edges that terminate before the top of this scanline */
+ while (*step) {
+ struct nk_tt__active_edge * z = *step;
+ if (z->ey <= scan_y_top) {
+ *step = z->next; /* delete from list */
+ NK_ASSERT(z->direction);
+ z->direction = 0;
+ nk_tt__hheap_free(&hh, z);
+ } else {
+ step = &((*step)->next); /* advance through list */
+ }
+ }
+
+ /* insert all edges that start before the bottom of this scanline */
+ while (e->y0 <= scan_y_bottom) {
+ if (e->y0 != e->y1) {
+ struct nk_tt__active_edge *z = nk_tt__new_active(&hh, e, off_x, scan_y_top);
+ if (z != 0) {
+ NK_ASSERT(z->ey >= scan_y_top);
+ /* insert at front */
+ z->next = active;
+ active = z;
+ }
+ }
+ ++e;
+ }
+
+ /* now process all active edges */
+ if (active)
+ nk_tt__fill_active_edges_new(scanline, scanline2+1, result->w, active, scan_y_top);
+
+ {
+ float sum = 0;
+ for (i=0; i < result->w; ++i) {
+ float k;
+ int m;
+ sum += scanline2[i];
+ k = scanline[i] + sum;
+ k = (float) NK_ABS(k) * 255.0f + 0.5f;
+ m = (int) k;
+ if (m > 255) m = 255;
+ result->pixels[j*result->stride + i] = (unsigned char) m;
+ }
+ }
+ /* advance all the edges */
+ step = &active;
+ while (*step) {
+ struct nk_tt__active_edge *z = *step;
+ z->fx += z->fdx; /* advance to position for current scanline */
+ step = &((*step)->next); /* advance through list */
+ }
+ ++y;
+ ++j;
+ }
+ nk_tt__hheap_cleanup(&hh);
+ if (scanline != scanline_data)
+ alloc->free(alloc->userdata, scanline);
+}
+
+#define NK_TT__COMPARE(a,b) ((a)->y0 < (b)->y0)
+NK_INTERN void
+nk_tt__sort_edges_ins_sort(struct nk_tt__edge *p, int n)
+{
+ int i,j;
+ for (i=1; i < n; ++i) {
+ struct nk_tt__edge t = p[i], *a = &t;
+ j = i;
+ while (j > 0) {
+ struct nk_tt__edge *b = &p[j-1];
+ int c = NK_TT__COMPARE(a,b);
+ if (!c) break;
+ p[j] = p[j-1];
+ --j;
+ }
+ if (i != j)
+ p[j] = t;
+ }
+}
+
+NK_INTERN void
+nk_tt__sort_edges_quicksort(struct nk_tt__edge *p, int n)
+{
+ /* threshold for transitioning to insertion sort */
+ while (n > 12) {
+ struct nk_tt__edge t;
+ int c01,c12,c,m,i,j;
+
+ /* compute median of three */
+ m = n >> 1;
+ c01 = NK_TT__COMPARE(&p[0],&p[m]);
+ c12 = NK_TT__COMPARE(&p[m],&p[n-1]);
+
+ /* if 0 >= mid >= end, or 0 < mid < end, then use mid */
+ if (c01 != c12) {
+ /* otherwise, we'll need to swap something else to middle */
+ int z;
+ c = NK_TT__COMPARE(&p[0],&p[n-1]);
+ /* 0>mid && mid<n: 0>n => n; 0<n => 0 */
+ /* 0<mid && mid>n: 0>n => 0; 0<n => n */
+ z = (c == c12) ? 0 : n-1;
+ t = p[z];
+ p[z] = p[m];
+ p[m] = t;
+ }
+
+ /* now p[m] is the median-of-three */
+ /* swap it to the beginning so it won't move around */
+ t = p[0];
+ p[0] = p[m];
+ p[m] = t;
+
+ /* partition loop */
+ i=1;
+ j=n-1;
+ for(;;) {
+ /* handling of equality is crucial here */
+ /* for sentinels & efficiency with duplicates */
+ for (;;++i) {
+ if (!NK_TT__COMPARE(&p[i], &p[0])) break;
+ }
+ for (;;--j) {
+ if (!NK_TT__COMPARE(&p[0], &p[j])) break;
+ }
+
+ /* make sure we haven't crossed */
+ if (i >= j) break;
+ t = p[i];
+ p[i] = p[j];
+ p[j] = t;
+
+ ++i;
+ --j;
+
+ }
+
+ /* recurse on smaller side, iterate on larger */
+ if (j < (n-i)) {
+ nk_tt__sort_edges_quicksort(p,j);
+ p = p+i;
+ n = n-i;
+ } else {
+ nk_tt__sort_edges_quicksort(p+i, n-i);
+ n = j;
+ }
+ }
+}
+
+NK_INTERN void
+nk_tt__sort_edges(struct nk_tt__edge *p, int n)
+{
+ nk_tt__sort_edges_quicksort(p, n);
+ nk_tt__sort_edges_ins_sort(p, n);
+}
+
+NK_INTERN void
+nk_tt__rasterize(struct nk_tt__bitmap *result, struct nk_tt__point *pts,
+ int *wcount, int windings, float scale_x, float scale_y,
+ float shift_x, float shift_y, int off_x, int off_y, int invert,
+ struct nk_allocator *alloc)
+{
+ float y_scale_inv = invert ? -scale_y : scale_y;
+ struct nk_tt__edge *e;
+ int n,i,j,k,m;
+ int vsubsample = 1;
+ /* vsubsample should divide 255 evenly; otherwise we won't reach full opacity */
+
+ /* now we have to blow out the windings into explicit edge lists */
+ n = 0;
+ for (i=0; i < windings; ++i)
+ n += wcount[i];
+
+ e = (struct nk_tt__edge*)
+ alloc->alloc(alloc->userdata, 0,(sizeof(*e) * (nk_size)(n+1)));
+ if (e == 0) return;
+ n = 0;
+
+ m=0;
+ for (i=0; i < windings; ++i)
+ {
+ struct nk_tt__point *p = pts + m;
+ m += wcount[i];
+ j = wcount[i]-1;
+ for (k=0; k < wcount[i]; j=k++) {
+ int a=k,b=j;
+ /* skip the edge if horizontal */
+ if (p[j].y == p[k].y)
+ continue;
+
+ /* add edge from j to k to the list */
+ e[n].invert = 0;
+ if (invert ? p[j].y > p[k].y : p[j].y < p[k].y) {
+ e[n].invert = 1;
+ a=j,b=k;
+ }
+ e[n].x0 = p[a].x * scale_x + shift_x;
+ e[n].y0 = (p[a].y * y_scale_inv + shift_y) * (float)vsubsample;
+ e[n].x1 = p[b].x * scale_x + shift_x;
+ e[n].y1 = (p[b].y * y_scale_inv + shift_y) * (float)vsubsample;
+ ++n;
+ }
+ }
+
+ /* now sort the edges by their highest point (should snap to integer, and then by x) */
+ /*STBTT_sort(e, n, sizeof(e[0]), stbtt__edge_compare); */
+ nk_tt__sort_edges(e, n);
+ /* now, traverse the scanlines and find the intersections on each scanline, use xor winding rule */
+ nk_tt__rasterize_sorted_edges(result, e, n, vsubsample, off_x, off_y, alloc);
+ alloc->free(alloc->userdata, e);
+}
+
+NK_INTERN void
+nk_tt__add_point(struct nk_tt__point *points, int n, float x, float y)
+{
+ if (!points) return; /* during first pass, it's unallocated */
+ points[n].x = x;
+ points[n].y = y;
+}
+
+NK_INTERN int
+nk_tt__tesselate_curve(struct nk_tt__point *points, int *num_points,
+ float x0, float y0, float x1, float y1, float x2, float y2,
+ float objspace_flatness_squared, int n)
+{
+ /* tesselate until threshold p is happy...
+ * @TODO warped to compensate for non-linear stretching */
+ /* midpoint */
+ float mx = (x0 + 2*x1 + x2)/4;
+ float my = (y0 + 2*y1 + y2)/4;
+ /* versus directly drawn line */
+ float dx = (x0+x2)/2 - mx;
+ float dy = (y0+y2)/2 - my;
+ if (n > 16) /* 65536 segments on one curve better be enough! */
+ return 1;
+
+ /* half-pixel error allowed... need to be smaller if AA */
+ if (dx*dx+dy*dy > objspace_flatness_squared) {
+ nk_tt__tesselate_curve(points, num_points, x0,y0,
+ (x0+x1)/2.0f,(y0+y1)/2.0f, mx,my, objspace_flatness_squared,n+1);
+ nk_tt__tesselate_curve(points, num_points, mx,my,
+ (x1+x2)/2.0f,(y1+y2)/2.0f, x2,y2, objspace_flatness_squared,n+1);
+ } else {
+ nk_tt__add_point(points, *num_points,x2,y2);
+ *num_points = *num_points+1;
+ }
+ return 1;
+}
+
+/* returns number of contours */
+NK_INTERN struct nk_tt__point*
+nk_tt_FlattenCurves(struct nk_tt_vertex *vertices, int num_verts,
+ float objspace_flatness, int **contour_lengths, int *num_contours,
+ struct nk_allocator *alloc)
+{
+ struct nk_tt__point *points=0;
+ int num_points=0;
+ float objspace_flatness_squared = objspace_flatness * objspace_flatness;
+ int i;
+ int n=0;
+ int start=0;
+ int pass;
+
+ /* count how many "moves" there are to get the contour count */
+ for (i=0; i < num_verts; ++i)
+ if (vertices[i].type == NK_TT_vmove) ++n;
+
+ *num_contours = n;
+ if (n == 0) return 0;
+
+ *contour_lengths = (int *)
+ alloc->alloc(alloc->userdata,0, (sizeof(**contour_lengths) * (nk_size)n));
+ if (*contour_lengths == 0) {
+ *num_contours = 0;
+ return 0;
+ }
+
+ /* make two passes through the points so we don't need to realloc */
+ for (pass=0; pass < 2; ++pass)
+ {
+ float x=0,y=0;
+ if (pass == 1) {
+ points = (struct nk_tt__point *)
+ alloc->alloc(alloc->userdata,0, (nk_size)num_points * sizeof(points[0]));
+ if (points == 0) goto error;
+ }
+ num_points = 0;
+ n= -1;
+
+ for (i=0; i < num_verts; ++i)
+ {
+ switch (vertices[i].type) {
+ case NK_TT_vmove:
+ /* start the next contour */
+ if (n >= 0)
+ (*contour_lengths)[n] = num_points - start;
+ ++n;
+ start = num_points;
+
+ x = vertices[i].x, y = vertices[i].y;
+ nk_tt__add_point(points, num_points++, x,y);
+ break;
+ case NK_TT_vline:
+ x = vertices[i].x, y = vertices[i].y;
+ nk_tt__add_point(points, num_points++, x, y);
+ break;
+ case NK_TT_vcurve:
+ nk_tt__tesselate_curve(points, &num_points, x,y,
+ vertices[i].cx, vertices[i].cy,
+ vertices[i].x, vertices[i].y,
+ objspace_flatness_squared, 0);
+ x = vertices[i].x, y = vertices[i].y;
+ break;
+ default: break;
+ }
+ }
+ (*contour_lengths)[n] = num_points - start;
+ }
+ return points;
+
+error:
+ alloc->free(alloc->userdata, points);
+ alloc->free(alloc->userdata, *contour_lengths);
+ *contour_lengths = 0;
+ *num_contours = 0;
+ return 0;
+}
+
+NK_INTERN void
+nk_tt_Rasterize(struct nk_tt__bitmap *result, float flatness_in_pixels,
+ struct nk_tt_vertex *vertices, int num_verts,
+ float scale_x, float scale_y, float shift_x, float shift_y,
+ int x_off, int y_off, int invert, struct nk_allocator *alloc)
+{
+ float scale = scale_x > scale_y ? scale_y : scale_x;
+ int winding_count, *winding_lengths;
+ struct nk_tt__point *windings = nk_tt_FlattenCurves(vertices, num_verts,
+ flatness_in_pixels / scale, &winding_lengths, &winding_count, alloc);
+
+ NK_ASSERT(alloc);
+ if (windings) {
+ nk_tt__rasterize(result, windings, winding_lengths, winding_count,
+ scale_x, scale_y, shift_x, shift_y, x_off, y_off, invert, alloc);
+ alloc->free(alloc->userdata, winding_lengths);
+ alloc->free(alloc->userdata, windings);
+ }
+}
+
+NK_INTERN void
+nk_tt_MakeGlyphBitmapSubpixel(const struct nk_tt_fontinfo *info, unsigned char *output,
+ int out_w, int out_h, int out_stride, float scale_x, float scale_y,
+ float shift_x, float shift_y, int glyph, struct nk_allocator *alloc)
+{
+ int ix0,iy0;
+ struct nk_tt_vertex *vertices;
+ int num_verts = nk_tt_GetGlyphShape(info, alloc, glyph, &vertices);
+ struct nk_tt__bitmap gbm;
+
+ nk_tt_GetGlyphBitmapBoxSubpixel(info, glyph, scale_x, scale_y, shift_x,
+ shift_y, &ix0,&iy0,0,0);
+ gbm.pixels = output;
+ gbm.w = out_w;
+ gbm.h = out_h;
+ gbm.stride = out_stride;
+
+ if (gbm.w && gbm.h)
+ nk_tt_Rasterize(&gbm, 0.35f, vertices, num_verts, scale_x, scale_y,
+ shift_x, shift_y, ix0,iy0, 1, alloc);
+ alloc->free(alloc->userdata, vertices);
+}
+
+/*-------------------------------------------------------------
+ * Bitmap baking
+ * --------------------------------------------------------------*/
+NK_INTERN int
+nk_tt_PackBegin(struct nk_tt_pack_context *spc, unsigned char *pixels,
+ int pw, int ph, int stride_in_bytes, int padding, struct nk_allocator *alloc)
+{
+ int num_nodes = pw - padding;
+ struct nk_rp_context *context = (struct nk_rp_context *)
+ alloc->alloc(alloc->userdata,0, sizeof(*context));
+ struct nk_rp_node *nodes = (struct nk_rp_node*)
+ alloc->alloc(alloc->userdata,0, (sizeof(*nodes ) * (nk_size)num_nodes));
+
+ if (context == 0 || nodes == 0) {
+ if (context != 0) alloc->free(alloc->userdata, context);
+ if (nodes != 0) alloc->free(alloc->userdata, nodes);
+ return 0;
+ }
+
+ spc->width = pw;
+ spc->height = ph;
+ spc->pixels = pixels;
+ spc->pack_info = context;
+ spc->nodes = nodes;
+ spc->padding = padding;
+ spc->stride_in_bytes = (stride_in_bytes != 0) ? stride_in_bytes : pw;
+ spc->h_oversample = 1;
+ spc->v_oversample = 1;
+
+ nk_rp_init_target(context, pw-padding, ph-padding, nodes, num_nodes);
+ if (pixels)
+ NK_MEMSET(pixels, 0, (nk_size)(pw*ph)); /* background of 0 around pixels */
+ return 1;
+}
+
+NK_INTERN void
+nk_tt_PackEnd(struct nk_tt_pack_context *spc, struct nk_allocator *alloc)
+{
+ alloc->free(alloc->userdata, spc->nodes);
+ alloc->free(alloc->userdata, spc->pack_info);
+}
+
+NK_INTERN void
+nk_tt_PackSetOversampling(struct nk_tt_pack_context *spc,
+ unsigned int h_oversample, unsigned int v_oversample)
+{
+ NK_ASSERT(h_oversample <= NK_TT_MAX_OVERSAMPLE);
+ NK_ASSERT(v_oversample <= NK_TT_MAX_OVERSAMPLE);
+ if (h_oversample <= NK_TT_MAX_OVERSAMPLE)
+ spc->h_oversample = h_oversample;
+ if (v_oversample <= NK_TT_MAX_OVERSAMPLE)
+ spc->v_oversample = v_oversample;
+}
+
+NK_INTERN void
+nk_tt__h_prefilter(unsigned char *pixels, int w, int h, int stride_in_bytes,
+ int kernel_width)
+{
+ unsigned char buffer[NK_TT_MAX_OVERSAMPLE];
+ int safe_w = w - kernel_width;
+ int j;
+
+ for (j=0; j < h; ++j)
+ {
+ int i;
+ unsigned int total;
+ NK_MEMSET(buffer, 0, (nk_size)kernel_width);
+
+ total = 0;
+
+ /* make kernel_width a constant in common cases so compiler can optimize out the divide */
+ switch (kernel_width) {
+ case 2:
+ for (i=0; i <= safe_w; ++i) {
+ total += (unsigned int)(pixels[i] - buffer[i & NK_TT__OVER_MASK]);
+ buffer[(i+kernel_width) & NK_TT__OVER_MASK] = pixels[i];
+ pixels[i] = (unsigned char) (total / 2);
+ }
+ break;
+ case 3:
+ for (i=0; i <= safe_w; ++i) {
+ total += (unsigned int)(pixels[i] - buffer[i & NK_TT__OVER_MASK]);
+ buffer[(i+kernel_width) & NK_TT__OVER_MASK] = pixels[i];
+ pixels[i] = (unsigned char) (total / 3);
+ }
+ break;
+ case 4:
+ for (i=0; i <= safe_w; ++i) {
+ total += (unsigned int)pixels[i] - buffer[i & NK_TT__OVER_MASK];
+ buffer[(i+kernel_width) & NK_TT__OVER_MASK] = pixels[i];
+ pixels[i] = (unsigned char) (total / 4);
+ }
+ break;
+ case 5:
+ for (i=0; i <= safe_w; ++i) {
+ total += (unsigned int)(pixels[i] - buffer[i & NK_TT__OVER_MASK]);
+ buffer[(i+kernel_width) & NK_TT__OVER_MASK] = pixels[i];
+ pixels[i] = (unsigned char) (total / 5);
+ }
+ break;
+ default:
+ for (i=0; i <= safe_w; ++i) {
+ total += (unsigned int)(pixels[i] - buffer[i & NK_TT__OVER_MASK]);
+ buffer[(i+kernel_width) & NK_TT__OVER_MASK] = pixels[i];
+ pixels[i] = (unsigned char) (total / (unsigned int)kernel_width);
+ }
+ break;
+ }
+
+ for (; i < w; ++i) {
+ NK_ASSERT(pixels[i] == 0);
+ total -= (unsigned int)(buffer[i & NK_TT__OVER_MASK]);
+ pixels[i] = (unsigned char) (total / (unsigned int)kernel_width);
+ }
+ pixels += stride_in_bytes;
+ }
+}
+
+NK_INTERN void
+nk_tt__v_prefilter(unsigned char *pixels, int w, int h, int stride_in_bytes,
+ int kernel_width)
+{
+ unsigned char buffer[NK_TT_MAX_OVERSAMPLE];
+ int safe_h = h - kernel_width;
+ int j;
+
+ for (j=0; j < w; ++j)
+ {
+ int i;
+ unsigned int total;
+ NK_MEMSET(buffer, 0, (nk_size)kernel_width);
+
+ total = 0;
+
+ /* make kernel_width a constant in common cases so compiler can optimize out the divide */
+ switch (kernel_width) {
+ case 2:
+ for (i=0; i <= safe_h; ++i) {
+ total += (unsigned int)(pixels[i*stride_in_bytes] - buffer[i & NK_TT__OVER_MASK]);
+ buffer[(i+kernel_width) & NK_TT__OVER_MASK] = pixels[i*stride_in_bytes];
+ pixels[i*stride_in_bytes] = (unsigned char) (total / 2);
+ }
+ break;
+ case 3:
+ for (i=0; i <= safe_h; ++i) {
+ total += (unsigned int)(pixels[i*stride_in_bytes] - buffer[i & NK_TT__OVER_MASK]);
+ buffer[(i+kernel_width) & NK_TT__OVER_MASK] = pixels[i*stride_in_bytes];
+ pixels[i*stride_in_bytes] = (unsigned char) (total / 3);
+ }
+ break;
+ case 4:
+ for (i=0; i <= safe_h; ++i) {
+ total += (unsigned int)(pixels[i*stride_in_bytes] - buffer[i & NK_TT__OVER_MASK]);
+ buffer[(i+kernel_width) & NK_TT__OVER_MASK] = pixels[i*stride_in_bytes];
+ pixels[i*stride_in_bytes] = (unsigned char) (total / 4);
+ }
+ break;
+ case 5:
+ for (i=0; i <= safe_h; ++i) {
+ total += (unsigned int)(pixels[i*stride_in_bytes] - buffer[i & NK_TT__OVER_MASK]);
+ buffer[(i+kernel_width) & NK_TT__OVER_MASK] = pixels[i*stride_in_bytes];
+ pixels[i*stride_in_bytes] = (unsigned char) (total / 5);
+ }
+ break;
+ default:
+ for (i=0; i <= safe_h; ++i) {
+ total += (unsigned int)(pixels[i*stride_in_bytes] - buffer[i & NK_TT__OVER_MASK]);
+ buffer[(i+kernel_width) & NK_TT__OVER_MASK] = pixels[i*stride_in_bytes];
+ pixels[i*stride_in_bytes] = (unsigned char) (total / (unsigned int)kernel_width);
+ }
+ break;
+ }
+
+ for (; i < h; ++i) {
+ NK_ASSERT(pixels[i*stride_in_bytes] == 0);
+ total -= (unsigned int)(buffer[i & NK_TT__OVER_MASK]);
+ pixels[i*stride_in_bytes] = (unsigned char) (total / (unsigned int)kernel_width);
+ }
+ pixels += 1;
+ }
+}
+
+NK_INTERN float
+nk_tt__oversample_shift(int oversample)
+{
+ if (!oversample)
+ return 0.0f;
+
+ /* The prefilter is a box filter of width "oversample", */
+ /* which shifts phase by (oversample - 1)/2 pixels in */
+ /* oversampled space. We want to shift in the opposite */
+ /* direction to counter this. */
+ return (float)-(oversample - 1) / (2.0f * (float)oversample);
+}
+
+/* rects array must be big enough to accommodate all characters in the given ranges */
+NK_INTERN int
+nk_tt_PackFontRangesGatherRects(struct nk_tt_pack_context *spc,
+ struct nk_tt_fontinfo *info, struct nk_tt_pack_range *ranges,
+ int num_ranges, struct nk_rp_rect *rects)
+{
+ int i,j,k;
+ k = 0;
+
+ for (i=0; i < num_ranges; ++i) {
+ float fh = ranges[i].font_size;
+ float scale = (fh > 0) ? nk_tt_ScaleForPixelHeight(info, fh):
+ nk_tt_ScaleForMappingEmToPixels(info, -fh);
+ ranges[i].h_oversample = (unsigned char) spc->h_oversample;
+ ranges[i].v_oversample = (unsigned char) spc->v_oversample;
+ for (j=0; j < ranges[i].num_chars; ++j) {
+ int x0,y0,x1,y1;
+ int codepoint = ranges[i].first_unicode_codepoint_in_range ?
+ ranges[i].first_unicode_codepoint_in_range + j :
+ ranges[i].array_of_unicode_codepoints[j];
+
+ int glyph = nk_tt_FindGlyphIndex(info, codepoint);
+ nk_tt_GetGlyphBitmapBoxSubpixel(info,glyph, scale * (float)spc->h_oversample,
+ scale * (float)spc->v_oversample, 0,0, &x0,&y0,&x1,&y1);
+ rects[k].w = (nk_rp_coord) (x1-x0 + spc->padding + (int)spc->h_oversample-1);
+ rects[k].h = (nk_rp_coord) (y1-y0 + spc->padding + (int)spc->v_oversample-1);
+ ++k;
+ }
+ }
+ return k;
+}
+
+NK_INTERN int
+nk_tt_PackFontRangesRenderIntoRects(struct nk_tt_pack_context *spc,
+ struct nk_tt_fontinfo *info, struct nk_tt_pack_range *ranges,
+ int num_ranges, struct nk_rp_rect *rects, struct nk_allocator *alloc)
+{
+ int i,j,k, return_value = 1;
+ /* save current values */
+ int old_h_over = (int)spc->h_oversample;
+ int old_v_over = (int)spc->v_oversample;
+ /* rects array must be big enough to accommodate all characters in the given ranges */
+
+ k = 0;
+ for (i=0; i < num_ranges; ++i)
+ {
+ float fh = ranges[i].font_size;
+ float recip_h,recip_v,sub_x,sub_y;
+ float scale = fh > 0 ? nk_tt_ScaleForPixelHeight(info, fh):
+ nk_tt_ScaleForMappingEmToPixels(info, -fh);
+
+ spc->h_oversample = ranges[i].h_oversample;
+ spc->v_oversample = ranges[i].v_oversample;
+
+ recip_h = 1.0f / (float)spc->h_oversample;
+ recip_v = 1.0f / (float)spc->v_oversample;
+
+ sub_x = nk_tt__oversample_shift((int)spc->h_oversample);
+ sub_y = nk_tt__oversample_shift((int)spc->v_oversample);
+
+ for (j=0; j < ranges[i].num_chars; ++j)
+ {
+ struct nk_rp_rect *r = &rects[k];
+ if (r->was_packed)
+ {
+ struct nk_tt_packedchar *bc = &ranges[i].chardata_for_range[j];
+ int advance, lsb, x0,y0,x1,y1;
+ int codepoint = ranges[i].first_unicode_codepoint_in_range ?
+ ranges[i].first_unicode_codepoint_in_range + j :
+ ranges[i].array_of_unicode_codepoints[j];
+ int glyph = nk_tt_FindGlyphIndex(info, codepoint);
+ nk_rp_coord pad = (nk_rp_coord) spc->padding;
+
+ /* pad on left and top */
+ r->x = (nk_rp_coord)((int)r->x + (int)pad);
+ r->y = (nk_rp_coord)((int)r->y + (int)pad);
+ r->w = (nk_rp_coord)((int)r->w - (int)pad);
+ r->h = (nk_rp_coord)((int)r->h - (int)pad);
+
+ nk_tt_GetGlyphHMetrics(info, glyph, &advance, &lsb);
+ nk_tt_GetGlyphBitmapBox(info, glyph, scale * (float)spc->h_oversample,
+ (scale * (float)spc->v_oversample), &x0,&y0,&x1,&y1);
+ nk_tt_MakeGlyphBitmapSubpixel(info, spc->pixels + r->x + r->y*spc->stride_in_bytes,
+ (int)(r->w - spc->h_oversample+1), (int)(r->h - spc->v_oversample+1),
+ spc->stride_in_bytes, scale * (float)spc->h_oversample,
+ scale * (float)spc->v_oversample, 0,0, glyph, alloc);
+
+ if (spc->h_oversample > 1)
+ nk_tt__h_prefilter(spc->pixels + r->x + r->y*spc->stride_in_bytes,
+ r->w, r->h, spc->stride_in_bytes, (int)spc->h_oversample);
+
+ if (spc->v_oversample > 1)
+ nk_tt__v_prefilter(spc->pixels + r->x + r->y*spc->stride_in_bytes,
+ r->w, r->h, spc->stride_in_bytes, (int)spc->v_oversample);
+
+ bc->x0 = (nk_ushort) r->x;
+ bc->y0 = (nk_ushort) r->y;
+ bc->x1 = (nk_ushort) (r->x + r->w);
+ bc->y1 = (nk_ushort) (r->y + r->h);
+ bc->xadvance = scale * (float)advance;
+ bc->xoff = (float) x0 * recip_h + sub_x;
+ bc->yoff = (float) y0 * recip_v + sub_y;
+ bc->xoff2 = ((float)x0 + r->w) * recip_h + sub_x;
+ bc->yoff2 = ((float)y0 + r->h) * recip_v + sub_y;
+ } else {
+ return_value = 0; /* if any fail, report failure */
+ }
+ ++k;
+ }
+ }
+ /* restore original values */
+ spc->h_oversample = (unsigned int)old_h_over;
+ spc->v_oversample = (unsigned int)old_v_over;
+ return return_value;
+}
+
+NK_INTERN void
+nk_tt_GetPackedQuad(struct nk_tt_packedchar *chardata, int pw, int ph,
+ int char_index, float *xpos, float *ypos, struct nk_tt_aligned_quad *q,
+ int align_to_integer)
+{
+ float ipw = 1.0f / (float)pw, iph = 1.0f / (float)ph;
+ struct nk_tt_packedchar *b = (struct nk_tt_packedchar*)(chardata + char_index);
+ if (align_to_integer) {
+ int tx = nk_ifloor((*xpos + b->xoff) + 0.5f);
+ int ty = nk_ifloor((*ypos + b->yoff) + 0.5f);
+
+ float x = (float)tx;
+ float y = (float)ty;
+
+ q->x0 = x;
+ q->y0 = y;
+ q->x1 = x + b->xoff2 - b->xoff;
+ q->y1 = y + b->yoff2 - b->yoff;
+ } else {
+ q->x0 = *xpos + b->xoff;
+ q->y0 = *ypos + b->yoff;
+ q->x1 = *xpos + b->xoff2;
+ q->y1 = *ypos + b->yoff2;
+ }
+ q->s0 = b->x0 * ipw;
+ q->t0 = b->y0 * iph;
+ q->s1 = b->x1 * ipw;
+ q->t1 = b->y1 * iph;
+ *xpos += b->xadvance;
+}
+
+/* -------------------------------------------------------------
+ *
+ * FONT BAKING
+ *
+ * --------------------------------------------------------------*/
+struct nk_font_bake_data {
+ struct nk_tt_fontinfo info;
+ struct nk_rp_rect *rects;
+ struct nk_tt_pack_range *ranges;
+ nk_rune range_count;
+};
+
+struct nk_font_baker {
+ struct nk_allocator alloc;
+ struct nk_tt_pack_context spc;
+ struct nk_font_bake_data *build;
+ struct nk_tt_packedchar *packed_chars;
+ struct nk_rp_rect *rects;
+ struct nk_tt_pack_range *ranges;
+};
+
+NK_GLOBAL const nk_size nk_rect_align = NK_ALIGNOF(struct nk_rp_rect);
+NK_GLOBAL const nk_size nk_range_align = NK_ALIGNOF(struct nk_tt_pack_range);
+NK_GLOBAL const nk_size nk_char_align = NK_ALIGNOF(struct nk_tt_packedchar);
+NK_GLOBAL const nk_size nk_build_align = NK_ALIGNOF(struct nk_font_bake_data);
+NK_GLOBAL const nk_size nk_baker_align = NK_ALIGNOF(struct nk_font_baker);
+
+NK_INTERN int
+nk_range_count(const nk_rune *range)
+{
+ const nk_rune *iter = range;
+ NK_ASSERT(range);
+ if (!range) return 0;
+ while (*(iter++) != 0);
+ return (iter == range) ? 0 : (int)((iter - range)/2);
+}
+
+NK_INTERN int
+nk_range_glyph_count(const nk_rune *range, int count)
+{
+ int i = 0;
+ int total_glyphs = 0;
+ for (i = 0; i < count; ++i) {
+ int diff;
+ nk_rune f = range[(i*2)+0];
+ nk_rune t = range[(i*2)+1];
+ NK_ASSERT(t >= f);
+ diff = (int)((t - f) + 1);
+ total_glyphs += diff;
+ }
+ return total_glyphs;
+}
+
+NK_API const nk_rune*
+nk_font_default_glyph_ranges(void)
+{
+ NK_STORAGE const nk_rune ranges[] = {0x0020, 0x00FF, 0};
+ return ranges;
+}
+
+NK_API const nk_rune*
+nk_font_chinese_glyph_ranges(void)
+{
+ NK_STORAGE const nk_rune ranges[] = {
+ 0x0020, 0x00FF,
+ 0x3000, 0x30FF,
+ 0x31F0, 0x31FF,
+ 0xFF00, 0xFFEF,
+ 0x4e00, 0x9FAF,
+ 0
+ };
+ return ranges;
+}
+
+NK_API const nk_rune*
+nk_font_cyrillic_glyph_ranges(void)
+{
+ NK_STORAGE const nk_rune ranges[] = {
+ 0x0020, 0x00FF,
+ 0x0400, 0x052F,
+ 0x2DE0, 0x2DFF,
+ 0xA640, 0xA69F,
+ 0
+ };
+ return ranges;
+}
+
+NK_API const nk_rune*
+nk_font_korean_glyph_ranges(void)
+{
+ NK_STORAGE const nk_rune ranges[] = {
+ 0x0020, 0x00FF,
+ 0x3131, 0x3163,
+ 0xAC00, 0xD79D,
+ 0
+ };
+ return ranges;
+}
+
+NK_API void
+nk_font_bake_memory(nk_size *temp, int *glyph_count,
+ struct nk_font_config *config, int count)
+{
+ int i;
+ int range_count = 0;
+ int total_range_count = 0;
+ NK_ASSERT(config);
+ NK_ASSERT(glyph_count);
+ if (!config) {
+ *temp = 0;
+ *glyph_count = 0;
+ return;
+ }
+
+ *glyph_count = 0;
+ if (!config->range)
+ config->range = nk_font_default_glyph_ranges();
+ for (i = 0; i < count; ++i) {
+ range_count = nk_range_count(config[i].range);
+ total_range_count += range_count;
+ *glyph_count += nk_range_glyph_count(config[i].range, range_count);
+ }
+
+ *temp = (nk_size)*glyph_count * sizeof(struct nk_rp_rect);
+ *temp += (nk_size)total_range_count * sizeof(struct nk_tt_pack_range);
+ *temp += (nk_size)*glyph_count * sizeof(struct nk_tt_packedchar);
+ *temp += (nk_size)count * sizeof(struct nk_font_bake_data);
+ *temp += sizeof(struct nk_font_baker);
+ *temp += nk_rect_align + nk_range_align + nk_char_align;
+ *temp += nk_build_align + nk_baker_align;
+}
+
+NK_INTERN struct nk_font_baker*
+nk_font_baker(void *memory, int glyph_count, int count, struct nk_allocator *alloc)
+{
+ struct nk_font_baker *baker;
+ if (!memory) return 0;
+ /* setup baker inside a memory block */
+ baker = (struct nk_font_baker*)NK_ALIGN_PTR(memory, nk_baker_align);
+ baker->build = (struct nk_font_bake_data*)NK_ALIGN_PTR((baker + 1), nk_build_align);
+ baker->packed_chars = (struct nk_tt_packedchar*)NK_ALIGN_PTR((baker->build + count), nk_char_align);
+ baker->rects = (struct nk_rp_rect*)NK_ALIGN_PTR((baker->packed_chars + glyph_count), nk_rect_align);
+ baker->ranges = (struct nk_tt_pack_range*)NK_ALIGN_PTR((baker->rects + glyph_count), nk_range_align);
+ baker->alloc = *alloc;
+ return baker;
+}
+
+NK_API int
+nk_font_bake_pack(nk_size *image_memory, int *width, int *height,
+ struct nk_recti *custom, void *temp, nk_size temp_size,
+ const struct nk_font_config *config, int count,
+ struct nk_allocator *alloc)
+{
+ NK_STORAGE const nk_size max_height = 1024 * 32;
+ struct nk_font_baker* baker;
+ int total_glyph_count = 0;
+ int total_range_count = 0;
+ int range_count = 0;
+ int i = 0;
+
+ NK_ASSERT(image_memory);
+ NK_ASSERT(width);
+ NK_ASSERT(height);
+ NK_ASSERT(config);
+ NK_ASSERT(temp);
+ NK_ASSERT(temp_size);
+ NK_ASSERT(count);
+ NK_ASSERT(alloc);
+ if (!image_memory || !width || !height || !config || !temp ||
+ !temp_size || !count) return nk_false;
+
+ for (i = 0; i < count; ++i) {
+ range_count = nk_range_count(config[i].range);
+ total_range_count += range_count;
+ total_glyph_count += nk_range_glyph_count(config[i].range, range_count);
+ }
+
+ /* setup font baker from temporary memory */
+ nk_zero(temp, temp_size);
+ baker = nk_font_baker(temp, total_glyph_count, count, alloc);
+ if (!baker) return nk_false;
+ for (i = 0; i < count; ++i) {
+ const struct nk_font_config *cfg = &config[i];
+ if (!nk_tt_InitFont(&baker->build[i].info, (const unsigned char*)cfg->ttf_blob, 0))
+ return nk_false;
+ }
+
+ *height = 0;
+ *width = (total_glyph_count > 1000) ? 1024 : 512;
+ nk_tt_PackBegin(&baker->spc, 0, (int)*width, (int)max_height, 0, 1, alloc);
+ {
+ int input_i = 0;
+ int range_n = 0;
+ int rect_n = 0;
+ int char_n = 0;
+
+ /* pack custom user data first so it will be in the upper left corner*/
+ if (custom) {
+ struct nk_rp_rect custom_space;
+ nk_zero(&custom_space, sizeof(custom_space));
+ custom_space.w = (nk_rp_coord)((custom->w * 2) + 1);
+ custom_space.h = (nk_rp_coord)(custom->h + 1);
+
+ nk_tt_PackSetOversampling(&baker->spc, 1, 1);
+ nk_rp_pack_rects((struct nk_rp_context*)baker->spc.pack_info, &custom_space, 1);
+ *height = NK_MAX(*height, (int)(custom_space.y + custom_space.h));
+
+ custom->x = (short)custom_space.x;
+ custom->y = (short)custom_space.y;
+ custom->w = (short)custom_space.w;
+ custom->h = (short)custom_space.h;
+ }
+
+ /* first font pass: pack all glyphs */
+ for (input_i = 0; input_i < count; input_i++) {
+ int n = 0;
+ const nk_rune *in_range;
+ const struct nk_font_config *cfg = &config[input_i];
+ struct nk_font_bake_data *tmp = &baker->build[input_i];
+ int glyph_count;
+
+ /* count glyphs + ranges in current font */
+ glyph_count = 0; range_count = 0;
+ for (in_range = cfg->range; in_range[0] && in_range[1]; in_range += 2) {
+ glyph_count += (int)(in_range[1] - in_range[0]) + 1;
+ range_count++;
+ }
+
+ /* setup ranges */
+ tmp->ranges = baker->ranges + range_n;
+ tmp->range_count = (nk_rune)range_count;
+ range_n += range_count;
+ for (i = 0; i < range_count; ++i) {
+ in_range = &cfg->range[i * 2];
+ tmp->ranges[i].font_size = cfg->size;
+ tmp->ranges[i].first_unicode_codepoint_in_range = (int)in_range[0];
+ tmp->ranges[i].num_chars = (int)(in_range[1]- in_range[0]) + 1;
+ tmp->ranges[i].chardata_for_range = baker->packed_chars + char_n;
+ char_n += tmp->ranges[i].num_chars;
+ }
+
+ /* pack */
+ tmp->rects = baker->rects + rect_n;
+ rect_n += glyph_count;
+ nk_tt_PackSetOversampling(&baker->spc, cfg->oversample_h, cfg->oversample_v);
+ n = nk_tt_PackFontRangesGatherRects(&baker->spc, &tmp->info,
+ tmp->ranges, (int)tmp->range_count, tmp->rects);
+ nk_rp_pack_rects((struct nk_rp_context*)baker->spc.pack_info, tmp->rects, (int)n);
+
+ /* texture height */
+ for (i = 0; i < n; ++i) {
+ if (tmp->rects[i].was_packed)
+ *height = NK_MAX(*height, tmp->rects[i].y + tmp->rects[i].h);
+ }
+ }
+ NK_ASSERT(rect_n == total_glyph_count);
+ NK_ASSERT(char_n == total_glyph_count);
+ NK_ASSERT(range_n == total_range_count);
+ }
+ *height = (int)nk_round_up_pow2((nk_uint)*height);
+ *image_memory = (nk_size)(*width) * (nk_size)(*height);
+ return nk_true;
+}
+
+NK_API void
+nk_font_bake(void *image_memory, int width, int height,
+ void *temp, nk_size temp_size, struct nk_font_glyph *glyphs,
+ int glyphs_count, const struct nk_font_config *config, int font_count)
+{
+ int input_i = 0;
+ struct nk_font_baker* baker;
+ nk_rune glyph_n = 0;
+
+ NK_ASSERT(image_memory);
+ NK_ASSERT(width);
+ NK_ASSERT(height);
+ NK_ASSERT(config);
+ NK_ASSERT(temp);
+ NK_ASSERT(temp_size);
+ NK_ASSERT(font_count);
+ NK_ASSERT(glyphs_count);
+ if (!image_memory || !width || !height || !config || !temp ||
+ !temp_size || !font_count || !glyphs || !glyphs_count)
+ return;
+
+ /* second font pass: render glyphs */
+ baker = (struct nk_font_baker*)NK_ALIGN_PTR(temp, nk_baker_align);
+ nk_zero(image_memory, (nk_size)((nk_size)width * (nk_size)height));
+ baker->spc.pixels = (unsigned char*)image_memory;
+ baker->spc.height = (int)height;
+ for (input_i = 0; input_i < font_count; ++input_i) {
+ const struct nk_font_config *cfg = &config[input_i];
+ struct nk_font_bake_data *tmp = &baker->build[input_i];
+ nk_tt_PackSetOversampling(&baker->spc, cfg->oversample_h, cfg->oversample_v);
+ nk_tt_PackFontRangesRenderIntoRects(&baker->spc, &tmp->info, tmp->ranges,
+ (int)tmp->range_count, tmp->rects, &baker->alloc);
+ }
+ nk_tt_PackEnd(&baker->spc, &baker->alloc);
+
+ /* third pass: setup font and glyphs */
+ for (input_i = 0; input_i < font_count; ++input_i)
+ {
+ nk_size i = 0;
+ int char_idx = 0;
+ nk_rune glyph_count = 0;
+ const struct nk_font_config *cfg = &config[input_i];
+ struct nk_font_bake_data *tmp = &baker->build[input_i];
+ struct nk_baked_font *dst_font = cfg->font;
+
+ float font_scale = nk_tt_ScaleForPixelHeight(&tmp->info, cfg->size);
+ int unscaled_ascent, unscaled_descent, unscaled_line_gap;
+ nk_tt_GetFontVMetrics(&tmp->info, &unscaled_ascent, &unscaled_descent,
+ &unscaled_line_gap);
+
+ /* fill baked font */
+ if (!cfg->merge_mode) {
+ dst_font->ranges = cfg->range;
+ dst_font->height = cfg->size;
+ dst_font->ascent = ((float)unscaled_ascent * font_scale);
+ dst_font->descent = ((float)unscaled_descent * font_scale);
+ dst_font->glyph_offset = glyph_n;
+ }
+
+ /* fill own baked font glyph array */
+ for (i = 0; i < tmp->range_count; ++i)
+ {
+ struct nk_tt_pack_range *range = &tmp->ranges[i];
+ for (char_idx = 0; char_idx < range->num_chars; char_idx++)
+ {
+ nk_rune codepoint = 0;
+ float dummy_x = 0, dummy_y = 0;
+ struct nk_tt_aligned_quad q;
+ struct nk_font_glyph *glyph;
+
+ /* query glyph bounds from stb_truetype */
+ const struct nk_tt_packedchar *pc = &range->chardata_for_range[char_idx];
+ glyph_count++;
+ if (!pc->x0 && !pc->x1 && !pc->y0 && !pc->y1) continue;
+ codepoint = (nk_rune)(range->first_unicode_codepoint_in_range + char_idx);
+ nk_tt_GetPackedQuad(range->chardata_for_range, (int)width,
+ (int)height, char_idx, &dummy_x, &dummy_y, &q, 0);
+
+ /* fill own glyph type with data */
+ glyph = &glyphs[dst_font->glyph_offset + (unsigned int)char_idx];
+ glyph->codepoint = codepoint;
+ glyph->x0 = q.x0; glyph->y0 = q.y0;
+ glyph->x1 = q.x1; glyph->y1 = q.y1;
+ glyph->y0 += (dst_font->ascent + 0.5f);
+ glyph->y1 += (dst_font->ascent + 0.5f);
+ glyph->w = glyph->x1 - glyph->x0 + 0.5f;
+ glyph->h = glyph->y1 - glyph->y0;
+
+ if (cfg->coord_type == NK_COORD_PIXEL) {
+ glyph->u0 = q.s0 * (float)width;
+ glyph->v0 = q.t0 * (float)height;
+ glyph->u1 = q.s1 * (float)width;
+ glyph->v1 = q.t1 * (float)height;
+ } else {
+ glyph->u0 = q.s0;
+ glyph->v0 = q.t0;
+ glyph->u1 = q.s1;
+ glyph->v1 = q.t1;
+ }
+ glyph->xadvance = (pc->xadvance + cfg->spacing.x);
+ if (cfg->pixel_snap)
+ glyph->xadvance = (float)(int)(glyph->xadvance + 0.5f);
+ }
+ }
+ dst_font->glyph_count = glyph_count;
+ glyph_n += dst_font->glyph_count;
+ }
+}
+
+NK_API void
+nk_font_bake_custom_data(void *img_memory, int img_width, int img_height,
+ struct nk_recti img_dst, const char *texture_data_mask, int tex_width,
+ int tex_height, char white, char black)
+{
+ nk_byte *pixels;
+ int y = 0;
+ int x = 0;
+ int n = 0;
+
+ NK_ASSERT(img_memory);
+ NK_ASSERT(img_width);
+ NK_ASSERT(img_height);
+ NK_ASSERT(texture_data_mask);
+ NK_UNUSED(tex_height);
+ if (!img_memory || !img_width || !img_height || !texture_data_mask)
+ return;
+
+ pixels = (nk_byte*)img_memory;
+ for (y = 0, n = 0; y < tex_height; ++y) {
+ for (x = 0; x < tex_width; ++x, ++n) {
+ const int off0 = ((img_dst.x + x) + (img_dst.y + y) * img_width);
+ const int off1 = off0 + 1 + tex_width;
+ pixels[off0] = (texture_data_mask[n] == white) ? 0xFF : 0x00;
+ pixels[off1] = (texture_data_mask[n] == black) ? 0xFF : 0x00;
+ }
+ }
+}
+
+NK_API void
+nk_font_bake_convert(void *out_memory, int img_width, int img_height,
+ const void *in_memory)
+{
+ int n = 0;
+ const nk_byte *src;
+ nk_rune *dst;
+
+ NK_ASSERT(out_memory);
+ NK_ASSERT(in_memory);
+ NK_ASSERT(img_width);
+ NK_ASSERT(img_height);
+ if (!out_memory || !in_memory || !img_height || !img_width) return;
+
+ dst = (nk_rune*)out_memory;
+ src = (const nk_byte*)in_memory;
+ for (n = (int)(img_width * img_height); n > 0; n--)
+ *dst++ = ((nk_rune)(*src++) << 24) | 0x00FFFFFF;
+}
+
+/* -------------------------------------------------------------
+ *
+ * FONT
+ *
+ * --------------------------------------------------------------*/
+NK_INTERN float
+nk_font_text_width(nk_handle handle, float height, const char *text, int len)
+{
+ nk_rune unicode;
+ int text_len = 0;
+ float text_width = 0;
+ int glyph_len = 0;
+ float scale = 0;
+
+ struct nk_font *font = (struct nk_font*)handle.ptr;
+ NK_ASSERT(font);
+ NK_ASSERT(font->glyphs);
+ if (!font || !text || !len)
+ return 0;
+
+ scale = height/font->info.height;
+ glyph_len = text_len = nk_utf_decode(text, &unicode, (int)len);
+ if (!glyph_len) return 0;
+ while (text_len <= (int)len && glyph_len) {
+ const struct nk_font_glyph *g;
+ if (unicode == NK_UTF_INVALID) break;
+
+ /* query currently drawn glyph information */
+ g = nk_font_find_glyph(font, unicode);
+ text_width += g->xadvance * scale;
+
+ /* offset next glyph */
+ glyph_len = nk_utf_decode(text + text_len, &unicode, (int)len - text_len);
+ text_len += glyph_len;
+ }
+ return text_width;
+}
+
+#ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+NK_INTERN void
+nk_font_query_font_glyph(nk_handle handle, float height,
+ struct nk_user_font_glyph *glyph, nk_rune codepoint, nk_rune next_codepoint)
+{
+ float scale;
+ const struct nk_font_glyph *g;
+ struct nk_font *font;
+
+ NK_ASSERT(glyph);
+ NK_UNUSED(next_codepoint);
+
+ font = (struct nk_font*)handle.ptr;
+ NK_ASSERT(font);
+ NK_ASSERT(font->glyphs);
+ if (!font || !glyph)
+ return;
+
+ scale = height/font->info.height;
+ g = nk_font_find_glyph(font, codepoint);
+ glyph->width = (g->x1 - g->x0) * scale;
+ glyph->height = (g->y1 - g->y0) * scale;
+ glyph->offset = nk_vec2(g->x0 * scale, g->y0 * scale);
+ glyph->xadvance = (g->xadvance * scale);
+ glyph->uv[0] = nk_vec2(g->u0, g->v0);
+ glyph->uv[1] = nk_vec2(g->u1, g->v1);
+}
+#endif
+
+NK_API const struct nk_font_glyph*
+nk_font_find_glyph(struct nk_font *font, nk_rune unicode)
+{
+ int i = 0;
+ int count;
+ int total_glyphs = 0;
+ const struct nk_font_glyph *glyph = 0;
+ NK_ASSERT(font);
+ NK_ASSERT(font->glyphs);
+
+ glyph = font->fallback;
+ count = nk_range_count(font->info.ranges);
+ for (i = 0; i < count; ++i) {
+ int diff;
+ nk_rune f = font->info.ranges[(i*2)+0];
+ nk_rune t = font->info.ranges[(i*2)+1];
+ diff = (int)((t - f) + 1);
+ if (unicode >= f && unicode <= t)
+ return &font->glyphs[((nk_rune)total_glyphs + (unicode - f))];
+ total_glyphs += diff;
+ }
+ return glyph;
+}
+
+NK_API void
+nk_font_init(struct nk_font *font, float pixel_height,
+ nk_rune fallback_codepoint, struct nk_font_glyph *glyphs,
+ const struct nk_baked_font *baked_font, nk_handle atlas)
+{
+ struct nk_baked_font baked;
+ NK_ASSERT(font);
+ NK_ASSERT(glyphs);
+ NK_ASSERT(baked_font);
+ if (!font || !glyphs || !baked_font)
+ return;
+
+ baked = *baked_font;
+ nk_zero(font, sizeof(*font));
+ font->info = baked;
+ font->scale = (float)pixel_height / (float)font->info.height;
+ font->glyphs = &glyphs[baked_font->glyph_offset];
+ font->texture = atlas;
+ font->fallback_codepoint = fallback_codepoint;
+ font->fallback = nk_font_find_glyph(font, fallback_codepoint);
+
+ font->handle.height = font->info.height * font->scale;
+ font->handle.width = nk_font_text_width;
+ font->handle.userdata.ptr = font;
+#ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+ font->handle.query = nk_font_query_font_glyph;
+ font->handle.texture = font->texture;
+#endif
+}
+
+/* ---------------------------------------------------------------------------
+ *
+ * DEFAULT FONT
+ *
+ * ProggyClean.ttf
+ * Copyright (c) 2004, 2005 Tristan Grimmer
+ * MIT license (see License.txt in http://www.upperbounds.net/download/ProggyClean.ttf.zip)
+ * Download and more information at http://upperbounds.net
+ *-----------------------------------------------------------------------------*/
+#ifdef NK_INCLUDE_DEFAULT_FONT
+
+ #ifdef __clang__
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Woverlength-strings"
+#elif defined(__GNUC__) || defined(__GNUG__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Woverlength-strings"
+#endif
+
+NK_GLOBAL const char nk_proggy_clean_ttf_compressed_data_base85[11980+1] =
+ "7])#######hV0qs'/###[),##/l:$#Q6>##5[n42>c-TH`->>#/e>11NNV=Bv(*:.F?uu#(gRU.o0XGH`$vhLG1hxt9?W`#,5LsCp#-i>.r$<$6pD>Lb';9Crc6tgXmKVeU2cD4Eo3R/"
+ "2*>]b(MC;$jPfY.;h^`IWM9<Lh2TlS+f-s$o6Q<BWH`YiU.xfLq$N;$0iR/GX:U(jcW2p/W*q?-qmnUCI;jHSAiFWM.R*kU@C=GH?a9wp8f$e.-4^Qg1)Q-GL(lf(r/7GrRgwV%MS=C#"
+ "`8ND>Qo#t'X#(v#Y9w0#1D$CIf;W'#pWUPXOuxXuU(H9M(1<q-UE31#^-V'8IRUo7Qf./L>=Ke$$'5F%)]0^#0X@U.a<r:QLtFsLcL6##lOj)#.Y5<-R&KgLwqJfLgN&;Q?gI^#DY2uL"
+ "i@^rMl9t=cWq6##weg>$FBjVQTSDgEKnIS7EM9>ZY9w0#L;>>#Mx&4Mvt//L[MkA#W@lK.N'[0#7RL_&#w+F%HtG9M#XL`N&.,GM4Pg;-<nLENhvx>-VsM.M0rJfLH2eTM`*oJMHRC`N"
+ "kfimM2J,W-jXS:)r0wK#@Fge$U>`w'N7G#$#fB#$E^$#:9:hk+eOe--6x)F7*E%?76%^GMHePW-Z5l'&GiF#$956:rS?dA#fiK:)Yr+`&#0j@'DbG&#^$PG.Ll+DNa<XCMKEV*N)LN/N"
+ "*b=%Q6pia-Xg8I$<MR&,VdJe$<(7G;Ckl'&hF;;$<_=X(b.RS%%)###MPBuuE1V:v&cX&#2m#(&cV]`k9OhLMbn%s$G2,B$BfD3X*sp5#l,$R#]x_X1xKX%b5U*[r5iMfUo9U`N99hG)"
+ "tm+/Us9pG)XPu`<0s-)WTt(gCRxIg(%6sfh=ktMKn3j)<6<b5Sk_/0(^]AaN#(p/L>&VZ>1i%h1S9u5o@YaaW$e+b<TWFn/Z:Oh(Cx2$lNEoN^e)#CFY@@I;BOQ*sRwZtZxRcU7uW6CX"
+ "ow0i(?$Q[cjOd[P4d)]>ROPOpxTO7Stwi1::iB1q)C_=dV26J;2,]7op$]uQr@_V7$q^%lQwtuHY]=DX,n3L#0PHDO4f9>dC@O>HBuKPpP*E,N+b3L#lpR/MrTEH.IAQk.a>D[.e;mc."
+ "x]Ip.PH^'/aqUO/$1WxLoW0[iLA<QT;5HKD+@qQ'NQ(3_PLhE48R.qAPSwQ0/WK?Z,[x?-J;jQTWA0X@KJ(_Y8N-:/M74:/-ZpKrUss?d#dZq]DAbkU*JqkL+nwX@@47`5>w=4h(9.`G"
+ "CRUxHPeR`5Mjol(dUWxZa(>STrPkrJiWx`5U7F#.g*jrohGg`cg:lSTvEY/EV_7H4Q9[Z%cnv;JQYZ5q.l7Zeas:HOIZOB?G<Nald$qs]@]L<J7bR*>gv:[7MI2k).'2($5FNP&EQ(,)"
+ "U]W]+fh18.vsai00);D3@4ku5P?DP8aJt+;qUM]=+b'8@;mViBKx0DE[-auGl8:PJ&Dj+M6OC]O^((##]`0i)drT;-7X`=-H3[igUnPG-NZlo.#k@h#=Ork$m>a>$-?Tm$UV(?#P6YY#"
+ "'/###xe7q.73rI3*pP/$1>s9)W,JrM7SN]'/4C#v$U`0#V.[0>xQsH$fEmPMgY2u7Kh(G%siIfLSoS+MK2eTM$=5,M8p`A.;_R%#u[K#$x4AG8.kK/HSB==-'Ie/QTtG?-.*^N-4B/ZM"
+ "_3YlQC7(p7q)&](`6_c)$/*JL(L-^(]$wIM`dPtOdGA,U3:w2M-0<q-]L_?^)1vw'.,MRsqVr.L;aN&#/EgJ)PBc[-f>+WomX2u7lqM2iEumMTcsF?-aT=Z-97UEnXglEn1K-bnEO`gu"
+ "Ft(c%=;Am_Qs@jLooI&NX;]0#j4#F14;gl8-GQpgwhrq8'=l_f-b49'UOqkLu7-##oDY2L(te+Mch&gLYtJ,MEtJfLh'x'M=$CS-ZZ%P]8bZ>#S?YY#%Q&q'3^Fw&?D)UDNrocM3A76/"
+ "/oL?#h7gl85[qW/NDOk%16ij;+:1a'iNIdb-ou8.P*w,v5#EI$TWS>Pot-R*H'-SEpA:g)f+O$%%`kA#G=8RMmG1&O`>to8bC]T&$,n.LoO>29sp3dt-52U%VM#q7'DHpg+#Z9%H[K<L"
+ "%a2E-grWVM3@2=-k22tL]4$##6We'8UJCKE[d_=%wI;'6X-GsLX4j^SgJ$##R*w,vP3wK#iiW&#*h^D&R?jp7+/u&#(AP##XU8c$fSYW-J95_-Dp[g9wcO&#M-h1OcJlc-*vpw0xUX&#"
+ "OQFKNX@QI'IoPp7nb,QU//MQ&ZDkKP)X<WSVL(68uVl&#c'[0#(s1X&xm$Y%B7*K:eDA323j998GXbA#pwMs-jgD$9QISB-A_(aN4xoFM^@C58D0+Q+q3n0#3U1InDjF682-SjMXJK)("
+ "h$hxua_K]ul92%'BOU&#BRRh-slg8KDlr:%L71Ka:.A;%YULjDPmL<LYs8i#XwJOYaKPKc1h:'9Ke,g)b),78=I39B;xiY$bgGw-&.Zi9InXDuYa%G*f2Bq7mn9^#p1vv%#(Wi-;/Z5h"
+ "o;#2:;%d&#x9v68C5g?ntX0X)pT`;%pB3q7mgGN)3%(P8nTd5L7GeA-GL@+%J3u2:(Yf>et`e;)f#Km8&+DC$I46>#Kr]]u-[=99tts1.qb#q72g1WJO81q+eN'03'eM>&1XxY-caEnO"
+ "j%2n8)),?ILR5^.Ibn<-X-Mq7[a82Lq:F&#ce+S9wsCK*x`569E8ew'He]h:sI[2LM$[guka3ZRd6:t%IG:;$%YiJ:Nq=?eAw;/:nnDq0(CYcMpG)qLN4$##&J<j$UpK<Q4a1]MupW^-"
+ "sj_$%[HK%'F####QRZJ::Y3EGl4'@%FkiAOg#p[##O`gukTfBHagL<LHw%q&OV0##F=6/:chIm0@eCP8X]:kFI%hl8hgO@RcBhS-@Qb$%+m=hPDLg*%K8ln(wcf3/'DW-$.lR?n[nCH-"
+ "eXOONTJlh:.RYF%3'p6sq:UIMA945&^HFS87@$EP2iG<-lCO$%c`uKGD3rC$x0BL8aFn--`ke%#HMP'vh1/R&O_J9'um,.<tx[@%wsJk&bUT2`0uMv7gg#qp/ij.L56'hl;.s5CUrxjO"
+ "M7-##.l+Au'A&O:-T72L]P`&=;ctp'XScX*rU.>-XTt,%OVU4)S1+R-#dg0/Nn?Ku1^0f$B*P:Rowwm-`0PKjYDDM'3]d39VZHEl4,.j']Pk-M.h^&:0FACm$maq-&sgw0t7/6(^xtk%"
+ "LuH88Fj-ekm>GA#_>568x6(OFRl-IZp`&b,_P'$M<Jnq79VsJW/mWS*PUiq76;]/NM_>hLbxfc$mj`,O;&%W2m`Zh:/)Uetw:aJ%]K9h:TcF]u_-Sj9,VK3M.*'&0D[Ca]J9gp8,kAW]"
+ "%(?A%R$f<->Zts'^kn=-^@c4%-pY6qI%J%1IGxfLU9CP8cbPlXv);C=b),<2mOvP8up,UVf3839acAWAW-W?#ao/^#%KYo8fRULNd2.>%m]UK:n%r$'sw]J;5pAoO_#2mO3n,'=H5(et"
+ "Hg*`+RLgv>=4U8guD$I%D:W>-r5V*%j*W:Kvej.Lp$<M-SGZ':+Q_k+uvOSLiEo(<aD/K<CCc`'Lx>'?;++O'>()jLR-^u68PHm8ZFWe+ej8h:9r6L*0//c&iH&R8pRbA#Kjm%upV1g:"
+ "a_#Ur7FuA#(tRh#.Y5K+@?3<-8m0$PEn;J:rh6?I6uG<-`wMU'ircp0LaE_OtlMb&1#6T.#FDKu#1Lw%u%+GM+X'e?YLfjM[VO0MbuFp7;>Q&#WIo)0@F%q7c#4XAXN-U&VB<HFF*qL("
+ "$/V,;(kXZejWO`<[5??ewY(*9=%wDc;,u<'9t3W-(H1th3+G]ucQ]kLs7df($/*JL]@*t7Bu_G3_7mp7<iaQjO@.kLg;x3B0lqp7Hf,^Ze7-##@/c58Mo(3;knp0%)A7?-W+eI'o8)b<"
+ "nKnw'Ho8C=Y>pqB>0ie&jhZ[?iLR@@_AvA-iQC(=ksRZRVp7`.=+NpBC%rh&3]R:8XDmE5^V8O(x<<aG/1N$#FX$0V5Y6x'aErI3I$7x%E`v<-BY,)%-?Psf*l?%C3.mM(=/M0:JxG'?"
+ "7WhH%o'a<-80g0NBxoO(GH<dM]n.+%q@jH?f.UsJ2Ggs&4<-e47&Kl+f//9@`b+?.TeN_&B8Ss?v;^Trk;f#YvJkl&w$]>-+k?'(<S:68tq*WoDfZu';mM?8X[ma8W%*`-=;D.(nc7/;"
+ ")g:T1=^J$&BRV(-lTmNB6xqB[@0*o.erM*<SWF]u2=st-*(6v>^](H.aREZSi,#1:[IXaZFOm<-ui#qUq2$##Ri;u75OK#(RtaW-K-F`S+cF]uN`-KMQ%rP/Xri.LRcB##=YL3BgM/3M"
+ "D?@f&1'BW-)Ju<L25gl8uhVm1hL$##*8###'A3/LkKW+(^rWX?5W_8g)a(m&K8P>#bmmWCMkk&#TR`C,5d>g)F;t,4:@_l8G/5h4vUd%&%950:VXD'QdWoY-F$BtUwmfe$YqL'8(PWX("
+ "P?^@Po3$##`MSs?DWBZ/S>+4%>fX,VWv/w'KD`LP5IbH;rTV>n3cEK8U#bX]l-/V+^lj3;vlMb&[5YQ8#pekX9JP3XUC72L,,?+Ni&co7ApnO*5NK,((W-i:$,kp'UDAO(G0Sq7MVjJs"
+ "bIu)'Z,*[>br5fX^:FPAWr-m2KgL<LUN098kTF&#lvo58=/vjDo;.;)Ka*hLR#/k=rKbxuV`>Q_nN6'8uTG&#1T5g)uLv:873UpTLgH+#FgpH'_o1780Ph8KmxQJ8#H72L4@768@Tm&Q"
+ "h4CB/5OvmA&,Q&QbUoi$a_%3M01H)4x7I^&KQVgtFnV+;[Pc>[m4k//,]1?#`VY[Jr*3&&slRfLiVZJ:]?=K3Sw=[$=uRB?3xk48@aeg<Z'<$#4H)6,>e0jT6'N#(q%.O=?2S]u*(m<-"
+ "V8J'(1)G][68hW$5'q[GC&5j`TE?m'esFGNRM)j,ffZ?-qx8;->g4t*:CIP/[Qap7/9'#(1sao7w-.qNUdkJ)tCF&#B^;xGvn2r9FEPFFFcL@.iFNkTve$m%#QvQS8U@)2Z+3K:AKM5i"
+ "sZ88+dKQ)W6>J%CL<KE>`.d*(B`-n8D9oK<Up]c$X$(,)M8Zt7/[rdkqTgl-0cuGMv'?>-XV1q['-5k'cAZ69e;D_?$ZPP&s^+7])$*$#@QYi9,5P&#9r+$%CE=68>K8r0=dSC%%(@p7"
+ ".m7jilQ02'0-VWAg<a/''3u.=4L$Y)6k/K:_[3=&jvL<L0C/2'v:^;-DIBW,B4E68:kZ;%?8(Q8BH=kO65BW?xSG&#@uU,DS*,?.+(o(#1vCS8#CHF>TlGW'b)Tq7VT9q^*^$$.:&N@@"
+ "$&)WHtPm*5_rO0&e%K&#-30j(E4#'Zb.o/(Tpm$>K'f@[PvFl,hfINTNU6u'0pao7%XUp9]5.>%h`8_=VYbxuel.NTSsJfLacFu3B'lQSu/m6-Oqem8T+oE--$0a/k]uj9EwsG>%veR*"
+ "hv^BFpQj:K'#SJ,sB-'#](j.Lg92rTw-*n%@/;39rrJF,l#qV%OrtBeC6/,;qB3ebNW[?,Hqj2L.1NP&GjUR=1D8QaS3Up&@*9wP?+lo7b?@%'k4`p0Z$22%K3+iCZj?XJN4Nm&+YF]u"
+ "@-W$U%VEQ/,,>>#)D<h#`)h0:<Q6909ua+&VU%n2:cG3FJ-%@Bj-DgLr`Hw&HAKjKjseK</xKT*)B,N9X3]krc12t'pgTV(Lv-tL[xg_%=M_q7a^x?7Ubd>#%8cY#YZ?=,`Wdxu/ae&#"
+ "w6)R89tI#6@s'(6Bf7a&?S=^ZI_kS&ai`&=tE72L_D,;^R)7[$s<Eh#c&)q.MXI%#v9ROa5FZO%sF7q7Nwb&#ptUJ:aqJe$Sl68%.D###EC><?-aF&#RNQv>o8lKN%5/$(vdfq7+ebA#"
+ "u1p]ovUKW&Y%q]'>$1@-[xfn$7ZTp7mM,G,Ko7a&Gu%G[RMxJs[0MM%wci.LFDK)(<c`Q8N)jEIF*+?P2a8g%)$q]o2aH8C&<SibC/q,(e:v;-b#6[$NtDZ84Je2KNvB#$P5?tQ3nt(0"
+ "d=j.LQf./Ll33+(;q3L-w=8dX$#WF&uIJ@-bfI>%:_i2B5CsR8&9Z&#=mPEnm0f`<&c)QL5uJ#%u%lJj+D-r;BoF&#4DoS97h5g)E#o:&S4weDF,9^Hoe`h*L+_a*NrLW-1pG_&2UdB8"
+ "6e%B/:=>)N4xeW.*wft-;$'58-ESqr<b?UI(_%@[P46>#U`'6AQ]m&6/`Z>#S?YY#Vc;r7U2&326d=w&H####?TZ`*4?&.MK?LP8Vxg>$[QXc%QJv92.(Db*B)gb*BM9dM*hJMAo*c&#"
+ "b0v=Pjer]$gG&JXDf->'StvU7505l9$AFvgYRI^&<^b68?j#q9QX4SM'RO#&sL1IM.rJfLUAj221]d##DW=m83u5;'bYx,*Sl0hL(W;;$doB&O/TQ:(Z^xBdLjL<Lni;''X.`$#8+1GD"
+ ":k$YUWsbn8ogh6rxZ2Z9]%nd+>V#*8U_72Lh+2Q8Cj0i:6hp&$C/:p(HK>T8Y[gHQ4`4)'$Ab(Nof%V'8hL&#<NEdtg(n'=S1A(Q1/I&4([%dM`,Iu'1:_hL>SfD07&6D<fp8dHM7/g+"
+ "tlPN9J*rKaPct&?'uBCem^jn%9_K)<,C5K3s=5g&GmJb*[SYq7K;TRLGCsM-$$;S%:Y@r7AK0pprpL<Lrh,q7e/%KWK:50I^+m'vi`3?%Zp+<-d+$L-Sv:@.o19n$s0&39;kn;S%BSq*"
+ "$3WoJSCLweV[aZ'MQIjO<7;X-X;&+dMLvu#^UsGEC9WEc[X(wI7#2.(F0jV*eZf<-Qv3J-c+J5AlrB#$p(H68LvEA'q3n0#m,[`*8Ft)FcYgEud]CWfm68,(aLA$@EFTgLXoBq/UPlp7"
+ ":d[/;r_ix=:TF`S5H-b<LI&HY(K=h#)]Lk$K14lVfm:x$H<3^Ql<M`$OhapBnkup'D#L$Pb_`N*g]2e;X/Dtg,bsj&K#2[-:iYr'_wgH)NUIR8a1n#S?Yej'h8^58UbZd+^FKD*T@;6A"
+ "7aQC[K8d-(v6GI$x:T<&'Gp5Uf>@M.*J:;$-rv29'M]8qMv-tLp,'886iaC=Hb*YJoKJ,(j%K=H`K.v9HggqBIiZu'QvBT.#=)0ukruV&.)3=(^1`o*Pj4<-<aN((^7('#Z0wK#5GX@7"
+ "u][`*S^43933A4rl][`*O4CgLEl]v$1Q3AeF37dbXk,.)vj#x'd`;qgbQR%FW,2(?LO=s%Sc68%NP'##Aotl8x=BE#j1UD([3$M(]UI2LX3RpKN@;/#f'f/&_mt&F)XdF<9t4)Qa.*kT"
+ "LwQ'(TTB9.xH'>#MJ+gLq9-##@HuZPN0]u:h7.T..G:;$/Usj(T7`Q8tT72LnYl<-qx8;-HV7Q-&Xdx%1a,hC=0u+HlsV>nuIQL-5<N?)NBS)QN*_I,?&)2'IM%L3I)X((e/dl2&8'<M"
+ ":^#M*Q+[T.Xri.LYS3v%fF`68h;b-X[/En'CR.q7E)p'/kle2HM,u;^%OKC-N+Ll%F9CF<Nf'^#t2L,;27W:0O@6##U6W7:$rJfLWHj$#)woqBefIZ.PK<b*t7ed;p*_m;4ExK#h@&]>"
+ "_>@kXQtMacfD.m-VAb8;IReM3$wf0''hra*so568'Ip&vRs849'MRYSp%:t:h5qSgwpEr$B>Q,;s(C#$)`svQuF$##-D,##,g68@2[T;.XSdN9Qe)rpt._K-#5wF)sP'##p#C0c%-Gb%"
+ "hd+<-j'Ai*x&&HMkT]C'OSl##5RG[JXaHN;d'uA#x._U;.`PU@(Z3dt4r152@:v,'R.Sj'w#0<-;kPI)FfJ&#AYJ&#//)>-k=m=*XnK$>=)72L]0I%>.G690a:$##<,);?;72#?x9+d;"
+ "^V'9;jY@;)br#q^YQpx:X#Te$Z^'=-=bGhLf:D6&bNwZ9-ZD#n^9HhLMr5G;']d&6'wYmTFmL<LD)F^%[tC'8;+9E#C$g%#5Y>q9wI>P(9mI[>kC-ekLC/R&CH+s'B;K-M6$EB%is00:"
+ "+A4[7xks.LrNk0&E)wILYF@2L'0Nb$+pv<(2.768/FrY&h$^3i&@+G%JT'<-,v`3;_)I9M^AE]CN?Cl2AZg+%4iTpT3<n-&%H%b<FDj2M<hH=&Eh<2Len$b*aTX=-8QxN)k11IM1c^j%"
+ "9s<L<NFSo)B?+<-(GxsF,^-Eh@$4dXhN$+#rxK8'je'D7k`e;)2pYwPA'_p9&@^18ml1^[@g4t*[JOa*[=Qp7(qJ_oOL^('7fB&Hq-:sf,sNj8xq^>$U4O]GKx'm9)b@p7YsvK3w^YR-"
+ "CdQ*:Ir<($u&)#(&?L9Rg3H)4fiEp^iI9O8KnTj,]H?D*r7'M;PwZ9K0E^k&-cpI;.p/6_vwoFMV<->#%Xi.LxVnrU(4&8/P+:hLSKj$#U%]49t'I:rgMi'FL@a:0Y-uA[39',(vbma*"
+ "hU%<-SRF`Tt:542R_VV$p@[p8DV[A,?1839FWdF<TddF<9Ah-6&9tWoDlh]&1SpGMq>Ti1O*H&#(AL8[_P%.M>v^-))qOT*F5Cq0`Ye%+$B6i:7@0IX<N+T+0MlMBPQ*Vj>SsD<U4JHY"
+ "8kD2)2fU/M#$e.)T4,_=8hLim[&);?UkK'-x?'(:siIfL<$pFM`i<?%W(mGDHM%>iWP,##P`%/L<eXi:@Z9C.7o=@(pXdAO/NLQ8lPl+HPOQa8wD8=^GlPa8TKI1CjhsCTSLJM'/Wl>-"
+ "S(qw%sf/@%#B6;/U7K]uZbi^Oc^2n<bhPmUkMw>%t<)'mEVE''n`WnJra$^TKvX5B>;_aSEK',(hwa0:i4G?.Bci.(X[?b*($,=-n<.Q%`(X=?+@Am*Js0&=3bh8K]mL<LoNs'6,'85`"
+ "0?t/'_U59@]ddF<#LdF<eWdF<OuN/45rY<-L@&#+fm>69=Lb,OcZV/);TTm8VI;?%OtJ<(b4mq7M6:u?KRdF<gR@2L=FNU-<b[(9c/ML3m;Z[$oF3g)GAWqpARc=<ROu7cL5l;-[A]%/"
+ "+fsd;l#SafT/f*W]0=O'$(Tb<[)*@e775R-:Yob%g*>l*:xP?Yb.5)%w_I?7uk5JC+FS(m#i'k.'a0i)9<7b'fs'59hq$*5Uhv##pi^8+hIEBF`nvo`;'l0.^S1<-wUK2/Coh58KKhLj"
+ "M=SO*rfO`+qC`W-On.=AJ56>>i2@2LH6A:&5q`?9I3@@'04&p2/LVa*T-4<-i3;M9UvZd+N7>b*eIwg:CC)c<>nO&#<IGe;__.thjZl<%w(Wk2xmp4Q@I#I9,DF]u7-P=.-_:YJ]aS@V"
+ "?6*C()dOp7:WL,b&3Rg/.cmM9&r^>$(>.Z-I&J(Q0Hd5Q%7Co-b`-c<N(6r@ip+AurK<m86QIth*#v;-OBqi+L7wDE-Ir8K['m+DDSLwK&/.?-V%U_%3:qKNu$_b*B-kp7NaD'QdWQPK"
+ "Yq[@>P)hI;*_F]u`Rb[.j8_Q/<&>uu+VsH$sM9TA%?)(vmJ80),P7E>)tjD%2L=-t#fK[%`v=Q8<FfNkgg^oIbah*#8/Qt$F&:K*-(N/'+1vMB,u()-a.VUU*#[e%gAAO(S>WlA2);Sa"
+ ">gXm8YB`1d@K#n]76-a$U,mF<fX]idqd)<3,]J7JmW4`6]uks=4-72L(jEk+:bJ0M^q-8Dm_Z?0olP1C9Sa&H[d&c$ooQUj]Exd*3ZM@-WGW2%s',B-_M%>%Ul:#/'xoFM9QX-$.QN'>"
+ "[%$Z$uF6pA6Ki2O5:8w*vP1<-1`[G,)-m#>0`P&#eb#.3i)rtB61(o'$?X3B</R90;eZ]%Ncq;-Tl]#F>2Qft^ae_5tKL9MUe9b*sLEQ95C&`=G?@Mj=wh*'3E>=-<)Gt*Iw)'QG:`@I"
+ "wOf7&]1i'S01B+Ev/Nac#9S;=;YQpg_6U`*kVY39xK,[/6Aj7:'1Bm-_1EYfa1+o&o4hp7KN_Q(OlIo@S%;jVdn0'1<Vc52=u`3^o-n1'g4v58Hj&6_t7$##?M)c<$bgQ_'SY((-xkA#"
+ "Y(,p'H9rIVY-b,'%bCPF7.J<Up^,(dU1VY*5#WkTU>h19w,WQhLI)3S#f$2(eb,jr*b;3Vw]*7NH%$c4Vs,eD9>XW8?N]o+(*pgC%/72LV-u<Hp,3@e^9UB1J+ak9-TN/mhKPg+AJYd$"
+ "MlvAF_jCK*.O-^(63adMT->W%iewS8W6m2rtCpo'RS1R84=@paTKt)>=%&1[)*vp'u+x,VrwN;&]kuO9JDbg=pO$J*.jVe;u'm0dr9l,<*wMK*Oe=g8lV_KEBFkO'oU]^=[-792#ok,)"
+ "i]lR8qQ2oA8wcRCZ^7w/Njh;?.stX?Q1>S1q4Bn$)K1<-rGdO'$Wr.Lc.CG)$/*JL4tNR/,SVO3,aUw'DJN:)Ss;wGn9A32ijw%FL+Z0Fn.U9;reSq)bmI32U==5ALuG&#Vf1398/pVo"
+ "1*c-(aY168o<`JsSbk-,1N;$>0:OUas(3:8Z972LSfF8eb=c-;>SPw7.6hn3m`9^Xkn(r.qS[0;T%&Qc=+STRxX'q1BNk3&*eu2;&8q$&x>Q#Q7^Tf+6<(d%ZVmj2bDi%.3L2n+4W'$P"
+ "iDDG)g,r%+?,$@?uou5tSe2aN_AQU*<h`e-GI7)?OK2A.d7_c)?wQ5AS@DL3r#7fSkgl6-++D:'A,uq7SvlB$pcpH'q3n0#_%dY#xCpr-l<F0NR@-##FEV6NTF6##$l84N1w?AO>'IAO"
+ "URQ##V^Fv-XFbGM7Fl(N<3DhLGF%q.1rC$#:T__&Pi68%0xi_&[qFJ(77j_&JWoF.V735&T,[R*:xFR*K5>>#`bW-?4Ne_&6Ne_&6Ne_&n`kr-#GJcM6X;uM6X;uM(.a..^2TkL%oR(#"
+ ";u.T%fAr%4tJ8&><1=GHZ_+m9/#H1F^R#SC#*N=BA9(D?v[UiFY>>^8p,KKF.W]L29uLkLlu/+4T<XoIB&hx=T1PcDaB&;HH+-AFr?(m9HZV)FKS8JCw;SD=6[^/DZUL`EUDf]GGlG&>"
+ "w$)F./^n3+rlo+DB;5sIYGNk+i1t-69Jg--0pao7Sm#K)pdHW&;LuDNH@H>#/X-TI(;P>#,Gc>#0Su>#4`1?#8lC?#<xU?#@.i?#D:%@#HF7@#LRI@#P_[@#Tkn@#Xw*A#]-=A#a9OA#"
+ "d<F&#*;G##.GY##2Sl##6`($#:l:$#>xL$#B.`$#F:r$#JF.%#NR@%#R_R%#Vke%#Zww%#_-4&#3^Rh%Sflr-k'MS.o?.5/sWel/wpEM0%3'/1)K^f1-d>G21&v(35>V`39V7A4=onx4"
+ "A1OY5EI0;6Ibgr6M$HS7Q<)58C5w,;WoA*#[%T*#`1g*#d=#+#hI5+#lUG+#pbY+#tnl+#x$),#&1;,#*=M,#.I`,#2Ur,#6b.-#;w[H#iQtA#m^0B#qjBB#uvTB##-hB#'9$C#+E6C#"
+ "/QHC#3^ZC#7jmC#;v)D#?,<D#C8ND#GDaD#KPsD#O]/E#g1A5#KA*1#gC17#MGd;#8(02#L-d3#rWM4#Hga1#,<w0#T.j<#O#'2#CYN1#qa^:#_4m3#o@/=#eG8=#t8J5#`+78#4uI-#"
+ "m3B2#SB[8#Q0@8#i[*9#iOn8#1Nm;#^sN9#qh<9#:=x-#P;K2#$%X9#bC+.#Rg;<#mN=.#MTF.#RZO.#2?)4#Y#(/#[)1/#b;L/#dAU/#0Sv;#lY$0#n`-0#sf60#(F24#wrH0#%/e0#"
+ "TmD<#%JSMFove:CTBEXI:<eh2g)B,3h2^G3i;#d3jD>)4kMYD4lVu`4m`:&5niUA5@(A5BA1]PBB:xlBCC=2CDLXMCEUtiCf&0g2'tN?PGT4CPGT4CPGT4CPGT4CPGT4CPGT4CPGT4CP"
+ "GT4CPGT4CPGT4CPGT4CPGT4CPGT4CP-qekC`.9kEg^+F$kwViFJTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5o,^<-28ZI'O?;xp"
+ "O?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xp;7q-#lLYI:xvD=#";
+
+#ifdef __clang__
+#pragma clang diagnostic pop
+#elif defined(__GNUC__) || defined(__GNUG__)
+#pragma GCC diagnostic pop
+#endif
+
+#endif /* NK_INCLUDE_DEFAULT_FONT */
+
+NK_INTERN unsigned int
+nk_decompress_length(unsigned char *input)
+{
+ return (unsigned int)((input[8] << 24) + (input[9] << 16) + (input[10] << 8) + input[11]);
+}
+
+NK_GLOBAL unsigned char *nk__barrier;
+NK_GLOBAL unsigned char *nk__barrier2;
+NK_GLOBAL unsigned char *nk__barrier3;
+NK_GLOBAL unsigned char *nk__barrier4;
+NK_GLOBAL unsigned char *nk__dout;
+
+NK_INTERN void
+nk__match(unsigned char *data, unsigned int length)
+{
+ /* INVERSE of memmove... write each byte before copying the next...*/
+ NK_ASSERT (nk__dout + length <= nk__barrier);
+ if (nk__dout + length > nk__barrier) { nk__dout += length; return; }
+ if (data < nk__barrier4) { nk__dout = nk__barrier+1; return; }
+ while (length--) *nk__dout++ = *data++;
+}
+
+NK_INTERN void
+nk__lit(unsigned char *data, unsigned int length)
+{
+ NK_ASSERT (nk__dout + length <= nk__barrier);
+ if (nk__dout + length > nk__barrier) { nk__dout += length; return; }
+ if (data < nk__barrier2) { nk__dout = nk__barrier+1; return; }
+ NK_MEMCPY(nk__dout, data, length);
+ nk__dout += length;
+}
+
+#define nk__in2(x) ((i[x] << 8) + i[(x)+1])
+#define nk__in3(x) ((i[x] << 16) + nk__in2((x)+1))
+#define nk__in4(x) ((i[x] << 24) + nk__in3((x)+1))
+
+NK_INTERN unsigned char*
+nk_decompress_token(unsigned char *i)
+{
+ if (*i >= 0x20) { /* use fewer if's for cases that expand small */
+ if (*i >= 0x80) nk__match(nk__dout-i[1]-1, (unsigned int)i[0] - 0x80 + 1), i += 2;
+ else if (*i >= 0x40) nk__match(nk__dout-(nk__in2(0) - 0x4000 + 1), (unsigned int)i[2]+1), i += 3;
+ else /* *i >= 0x20 */ nk__lit(i+1, (unsigned int)i[0] - 0x20 + 1), i += 1 + (i[0] - 0x20 + 1);
+ } else { /* more ifs for cases that expand large, since overhead is amortized */
+ if (*i >= 0x18) nk__match(nk__dout-(unsigned int)(nk__in3(0) - 0x180000 + 1), (unsigned int)i[3]+1), i += 4;
+ else if (*i >= 0x10) nk__match(nk__dout-(unsigned int)(nk__in3(0) - 0x100000 + 1), (unsigned int)nk__in2(3)+1), i += 5;
+ else if (*i >= 0x08) nk__lit(i+2, (unsigned int)nk__in2(0) - 0x0800 + 1), i += 2 + (nk__in2(0) - 0x0800 + 1);
+ else if (*i == 0x07) nk__lit(i+3, (unsigned int)nk__in2(1) + 1), i += 3 + (nk__in2(1) + 1);
+ else if (*i == 0x06) nk__match(nk__dout-(unsigned int)(nk__in3(1)+1), i[4]+1u), i += 5;
+ else if (*i == 0x04) nk__match(nk__dout-(unsigned int)(nk__in3(1)+1), (unsigned int)nk__in2(4)+1u), i += 6;
+ }
+ return i;
+}
+
+NK_INTERN unsigned int
+nk_adler32(unsigned int adler32, unsigned char *buffer, unsigned int buflen)
+{
+ const unsigned long ADLER_MOD = 65521;
+ unsigned long s1 = adler32 & 0xffff, s2 = adler32 >> 16;
+ unsigned long blocklen, i;
+
+ blocklen = buflen % 5552;
+ while (buflen) {
+ for (i=0; i + 7 < blocklen; i += 8) {
+ s1 += buffer[0], s2 += s1;
+ s1 += buffer[1], s2 += s1;
+ s1 += buffer[2], s2 += s1;
+ s1 += buffer[3], s2 += s1;
+ s1 += buffer[4], s2 += s1;
+ s1 += buffer[5], s2 += s1;
+ s1 += buffer[6], s2 += s1;
+ s1 += buffer[7], s2 += s1;
+
+ buffer += 8;
+ }
+
+ for (; i < blocklen; ++i)
+ s1 += *buffer++, s2 += s1;
+
+ s1 %= ADLER_MOD, s2 %= ADLER_MOD;
+ buflen -= (unsigned int)blocklen;
+ blocklen = 5552;
+ }
+ return (unsigned int)(s2 << 16) + (unsigned int)s1;
+}
+
+NK_INTERN unsigned int
+nk_decompress(unsigned char *output, unsigned char *i, unsigned int length)
+{
+ unsigned int olen;
+ if (nk__in4(0) != 0x57bC0000) return 0;
+ if (nk__in4(4) != 0) return 0; /* error! stream is > 4GB */
+ olen = nk_decompress_length(i);
+ nk__barrier2 = i;
+ nk__barrier3 = i+length;
+ nk__barrier = output + olen;
+ nk__barrier4 = output;
+ i += 16;
+
+ nk__dout = output;
+ for (;;) {
+ unsigned char *old_i = i;
+ i = nk_decompress_token(i);
+ if (i == old_i) {
+ if (*i == 0x05 && i[1] == 0xfa) {
+ NK_ASSERT(nk__dout == output + olen);
+ if (nk__dout != output + olen) return 0;
+ if (nk_adler32(1, output, olen) != (unsigned int) nk__in4(2))
+ return 0;
+ return olen;
+ } else {
+ NK_ASSERT(0); /* NOTREACHED */
+ return 0;
+ }
+ }
+ NK_ASSERT(nk__dout <= output + olen);
+ if (nk__dout > output + olen)
+ return 0;
+ }
+}
+
+NK_INTERN unsigned int
+nk_decode_85_byte(char c)
+{ return (unsigned int)((c >= '\\') ? c-36 : c-35); }
+
+NK_INTERN void
+nk_decode_85(unsigned char* dst, const unsigned char* src)
+{
+ while (*src)
+ {
+ unsigned int tmp =
+ nk_decode_85_byte((char)src[0]) +
+ 85 * (nk_decode_85_byte((char)src[1]) +
+ 85 * (nk_decode_85_byte((char)src[2]) +
+ 85 * (nk_decode_85_byte((char)src[3]) +
+ 85 * nk_decode_85_byte((char)src[4]))));
+
+ /* we can't assume little-endianess. */
+ dst[0] = (unsigned char)((tmp >> 0) & 0xFF);
+ dst[1] = (unsigned char)((tmp >> 8) & 0xFF);
+ dst[2] = (unsigned char)((tmp >> 16) & 0xFF);
+ dst[3] = (unsigned char)((tmp >> 24) & 0xFF);
+
+ src += 5;
+ dst += 4;
+ }
+}
+
+/* -------------------------------------------------------------
+ *
+ * FONT ATLAS
+ *
+ * --------------------------------------------------------------*/
+NK_API struct nk_font_config
+nk_font_config(float pixel_height)
+{
+ struct nk_font_config cfg;
+ nk_zero_struct(cfg);
+ cfg.ttf_blob = 0;
+ cfg.ttf_size = 0;
+ cfg.ttf_data_owned_by_atlas = 0;
+ cfg.size = pixel_height;
+ cfg.oversample_h = 3;
+ cfg.oversample_v = 1;
+ cfg.pixel_snap = 0;
+ cfg.coord_type = NK_COORD_UV;
+ cfg.spacing = nk_vec2(0,0);
+ cfg.range = nk_font_default_glyph_ranges();
+ cfg.fallback_glyph = '?';
+ cfg.font = 0;
+ cfg.merge_mode = 0;
+ return cfg;
+}
+
+#ifdef NK_INCLUDE_DEFAULT_ALLOCATOR
+NK_API void
+nk_font_atlas_init_default(struct nk_font_atlas *atlas)
+{
+ NK_ASSERT(atlas);
+ if (!atlas) return;
+ nk_zero_struct(*atlas);
+ atlas->alloc.userdata.ptr = 0;
+ atlas->alloc.alloc = nk_malloc;
+ atlas->alloc.free = nk_mfree;
+}
+#endif
+
+NK_API void
+nk_font_atlas_init(struct nk_font_atlas *atlas, struct nk_allocator *alloc)
+{
+ NK_ASSERT(atlas);
+ NK_ASSERT(alloc);
+ if (!atlas || !alloc) return;
+ nk_zero_struct(*atlas);
+ atlas->alloc = *alloc;
+}
+
+NK_API void
+nk_font_atlas_begin(struct nk_font_atlas *atlas)
+{
+ NK_ASSERT(atlas);
+ NK_ASSERT(atlas->alloc.alloc && atlas->alloc.free);
+ if (!atlas || !atlas->alloc.alloc || !atlas->alloc.free) return;
+ if (atlas->glyphs) {
+ atlas->alloc.free(atlas->alloc.userdata, atlas->glyphs);
+ atlas->glyphs = 0;
+ }
+ if (atlas->pixel) {
+ atlas->alloc.free(atlas->alloc.userdata, atlas->pixel);
+ atlas->pixel = 0;
+ }
+}
+
+NK_API struct nk_font*
+nk_font_atlas_add(struct nk_font_atlas *atlas, const struct nk_font_config *config)
+{
+ struct nk_font *font = 0;
+ NK_ASSERT(atlas);
+ NK_ASSERT(config);
+ NK_ASSERT(atlas->alloc.alloc);
+ NK_ASSERT(atlas->alloc.free);
+ NK_ASSERT(config->ttf_blob);
+ NK_ASSERT(config->ttf_size);
+ NK_ASSERT(config->size > 0.0f);
+ if (!atlas || !config || !config->ttf_blob || !config->ttf_size || config->size <= 0.0f||
+ !atlas->alloc.alloc || !atlas->alloc.free)
+ return 0;
+
+ /* allocate new font */
+ if (!config->merge_mode) {
+ font = (struct nk_font*)atlas->alloc.alloc(atlas->alloc.userdata,0, sizeof(struct nk_font));
+ NK_ASSERT(font);
+ if (!font) return 0;
+ } else {
+ NK_ASSERT(atlas->font_num);
+ font = atlas->fonts[atlas->font_num-1];
+ }
+
+ /* make sure enough memory */
+ if (!atlas->config || atlas->font_num >= atlas->font_cap) {
+ void *tmp_font, *tmp_config;
+ atlas->font_cap = (!atlas->config) ? 32: (int)((float)atlas->font_cap * 2.7f);
+ tmp_font = atlas->alloc.alloc(atlas->alloc.userdata,0,
+ ((nk_size)atlas->font_cap * sizeof(struct nk_font*)));
+ tmp_config = atlas->alloc.alloc(atlas->alloc.userdata,0,
+ ((nk_size)atlas->font_cap * sizeof(struct nk_font_config)));
+
+ if (!atlas->config) {
+ atlas->fonts = (struct nk_font**)tmp_font;
+ atlas->config = (struct nk_font_config*)tmp_config;
+ } else {
+ /* realloc */
+ NK_MEMCPY(tmp_font, atlas->fonts,
+ sizeof(struct nk_font*) * (nk_size)atlas->font_num);
+ NK_MEMCPY(tmp_config, atlas->config,
+ sizeof(struct nk_font_config) * (nk_size)atlas->font_num);
+
+ atlas->alloc.free(atlas->alloc.userdata, atlas->fonts);
+ atlas->alloc.free(atlas->alloc.userdata, atlas->config);
+
+ atlas->fonts = (struct nk_font**)tmp_font;
+ atlas->config = (struct nk_font_config*)tmp_config;
+ }
+ }
+
+ /* add font and font config into atlas */
+ atlas->config[atlas->font_num] = *config;
+ if (!config->merge_mode) {
+ atlas->fonts[atlas->font_num] = font;
+ atlas->config[atlas->font_num].font = &font->info;
+ }
+
+ /* create own copy of .TTF font blob */
+ if (!config->ttf_data_owned_by_atlas) {
+ struct nk_font_config *c = &atlas->config[atlas->font_num];
+ c->ttf_blob = atlas->alloc.alloc(atlas->alloc.userdata,0, c->ttf_size);
+ NK_ASSERT(c->ttf_blob);
+ if (!c->ttf_blob) {
+ atlas->font_num++;
+ return 0;
+ }
+ NK_MEMCPY(c->ttf_blob, config->ttf_blob, c->ttf_size);
+ c->ttf_data_owned_by_atlas = 1;
+ }
+ atlas->font_num++;
+ return font;
+}
+
+NK_API struct nk_font*
+nk_font_atlas_add_from_memory(struct nk_font_atlas *atlas, void *memory,
+ nk_size size, float height, const struct nk_font_config *config)
+{
+ struct nk_font_config cfg;
+ NK_ASSERT(memory);
+ NK_ASSERT(size);
+ NK_ASSERT(atlas);
+ NK_ASSERT(atlas->alloc.alloc);
+ NK_ASSERT(atlas->alloc.free);
+ if (!atlas || !atlas->alloc.alloc || !atlas->alloc.free || !memory || !size)
+ return 0;
+
+ cfg = (config) ? *config: nk_font_config(height);
+ cfg.ttf_blob = memory;
+ cfg.ttf_size = size;
+ cfg.size = height;
+ cfg.ttf_data_owned_by_atlas = 0;
+ return nk_font_atlas_add(atlas, &cfg);
+}
+
+#ifdef NK_INCLUDE_STANDARD_IO
+NK_API struct nk_font*
+nk_font_atlas_add_from_file(struct nk_font_atlas *atlas, const char *file_path,
+ float height, const struct nk_font_config *config)
+{
+ nk_size size;
+ char *memory;
+ struct nk_font_config cfg;
+
+ NK_ASSERT(atlas);
+ NK_ASSERT(atlas->alloc.alloc);
+ NK_ASSERT(atlas->alloc.free);
+ if (!atlas || !file_path) return 0;
+ memory = nk_file_load(file_path, &size, &atlas->alloc);
+ if (!memory) return 0;
+
+ cfg = (config) ? *config: nk_font_config(height);
+ cfg.ttf_blob = memory;
+ cfg.ttf_size = size;
+ cfg.size = height;
+ cfg.ttf_data_owned_by_atlas = 1;
+ return nk_font_atlas_add(atlas, &cfg);
+}
+#endif
+
+NK_API struct nk_font*
+nk_font_atlas_add_compressed(struct nk_font_atlas *atlas,
+ void *compressed_data, nk_size compressed_size, float height,
+ const struct nk_font_config *config)
+{
+ unsigned int decompressed_size;
+ void *decompressed_data;
+ struct nk_font_config cfg;
+
+ NK_ASSERT(compressed_data);
+ NK_ASSERT(compressed_size);
+ NK_ASSERT(atlas);
+ NK_ASSERT(atlas->alloc.alloc);
+ NK_ASSERT(atlas->alloc.free);
+ if (!atlas || !compressed_data || !atlas->alloc.alloc || !atlas->alloc.free)
+ return 0;
+
+ decompressed_size = nk_decompress_length((unsigned char*)compressed_data);
+ decompressed_data = atlas->alloc.alloc(atlas->alloc.userdata,0,decompressed_size);
+ NK_ASSERT(decompressed_data);
+ if (!decompressed_data) return 0;
+ nk_decompress((unsigned char*)decompressed_data, (unsigned char*)compressed_data,
+ (unsigned int)compressed_size);
+
+ cfg = (config) ? *config: nk_font_config(height);
+ cfg.ttf_blob = decompressed_data;
+ cfg.ttf_size = decompressed_size;
+ cfg.size = height;
+ cfg.ttf_data_owned_by_atlas = 1;
+ return nk_font_atlas_add(atlas, &cfg);
+}
+
+NK_API struct nk_font*
+nk_font_atlas_add_compressed_base85(struct nk_font_atlas *atlas,
+ const char *data_base85, float height, const struct nk_font_config *config)
+{
+ int compressed_size;
+ void *compressed_data;
+ struct nk_font *font;
+
+ NK_ASSERT(data_base85);
+ NK_ASSERT(atlas);
+ NK_ASSERT(atlas->alloc.alloc);
+ NK_ASSERT(atlas->alloc.free);
+ if (!atlas || !data_base85 || !atlas->alloc.alloc || !atlas->alloc.free)
+ return 0;
+
+ compressed_size = (((int)nk_strlen(data_base85) + 4) / 5) * 4;
+ compressed_data = atlas->alloc.alloc(atlas->alloc.userdata,0, (nk_size)compressed_size);
+ NK_ASSERT(compressed_data);
+ if (!compressed_data) return 0;
+ nk_decode_85((unsigned char*)compressed_data, (const unsigned char*)data_base85);
+ font = nk_font_atlas_add_compressed(atlas, compressed_data,
+ (nk_size)compressed_size, height, config);
+ atlas->alloc.free(atlas->alloc.userdata, compressed_data);
+ return font;
+}
+
+#ifdef NK_INCLUDE_DEFAULT_FONT
+NK_API struct nk_font*
+nk_font_atlas_add_default(struct nk_font_atlas *atlas,
+ float pixel_height, const struct nk_font_config *config)
+{
+ NK_ASSERT(atlas);
+ NK_ASSERT(atlas->alloc.alloc);
+ NK_ASSERT(atlas->alloc.free);
+ return nk_font_atlas_add_compressed_base85(atlas,
+ nk_proggy_clean_ttf_compressed_data_base85, pixel_height, config);
+}
+#endif
+
+NK_API const void*
+nk_font_atlas_bake(struct nk_font_atlas *atlas, int *width, int *height,
+ enum nk_font_atlas_format fmt)
+{
+ int i = 0;
+ void *tmp = 0;
+ nk_size tmp_size, img_size;
+
+ NK_ASSERT(width);
+ NK_ASSERT(height);
+ NK_ASSERT(atlas);
+ NK_ASSERT(atlas->alloc.alloc);
+ NK_ASSERT(atlas->alloc.free);
+ if (!atlas || !width || !height || !atlas->alloc.alloc || !atlas->alloc.free)
+ return 0;
+
+#ifdef NK_INCLUDE_DEFAULT_FONT
+ /* no font added so just use default font */
+ if (!atlas->font_num)
+ atlas->default_font = nk_font_atlas_add_default(atlas, 13.0f, 0);
+#endif
+ NK_ASSERT(atlas->font_num);
+ if (!atlas->font_num) return 0;
+
+ /* allocate temporary memory required for the baking process */
+ nk_font_bake_memory(&tmp_size, &atlas->glyph_count, atlas->config, atlas->font_num);
+ tmp = atlas->alloc.alloc(atlas->alloc.userdata,0, tmp_size);
+ NK_ASSERT(tmp);
+ if (!tmp) goto failed;
+
+ /* allocate glyph memory for all fonts */
+ atlas->glyphs = (struct nk_font_glyph*)
+ atlas->alloc.alloc(atlas->alloc.userdata,0,
+ sizeof(struct nk_font_glyph) * (nk_size)atlas->glyph_count);
+ NK_ASSERT(atlas->glyphs);
+ if (!atlas->glyphs)
+ goto failed;
+
+ /* pack all glyphs into a tight fit space */
+ atlas->custom.w = 2; atlas->custom.h = 2;
+ if (!nk_font_bake_pack(&img_size, width, height, &atlas->custom, tmp, tmp_size,
+ atlas->config, atlas->font_num, &atlas->alloc))
+ goto failed;
+
+ /* allocate memory for the baked image font atlas */
+ atlas->pixel = atlas->alloc.alloc(atlas->alloc.userdata,0, img_size);
+ NK_ASSERT(atlas->pixel);
+ if (!atlas->pixel)
+ goto failed;
+
+ /* bake glyphs and custom white pixel into image */
+ {const char *custom_data = "....";
+ nk_font_bake(atlas->pixel, *width, *height, tmp, tmp_size, atlas->glyphs,
+ atlas->glyph_count, atlas->config, atlas->font_num);
+ nk_font_bake_custom_data(atlas->pixel, *width, *height, atlas->custom,
+ custom_data, 2, 2, '.', 'X');}
+
+ /* convert alpha8 image into rgba32 image */
+ if (fmt == NK_FONT_ATLAS_RGBA32) {
+ void *img_rgba = atlas->alloc.alloc(atlas->alloc.userdata,0,
+ (nk_size)(*width * *height * 4));
+ NK_ASSERT(img_rgba);
+ if (!img_rgba) goto failed;
+ nk_font_bake_convert(img_rgba, *width, *height, atlas->pixel);
+ atlas->alloc.free(atlas->alloc.userdata, atlas->pixel);
+ atlas->pixel = img_rgba;
+ }
+ atlas->tex_width = *width;
+ atlas->tex_height = *height;
+
+ /* initialize each font */
+ for (i = 0; i < atlas->font_num; ++i) {
+ nk_font_init(atlas->fonts[i], atlas->config[i].size,
+ atlas->config[i].fallback_glyph, atlas->glyphs,
+ atlas->config[i].font, nk_handle_ptr(0));
+ }
+
+ /* free temporary memory */
+ atlas->alloc.free(atlas->alloc.userdata, tmp);
+ return atlas->pixel;
+
+failed:
+ /* error so cleanup all memory */
+ if (tmp) atlas->alloc.free(atlas->alloc.userdata, tmp);
+ if (atlas->glyphs) {
+ atlas->alloc.free(atlas->alloc.userdata, atlas->glyphs);
+ atlas->glyphs = 0;
+ }
+ if (atlas->pixel) {
+ atlas->alloc.free(atlas->alloc.userdata, atlas->pixel);
+ atlas->pixel = 0;
+ }
+ return 0;
+}
+
+NK_API void
+nk_font_atlas_end(struct nk_font_atlas *atlas, nk_handle texture,
+ struct nk_draw_null_texture *null)
+{
+ int i = 0;
+ NK_ASSERT(atlas);
+ if (!atlas) {
+ if (!null) return;
+ null->texture = texture;
+ null->uv = nk_vec2(0.5f,0.5f);
+ }
+ if (null) {
+ null->texture = texture;
+ null->uv = nk_vec2((atlas->custom.x + 0.5f)/(float)atlas->tex_width,
+ (atlas->custom.y + 0.5f)/(float)atlas->tex_height);
+ }
+ for (i = 0; i < atlas->font_num; ++i) {
+ atlas->fonts[i]->texture = texture;
+#ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+ atlas->fonts[i]->handle.texture = texture;
+#endif
+ }
+
+ atlas->alloc.free(atlas->alloc.userdata, atlas->pixel);
+ atlas->pixel = 0;
+ atlas->tex_width = 0;
+ atlas->tex_height = 0;
+ atlas->custom.x = 0;
+ atlas->custom.y = 0;
+ atlas->custom.w = 0;
+ atlas->custom.h = 0;
+}
+
+NK_API void
+nk_font_atlas_clear(struct nk_font_atlas *atlas)
+{
+ int i = 0;
+ NK_ASSERT(atlas);
+ NK_ASSERT(atlas->alloc.alloc);
+ NK_ASSERT(atlas->alloc.free);
+ if (!atlas || !atlas->alloc.alloc || !atlas->alloc.free)
+ return;
+
+ if (atlas->fonts) {
+ for (i = 0; i < atlas->font_num; ++i)
+ atlas->alloc.free(atlas->alloc.userdata, atlas->fonts[i]);
+ atlas->alloc.free(atlas->alloc.userdata, atlas->fonts);
+ }
+ if (atlas->config) {
+ for (i = 0; i < atlas->font_num; ++i)
+ atlas->alloc.free(atlas->alloc.userdata, atlas->config[i].ttf_blob);
+ atlas->alloc.free(atlas->alloc.userdata, atlas->config);
+ }
+ if (atlas->glyphs)
+ atlas->alloc.free(atlas->alloc.userdata, atlas->glyphs);
+ if (atlas->pixel)
+ atlas->alloc.free(atlas->alloc.userdata, atlas->pixel);
+ nk_zero_struct(*atlas);
+}
+#endif
+/* ==============================================================
+ *
+ * INPUT
+ *
+ * ===============================================================*/
+NK_API void
+nk_input_begin(struct nk_context *ctx)
+{
+ int i;
+ struct nk_input *in;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+
+ in = &ctx->input;
+ for (i = 0; i < NK_BUTTON_MAX; ++i)
+ in->mouse.buttons[i].clicked = 0;
+ in->keyboard.text_len = 0;
+ in->mouse.scroll_delta = 0;
+ in->mouse.prev.x = in->mouse.pos.x;
+ in->mouse.prev.y = in->mouse.pos.y;
+ in->mouse.delta.x = 0;
+ in->mouse.delta.y = 0;
+ for (i = 0; i < NK_KEY_MAX; i++)
+ in->keyboard.keys[i].clicked = 0;
+}
+
+NK_API void
+nk_input_end(struct nk_context *ctx)
+{
+ struct nk_input *in;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ in = &ctx->input;
+ if (in->mouse.grab)
+ in->mouse.grab = 0;
+ if (in->mouse.ungrab) {
+ in->mouse.grabbed = 0;
+ in->mouse.ungrab = 0;
+ in->mouse.grab = 0;
+ }
+ if (in->mouse.grabbed) {
+ in->mouse.pos.x = in->mouse.prev.x;
+ in->mouse.pos.y = in->mouse.prev.y;
+ }
+}
+
+NK_API void
+nk_input_motion(struct nk_context *ctx, int x, int y)
+{
+ struct nk_input *in;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ in = &ctx->input;
+ in->mouse.pos.x = (float)x;
+ in->mouse.pos.y = (float)y;
+ in->mouse.delta = nk_vec2_sub(in->mouse.pos, in->mouse.prev);
+}
+
+NK_API void
+nk_input_key(struct nk_context *ctx, enum nk_keys key, int down)
+{
+ struct nk_input *in;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ in = &ctx->input;
+ if (in->keyboard.keys[key].down == down) return;
+ in->keyboard.keys[key].down = down;
+ in->keyboard.keys[key].clicked++;
+}
+
+NK_API void
+nk_input_button(struct nk_context *ctx, enum nk_buttons id, int x, int y, int down)
+{
+ struct nk_mouse_button *btn;
+ struct nk_input *in;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ in = &ctx->input;
+ if (in->mouse.buttons[id].down == down) return;
+
+ btn = &in->mouse.buttons[id];
+ btn->clicked_pos.x = (float)x;
+ btn->clicked_pos.y = (float)y;
+ btn->down = down;
+ btn->clicked++;
+}
+
+NK_API void
+nk_input_scroll(struct nk_context *ctx, float y)
+{
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ ctx->input.mouse.scroll_delta += y;
+}
+
+NK_API void
+nk_input_glyph(struct nk_context *ctx, const nk_glyph glyph)
+{
+ int len = 0;
+ nk_rune unicode;
+
+ struct nk_input *in;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ in = &ctx->input;
+
+ len = nk_utf_decode(glyph, &unicode, NK_UTF_SIZE);
+ if (len && ((in->keyboard.text_len + len) < NK_INPUT_MAX)) {
+ nk_utf_encode(unicode, &in->keyboard.text[in->keyboard.text_len],
+ NK_INPUT_MAX - in->keyboard.text_len);
+ in->keyboard.text_len += len;
+ }
+}
+
+NK_API void
+nk_input_char(struct nk_context *ctx, char c)
+{
+ nk_glyph glyph;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ glyph[0] = c;
+ nk_input_glyph(ctx, glyph);
+}
+
+NK_API void
+nk_input_unicode(struct nk_context *ctx, nk_rune unicode)
+{
+ nk_glyph rune;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ nk_utf_encode(unicode, rune, NK_UTF_SIZE);
+ nk_input_glyph(ctx, rune);
+}
+
+NK_API int
+nk_input_has_mouse_click(const struct nk_input *i, enum nk_buttons id)
+{
+ const struct nk_mouse_button *btn;
+ if (!i) return nk_false;
+ btn = &i->mouse.buttons[id];
+ return (btn->clicked && btn->down == nk_false) ? nk_true : nk_false;
+}
+
+NK_API int
+nk_input_has_mouse_click_in_rect(const struct nk_input *i, enum nk_buttons id,
+ struct nk_rect b)
+{
+ const struct nk_mouse_button *btn;
+ if (!i) return nk_false;
+ btn = &i->mouse.buttons[id];
+ if (!NK_INBOX(btn->clicked_pos.x,btn->clicked_pos.y,b.x,b.y,b.w,b.h))
+ return nk_false;
+ return nk_true;
+}
+
+NK_API int
+nk_input_has_mouse_click_down_in_rect(const struct nk_input *i, enum nk_buttons id,
+ struct nk_rect b, int down)
+{
+ const struct nk_mouse_button *btn;
+ if (!i) return nk_false;
+ btn = &i->mouse.buttons[id];
+ return nk_input_has_mouse_click_in_rect(i, id, b) && (btn->down == down);
+}
+
+NK_API int
+nk_input_is_mouse_click_in_rect(const struct nk_input *i, enum nk_buttons id,
+ struct nk_rect b)
+{
+ const struct nk_mouse_button *btn;
+ if (!i) return nk_false;
+ btn = &i->mouse.buttons[id];
+ return (nk_input_has_mouse_click_down_in_rect(i, id, b, nk_false) &&
+ btn->clicked) ? nk_true : nk_false;
+}
+
+NK_API int
+nk_input_is_mouse_click_down_in_rect(const struct nk_input *i, enum nk_buttons id,
+ struct nk_rect b, int down)
+{
+ const struct nk_mouse_button *btn;
+ if (!i) return nk_false;
+ btn = &i->mouse.buttons[id];
+ return (nk_input_has_mouse_click_down_in_rect(i, id, b, down) &&
+ btn->clicked) ? nk_true : nk_false;
+}
+
+NK_API int
+nk_input_any_mouse_click_in_rect(const struct nk_input *in, struct nk_rect b)
+{
+ int i, down = 0;
+ for (i = 0; i < NK_BUTTON_MAX; ++i)
+ down = down || nk_input_is_mouse_click_in_rect(in, (enum nk_buttons)i, b);
+ return down;
+}
+
+NK_API int
+nk_input_is_mouse_hovering_rect(const struct nk_input *i, struct nk_rect rect)
+{
+ if (!i) return nk_false;
+ return NK_INBOX(i->mouse.pos.x, i->mouse.pos.y, rect.x, rect.y, rect.w, rect.h);
+}
+
+NK_API int
+nk_input_is_mouse_prev_hovering_rect(const struct nk_input *i, struct nk_rect rect)
+{
+ if (!i) return nk_false;
+ return NK_INBOX(i->mouse.prev.x, i->mouse.prev.y, rect.x, rect.y, rect.w, rect.h);
+}
+
+NK_API int
+nk_input_mouse_clicked(const struct nk_input *i, enum nk_buttons id, struct nk_rect rect)
+{
+ if (!i) return nk_false;
+ if (!nk_input_is_mouse_hovering_rect(i, rect)) return nk_false;
+ return nk_input_is_mouse_click_in_rect(i, id, rect);
+}
+
+NK_API int
+nk_input_is_mouse_down(const struct nk_input *i, enum nk_buttons id)
+{
+ if (!i) return nk_false;
+ return i->mouse.buttons[id].down;
+}
+
+NK_API int
+nk_input_is_mouse_pressed(const struct nk_input *i, enum nk_buttons id)
+{
+ const struct nk_mouse_button *b;
+ if (!i) return nk_false;
+ b = &i->mouse.buttons[id];
+ if (b->down && b->clicked)
+ return nk_true;
+ return nk_false;
+}
+
+NK_API int
+nk_input_is_mouse_released(const struct nk_input *i, enum nk_buttons id)
+{
+ if (!i) return nk_false;
+ return (!i->mouse.buttons[id].down && i->mouse.buttons[id].clicked);
+}
+
+NK_API int
+nk_input_is_key_pressed(const struct nk_input *i, enum nk_keys key)
+{
+ const struct nk_key *k;
+ if (!i) return nk_false;
+ k = &i->keyboard.keys[key];
+ if (k->down && k->clicked)
+ return nk_true;
+ return nk_false;
+}
+
+NK_API int
+nk_input_is_key_released(const struct nk_input *i, enum nk_keys key)
+{
+ const struct nk_key *k;
+ if (!i) return nk_false;
+ k = &i->keyboard.keys[key];
+ if (!k->down && k->clicked)
+ return nk_true;
+ return nk_false;
+}
+
+NK_API int
+nk_input_is_key_down(const struct nk_input *i, enum nk_keys key)
+{
+ const struct nk_key *k;
+ if (!i) return nk_false;
+ k = &i->keyboard.keys[key];
+ if (k->down) return nk_true;
+ return nk_false;
+}
+
+/*
+ * ==============================================================
+ *
+ * TEXT EDITOR
+ *
+ * ===============================================================
+ */
+/* stb_textedit.h - v1.8 - public domain - Sean Barrett */
+struct nk_text_find {
+ float x,y; /* position of n'th character */
+ float height; /* height of line */
+ int first_char, length; /* first char of row, and length */
+ int prev_first; /*_ first char of previous row */
+};
+
+struct nk_text_edit_row {
+ float x0,x1;
+ /* starting x location, end x location (allows for align=right, etc) */
+ float baseline_y_delta;
+ /* position of baseline relative to previous row's baseline*/
+ float ymin,ymax;
+ /* height of row above and below baseline */
+ int num_chars;
+};
+
+/* forward declarations */
+NK_INTERN void nk_textedit_makeundo_delete(struct nk_text_edit*, int, int);
+NK_INTERN void nk_textedit_makeundo_insert(struct nk_text_edit*, int, int);
+NK_INTERN void nk_textedit_makeundo_replace(struct nk_text_edit*, int, int, int);
+#define NK_TEXT_HAS_SELECTION(s) ((s)->select_start != (s)->select_end)
+
+NK_INTERN float
+nk_textedit_get_width(const struct nk_text_edit *edit, int line_start, int char_id,
+ const struct nk_user_font *font)
+{
+ int len = 0;
+ nk_rune unicode = 0;
+ const char *str = nk_str_at_const(&edit->string, line_start + char_id, &unicode, &len);
+ return font->width(font->userdata, font->height, str, len);
+}
+
+NK_INTERN void
+nk_textedit_layout_row(struct nk_text_edit_row *r, struct nk_text_edit *edit,
+ int line_start_id, float row_height, const struct nk_user_font *font)
+{
+ int l;
+ int glyphs = 0;
+ nk_rune unicode;
+ const char *remaining;
+ int len = nk_str_len_char(&edit->string);
+ const char *end = nk_str_get_const(&edit->string) + len;
+ const char *text = nk_str_at_const(&edit->string, line_start_id, &unicode, &l);
+ const struct nk_vec2 size = nk_text_calculate_text_bounds(font,
+ text, (int)(end - text), row_height, &remaining, 0, &glyphs, NK_STOP_ON_NEW_LINE);
+
+ r->x0 = 0.0f;
+ r->x1 = size.x;
+ r->baseline_y_delta = size.y;
+ r->ymin = 0.0f;
+ r->ymax = size.y;
+ r->num_chars = glyphs;
+}
+
+NK_INTERN int
+nk_textedit_locate_coord(struct nk_text_edit *edit, float x, float y,
+ const struct nk_user_font *font, float row_height)
+{
+ struct nk_text_edit_row r;
+ int n = edit->string.len;
+ float base_y = 0, prev_x;
+ int i=0, k;
+
+ r.x0 = r.x1 = 0;
+ r.ymin = r.ymax = 0;
+ r.num_chars = 0;
+
+ /* search rows to find one that straddles 'y' */
+ while (i < n) {
+ nk_textedit_layout_row(&r, edit, i, row_height, font);
+ if (r.num_chars <= 0)
+ return n;
+
+ if (i==0 && y < base_y + r.ymin)
+ return 0;
+
+ if (y < base_y + r.ymax)
+ break;
+
+ i += r.num_chars;
+ base_y += r.baseline_y_delta;
+ }
+
+ /* below all text, return 'after' last character */
+ if (i >= n)
+ return n;
+
+ /* check if it's before the beginning of the line */
+ if (x < r.x0)
+ return i;
+
+ /* check if it's before the end of the line */
+ if (x < r.x1) {
+ /* search characters in row for one that straddles 'x' */
+ k = i;
+ prev_x = r.x0;
+ for (i=0; i < r.num_chars; ++i) {
+ float w = nk_textedit_get_width(edit, k, i, font);
+ if (x < prev_x+w) {
+ if (x < prev_x+w/2)
+ return k+i;
+ else return k+i+1;
+ }
+ prev_x += w;
+ }
+ /* shouldn't happen, but if it does, fall through to end-of-line case */
+ }
+
+ /* if the last character is a newline, return that.
+ * otherwise return 'after' the last character */
+ if (nk_str_rune_at(&edit->string, i+r.num_chars-1) == '\n')
+ return i+r.num_chars-1;
+ else return i+r.num_chars;
+}
+
+NK_INTERN void
+nk_textedit_click(struct nk_text_edit *state, float x, float y,
+ const struct nk_user_font *font, float row_height)
+{
+ /* API click: on mouse down, move the cursor to the clicked location,
+ * and reset the selection */
+ state->cursor = nk_textedit_locate_coord(state, x, y, font, row_height);
+ state->select_start = state->cursor;
+ state->select_end = state->cursor;
+ state->has_preferred_x = 0;
+}
+
+NK_INTERN void
+nk_textedit_drag(struct nk_text_edit *state, float x, float y,
+ const struct nk_user_font *font, float row_height)
+{
+ /* API drag: on mouse drag, move the cursor and selection endpoint
+ * to the clicked location */
+ int p = nk_textedit_locate_coord(state, x, y, font, row_height);
+ if (state->select_start == state->select_end)
+ state->select_start = state->cursor;
+ state->cursor = state->select_end = p;
+}
+
+NK_INTERN void
+nk_textedit_find_charpos(struct nk_text_find *find, struct nk_text_edit *state,
+ int n, int single_line, const struct nk_user_font *font, float row_height)
+{
+ /* find the x/y location of a character, and remember info about the previous
+ * row in case we get a move-up event (for page up, we'll have to rescan) */
+ struct nk_text_edit_row r;
+ int prev_start = 0;
+ int z = state->string.len;
+ int i=0, first;
+
+ if (n == z) {
+ /* if it's at the end, then find the last line -- simpler than trying to
+ explicitly handle this case in the regular code */
+ if (single_line) {
+ nk_textedit_layout_row(&r, state, 0, row_height, font);
+ find->y = 0;
+ find->first_char = 0;
+ find->length = z;
+ find->height = r.ymax - r.ymin;
+ find->x = r.x1;
+ } else {
+ find->y = 0;
+ find->x = 0;
+ find->height = 1;
+
+ while (i < z) {
+ nk_textedit_layout_row(&r, state, i, row_height, font);
+ prev_start = i;
+ i += r.num_chars;
+ }
+
+ find->first_char = i;
+ find->length = 0;
+ find->prev_first = prev_start;
+ }
+ return;
+ }
+
+ /* search rows to find the one that straddles character n */
+ find->y = 0;
+
+ for(;;) {
+ nk_textedit_layout_row(&r, state, i, row_height, font);
+ if (n < i + r.num_chars) break;
+ prev_start = i;
+ i += r.num_chars;
+ find->y += r.baseline_y_delta;
+ }
+
+ find->first_char = first = i;
+ find->length = r.num_chars;
+ find->height = r.ymax - r.ymin;
+ find->prev_first = prev_start;
+
+ /* now scan to find xpos */
+ find->x = r.x0;
+ for (i=0; first+i < n; ++i)
+ find->x += nk_textedit_get_width(state, first, i, font);
+}
+
+NK_INTERN void
+nk_textedit_clamp(struct nk_text_edit *state)
+{
+ /* make the selection/cursor state valid if client altered the string */
+ int n = state->string.len;
+ if (NK_TEXT_HAS_SELECTION(state)) {
+ if (state->select_start > n) state->select_start = n;
+ if (state->select_end > n) state->select_end = n;
+ /* if clamping forced them to be equal, move the cursor to match */
+ if (state->select_start == state->select_end)
+ state->cursor = state->select_start;
+ }
+ if (state->cursor > n) state->cursor = n;
+}
+
+NK_API void
+nk_textedit_delete(struct nk_text_edit *state, int where, int len)
+{
+ /* delete characters while updating undo */
+ nk_textedit_makeundo_delete(state, where, len);
+ nk_str_delete_runes(&state->string, where, len);
+ state->has_preferred_x = 0;
+}
+
+NK_API void
+nk_textedit_delete_selection(struct nk_text_edit *state)
+{
+ /* delete the section */
+ nk_textedit_clamp(state);
+ if (NK_TEXT_HAS_SELECTION(state)) {
+ if (state->select_start < state->select_end) {
+ nk_textedit_delete(state, state->select_start,
+ state->select_end - state->select_start);
+ state->select_end = state->cursor = state->select_start;
+ } else {
+ nk_textedit_delete(state, state->select_end,
+ state->select_start - state->select_end);
+ state->select_start = state->cursor = state->select_end;
+ }
+ state->has_preferred_x = 0;
+ }
+}
+
+NK_INTERN void
+nk_textedit_sortselection(struct nk_text_edit *state)
+{
+ /* canonicalize the selection so start <= end */
+ if (state->select_end < state->select_start) {
+ int temp = state->select_end;
+ state->select_end = state->select_start;
+ state->select_start = temp;
+ }
+}
+
+NK_INTERN void
+nk_textedit_move_to_first(struct nk_text_edit *state)
+{
+ /* move cursor to first character of selection */
+ if (NK_TEXT_HAS_SELECTION(state)) {
+ nk_textedit_sortselection(state);
+ state->cursor = state->select_start;
+ state->select_end = state->select_start;
+ state->has_preferred_x = 0;
+ }
+}
+
+NK_INTERN void
+nk_textedit_move_to_last(struct nk_text_edit *state)
+{
+ /* move cursor to last character of selection */
+ if (NK_TEXT_HAS_SELECTION(state)) {
+ nk_textedit_sortselection(state);
+ nk_textedit_clamp(state);
+ state->cursor = state->select_end;
+ state->select_start = state->select_end;
+ state->has_preferred_x = 0;
+ }
+}
+
+NK_INTERN int
+nk_is_word_boundary( struct nk_text_edit *state, int idx)
+{
+ int len;
+ nk_rune c;
+ if (idx <= 0) return 1;
+ if (!nk_str_at_rune(&state->string, idx, &c, &len)) return 1;
+ return (c == ' ' || c == '\t' ||c == 0x3000 || c == ',' || c == ';' ||
+ c == '(' || c == ')' || c == '{' || c == '}' || c == '[' || c == ']' ||
+ c == '|');
+}
+
+NK_INTERN int
+nk_textedit_move_to_word_previous(struct nk_text_edit *state)
+{
+ int c = state->cursor - 1;
+ while( c >= 0 && !nk_is_word_boundary(state, c))
+ --c;
+
+ if( c < 0 )
+ c = 0;
+
+ return c;
+}
+
+NK_INTERN int
+nk_textedit_move_to_word_next(struct nk_text_edit *state)
+{
+ const int len = state->string.len;
+ int c = state->cursor+1;
+ while( c < len && !nk_is_word_boundary(state, c))
+ ++c;
+
+ if( c > len )
+ c = len;
+
+ return c;
+}
+
+NK_INTERN void
+nk_textedit_prep_selection_at_cursor(struct nk_text_edit *state)
+{
+ /* update selection and cursor to match each other */
+ if (!NK_TEXT_HAS_SELECTION(state))
+ state->select_start = state->select_end = state->cursor;
+ else state->cursor = state->select_end;
+}
+
+NK_API int
+nk_textedit_cut(struct nk_text_edit *state)
+{
+ /* API cut: delete selection */
+ if (NK_TEXT_HAS_SELECTION(state)) {
+ nk_textedit_delete_selection(state); /* implicitly clamps */
+ state->has_preferred_x = 0;
+ return 1;
+ }
+ return 0;
+}
+
+NK_API int
+nk_textedit_paste(struct nk_text_edit *state, char const *ctext, int len)
+{
+ /* API paste: replace existing selection with passed-in text */
+ int glyphs;
+ const char *text = (const char *) ctext;
+ /* if there's a selection, the paste should delete it */
+ nk_textedit_clamp(state);
+ nk_textedit_delete_selection(state);
+ /* try to insert the characters */
+ glyphs = nk_utf_len(ctext, len);
+ if (nk_str_insert_text_char(&state->string, state->cursor, text, len)) {
+ nk_textedit_makeundo_insert(state, state->cursor, glyphs);
+ state->cursor += len;
+ state->has_preferred_x = 0;
+ return 1;
+ }
+ /* remove the undo since we didn't actually insert the characters */
+ if (state->undo.undo_point)
+ --state->undo.undo_point;
+ return 0;
+}
+
+NK_API void
+nk_textedit_text(struct nk_text_edit *state, const char *text, int total_len)
+{
+ nk_rune unicode;
+ int glyph_len;
+ int text_len = 0;
+
+ NK_ASSERT(state);
+ NK_ASSERT(text);
+ if (!text || !total_len || state->mode == NK_TEXT_EDIT_MODE_VIEW) return;
+
+ glyph_len = nk_utf_decode(text, &unicode, total_len);
+ if (!glyph_len) return;
+ while ((text_len < total_len) && glyph_len)
+ {
+ /* can't add newline in single-line mode */
+ if (unicode == '\n' && state->single_line)
+ break;
+
+ /* filter incoming text */
+ if (state->filter && !state->filter(state, unicode)) {
+ glyph_len = nk_utf_decode(text + text_len, &unicode, total_len-text_len);
+ text_len += glyph_len;
+ continue;
+ }
+
+ if (!NK_TEXT_HAS_SELECTION(state) &&
+ state->cursor < state->string.len)
+ {
+ if (state->mode == NK_TEXT_EDIT_MODE_REPLACE) {
+ nk_textedit_makeundo_replace(state, state->cursor, 1, 1);
+ nk_str_delete_runes(&state->string, state->cursor, 1);
+ }
+ if (nk_str_insert_text_char(&state->string, state->cursor,
+ text+text_len, glyph_len))
+ {
+ ++state->cursor;
+ state->has_preferred_x = 0;
+ }
+ } else {
+ nk_textedit_delete_selection(state); /* implicitly clamps */
+ if (nk_str_insert_text_char(&state->string, state->cursor,
+ text+text_len, glyph_len))
+ {
+ nk_textedit_makeundo_insert(state, state->cursor, 1);
+ ++state->cursor;
+ state->has_preferred_x = 0;
+ }
+ }
+ glyph_len = nk_utf_decode(text + text_len, &unicode, total_len-text_len);
+ text_len += glyph_len;
+ }
+}
+
+NK_INTERN void
+nk_textedit_key(struct nk_text_edit *state, enum nk_keys key, int shift_mod,
+ const struct nk_user_font *font, float row_height)
+{
+retry:
+ switch (key)
+ {
+ case NK_KEY_NONE:
+ case NK_KEY_CTRL:
+ case NK_KEY_ENTER:
+ case NK_KEY_SHIFT:
+ case NK_KEY_TAB:
+ case NK_KEY_COPY:
+ case NK_KEY_CUT:
+ case NK_KEY_PASTE:
+ case NK_KEY_MAX:
+ default: break;
+ case NK_KEY_TEXT_UNDO:
+ nk_textedit_undo(state);
+ state->has_preferred_x = 0;
+ break;
+
+ case NK_KEY_TEXT_REDO:
+ nk_textedit_redo(state);
+ state->has_preferred_x = 0;
+ break;
+
+ case NK_KEY_TEXT_INSERT_MODE:
+ if (state->mode == NK_TEXT_EDIT_MODE_VIEW)
+ state->mode = NK_TEXT_EDIT_MODE_INSERT;
+ break;
+ case NK_KEY_TEXT_REPLACE_MODE:
+ if (state->mode == NK_TEXT_EDIT_MODE_VIEW)
+ state->mode = NK_TEXT_EDIT_MODE_REPLACE;
+ break;
+ case NK_KEY_TEXT_RESET_MODE:
+ if (state->mode == NK_TEXT_EDIT_MODE_INSERT ||
+ state->mode == NK_TEXT_EDIT_MODE_REPLACE)
+ state->mode = NK_TEXT_EDIT_MODE_VIEW;
+ break;
+
+ case NK_KEY_LEFT:
+ if (shift_mod) {
+ nk_textedit_clamp(state);
+ nk_textedit_prep_selection_at_cursor(state);
+ /* move selection left */
+ if (state->select_end > 0)
+ --state->select_end;
+ state->cursor = state->select_end;
+ state->has_preferred_x = 0;
+ } else {
+ /* if currently there's a selection,
+ * move cursor to start of selection */
+ if (NK_TEXT_HAS_SELECTION(state))
+ nk_textedit_move_to_first(state);
+ else if (state->cursor > 0)
+ --state->cursor;
+ state->has_preferred_x = 0;
+ } break;
+
+ case NK_KEY_RIGHT:
+ if (shift_mod) {
+ nk_textedit_prep_selection_at_cursor(state);
+ /* move selection right */
+ ++state->select_end;
+ nk_textedit_clamp(state);
+ state->cursor = state->select_end;
+ state->has_preferred_x = 0;
+ } else {
+ /* if currently there's a selection,
+ * move cursor to end of selection */
+ if (NK_TEXT_HAS_SELECTION(state))
+ nk_textedit_move_to_last(state);
+ else ++state->cursor;
+ nk_textedit_clamp(state);
+ state->has_preferred_x = 0;
+ } break;
+
+ case NK_KEY_TEXT_WORD_LEFT:
+ if (shift_mod) {
+ if( !NK_TEXT_HAS_SELECTION( state ) )
+ nk_textedit_prep_selection_at_cursor(state);
+ state->cursor = nk_textedit_move_to_word_previous(state);
+ state->select_end = state->cursor;
+ nk_textedit_clamp(state );
+ } else {
+ if (NK_TEXT_HAS_SELECTION(state))
+ nk_textedit_move_to_first(state);
+ else {
+ state->cursor = nk_textedit_move_to_word_previous(state);
+ nk_textedit_clamp(state );
+ }
+ } break;
+
+ case NK_KEY_TEXT_WORD_RIGHT:
+ if (shift_mod) {
+ if( !NK_TEXT_HAS_SELECTION( state ) )
+ nk_textedit_prep_selection_at_cursor(state);
+ state->cursor = nk_textedit_move_to_word_next(state);
+ state->select_end = state->cursor;
+ nk_textedit_clamp(state);
+ } else {
+ if (NK_TEXT_HAS_SELECTION(state))
+ nk_textedit_move_to_last(state);
+ else {
+ state->cursor = nk_textedit_move_to_word_next(state);
+ nk_textedit_clamp(state );
+ }
+ } break;
+
+ case NK_KEY_DOWN: {
+ struct nk_text_find find;
+ struct nk_text_edit_row row;
+ int i, sel = shift_mod;
+
+ if (state->single_line) {
+ /* on windows, up&down in single-line behave like left&right */
+ key = NK_KEY_RIGHT;
+ goto retry;
+ }
+
+ if (sel)
+ nk_textedit_prep_selection_at_cursor(state);
+ else if (NK_TEXT_HAS_SELECTION(state))
+ nk_textedit_move_to_last(state);
+
+ /* compute current position of cursor point */
+ nk_textedit_clamp(state);
+ nk_textedit_find_charpos(&find, state, state->cursor, state->single_line,
+ font, row_height);
+
+ /* now find character position down a row */
+ if (find.length)
+ {
+ float x;
+ float goal_x = state->has_preferred_x ? state->preferred_x : find.x;
+ int start = find.first_char + find.length;
+
+ state->cursor = start;
+ nk_textedit_layout_row(&row, state, state->cursor, row_height, font);
+ x = row.x0;
+
+ for (i=0; i < row.num_chars; ++i) {
+ float dx = nk_textedit_get_width(state, start, i, font);
+ x += dx;
+ if (x > goal_x)
+ break;
+ ++state->cursor;
+ }
+ nk_textedit_clamp(state);
+
+ state->has_preferred_x = 1;
+ state->preferred_x = goal_x;
+ if (sel)
+ state->select_end = state->cursor;
+ }
+ } break;
+
+ case NK_KEY_UP: {
+ struct nk_text_find find;
+ struct nk_text_edit_row row;
+ int i, sel = shift_mod;
+
+ if (state->single_line) {
+ /* on windows, up&down become left&right */
+ key = NK_KEY_LEFT;
+ goto retry;
+ }
+
+ if (sel)
+ nk_textedit_prep_selection_at_cursor(state);
+ else if (NK_TEXT_HAS_SELECTION(state))
+ nk_textedit_move_to_first(state);
+
+ /* compute current position of cursor point */
+ nk_textedit_clamp(state);
+ nk_textedit_find_charpos(&find, state, state->cursor, state->single_line,
+ font, row_height);
+
+ /* can only go up if there's a previous row */
+ if (find.prev_first != find.first_char) {
+ /* now find character position up a row */
+ float x;
+ float goal_x = state->has_preferred_x ? state->preferred_x : find.x;
+
+ state->cursor = find.prev_first;
+ nk_textedit_layout_row(&row, state, state->cursor, row_height, font);
+ x = row.x0;
+
+ for (i=0; i < row.num_chars; ++i) {
+ float dx = nk_textedit_get_width(state, find.prev_first, i, font);
+ x += dx;
+ if (x > goal_x)
+ break;
+ ++state->cursor;
+ }
+ nk_textedit_clamp(state);
+
+ state->has_preferred_x = 1;
+ state->preferred_x = goal_x;
+ if (sel) state->select_end = state->cursor;
+ }
+ } break;
+
+ case NK_KEY_DEL:
+ if (NK_TEXT_HAS_SELECTION(state))
+ nk_textedit_delete_selection(state);
+ else {
+ int n = state->string.len;
+ if (state->cursor < n)
+ nk_textedit_delete(state, state->cursor, 1);
+ }
+ state->has_preferred_x = 0;
+ break;
+
+ case NK_KEY_BACKSPACE:
+ if (NK_TEXT_HAS_SELECTION(state))
+ nk_textedit_delete_selection(state);
+ else {
+ nk_textedit_clamp(state);
+ if (state->cursor > 0) {
+ nk_textedit_delete(state, state->cursor-1, 1);
+ --state->cursor;
+ }
+ }
+ state->has_preferred_x = 0;
+ break;
+
+ case NK_KEY_TEXT_START:
+ if (shift_mod) {
+ nk_textedit_prep_selection_at_cursor(state);
+ state->cursor = state->select_end = 0;
+ state->has_preferred_x = 0;
+ } else {
+ state->cursor = state->select_start = state->select_end = 0;
+ state->has_preferred_x = 0;
+ }
+ break;
+
+ case NK_KEY_TEXT_END:
+ if (shift_mod) {
+ nk_textedit_prep_selection_at_cursor(state);
+ state->cursor = state->select_end = state->string.len;
+ state->has_preferred_x = 0;
+ } else {
+ state->cursor = state->string.len;
+ state->select_start = state->select_end = 0;
+ state->has_preferred_x = 0;
+ }
+ break;
+
+ case NK_KEY_TEXT_LINE_START: {
+ if (shift_mod) {
+ struct nk_text_find find;
+ nk_textedit_clamp(state);
+ nk_textedit_prep_selection_at_cursor(state);
+ if (state->string.len && state->cursor == state->string.len)
+ --state->cursor;
+ nk_textedit_find_charpos(&find, state,state->cursor, state->single_line,
+ font, row_height);
+ state->cursor = state->select_end = find.first_char;
+ state->has_preferred_x = 0;
+ } else {
+ struct nk_text_find find;
+ if (state->string.len && state->cursor == state->string.len)
+ --state->cursor;
+ nk_textedit_clamp(state);
+ nk_textedit_move_to_first(state);
+ nk_textedit_find_charpos(&find, state, state->cursor, state->single_line,
+ font, row_height);
+ state->cursor = find.first_char;
+ state->has_preferred_x = 0;
+ }
+ } break;
+
+ case NK_KEY_TEXT_LINE_END: {
+ if (shift_mod) {
+ struct nk_text_find find;
+ nk_textedit_clamp(state);
+ nk_textedit_prep_selection_at_cursor(state);
+ nk_textedit_find_charpos(&find, state, state->cursor, state->single_line,
+ font, row_height);
+ state->has_preferred_x = 0;
+ state->cursor = find.first_char + find.length;
+ if (find.length > 0 && nk_str_rune_at(&state->string, state->cursor-1) == '\n')
+ --state->cursor;
+ state->select_end = state->cursor;
+ } else {
+ struct nk_text_find find;
+ nk_textedit_clamp(state);
+ nk_textedit_move_to_first(state);
+ nk_textedit_find_charpos(&find, state, state->cursor, state->single_line,
+ font, row_height);
+
+ state->has_preferred_x = 0;
+ state->cursor = find.first_char + find.length;
+ if (find.length > 0 && nk_str_rune_at(&state->string, state->cursor-1) == '\n')
+ --state->cursor;
+ }} break;
+ }
+}
+
+NK_INTERN void
+nk_textedit_flush_redo(struct nk_text_undo_state *state)
+{
+ state->redo_point = NK_TEXTEDIT_UNDOSTATECOUNT;
+ state->redo_char_point = NK_TEXTEDIT_UNDOCHARCOUNT;
+}
+
+NK_INTERN void
+nk_textedit_discard_undo(struct nk_text_undo_state *state)
+{
+ /* discard the oldest entry in the undo list */
+ if (state->undo_point > 0) {
+ /* if the 0th undo state has characters, clean those up */
+ if (state->undo_rec[0].char_storage >= 0) {
+ int n = state->undo_rec[0].insert_length, i;
+ /* delete n characters from all other records */
+ state->undo_char_point = (short)(state->undo_char_point - n);
+ NK_MEMCPY(state->undo_char, state->undo_char + n,
+ (nk_size)state->undo_char_point*sizeof(nk_rune));
+ for (i=0; i < state->undo_point; ++i) {
+ if (state->undo_rec[i].char_storage >= 0)
+ state->undo_rec[i].char_storage = (short)
+ (state->undo_rec[i].char_storage - n);
+ }
+ }
+ --state->undo_point;
+ NK_MEMCPY(state->undo_rec, state->undo_rec+1,
+ (nk_size)((nk_size)state->undo_point * sizeof(state->undo_rec[0])));
+ }
+}
+
+NK_INTERN void
+nk_textedit_discard_redo(struct nk_text_undo_state *state)
+{
+/* discard the oldest entry in the redo list--it's bad if this
+ ever happens, but because undo & redo have to store the actual
+ characters in different cases, the redo character buffer can
+ fill up even though the undo buffer didn't */
+ nk_size num;
+ int k = NK_TEXTEDIT_UNDOSTATECOUNT-1;
+ if (state->redo_point <= k) {
+ /* if the k'th undo state has characters, clean those up */
+ if (state->undo_rec[k].char_storage >= 0) {
+ int n = state->undo_rec[k].insert_length, i;
+ /* delete n characters from all other records */
+ state->redo_char_point = (short)(state->redo_char_point + n);
+ num = (nk_size)(NK_TEXTEDIT_UNDOSTATECOUNT - state->redo_char_point);
+ NK_MEMCPY(state->undo_char + state->redo_char_point,
+ state->undo_char + state->redo_char_point-n, num * sizeof(char));
+ for (i = state->redo_point; i < k; ++i) {
+ if (state->undo_rec[i].char_storage >= 0) {
+ state->undo_rec[i].char_storage = (short)
+ (state->undo_rec[i].char_storage + n);
+ }
+ }
+ }
+ ++state->redo_point;
+ num = (nk_size)(NK_TEXTEDIT_UNDOSTATECOUNT - state->redo_point);
+ if (num) NK_MEMCPY(state->undo_rec + state->redo_point-1,
+ state->undo_rec + state->redo_point, num * sizeof(state->undo_rec[0]));
+ }
+}
+
+NK_INTERN struct nk_text_undo_record*
+nk_textedit_create_undo_record(struct nk_text_undo_state *state, int numchars)
+{
+ /* any time we create a new undo record, we discard redo*/
+ nk_textedit_flush_redo(state);
+
+ /* if we have no free records, we have to make room,
+ * by sliding the existing records down */
+ if (state->undo_point == NK_TEXTEDIT_UNDOSTATECOUNT)
+ nk_textedit_discard_undo(state);
+
+ /* if the characters to store won't possibly fit in the buffer,
+ * we can't undo */
+ if (numchars > NK_TEXTEDIT_UNDOCHARCOUNT) {
+ state->undo_point = 0;
+ state->undo_char_point = 0;
+ return 0;
+ }
+
+ /* if we don't have enough free characters in the buffer,
+ * we have to make room */
+ while (state->undo_char_point + numchars > NK_TEXTEDIT_UNDOCHARCOUNT)
+ nk_textedit_discard_undo(state);
+ return &state->undo_rec[state->undo_point++];
+}
+
+NK_INTERN nk_rune*
+nk_textedit_createundo(struct nk_text_undo_state *state, int pos,
+ int insert_len, int delete_len)
+{
+ struct nk_text_undo_record *r = nk_textedit_create_undo_record(state, insert_len);
+ if (r == 0)
+ return 0;
+
+ r->where = pos;
+ r->insert_length = (short) insert_len;
+ r->delete_length = (short) delete_len;
+
+ if (insert_len == 0) {
+ r->char_storage = -1;
+ return 0;
+ } else {
+ r->char_storage = state->undo_char_point;
+ state->undo_char_point = (short)(state->undo_char_point + insert_len);
+ return &state->undo_char[r->char_storage];
+ }
+}
+
+NK_API void
+nk_textedit_undo(struct nk_text_edit *state)
+{
+ struct nk_text_undo_state *s = &state->undo;
+ struct nk_text_undo_record u, *r;
+ if (s->undo_point == 0)
+ return;
+
+ /* we need to do two things: apply the undo record, and create a redo record */
+ u = s->undo_rec[s->undo_point-1];
+ r = &s->undo_rec[s->redo_point-1];
+ r->char_storage = -1;
+
+ r->insert_length = u.delete_length;
+ r->delete_length = u.insert_length;
+ r->where = u.where;
+
+ if (u.delete_length)
+ {
+ /* if the undo record says to delete characters, then the redo record will
+ need to re-insert the characters that get deleted, so we need to store
+ them.
+ there are three cases:
+ - there's enough room to store the characters
+ - characters stored for *redoing* don't leave room for redo
+ - characters stored for *undoing* don't leave room for redo
+ if the last is true, we have to bail */
+ if (s->undo_char_point + u.delete_length >= NK_TEXTEDIT_UNDOCHARCOUNT) {
+ /* the undo records take up too much character space; there's no space
+ * to store the redo characters */
+ r->insert_length = 0;
+ } else {
+ int i;
+ /* there's definitely room to store the characters eventually */
+ while (s->undo_char_point + u.delete_length > s->redo_char_point) {
+ /* there's currently not enough room, so discard a redo record */
+ nk_textedit_discard_redo(s);
+ /* should never happen: */
+ if (s->redo_point == NK_TEXTEDIT_UNDOSTATECOUNT)
+ return;
+ }
+
+ r = &s->undo_rec[s->redo_point-1];
+ r->char_storage = (short)(s->redo_char_point - u.delete_length);
+ s->redo_char_point = (short)(s->redo_char_point - u.delete_length);
+
+ /* now save the characters */
+ for (i=0; i < u.delete_length; ++i)
+ s->undo_char[r->char_storage + i] =
+ nk_str_rune_at(&state->string, u.where + i);
+ }
+ /* now we can carry out the deletion */
+ nk_str_delete_runes(&state->string, u.where, u.delete_length);
+ }
+
+ /* check type of recorded action: */
+ if (u.insert_length) {
+ /* easy case: was a deletion, so we need to insert n characters */
+ nk_str_insert_text_runes(&state->string, u.where,
+ &s->undo_char[u.char_storage], u.insert_length);
+ s->undo_char_point = (short)(s->undo_char_point - u.insert_length);
+ }
+ state->cursor = (short)(u.where + u.insert_length);
+
+ s->undo_point--;
+ s->redo_point--;
+}
+
+NK_API void
+nk_textedit_redo(struct nk_text_edit *state)
+{
+ struct nk_text_undo_state *s = &state->undo;
+ struct nk_text_undo_record *u, r;
+ if (s->redo_point == NK_TEXTEDIT_UNDOSTATECOUNT)
+ return;
+
+ /* we need to do two things: apply the redo record, and create an undo record */
+ u = &s->undo_rec[s->undo_point];
+ r = s->undo_rec[s->redo_point];
+
+ /* we KNOW there must be room for the undo record, because the redo record
+ was derived from an undo record */
+ u->delete_length = r.insert_length;
+ u->insert_length = r.delete_length;
+ u->where = r.where;
+ u->char_storage = -1;
+
+ if (r.delete_length) {
+ /* the redo record requires us to delete characters, so the undo record
+ needs to store the characters */
+ if (s->undo_char_point + u->insert_length > s->redo_char_point) {
+ u->insert_length = 0;
+ u->delete_length = 0;
+ } else {
+ int i;
+ u->char_storage = s->undo_char_point;
+ s->undo_char_point = (short)(s->undo_char_point + u->insert_length);
+
+ /* now save the characters */
+ for (i=0; i < u->insert_length; ++i) {
+ s->undo_char[u->char_storage + i] =
+ nk_str_rune_at(&state->string, u->where + i);
+ }
+ }
+ nk_str_delete_runes(&state->string, r.where, r.delete_length);
+ }
+
+ if (r.insert_length) {
+ /* easy case: need to insert n characters */
+ nk_str_insert_text_runes(&state->string, r.where,
+ &s->undo_char[r.char_storage], r.insert_length);
+ }
+ state->cursor = r.where + r.insert_length;
+
+ s->undo_point++;
+ s->redo_point++;
+}
+
+NK_INTERN void
+nk_textedit_makeundo_insert(struct nk_text_edit *state, int where, int length)
+{
+ nk_textedit_createundo(&state->undo, where, 0, length);
+}
+
+NK_INTERN void
+nk_textedit_makeundo_delete(struct nk_text_edit *state, int where, int length)
+{
+ int i;
+ nk_rune *p = nk_textedit_createundo(&state->undo, where, length, 0);
+ if (p) {
+ for (i=0; i < length; ++i)
+ p[i] = nk_str_rune_at(&state->string, where+i);
+ }
+}
+
+NK_INTERN void
+nk_textedit_makeundo_replace(struct nk_text_edit *state, int where,
+ int old_length, int new_length)
+{
+ int i;
+ nk_rune *p = nk_textedit_createundo(&state->undo, where, old_length, new_length);
+ if (p) {
+ for (i=0; i < old_length; ++i)
+ p[i] = nk_str_rune_at(&state->string, where+i);
+ }
+}
+
+NK_INTERN void
+nk_textedit_clear_state(struct nk_text_edit *state, enum nk_text_edit_type type,
+ nk_filter filter)
+{
+ /* reset the state to default */
+ state->undo.undo_point = 0;
+ state->undo.undo_char_point = 0;
+ state->undo.redo_point = NK_TEXTEDIT_UNDOSTATECOUNT;
+ state->undo.redo_char_point = NK_TEXTEDIT_UNDOCHARCOUNT;
+ state->select_end = state->select_start = 0;
+ state->cursor = 0;
+ state->has_preferred_x = 0;
+ state->preferred_x = 0;
+ state->cursor_at_end_of_line = 0;
+ state->initialized = 1;
+ state->single_line = (unsigned char)(type == NK_TEXT_EDIT_SINGLE_LINE);
+ state->mode = NK_TEXT_EDIT_MODE_VIEW;
+ state->filter = filter;
+}
+
+NK_API void
+nk_textedit_init_fixed(struct nk_text_edit *state, void *memory, nk_size size)
+{
+ NK_ASSERT(state);
+ NK_ASSERT(memory);
+ if (!state || !memory || !size) return;
+ nk_textedit_clear_state(state, NK_TEXT_EDIT_SINGLE_LINE, 0);
+ nk_str_init_fixed(&state->string, memory, size);
+}
+
+NK_API void
+nk_textedit_init(struct nk_text_edit *state, struct nk_allocator *alloc, nk_size size)
+{
+ NK_ASSERT(state);
+ NK_ASSERT(alloc);
+ if (!state || !alloc) return;
+ nk_textedit_clear_state(state, NK_TEXT_EDIT_SINGLE_LINE, 0);
+ nk_str_init(&state->string, alloc, size);
+}
+
+#ifdef NK_INCLUDE_DEFAULT_ALLOCATOR
+NK_API void
+nk_textedit_init_default(struct nk_text_edit *state)
+{
+ NK_ASSERT(state);
+ if (!state) return;
+ nk_textedit_clear_state(state, NK_TEXT_EDIT_SINGLE_LINE, 0);
+ nk_str_init_default(&state->string);
+}
+#endif
+
+NK_API void
+nk_textedit_select_all(struct nk_text_edit *state)
+{
+ NK_ASSERT(state);
+ state->select_start = 0;
+ state->select_end = state->string.len;
+}
+
+NK_API void
+nk_textedit_free(struct nk_text_edit *state)
+{
+ NK_ASSERT(state);
+ if (!state) return;
+ nk_str_free(&state->string);
+}
+
+/* ===============================================================
+ *
+ * TEXT WIDGET
+ *
+ * ===============================================================*/
+#define nk_widget_state_reset(s)\
+ if ((*(s)) & NK_WIDGET_STATE_MODIFIED)\
+ (*(s)) = NK_WIDGET_STATE_INACTIVE|NK_WIDGET_STATE_MODIFIED;\
+ else (*(s)) = NK_WIDGET_STATE_INACTIVE;
+
+struct nk_text {
+ struct nk_vec2 padding;
+ struct nk_color background;
+ struct nk_color text;
+};
+
+NK_INTERN void
+nk_widget_text(struct nk_command_buffer *o, struct nk_rect b,
+ const char *string, int len, const struct nk_text *t,
+ nk_flags a, const struct nk_user_font *f)
+{
+ struct nk_rect label;
+ float text_width;
+
+ NK_ASSERT(o);
+ NK_ASSERT(t);
+ if (!o || !t) return;
+
+ b.h = NK_MAX(b.h, 2 * t->padding.y);
+ label.x = 0; label.w = 0;
+ label.y = b.y + t->padding.y;
+ label.h = b.h - 2 * t->padding.y;
+
+ text_width = f->width(f->userdata, f->height, (const char*)string, len);
+ text_width += (2.0f * t->padding.x);
+
+ /* align in x-axis */
+ if (a & NK_TEXT_ALIGN_LEFT) {
+ label.x = b.x + t->padding.x;
+ label.w = NK_MAX(0, b.w - 2 * t->padding.x);
+ } else if (a & NK_TEXT_ALIGN_CENTERED) {
+ label.w = NK_MAX(1, 2 * t->padding.x + (float)text_width);
+ label.x = (b.x + t->padding.x + ((b.w - 2 * t->padding.x) - label.w) / 2);
+ label.x = NK_MAX(b.x + t->padding.x, label.x);
+ label.w = NK_MIN(b.x + b.w, label.x + label.w);
+ if (label.w >= label.x) label.w -= label.x;
+ } else if (a & NK_TEXT_ALIGN_RIGHT) {
+ label.x = NK_MAX(b.x + t->padding.x, (b.x + b.w) - (2 * t->padding.x + (float)text_width));
+ label.w = (float)text_width + 2 * t->padding.x;
+ } else return;
+
+ /* align in y-axis */
+ if (a & NK_TEXT_ALIGN_MIDDLE) {
+ label.y = b.y + b.h/2.0f - (float)f->height/2.0f;
+ label.h = NK_MAX(b.h/2.0f, b.h - (b.h/2.0f + f->height/2.0f));
+ } else if (a & NK_TEXT_ALIGN_BOTTOM) {
+ label.y = b.y + b.h - f->height;
+ label.h = f->height;
+ }
+ nk_draw_text(o, label, (const char*)string,
+ len, f, t->background, t->text);
+}
+
+NK_INTERN void
+nk_widget_text_wrap(struct nk_command_buffer *o, struct nk_rect b,
+ const char *string, int len, const struct nk_text *t,
+ const struct nk_user_font *f)
+{
+ float width;
+ int glyphs = 0;
+ int fitting = 0;
+ int done = 0;
+ struct nk_rect line;
+ struct nk_text text;
+
+ NK_ASSERT(o);
+ NK_ASSERT(t);
+ if (!o || !t) return;
+
+ text.padding = nk_vec2(0,0);
+ text.background = t->background;
+ text.text = t->text;
+
+ b.w = NK_MAX(b.w, 2 * t->padding.x);
+ b.h = NK_MAX(b.h, 2 * t->padding.y);
+ b.h = b.h - 2 * t->padding.y;
+
+ line.x = b.x + t->padding.x;
+ line.y = b.y + t->padding.y;
+ line.w = b.w - 2 * t->padding.x;
+ line.h = 2 * t->padding.y + f->height;
+
+ fitting = nk_text_clamp(f, string, len, line.w, &glyphs, &width);
+ while (done < len) {
+ if (!fitting || line.y + line.h >= (b.y + b.h)) break;
+ nk_widget_text(o, line, &string[done], fitting, &text, NK_TEXT_LEFT, f);
+ done += fitting;
+ line.y += f->height + 2 * t->padding.y;
+ fitting = nk_text_clamp(f, &string[done], len - done,
+ line.w, &glyphs, &width);
+ }
+}
+
+/* ===============================================================
+ *
+ * BUTTON
+ *
+ * ===============================================================*/
+NK_INTERN void
+nk_draw_symbol(struct nk_command_buffer *out, enum nk_symbol_type type,
+ struct nk_rect content, struct nk_color background, struct nk_color foreground,
+ float border_width, const struct nk_user_font *font)
+{
+ switch (type) {
+ case NK_SYMBOL_X:
+ case NK_SYMBOL_UNDERSCORE:
+ case NK_SYMBOL_PLUS:
+ case NK_SYMBOL_MINUS: {
+ /* single character text symbol */
+ const char *X = (type == NK_SYMBOL_X) ? "x":
+ (type == NK_SYMBOL_UNDERSCORE) ? "_":
+ (type == NK_SYMBOL_PLUS) ? "+": "-";
+ struct nk_text text;
+ text.padding = nk_vec2(0,0);
+ text.background = background;
+ text.text = foreground;
+ nk_widget_text(out, content, X, 1, &text, NK_TEXT_CENTERED, font);
+ } break;
+ case NK_SYMBOL_CIRCLE:
+ case NK_SYMBOL_CIRCLE_FILLED:
+ case NK_SYMBOL_RECT:
+ case NK_SYMBOL_RECT_FILLED: {
+ /* simple empty/filled shapes */
+ if (type == NK_SYMBOL_RECT || type == NK_SYMBOL_RECT_FILLED) {
+ nk_fill_rect(out, content, 0, foreground);
+ if (type == NK_SYMBOL_RECT_FILLED)
+ nk_fill_rect(out, nk_shrink_rect(content, border_width), 0, background);
+ } else {
+ nk_fill_circle(out, content, foreground);
+ if (type == NK_SYMBOL_CIRCLE_FILLED)
+ nk_fill_circle(out, nk_shrink_rect(content, 1), background);
+ }
+ } break;
+ case NK_SYMBOL_TRIANGLE_UP:
+ case NK_SYMBOL_TRIANGLE_DOWN:
+ case NK_SYMBOL_TRIANGLE_LEFT:
+ case NK_SYMBOL_TRIANGLE_RIGHT: {
+ enum nk_heading heading;
+ struct nk_vec2 points[3];
+ heading = (type == NK_SYMBOL_TRIANGLE_RIGHT) ? NK_RIGHT :
+ (type == NK_SYMBOL_TRIANGLE_LEFT) ? NK_LEFT:
+ (type == NK_SYMBOL_TRIANGLE_UP) ? NK_UP: NK_DOWN;
+ nk_triangle_from_direction(points, content, 0, 0, heading);
+ nk_fill_triangle(out, points[0].x, points[0].y, points[1].x, points[1].y,
+ points[2].x, points[2].y, foreground);
+ } break;
+ default:
+ case NK_SYMBOL_NONE:
+ case NK_SYMBOL_MAX: break;
+ }
+}
+
+NK_INTERN int
+nk_button_behavior(nk_flags *state, struct nk_rect r,
+ const struct nk_input *i, enum nk_button_behavior behavior)
+{
+ int ret = 0;
+ nk_widget_state_reset(state);
+ if (!i) return 0;
+ if (nk_input_is_mouse_hovering_rect(i, r)) {
+ *state = NK_WIDGET_STATE_HOVERED;
+ if (nk_input_is_mouse_down(i, NK_BUTTON_LEFT))
+ *state = NK_WIDGET_STATE_ACTIVE;
+ if (nk_input_has_mouse_click_in_rect(i, NK_BUTTON_LEFT, r)) {
+ ret = (behavior != NK_BUTTON_DEFAULT) ?
+ nk_input_is_mouse_down(i, NK_BUTTON_LEFT):
+#ifdef NK_BUTTON_TRIGGER_ON_RELEASE
+ nk_input_is_mouse_released(i, NK_BUTTON_LEFT);
+#else
+ nk_input_is_mouse_pressed(i, NK_BUTTON_LEFT);
+#endif
+ }
+ }
+ if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(i, r))
+ *state |= NK_WIDGET_STATE_ENTERED;
+ else if (nk_input_is_mouse_prev_hovering_rect(i, r))
+ *state |= NK_WIDGET_STATE_LEFT;
+ return ret;
+}
+
+NK_INTERN const struct nk_style_item*
+nk_draw_button(struct nk_command_buffer *out,
+ const struct nk_rect *bounds, nk_flags state,
+ const struct nk_style_button *style)
+{
+ const struct nk_style_item *background;
+ if (state & NK_WIDGET_STATE_HOVER)
+ background = &style->hover;
+ else if (state & NK_WIDGET_STATE_ACTIVED)
+ background = &style->active;
+ else background = &style->normal;
+
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ nk_draw_image(out, *bounds, &background->data.image);
+ } else {
+ nk_fill_rect(out, *bounds, style->rounding, style->border_color);
+ nk_fill_rect(out, nk_shrink_rect(*bounds, style->border), style->rounding,
+ background->data.color);
+ }
+ return background;
+}
+
+NK_INTERN int
+nk_do_button(nk_flags *state, struct nk_command_buffer *out, struct nk_rect r,
+ const struct nk_style_button *style, const struct nk_input *in,
+ enum nk_button_behavior behavior, struct nk_rect *content)
+{
+ struct nk_rect bounds;
+ NK_ASSERT(style);
+ NK_ASSERT(state);
+ NK_ASSERT(out);
+ if (!out || !style)
+ return nk_false;
+
+ /* calculate button content space */
+ content->x = r.x + style->padding.x + style->border;
+ content->y = r.y + style->padding.y + style->border;
+ content->w = r.w - 2 * style->padding.x + style->border;
+ content->h = r.h - 2 * style->padding.y + style->border;
+
+ /* execute button behavior */
+ bounds.x = r.x - style->touch_padding.x;
+ bounds.y = r.y - style->touch_padding.y;
+ bounds.w = r.w + 2 * style->touch_padding.x;
+ bounds.h = r.h + 2 * style->touch_padding.y;
+ return nk_button_behavior(state, bounds, in, behavior);
+}
+
+NK_INTERN void
+nk_draw_button_text(struct nk_command_buffer *out,
+ const struct nk_rect *bounds, const struct nk_rect *content, nk_flags state,
+ const struct nk_style_button *style, const char *txt, int len,
+ nk_flags text_alignment, const struct nk_user_font *font)
+{
+ struct nk_text text;
+ const struct nk_style_item *background;
+ background = nk_draw_button(out, bounds, state, style);
+
+ /* select correct colors/images */
+ if (background->type == NK_STYLE_ITEM_COLOR)
+ text.background = background->data.color;
+ else text.background = style->text_background;
+ if (state & NK_WIDGET_STATE_HOVER)
+ text.text = style->text_hover;
+ else if (state & NK_WIDGET_STATE_ACTIVED)
+ text.text = style->text_active;
+ else text.text = style->text_normal;
+
+ text.padding = nk_vec2(0,0);
+ nk_widget_text(out, *content, txt, len, &text, text_alignment, font);
+}
+
+NK_INTERN int
+nk_do_button_text(nk_flags *state,
+ struct nk_command_buffer *out, struct nk_rect bounds,
+ const char *string, int len, nk_flags align, enum nk_button_behavior behavior,
+ const struct nk_style_button *style, const struct nk_input *in,
+ const struct nk_user_font *font)
+{
+ struct nk_rect content;
+ int ret = nk_false;
+
+ NK_ASSERT(state);
+ NK_ASSERT(style);
+ NK_ASSERT(out);
+ NK_ASSERT(string);
+ NK_ASSERT(font);
+ if (!out || !style || !font || !string)
+ return nk_false;
+
+ ret = nk_do_button(state, out, bounds, style, in, behavior, &content);
+ if (style->draw_begin) style->draw_begin(out, style->userdata);
+ nk_draw_button_text(out, &bounds, &content, *state, style, string, len, align, font);
+ if (style->draw_end) style->draw_end(out, style->userdata);
+ return ret;
+}
+
+NK_INTERN void
+nk_draw_button_symbol(struct nk_command_buffer *out,
+ const struct nk_rect *bounds, const struct nk_rect *content,
+ nk_flags state, const struct nk_style_button *style,
+ enum nk_symbol_type type, const struct nk_user_font *font)
+{
+ struct nk_color sym, bg;
+ const struct nk_style_item *background;
+
+ /* select correct colors/images */
+ background = nk_draw_button(out, bounds, state, style);
+ if (background->type == NK_STYLE_ITEM_COLOR)
+ bg = background->data.color;
+ else bg = style->text_background;
+
+ if (state & NK_WIDGET_STATE_HOVER)
+ sym = style->text_hover;
+ else if (state & NK_WIDGET_STATE_ACTIVED)
+ sym = style->text_active;
+ else sym = style->text_normal;
+ nk_draw_symbol(out, type, *content, bg, sym, 1, font);
+}
+
+NK_INTERN int
+nk_do_button_symbol(nk_flags *state,
+ struct nk_command_buffer *out, struct nk_rect bounds,
+ enum nk_symbol_type symbol, enum nk_button_behavior behavior,
+ const struct nk_style_button *style, const struct nk_input *in,
+ const struct nk_user_font *font)
+{
+ int ret;
+ struct nk_rect content;
+
+ NK_ASSERT(state);
+ NK_ASSERT(style);
+ NK_ASSERT(font);
+ NK_ASSERT(out);
+ if (!out || !style || !font || !state)
+ return nk_false;
+
+ ret = nk_do_button(state, out, bounds, style, in, behavior, &content);
+ if (style->draw_begin) style->draw_begin(out, style->userdata);
+ nk_draw_button_symbol(out, &bounds, &content, *state, style, symbol, font);
+ if (style->draw_end) style->draw_end(out, style->userdata);
+ return ret;
+}
+
+NK_INTERN void
+nk_draw_button_image(struct nk_command_buffer *out,
+ const struct nk_rect *bounds, const struct nk_rect *content,
+ nk_flags state, const struct nk_style_button *style, const struct nk_image *img)
+{
+ nk_draw_button(out, bounds, state, style);
+ nk_draw_image(out, *content, img);
+}
+
+NK_INTERN int
+nk_do_button_image(nk_flags *state,
+ struct nk_command_buffer *out, struct nk_rect bounds,
+ struct nk_image img, enum nk_button_behavior b,
+ const struct nk_style_button *style, const struct nk_input *in)
+{
+ int ret;
+ struct nk_rect content;
+
+ NK_ASSERT(state);
+ NK_ASSERT(style);
+ NK_ASSERT(out);
+ if (!out || !style || !state)
+ return nk_false;
+
+ ret = nk_do_button(state, out, bounds, style, in, b, &content);
+ content.x += style->image_padding.x;
+ content.y += style->image_padding.y;
+ content.w -= 2 * style->image_padding.x;
+ content.h -= 2 * style->image_padding.y;
+
+ if (style->draw_begin) style->draw_begin(out, style->userdata);
+ nk_draw_button_image(out, &bounds, &content, *state, style, &img);
+ if (style->draw_end) style->draw_end(out, style->userdata);
+ return ret;
+}
+
+NK_INTERN void
+nk_draw_button_text_symbol(struct nk_command_buffer *out,
+ const struct nk_rect *bounds, const struct nk_rect *label,
+ const struct nk_rect *symbol, nk_flags state, const struct nk_style_button *style,
+ const char *str, int len, enum nk_symbol_type type,
+ const struct nk_user_font *font)
+{
+ struct nk_color sym;
+ struct nk_text text;
+ const struct nk_style_item *background;
+
+ /* select correct background colors/images */
+ background = nk_draw_button(out, bounds, state, style);
+ if (background->type == NK_STYLE_ITEM_COLOR)
+ text.background = background->data.color;
+ else text.background = style->text_background;
+
+ /* select correct text colors */
+ if (state & NK_WIDGET_STATE_HOVER) {
+ sym = style->text_hover;
+ text.text = style->text_hover;
+ } else if (state & NK_WIDGET_STATE_ACTIVED) {
+ sym = style->text_active;
+ text.text = style->text_active;
+ } else {
+ sym = style->text_normal;
+ text.text = style->text_normal;
+ }
+
+ text.padding = nk_vec2(0,0);
+ nk_draw_symbol(out, type, *symbol, style->text_background, sym, 0, font);
+ nk_widget_text(out, *label, str, len, &text, NK_TEXT_CENTERED, font);
+}
+
+NK_INTERN int
+nk_do_button_text_symbol(nk_flags *state,
+ struct nk_command_buffer *out, struct nk_rect bounds,
+ enum nk_symbol_type symbol, const char *str, int len, nk_flags align,
+ enum nk_button_behavior behavior, const struct nk_style_button *style,
+ const struct nk_user_font *font, const struct nk_input *in)
+{
+ int ret;
+ struct nk_rect tri = {0,0,0,0};
+ struct nk_rect content;
+
+ NK_ASSERT(style);
+ NK_ASSERT(out);
+ NK_ASSERT(font);
+ if (!out || !style || !font)
+ return nk_false;
+
+ ret = nk_do_button(state, out, bounds, style, in, behavior, &content);
+ tri.y = content.y + (content.h/2) - font->height/2;
+ tri.w = font->height; tri.h = font->height;
+ if (align & NK_TEXT_ALIGN_LEFT) {
+ tri.x = (content.x + content.w) - (2 * style->padding.x + tri.w);
+ tri.x = NK_MAX(tri.x, 0);
+ } else tri.x = content.x + 2 * style->padding.x;
+
+ /* draw button */
+ if (style->draw_begin) style->draw_begin(out, style->userdata);
+ nk_draw_button_text_symbol(out, &bounds, &content, &tri,
+ *state, style, str, len, symbol, font);
+ if (style->draw_end) style->draw_end(out, style->userdata);
+ return ret;
+}
+
+NK_INTERN void
+nk_draw_button_text_image(struct nk_command_buffer *out,
+ const struct nk_rect *bounds, const struct nk_rect *label,
+ const struct nk_rect *image, nk_flags state, const struct nk_style_button *style,
+ const char *str, int len, const struct nk_user_font *font,
+ const struct nk_image *img)
+{
+ struct nk_text text;
+ const struct nk_style_item *background;
+ background = nk_draw_button(out, bounds, state, style);
+
+ /* select correct colors */
+ if (background->type == NK_STYLE_ITEM_COLOR)
+ text.background = background->data.color;
+ else text.background = style->text_background;
+ if (state & NK_WIDGET_STATE_HOVER)
+ text.text = style->text_hover;
+ else if (state & NK_WIDGET_STATE_ACTIVED)
+ text.text = style->text_active;
+ else text.text = style->text_normal;
+
+ text.padding = nk_vec2(0,0);
+ nk_widget_text(out, *label, str, len, &text, NK_TEXT_CENTERED, font);
+ nk_draw_image(out, *image, img);
+}
+
+NK_INTERN int
+nk_do_button_text_image(nk_flags *state,
+ struct nk_command_buffer *out, struct nk_rect bounds,
+ struct nk_image img, const char* str, int len, nk_flags align,
+ enum nk_button_behavior behavior, const struct nk_style_button *style,
+ const struct nk_user_font *font, const struct nk_input *in)
+{
+ int ret;
+ struct nk_rect icon;
+ struct nk_rect content;
+
+ NK_ASSERT(style);
+ NK_ASSERT(state);
+ NK_ASSERT(font);
+ NK_ASSERT(out);
+ if (!out || !font || !style || !str)
+ return nk_false;
+
+ ret = nk_do_button(state, out, bounds, style, in, behavior, &content);
+ icon.y = bounds.y + style->padding.y;
+ icon.w = icon.h = bounds.h - 2 * style->padding.y;
+ if (align & NK_TEXT_ALIGN_LEFT) {
+ icon.x = (bounds.x + bounds.w) - (2 * style->padding.x + icon.w);
+ icon.x = NK_MAX(icon.x, 0);
+ } else icon.x = bounds.x + 2 * style->padding.x;
+
+ icon.x += style->image_padding.x;
+ icon.y += style->image_padding.y;
+ icon.w -= 2 * style->image_padding.x;
+ icon.h -= 2 * style->image_padding.y;
+
+ if (style->draw_begin) style->draw_begin(out, style->userdata);
+ nk_draw_button_text_image(out, &bounds, &content, &icon, *state, style, str, len, font, &img);
+ if (style->draw_end) style->draw_end(out, style->userdata);
+ return ret;
+}
+
+/* ===============================================================
+ *
+ * TOGGLE
+ *
+ * ===============================================================*/
+enum nk_toggle_type {
+ NK_TOGGLE_CHECK,
+ NK_TOGGLE_OPTION
+};
+
+NK_INTERN int
+nk_toggle_behavior(const struct nk_input *in, struct nk_rect select,
+ nk_flags *state, int active)
+{
+ nk_widget_state_reset(state);
+ if (nk_button_behavior(state, select, in, NK_BUTTON_DEFAULT)) {
+ *state = NK_WIDGET_STATE_ACTIVE;
+ active = !active;
+ }
+ if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(in, select))
+ *state |= NK_WIDGET_STATE_ENTERED;
+ else if (nk_input_is_mouse_prev_hovering_rect(in, select))
+ *state |= NK_WIDGET_STATE_LEFT;
+ return active;
+}
+
+NK_INTERN void
+nk_draw_checkbox(struct nk_command_buffer *out,
+ nk_flags state, const struct nk_style_toggle *style, int active,
+ const struct nk_rect *label, const struct nk_rect *selector,
+ const struct nk_rect *cursors, const char *string, int len,
+ const struct nk_user_font *font)
+{
+ const struct nk_style_item *background;
+ const struct nk_style_item *cursor;
+ struct nk_text text;
+
+ /* select correct colors/images */
+ if (state & NK_WIDGET_STATE_HOVER) {
+ background = &style->hover;
+ cursor = &style->cursor_hover;
+ text.text = style->text_hover;
+ } else if (state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->hover;
+ cursor = &style->cursor_hover;
+ text.text = style->text_active;
+ } else {
+ background = &style->normal;
+ cursor = &style->cursor_normal;
+ text.text = style->text_normal;
+ }
+
+ /* draw background and cursor */
+ if (background->type == NK_STYLE_ITEM_IMAGE)
+ nk_draw_image(out, *selector, &background->data.image);
+ else nk_fill_rect(out, *selector, 0, background->data.color);
+ if (active) {
+ if (cursor->type == NK_STYLE_ITEM_IMAGE)
+ nk_draw_image(out, *cursors, &cursor->data.image);
+ else nk_fill_rect(out, *cursors, 0, cursor->data.color);
+ }
+
+ text.padding.x = 0;
+ text.padding.y = 0;
+ text.background = style->text_background;
+ nk_widget_text(out, *label, string, len, &text, NK_TEXT_LEFT, font);
+}
+
+NK_INTERN void
+nk_draw_option(struct nk_command_buffer *out,
+ nk_flags state, const struct nk_style_toggle *style, int active,
+ const struct nk_rect *label, const struct nk_rect *selector,
+ const struct nk_rect *cursors, const char *string, int len,
+ const struct nk_user_font *font)
+{
+ const struct nk_style_item *background;
+ const struct nk_style_item *cursor;
+ struct nk_text text;
+
+ /* select correct colors/images */
+ if (state & NK_WIDGET_STATE_HOVER) {
+ background = &style->hover;
+ cursor = &style->cursor_hover;
+ text.text = style->text_hover;
+ } else if (state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->hover;
+ cursor = &style->cursor_hover;
+ text.text = style->text_active;
+ } else {
+ background = &style->normal;
+ cursor = &style->cursor_normal;
+ text.text = style->text_normal;
+ }
+
+ /* draw background and cursor */
+ if (background->type == NK_STYLE_ITEM_IMAGE)
+ nk_draw_image(out, *selector, &background->data.image);
+ else nk_fill_circle(out, *selector, background->data.color);
+ if (active) {
+ if (cursor->type == NK_STYLE_ITEM_IMAGE)
+ nk_draw_image(out, *cursors, &cursor->data.image);
+ else nk_fill_circle(out, *cursors, cursor->data.color);
+ }
+
+ text.padding.x = 0;
+ text.padding.y = 0;
+ text.background = style->text_background;
+ nk_widget_text(out, *label, string, len, &text, NK_TEXT_LEFT, font);
+}
+
+NK_INTERN int
+nk_do_toggle(nk_flags *state,
+ struct nk_command_buffer *out, struct nk_rect r,
+ int *active, const char *str, int len, enum nk_toggle_type type,
+ const struct nk_style_toggle *style, const struct nk_input *in,
+ const struct nk_user_font *font)
+{
+ int was_active;
+ struct nk_rect bounds;
+ struct nk_rect select;
+ struct nk_rect cursor;
+ struct nk_rect label;
+ float cursor_pad;
+
+ NK_ASSERT(style);
+ NK_ASSERT(out);
+ NK_ASSERT(font);
+ if (!out || !style || !font || !active)
+ return 0;
+
+ r.w = NK_MAX(r.w, font->height + 2 * style->padding.x);
+ r.h = NK_MAX(r.h, font->height + 2 * style->padding.y);
+
+ /* add additional touch padding for touch screen devices */
+ bounds.x = r.x - style->touch_padding.x;
+ bounds.y = r.y - style->touch_padding.y;
+ bounds.w = r.w + 2 * style->touch_padding.x;
+ bounds.h = r.h + 2 * style->touch_padding.y;
+
+ /* calculate the selector space */
+ select.w = NK_MIN(r.h, font->height + style->padding.y);
+ select.h = select.w;
+ select.x = r.x + style->padding.x;
+ select.y = (r.y + style->padding.y + (select.w / 2)) - (font->height / 2);
+ cursor_pad = (type == NK_TOGGLE_OPTION) ?
+ (float)(int)(select.w / 4):
+ (float)(int)(select.h / 6);
+
+ /* calculate the bounds of the cursor inside the selector */
+ select.h = NK_MAX(select.w, cursor_pad * 2);
+ cursor.h = select.h - cursor_pad * 2;
+ cursor.w = cursor.h;
+ cursor.x = select.x + cursor_pad;
+ cursor.y = select.y + cursor_pad;
+
+ /* label behind the selector */
+ label.x = r.x + select.w + style->padding.x * 2;
+ label.y = select.y;
+ label.w = NK_MAX(r.x + r.w, label.x + style->padding.x);
+ label.w -= (label.x + style->padding.x);
+ label.h = select.w;
+
+ /* update selector */
+ was_active = *active;
+ *active = nk_toggle_behavior(in, bounds, state, *active);
+
+ /* draw selector */
+ if (style->draw_begin)
+ style->draw_begin(out, style->userdata);
+ if (type == NK_TOGGLE_CHECK) {
+ nk_draw_checkbox(out, *state, style, *active, &label, &select, &cursor, str, len, font);
+ } else {
+ nk_draw_option(out, *state, style, *active, &label, &select, &cursor, str, len, font);
+ }
+ if (style->draw_end)
+ style->draw_end(out, style->userdata);
+ return (was_active != *active);
+}
+
+/* ===============================================================
+ *
+ * SELECTABLE
+ *
+ * ===============================================================*/
+NK_INTERN void
+nk_draw_selectable(struct nk_command_buffer *out,
+ nk_flags state, const struct nk_style_selectable *style, int active,
+ const struct nk_rect *bounds, const struct nk_rect *icon, const struct nk_image *img,
+ const char *string, int len, nk_flags align, const struct nk_user_font *font)
+{
+ const struct nk_style_item *background;
+ struct nk_text text;
+ text.padding = style->padding;
+
+ /* select correct colors/images */
+ if (!active) {
+ if (state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->pressed;
+ text.text = style->text_pressed;
+ } else if (state & NK_WIDGET_STATE_HOVER) {
+ background = &style->hover;
+ text.text = style->text_hover;
+ } else {
+ background = &style->normal;
+ text.text = style->text_normal;
+ }
+ } else {
+ if (state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->pressed_active;
+ text.text = style->text_pressed_active;
+ } else if (state & NK_WIDGET_STATE_HOVER) {
+ background = &style->hover_active;
+ text.text = style->text_hover_active;
+ } else {
+ background = &style->normal_active;
+ text.text = style->text_normal_active;
+ }
+ }
+
+
+ /* draw selectable background and text */
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ nk_draw_image(out, *bounds, &background->data.image);
+ text.background = nk_rgba(0,0,0,0);
+ } else {
+ nk_fill_rect(out, *bounds, style->rounding, background->data.color);
+ text.background = background->data.color;
+ }
+ if (img && icon) nk_draw_image(out, *icon, img);
+ nk_widget_text(out, *bounds, string, len, &text, align, font);
+}
+
+NK_INTERN int
+nk_do_selectable(nk_flags *state, struct nk_command_buffer *out,
+ struct nk_rect bounds, const char *str, int len, nk_flags align, int *value,
+ const struct nk_style_selectable *style, const struct nk_input *in,
+ const struct nk_user_font *font)
+{
+ int old_value;
+ struct nk_rect touch;
+
+ NK_ASSERT(state);
+ NK_ASSERT(out);
+ NK_ASSERT(str);
+ NK_ASSERT(len);
+ NK_ASSERT(value);
+ NK_ASSERT(style);
+ NK_ASSERT(font);
+
+ if (!state || !out || !str || !len || !value || !style || !font) return 0;
+ old_value = *value;
+
+ /* remove padding */
+ touch.x = bounds.x - style->touch_padding.x;
+ touch.y = bounds.y - style->touch_padding.y;
+ touch.w = bounds.w + style->touch_padding.x * 2;
+ touch.h = bounds.h + style->touch_padding.y * 2;
+
+ /* update button */
+ if (nk_button_behavior(state, touch, in, NK_BUTTON_DEFAULT))
+ *value = !(*value);
+
+ /* draw selectable */
+ if (style->draw_begin) style->draw_begin(out, style->userdata);
+ nk_draw_selectable(out, *state, style, *value, &bounds, 0,0, str, len, align, font);
+ if (style->draw_end) style->draw_end(out, style->userdata);
+ return old_value != *value;
+}
+
+NK_INTERN int
+nk_do_selectable_image(nk_flags *state, struct nk_command_buffer *out,
+ struct nk_rect bounds, const char *str, int len, nk_flags align, int *value,
+ const struct nk_image *img, const struct nk_style_selectable *style,
+ const struct nk_input *in, const struct nk_user_font *font)
+{
+ int old_value;
+ struct nk_rect touch;
+ struct nk_rect icon;
+
+ NK_ASSERT(state);
+ NK_ASSERT(out);
+ NK_ASSERT(str);
+ NK_ASSERT(len);
+ NK_ASSERT(value);
+ NK_ASSERT(style);
+ NK_ASSERT(font);
+
+ if (!state || !out || !str || !len || !value || !style || !font) return 0;
+ old_value = *value;
+
+ /* toggle behavior */
+ touch.x = bounds.x - style->touch_padding.x;
+ touch.y = bounds.y - style->touch_padding.y;
+ touch.w = bounds.w + style->touch_padding.x * 2;
+ touch.h = bounds.h + style->touch_padding.y * 2;
+ if (nk_button_behavior(state, touch, in, NK_BUTTON_DEFAULT))
+ *value = !(*value);
+
+ icon.y = bounds.y + style->padding.y;
+ icon.w = icon.h = bounds.h - 2 * style->padding.y;
+ if (align & NK_TEXT_ALIGN_LEFT) {
+ icon.x = (bounds.x + bounds.w) - (2 * style->padding.x + icon.w);
+ icon.x = NK_MAX(icon.x, 0);
+ } else icon.x = bounds.x + 2 * style->padding.x;
+
+ icon.x += style->image_padding.x;
+ icon.y += style->image_padding.y;
+ icon.w -= 2 * style->image_padding.x;
+ icon.h -= 2 * style->image_padding.y;
+
+ /* draw selectable */
+ if (style->draw_begin) style->draw_begin(out, style->userdata);
+ nk_draw_selectable(out, *state, style, *value, &bounds, &icon, img, str, len, align, font);
+ if (style->draw_end) style->draw_end(out, style->userdata);
+ return old_value != *value;
+}
+
+
+/* ===============================================================
+ *
+ * SLIDER
+ *
+ * ===============================================================*/
+NK_INTERN float
+nk_slider_behavior(nk_flags *state, struct nk_rect *cursor,
+ struct nk_input *in, const struct nk_style_slider *style,
+ struct nk_rect bounds, float slider_min, float slider_max, float slider_value,
+ float slider_step, float slider_steps)
+{
+ int left_mouse_down;
+ int left_mouse_click_in_cursor;
+ struct nk_rect visual_cursor;
+
+ float bar_y = (bounds.y + cursor->h/2) - cursor->h/8;
+ float bar_h = bounds.h/6;
+
+ /* calculate visual cursor */
+ visual_cursor.h = style->cursor_size.y;
+ visual_cursor.w = style->cursor_size.x;
+ visual_cursor.y = (bar_y + bar_h/2.0f) - visual_cursor.h/2.0f;
+ visual_cursor.x = (slider_value <= slider_min) ? cursor->x: (slider_value >= slider_max) ?
+ ((bounds.x + bounds.w) - cursor->w): cursor->x - (cursor->w/2);
+
+ /* check if visual cursor is being dragged */
+ nk_widget_state_reset(state);
+ left_mouse_down = in && in->mouse.buttons[NK_BUTTON_LEFT].down;
+ left_mouse_click_in_cursor = in && nk_input_has_mouse_click_down_in_rect(in,
+ NK_BUTTON_LEFT, visual_cursor, nk_true);
+
+ if (left_mouse_down && left_mouse_click_in_cursor)
+ {
+ const float d = in->mouse.pos.x - (cursor->x + cursor->w / 2.0f);
+ const float pxstep = (bounds.w - (2 * style->padding.x)) / slider_steps;
+
+ /* only update value if the next slider step is reached */
+ *state = NK_WIDGET_STATE_ACTIVE;
+ if (NK_ABS(d) >= pxstep) {
+ float ratio = 0;
+ const float steps = (float)((int)(NK_ABS(d) / pxstep));
+ slider_value += (d > 0) ? (slider_step*steps) : -(slider_step*steps);
+ slider_value = NK_CLAMP(slider_min, slider_value, slider_max);
+ ratio = (slider_value - slider_min)/slider_step;
+ cursor->x = bounds.x + (cursor->w * ratio);
+ in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.x = cursor->x + cursor->w/2.0f;
+ }
+ }
+
+ /* slider widget state */
+ if (nk_input_is_mouse_hovering_rect(in, bounds))
+ *state = NK_WIDGET_STATE_HOVERED;
+ if (*state & NK_WIDGET_STATE_HOVER &&
+ !nk_input_is_mouse_prev_hovering_rect(in, bounds))
+ *state |= NK_WIDGET_STATE_ENTERED;
+ else if (nk_input_is_mouse_prev_hovering_rect(in, bounds))
+ *state |= NK_WIDGET_STATE_LEFT;
+ return slider_value;
+}
+
+NK_INTERN void
+nk_draw_slider(struct nk_command_buffer *out, nk_flags state,
+ const struct nk_style_slider *style, const struct nk_rect *bounds,
+ const struct nk_rect *virtual_cursor, float min, float value, float max)
+{
+ struct nk_rect fill;
+ struct nk_rect bar;
+ struct nk_rect scursor;
+ const struct nk_style_item *background;
+
+ /* select correct slider images/colors */
+ struct nk_color bar_color;
+ const struct nk_style_item *cursor;
+ if (state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->active;
+ bar_color = style->bar_active;
+ cursor = &style->cursor_active;
+ } else if (state & NK_WIDGET_STATE_HOVER) {
+ background = &style->hover;
+ bar_color = style->bar_hover;
+ cursor = &style->cursor_hover;
+ } else {
+ background = &style->normal;
+ bar_color = style->bar_normal;
+ cursor = &style->cursor_normal;
+ }
+
+ /* calculate slider background bar */
+ bar.x = bounds->x;
+ bar.y = (bounds->y + virtual_cursor->h/2) - virtual_cursor->h/8;
+ bar.w = bounds->w;
+ bar.h = bounds->h/6;
+
+ /* resize virtual cursor to given size */
+ scursor.h = style->cursor_size.y;
+ scursor.w = style->cursor_size.x;
+ scursor.y = (bar.y + bar.h/2.0f) - scursor.h/2.0f;
+ scursor.x = (value <= min) ? virtual_cursor->x: (value >= max) ?
+ ((bar.x + bar.w) - virtual_cursor->w):
+ virtual_cursor->x - (virtual_cursor->w/2);
+
+ /* filled background bar style */
+ fill.w = (scursor.x + (scursor.w/2.0f)) - bar.x;
+ fill.x = bar.x;
+ fill.y = bar.y;
+ fill.h = bar.h;
+
+ /* draw background */
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ nk_draw_image(out, *bounds, &background->data.image);
+ } else {
+ nk_fill_rect(out, *bounds, style->rounding, style->border_color);
+ nk_fill_rect(out, nk_shrink_rect(*bounds, style->border), style->rounding,
+ background->data.color);
+ }
+
+ /* draw slider bar */
+ nk_fill_rect(out, bar, style->rounding, bar_color);
+ nk_fill_rect(out, fill, style->rounding, style->bar_filled);
+
+ /* draw cursor */
+ if (cursor->type == NK_STYLE_ITEM_IMAGE)
+ nk_draw_image(out, scursor, &cursor->data.image);
+ else nk_fill_circle(out, scursor, cursor->data.color);
+}
+
+NK_INTERN float
+nk_do_slider(nk_flags *state,
+ struct nk_command_buffer *out, struct nk_rect bounds,
+ float min, float val, float max, float step,
+ const struct nk_style_slider *style, struct nk_input *in,
+ const struct nk_user_font *font)
+{
+ float slider_range;
+ float slider_min;
+ float slider_max;
+ float slider_value;
+ float slider_steps;
+ float cursor_offset;
+ struct nk_rect cursor;
+
+ NK_ASSERT(style);
+ NK_ASSERT(out);
+ if (!out || !style)
+ return 0;
+
+ /* remove padding from slider bounds */
+ bounds.x = bounds.x + style->padding.x;
+ bounds.y = bounds.y + style->padding.y;
+ bounds.h = NK_MAX(bounds.h, 2 * style->padding.y);
+ bounds.w = NK_MAX(bounds.w, 1 + bounds.h + 2 * style->padding.x);
+ bounds.h -= 2 * style->padding.y;
+ bounds.w -= 2 * style->padding.y;
+
+ /* optional buttons */
+ if (style->show_buttons) {
+ nk_flags ws;
+ struct nk_rect button;
+ button.y = bounds.y;
+ button.w = bounds.h;
+ button.h = bounds.h;
+
+ /* decrement button */
+ button.x = bounds.x;
+ if (nk_do_button_symbol(&ws, out, button, style->dec_symbol, NK_BUTTON_DEFAULT,
+ &style->dec_button, in, font))
+ val -= step;
+
+ /* increment button */
+ button.x = (bounds.x + bounds.w) - button.w;
+ if (nk_do_button_symbol(&ws, out, button, style->inc_symbol, NK_BUTTON_DEFAULT,
+ &style->inc_button, in, font))
+ val += step;
+
+ bounds.x = bounds.x + button.w + style->spacing.x;
+ bounds.w = bounds.w - (2 * button.w + 2 * style->spacing.x);
+ }
+
+ /* make sure the provided values are correct */
+ slider_max = NK_MAX(min, max);
+ slider_min = NK_MIN(min, max);
+ slider_value = NK_CLAMP(slider_min, val, slider_max);
+ slider_range = slider_max - slider_min;
+ slider_steps = slider_range / step;
+
+ /* calculate slider virtual cursor bounds */
+ cursor_offset = (slider_value - slider_min) / step;
+ cursor.h = bounds.h;
+ cursor.w = bounds.w / (slider_steps + 1);
+ cursor.x = bounds.x + (cursor.w * cursor_offset);
+ cursor.y = bounds.y;
+ slider_value = nk_slider_behavior(state, &cursor, in, style, bounds,
+ slider_min, slider_max, slider_value, step, slider_steps);
+
+ /* draw slider */
+ if (style->draw_begin) style->draw_begin(out, style->userdata);
+ nk_draw_slider(out, *state, style, &bounds, &cursor, slider_min, slider_value, slider_max);
+ if (style->draw_end) style->draw_end(out, style->userdata);
+ return slider_value;
+}
+
+/* ===============================================================
+ *
+ * PROGRESSBAR
+ *
+ * ===============================================================*/
+NK_INTERN nk_size
+nk_progress_behavior(nk_flags *state, const struct nk_input *in,
+ struct nk_rect r, nk_size max, nk_size value, int modifiable)
+{
+ nk_widget_state_reset(state);
+ if (in && modifiable && nk_input_is_mouse_hovering_rect(in, r)) {
+ int left_mouse_down = in->mouse.buttons[NK_BUTTON_LEFT].down;
+ int left_mouse_click_in_cursor = nk_input_has_mouse_click_down_in_rect(in,
+ NK_BUTTON_LEFT, r, nk_true);
+
+ if (left_mouse_down && left_mouse_click_in_cursor) {
+ float ratio = NK_MAX(0, (float)(in->mouse.pos.x - r.x)) / (float)r.w;
+ value = (nk_size)NK_MAX(0,((float)max * ratio));
+ *state = NK_WIDGET_STATE_ACTIVE;
+ } else *state = NK_WIDGET_STATE_HOVERED;
+ }
+
+ /* set progressbar widget state */
+ if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(in, r))
+ *state |= NK_WIDGET_STATE_ENTERED;
+ else if (nk_input_is_mouse_prev_hovering_rect(in, r))
+ *state |= NK_WIDGET_STATE_LEFT;
+
+ if (!max) return value;
+ value = NK_MIN(value, max);
+ return value;
+}
+
+NK_INTERN void
+nk_draw_progress(struct nk_command_buffer *out, nk_flags state,
+ const struct nk_style_progress *style, const struct nk_rect *bounds,
+ const struct nk_rect *scursor, nk_size value, nk_size max)
+{
+ const struct nk_style_item *background;
+ const struct nk_style_item *cursor;
+
+ NK_UNUSED(max);
+ NK_UNUSED(value);
+
+ /* select correct colors/images to draw */
+ if (state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->active;
+ cursor = &style->cursor_active;
+ } else if (state & NK_WIDGET_STATE_HOVER){
+ background = &style->hover;
+ cursor = &style->cursor_hover;
+ } else {
+ background = &style->normal;
+ cursor = &style->cursor_normal;
+ }
+
+ /* draw background */
+ if (background->type == NK_STYLE_ITEM_IMAGE)
+ nk_draw_image(out, *bounds, &background->data.image);
+ else nk_fill_rect(out, *bounds, style->rounding, background->data.color);
+
+ /* draw cursor */
+ if (cursor->type == NK_STYLE_ITEM_IMAGE)
+ nk_draw_image(out, *scursor, &cursor->data.image);
+ else nk_fill_rect(out, *scursor, style->rounding, cursor->data.color);
+}
+
+NK_INTERN nk_size
+nk_do_progress(nk_flags *state,
+ struct nk_command_buffer *out, struct nk_rect bounds,
+ nk_size value, nk_size max, int modifiable,
+ const struct nk_style_progress *style, const struct nk_input *in)
+{
+ float prog_scale;
+ nk_size prog_value;
+ struct nk_rect cursor;
+
+ NK_ASSERT(style);
+ NK_ASSERT(out);
+ if (!out || !style) return 0;
+
+ /* calculate progressbar cursor */
+ cursor.w = NK_MAX(bounds.w, 2 * style->padding.x);
+ cursor.h = NK_MAX(bounds.h, 2 * style->padding.y);
+ cursor = nk_pad_rect(bounds, nk_vec2(style->padding.x, style->padding.y));
+ prog_scale = (float)value / (float)max;
+ cursor.w = (bounds.w - 2) * prog_scale;
+
+ /* update progressbar */
+ prog_value = NK_MIN(value, max);
+ prog_value = nk_progress_behavior(state, in, bounds, max, prog_value, modifiable);
+
+ /* draw progressbar */
+ if (style->draw_begin) style->draw_begin(out, style->userdata);
+ nk_draw_progress(out, *state, style, &bounds, &cursor, value, max);
+ if (style->draw_end) style->draw_end(out, style->userdata);
+ return prog_value;
+}
+
+/* ===============================================================
+ *
+ * SCROLLBAR
+ *
+ * ===============================================================*/
+NK_INTERN float
+nk_scrollbar_behavior(nk_flags *state, struct nk_input *in,
+ int has_scrolling, struct nk_rect scroll,
+ struct nk_rect cursor, float scroll_offset,
+ float target, float scroll_step, enum nk_orientation o)
+{
+ int left_mouse_down;
+ int left_mouse_click_in_cursor;
+
+ nk_widget_state_reset(state);
+ if (!in) return scroll_offset;
+
+ left_mouse_down = in->mouse.buttons[NK_BUTTON_LEFT].down;
+ left_mouse_click_in_cursor = nk_input_has_mouse_click_down_in_rect(in,
+ NK_BUTTON_LEFT, cursor, nk_true);
+ if (nk_input_is_mouse_hovering_rect(in, scroll))
+ *state = NK_WIDGET_STATE_HOVERED;
+
+ if (left_mouse_down && left_mouse_click_in_cursor) {
+ /* update cursor by mouse dragging */
+ float pixel, delta;
+ *state = NK_WIDGET_STATE_ACTIVE;
+ if (o == NK_VERTICAL) {
+ float cursor_y;
+ pixel = in->mouse.delta.y;
+ delta = (pixel / scroll.h) * target;
+ scroll_offset = NK_CLAMP(0, scroll_offset + delta, target - scroll.h);
+ cursor_y = scroll.y + ((scroll_offset/target) * scroll.h);
+ in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.y = cursor_y + cursor.h/2.0f;
+ } else {
+ float cursor_x;
+ pixel = in->mouse.delta.x;
+ delta = (pixel / scroll.w) * target;
+ scroll_offset = NK_CLAMP(0, scroll_offset + delta, target - scroll.w);
+ cursor_x = scroll.x + ((scroll_offset/target) * scroll.w);
+ in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.x = cursor_x + cursor.w/2.0f;
+ }
+ } else if (has_scrolling && ((in->mouse.scroll_delta<0) ||
+ (in->mouse.scroll_delta>0))) {
+ /* update cursor by mouse scrolling */
+ scroll_offset = scroll_offset + scroll_step * (-in->mouse.scroll_delta);
+ if (o == NK_VERTICAL)
+ scroll_offset = NK_CLAMP(0, scroll_offset, target - scroll.h);
+ else scroll_offset = NK_CLAMP(0, scroll_offset, target - scroll.w);
+ }
+ if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(in, scroll))
+ *state |= NK_WIDGET_STATE_ENTERED;
+ else if (nk_input_is_mouse_prev_hovering_rect(in, scroll))
+ *state |= NK_WIDGET_STATE_LEFT;
+ return scroll_offset;
+}
+
+NK_INTERN void
+nk_draw_scrollbar(struct nk_command_buffer *out, nk_flags state,
+ const struct nk_style_scrollbar *style, const struct nk_rect *bounds,
+ const struct nk_rect *scroll)
+{
+ const struct nk_style_item *background;
+ const struct nk_style_item *cursor;
+
+ /* select correct colors/images to draw */
+ if (state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->active;
+ cursor = &style->cursor_active;
+ } else if (state & NK_WIDGET_STATE_HOVER) {
+ background = &style->hover;
+ cursor = &style->cursor_hover;
+ } else {
+ background = &style->normal;
+ cursor = &style->cursor_normal;
+ }
+
+ /* draw background */
+ if (background->type == NK_STYLE_ITEM_COLOR) {
+ nk_fill_rect(out, *bounds, style->rounding, style->border_color);
+ nk_fill_rect(out, nk_shrink_rect(*bounds,style->border),
+ style->rounding, background->data.color);
+ } else {
+ nk_draw_image(out, *bounds, &background->data.image);
+ }
+
+ /* draw cursor */
+ if (cursor->type == NK_STYLE_ITEM_IMAGE)
+ nk_draw_image(out, *scroll, &cursor->data.image);
+ else nk_fill_rect(out, *scroll, style->rounding, cursor->data.color);
+}
+
+NK_INTERN float
+nk_do_scrollbarv(nk_flags *state,
+ struct nk_command_buffer *out, struct nk_rect scroll, int has_scrolling,
+ float offset, float target, float step, float button_pixel_inc,
+ const struct nk_style_scrollbar *style, struct nk_input *in,
+ const struct nk_user_font *font)
+{
+ struct nk_rect cursor;
+ float scroll_step;
+ float scroll_offset;
+ float scroll_off;
+ float scroll_ratio;
+
+ NK_ASSERT(out);
+ NK_ASSERT(style);
+ NK_ASSERT(state);
+ if (!out || !style) return 0;
+
+ scroll.w = NK_MAX(scroll.w, 1);
+ scroll.h = NK_MAX(scroll.h, 2 * scroll.w);
+ if (target <= scroll.h) return 0;
+
+ /* optional scrollbar buttons */
+ if (style->show_buttons) {
+ nk_flags ws;
+ float scroll_h;
+ struct nk_rect button;
+ button.x = scroll.x;
+ button.w = scroll.w;
+ button.h = scroll.w;
+
+ scroll_h = scroll.h - 2 * button.h;
+ scroll_step = NK_MIN(step, button_pixel_inc);
+
+ /* decrement button */
+ button.y = scroll.y;
+ if (nk_do_button_symbol(&ws, out, button, style->dec_symbol,
+ NK_BUTTON_REPEATER, &style->dec_button, in, font))
+ offset = offset - scroll_step;
+
+ /* increment button */
+ button.y = scroll.y + scroll.h - button.h;
+ if (nk_do_button_symbol(&ws, out, button, style->inc_symbol,
+ NK_BUTTON_REPEATER, &style->inc_button, in, font))
+ offset = offset + scroll_step;
+
+ scroll.y = scroll.y + button.h;
+ scroll.h = scroll_h;
+ }
+
+ /* calculate scrollbar constants */
+ scroll_step = NK_MIN(step, scroll.h);
+ scroll_offset = NK_CLAMP(0, offset, target - scroll.h);
+ scroll_ratio = scroll.h / target;
+ scroll_off = scroll_offset / target;
+
+ /* calculate scrollbar cursor bounds */
+ cursor.h = (scroll_ratio * scroll.h - 2);
+ cursor.y = scroll.y + (scroll_off * scroll.h) + 1;
+ cursor.w = scroll.w - 2;
+ cursor.x = scroll.x + 1;
+
+ /* update scrollbar */
+ scroll_offset = nk_scrollbar_behavior(state, in, has_scrolling, scroll, cursor,
+ scroll_offset, target, scroll_step, NK_VERTICAL);
+ scroll_off = scroll_offset / target;
+ cursor.y = scroll.y + (scroll_off * scroll.h);
+
+ /* draw scrollbar */
+ if (style->draw_begin) style->draw_begin(out, style->userdata);
+ nk_draw_scrollbar(out, *state, style, &scroll, &cursor);
+ if (style->draw_end) style->draw_end(out, style->userdata);
+ return scroll_offset;
+}
+
+NK_INTERN float
+nk_do_scrollbarh(nk_flags *state,
+ struct nk_command_buffer *out, struct nk_rect scroll, int has_scrolling,
+ float offset, float target, float step, float button_pixel_inc,
+ const struct nk_style_scrollbar *style, struct nk_input *in,
+ const struct nk_user_font *font)
+{
+ struct nk_rect cursor;
+ float scroll_step;
+ float scroll_offset;
+ float scroll_off;
+ float scroll_ratio;
+
+ NK_ASSERT(out);
+ NK_ASSERT(style);
+ if (!out || !style) return 0;
+
+ /* scrollbar background */
+ scroll.h = NK_MAX(scroll.h, 1);
+ scroll.w = NK_MAX(scroll.w, 2 * scroll.h);
+ if (target <= scroll.w) return 0;
+
+ /* optional scrollbar buttons */
+ if (style->show_buttons) {
+ nk_flags ws;
+ float scroll_w;
+ struct nk_rect button;
+ button.y = scroll.y;
+ button.w = scroll.h;
+ button.h = scroll.h;
+
+ scroll_w = scroll.w - 2 * button.w;
+ scroll_step = NK_MIN(step, button_pixel_inc);
+
+ /* decrement button */
+ button.x = scroll.x;
+ if (nk_do_button_symbol(&ws, out, button, style->dec_symbol,
+ NK_BUTTON_REPEATER, &style->dec_button, in, font))
+ offset = offset - scroll_step;
+
+ /* increment button */
+ button.x = scroll.x + scroll.w - button.w;
+ if (nk_do_button_symbol(&ws, out, button, style->inc_symbol,
+ NK_BUTTON_REPEATER, &style->inc_button, in, font))
+ offset = offset + scroll_step;
+
+ scroll.x = scroll.x + button.w;
+ scroll.w = scroll_w;
+ }
+
+ /* calculate scrollbar constants */
+ scroll_step = NK_MIN(step, scroll.w);
+ scroll_offset = NK_CLAMP(0, offset, target - scroll.w);
+ scroll_ratio = scroll.w / target;
+ scroll_off = scroll_offset / target;
+
+ /* calculate cursor bounds */
+ cursor.w = scroll_ratio * scroll.w - 2;
+ cursor.x = scroll.x + (scroll_off * scroll.w) + 1;
+ cursor.h = scroll.h - 2;
+ cursor.y = scroll.y + 1;
+
+ /* update scrollbar */
+ scroll_offset = nk_scrollbar_behavior(state, in, has_scrolling, scroll, cursor,
+ scroll_offset, target, scroll_step, NK_HORIZONTAL);
+ scroll_off = scroll_offset / target;
+ cursor.x = scroll.x + (scroll_off * scroll.w);
+
+ /* draw scrollbar */
+ if (style->draw_begin) style->draw_begin(out, style->userdata);
+ nk_draw_scrollbar(out, *state, style, &scroll, &cursor);
+ if (style->draw_end) style->draw_end(out, style->userdata);
+ return scroll_offset;
+}
+
+/* ===============================================================
+ *
+ * FILTER
+ *
+ * ===============================================================*/
+NK_API int nk_filter_default(const struct nk_text_edit *box, nk_rune unicode)
+{(void)unicode;NK_UNUSED(box);return nk_true;}
+
+NK_API int
+nk_filter_ascii(const struct nk_text_edit *box, nk_rune unicode)
+{
+ NK_UNUSED(box);
+ if (unicode > 128) return nk_false;
+ else return nk_true;
+}
+
+NK_API int
+nk_filter_float(const struct nk_text_edit *box, nk_rune unicode)
+{
+ NK_UNUSED(box);
+ if ((unicode < '0' || unicode > '9') && unicode != '.' && unicode != '-')
+ return nk_false;
+ else return nk_true;
+}
+
+NK_API int
+nk_filter_decimal(const struct nk_text_edit *box, nk_rune unicode)
+{
+ NK_UNUSED(box);
+ if ((unicode < '0' || unicode > '9') && unicode != '-')
+ return nk_false;
+ else return nk_true;
+}
+
+NK_API int
+nk_filter_hex(const struct nk_text_edit *box, nk_rune unicode)
+{
+ NK_UNUSED(box);
+ if ((unicode < '0' || unicode > '9') &&
+ (unicode < 'a' || unicode > 'f') &&
+ (unicode < 'A' || unicode > 'F'))
+ return nk_false;
+ else return nk_true;
+}
+
+NK_API int
+nk_filter_oct(const struct nk_text_edit *box, nk_rune unicode)
+{
+ NK_UNUSED(box);
+ if (unicode < '0' || unicode > '7')
+ return nk_false;
+ else return nk_true;
+}
+
+NK_API int
+nk_filter_binary(const struct nk_text_edit *box, nk_rune unicode)
+{
+ NK_UNUSED(box);
+ if (unicode != '0' && unicode != '1')
+ return nk_false;
+ else return nk_true;
+}
+
+/* ===============================================================
+ *
+ * EDIT
+ *
+ * ===============================================================*/
+NK_INTERN void
+nk_edit_draw_text(struct nk_command_buffer *out,
+ const struct nk_style_edit *style, float pos_x, float pos_y,
+ float x_offset, const char *text, int byte_len, float row_height,
+ const struct nk_user_font *font, struct nk_color background,
+ struct nk_color foreground, int is_selected)
+{
+ NK_ASSERT(out);
+ NK_ASSERT(font);
+ NK_ASSERT(style);
+ if (!text || !byte_len || !out || !style) return;
+
+ {int glyph_len = 0;
+ nk_rune unicode = 0;
+ int text_len = 0;
+ float line_width = 0;
+ float glyph_width;
+ const char *line = text;
+ float line_offset = 0;
+ int line_count = 0;
+
+ struct nk_text txt;
+ txt.padding = nk_vec2(0,0);
+ txt.background = background;
+ txt.text = foreground;
+
+ glyph_len = nk_utf_decode(text+text_len, &unicode, byte_len-text_len);
+ if (!glyph_len) return;
+ while ((text_len < byte_len) && glyph_len)
+ {
+ if (unicode == '\n') {
+ /* new line sepeator so draw previous line */
+ struct nk_rect label;
+ label.y = pos_y + line_offset;
+ label.h = row_height;
+ label.w = line_width;
+ label.x = pos_x;
+ if (!line_count)
+ label.x += x_offset;
+
+ if (is_selected) /* selection needs to draw different background color */
+ nk_fill_rect(out, label, 0, background);
+ nk_widget_text(out, label, line, (int)((text + text_len) - line),
+ &txt, NK_TEXT_CENTERED, font);
+
+ text_len++;
+ line_count++;
+ line_width = 0;
+ line = text + text_len;
+ line_offset += row_height;
+ glyph_len = nk_utf_decode(text + text_len, &unicode, (int)(byte_len-text_len));
+ continue;
+ }
+ if (unicode == '\r') {
+ text_len++;
+ glyph_len = nk_utf_decode(text + text_len, &unicode, byte_len-text_len);
+ continue;
+ }
+ glyph_width = font->width(font->userdata, font->height, text+text_len, glyph_len);
+ line_width += (float)glyph_width;
+ text_len += glyph_len;
+ glyph_len = nk_utf_decode(text + text_len, &unicode, byte_len-text_len);
+ continue;
+ }
+ if (line_width > 0) {
+ /* draw last line */
+ struct nk_rect label;
+ label.y = pos_y + line_offset;
+ label.h = row_height;
+ label.w = line_width;
+ label.x = pos_x;
+ if (!line_count)
+ label.x += x_offset;
+
+ if (is_selected)
+ nk_fill_rect(out, label, 0, background);
+ nk_widget_text(out, label, line, (int)((text + text_len) - line),
+ &txt, NK_TEXT_LEFT, font);
+ }}
+}
+
+NK_INTERN nk_flags
+nk_do_edit(nk_flags *state, struct nk_command_buffer *out,
+ struct nk_rect bounds, nk_flags flags, nk_filter filter,
+ struct nk_text_edit *edit, const struct nk_style_edit *style,
+ struct nk_input *in, const struct nk_user_font *font)
+{
+ struct nk_rect area;
+ nk_flags ret = 0;
+ float row_height;
+ char prev_state = 0;
+ char is_hovered = 0;
+ char select_all = 0;
+ char cursor_follow = 0;
+
+ NK_ASSERT(state);
+ NK_ASSERT(out);
+ NK_ASSERT(style);
+ if (!state || !out || !style)
+ return ret;
+
+ /* visible text area calculation */
+ area.x = bounds.x + style->padding.x + style->border;
+ area.y = bounds.y + style->padding.y + style->border;
+ area.w = bounds.w - (2.0f * style->padding.x + 2 * style->border);
+ area.h = bounds.h - (2.0f * style->padding.y + 2 * style->border);
+ if (flags & NK_EDIT_MULTILINE)
+ area.h = area.h - style->scrollbar_size.y;
+ row_height = (flags & NK_EDIT_MULTILINE)? font->height + style->row_padding: area.h;
+
+ /* update edit state */
+ prev_state = (char)edit->active;
+ is_hovered = (char)nk_input_is_mouse_hovering_rect(in, bounds);
+ if (in && in->mouse.buttons[NK_BUTTON_LEFT].clicked && in->mouse.buttons[NK_BUTTON_LEFT].down) {
+ edit->active = NK_INBOX(in->mouse.pos.x, in->mouse.pos.y,
+ bounds.x, bounds.y, bounds.w, bounds.h);
+ }
+
+ /* (de)activate text editor */
+ if (!prev_state && edit->active) {
+ const enum nk_text_edit_type type = (flags & NK_EDIT_MULTILINE) ?
+ NK_TEXT_EDIT_MULTI_LINE: NK_TEXT_EDIT_SINGLE_LINE;
+ nk_textedit_clear_state(edit, type, filter);
+ if (flags & NK_EDIT_ALWAYS_INSERT_MODE)
+ edit->mode = NK_TEXT_EDIT_MODE_INSERT;
+ if (flags & NK_EDIT_AUTO_SELECT)
+ select_all = nk_true;
+ } else if (!edit->active) edit->mode = NK_TEXT_EDIT_MODE_VIEW;
+
+ ret = (edit->active) ? NK_EDIT_ACTIVE: NK_EDIT_INACTIVE;
+ if (prev_state != edit->active)
+ ret |= (edit->active) ? NK_EDIT_ACTIVATED: NK_EDIT_DEACTIVATED;
+
+ /* handle user input */
+ if (edit->active && in && !(flags & NK_EDIT_READ_ONLY))
+ {
+ int shift_mod = in->keyboard.keys[NK_KEY_SHIFT].down;
+ const float mouse_x = (in->mouse.pos.x - area.x) + edit->scrollbar.x;
+ const float mouse_y = (!(flags & NK_EDIT_MULTILINE)) ?
+ (in->mouse.pos.y - (area.y + area.h * 0.5f)) + edit->scrollbar.y:
+ (in->mouse.pos.y - area.y) + edit->scrollbar.y;
+
+ /* mouse click handler */
+ if (select_all) {
+ nk_textedit_select_all(edit);
+ } else if (is_hovered && in->mouse.buttons[NK_BUTTON_LEFT].down &&
+ in->mouse.buttons[NK_BUTTON_LEFT].clicked) {
+ nk_textedit_click(edit, mouse_x, mouse_y, font, row_height);
+ } else if (is_hovered && in->mouse.buttons[NK_BUTTON_LEFT].down &&
+ (in->mouse.delta.x != 0.0f || in->mouse.delta.y != 0.0f)) {
+ nk_textedit_drag(edit, mouse_x, mouse_y, font, row_height);
+ cursor_follow = nk_true;
+ } else if (is_hovered && in->mouse.buttons[NK_BUTTON_RIGHT].clicked &&
+ in->mouse.buttons[NK_BUTTON_RIGHT].down) {
+ nk_textedit_key(edit, NK_KEY_TEXT_WORD_LEFT, nk_false, font, row_height);
+ nk_textedit_key(edit, NK_KEY_TEXT_WORD_RIGHT, nk_true, font, row_height);
+ cursor_follow = nk_true;
+ }
+
+ {int i; /* keyboard input */
+ int old_mode = edit->mode;
+ for (i = 0; i < NK_KEY_MAX; ++i) {
+ /* special case */
+ if (i == NK_KEY_ENTER || i == NK_KEY_TAB) continue; /* special case */
+ if (nk_input_is_key_pressed(in, (enum nk_keys)i)) {
+ nk_textedit_key(edit, (enum nk_keys)i, shift_mod, font, row_height);
+ cursor_follow = nk_true;
+ }
+ }
+ if (old_mode != edit->mode) {
+ in->keyboard.text_len = 0;
+ }}
+
+ /* text input */
+ edit->filter = filter;
+ if (in->keyboard.text_len) {
+ nk_textedit_text(edit, in->keyboard.text, in->keyboard.text_len);
+ cursor_follow = nk_true;
+ in->keyboard.text_len = 0;
+ }
+
+ /* enter key handler */
+ if (nk_input_is_key_pressed(in, NK_KEY_ENTER)) {
+ cursor_follow = nk_true;
+ if (flags & NK_EDIT_CTRL_ENTER_NEWLINE && shift_mod) {
+ nk_textedit_text(edit, "\n", 1);
+ } else if (flags & NK_EDIT_SIG_ENTER) {
+ ret = NK_EDIT_INACTIVE;
+ ret |= NK_EDIT_DEACTIVATED;
+ ret |= NK_EDIT_COMMITED;
+ edit->active = 0;
+ } else nk_textedit_text(edit, "\n", 1);
+ }
+
+ /* cut & copy handler */
+ {int copy= nk_input_is_key_pressed(in, NK_KEY_COPY);
+ int cut = nk_input_is_key_pressed(in, NK_KEY_CUT);
+ if ((copy || cut) && (flags & NK_EDIT_CLIPBOARD))
+ {
+ int glyph_len;
+ nk_rune unicode;
+ const char *text;
+ int b = edit->select_start;
+ int e = edit->select_end;
+
+ int begin = NK_MIN(b, e);
+ int end = NK_MAX(b, e);
+ text = nk_str_at_const(&edit->string, begin, &unicode, &glyph_len);
+ if (edit->clip.copy)
+ edit->clip.copy(edit->clip.userdata, text, end - begin);
+ if (cut){
+ nk_textedit_cut(edit);
+ cursor_follow = nk_true;
+ }
+ }}
+
+ /* paste handler */
+ {int paste = nk_input_is_key_pressed(in, NK_KEY_PASTE);
+ if (paste && (flags & NK_EDIT_CLIPBOARD) && edit->clip.paste) {
+ edit->clip.paste(edit->clip.userdata, edit);
+ cursor_follow = nk_true;
+ }}
+
+ /* tab handler */
+ {int tab = nk_input_is_key_pressed(in, NK_KEY_TAB);
+ if (tab && (flags & NK_EDIT_ALLOW_TAB)) {
+ nk_textedit_text(edit, " ", 4);
+ cursor_follow = nk_true;
+ }}
+ }
+
+ /* set widget state */
+ if (edit->active)
+ *state = NK_WIDGET_STATE_ACTIVE;
+ else nk_widget_state_reset(state);
+
+ if (is_hovered)
+ *state |= NK_WIDGET_STATE_HOVERED;
+
+ /* DRAW EDIT */
+ {struct nk_rect clip;
+ struct nk_rect old_clip = out->clip;
+ const char *text = nk_str_get_const(&edit->string);
+ int len = nk_str_len_char(&edit->string);
+
+ {/* select background colors/images */
+ const struct nk_style_item *background;
+ if (*state & NK_WIDGET_STATE_ACTIVED)
+ background = &style->active;
+ else if (*state & NK_WIDGET_STATE_HOVER)
+ background = &style->hover;
+ else background = &style->normal;
+
+ /* draw background frame */
+ if (background->type == NK_STYLE_ITEM_COLOR) {
+ nk_fill_rect(out, bounds, style->rounding, style->border_color);
+ nk_fill_rect(out, nk_shrink_rect(bounds,style->border),
+ style->rounding, background->data.color);
+ } else nk_draw_image(out, bounds, &background->data.image);}
+
+ area.w -= style->cursor_size;
+ nk_unify(&clip, &old_clip, area.x, area.y, area.x + area.w, area.y + area.h);
+ nk_push_scissor(out, clip);
+ if (edit->active)
+ {
+ int total_lines = 1;
+ struct nk_vec2 text_size = nk_vec2(0,0);
+
+ /* text pointer positions */
+ const char *cursor_ptr = 0;
+ const char *select_begin_ptr = 0;
+ const char *select_end_ptr = 0;
+
+ /* 2D pixel positions */
+ struct nk_vec2 cursor_pos = nk_vec2(0,0);
+ struct nk_vec2 selection_offset_start = nk_vec2(0,0);
+ struct nk_vec2 selection_offset_end = nk_vec2(0,0);
+
+ int selection_begin = NK_MIN(edit->select_start, edit->select_end);
+ int selection_end = NK_MAX(edit->select_start, edit->select_end);
+
+ /* calculate total line count + total space + cursor/selection position */
+ float line_width = 0.0f;
+ if (text && len)
+ {
+ /* utf8 encoding */
+ float glyph_width;
+ int glyph_len = 0;
+ nk_rune unicode = 0;
+ int text_len = 0;
+ int glyphs = 0;
+ int row_begin = 0;
+
+ glyph_len = nk_utf_decode(text, &unicode, len);
+ glyph_width = font->width(font->userdata, font->height, text, glyph_len);
+ line_width = 0;
+
+ /* iterate all lines */
+ while ((text_len < len) && glyph_len)
+ {
+ /* set cursor 2D position and line */
+ if (!cursor_ptr && glyphs == edit->cursor)
+ {
+ int glyph_offset;
+ struct nk_vec2 out_offset;
+ struct nk_vec2 row_size;
+ const char *remaining;
+
+ /* calculate 2d position */
+ cursor_pos.y = (float)(total_lines-1) * row_height;
+ row_size = nk_text_calculate_text_bounds(font, text+row_begin,
+ text_len-row_begin, row_height, &remaining,
+ &out_offset, &glyph_offset, NK_STOP_ON_NEW_LINE);
+ cursor_pos.x = row_size.x;
+ cursor_ptr = text + text_len;
+ }
+
+ /* set start selection 2D position and line */
+ if (!select_begin_ptr && edit->select_start != edit->select_end &&
+ glyphs == selection_begin)
+ {
+ int glyph_offset;
+ struct nk_vec2 out_offset;
+ struct nk_vec2 row_size;
+ const char *remaining;
+
+ /* calculate 2d position */
+ selection_offset_start.y = (float)(total_lines-1) * row_height;
+ row_size = nk_text_calculate_text_bounds(font, text+row_begin,
+ text_len-row_begin, row_height, &remaining,
+ &out_offset, &glyph_offset, NK_STOP_ON_NEW_LINE);
+ selection_offset_start.x = row_size.x;
+ select_begin_ptr = text + text_len;
+ }
+
+ /* set end selection 2D position and line */
+ if (!select_end_ptr && edit->select_start != edit->select_end &&
+ glyphs == selection_end)
+ {
+ int glyph_offset;
+ struct nk_vec2 out_offset;
+ struct nk_vec2 row_size;
+ const char *remaining;
+
+ /* calculate 2d position */
+ selection_offset_end.y = (float)(total_lines-1) * row_height;
+ row_size = nk_text_calculate_text_bounds(font, text+row_begin,
+ text_len-row_begin, row_height, &remaining,
+ &out_offset, &glyph_offset, NK_STOP_ON_NEW_LINE);
+ selection_offset_end.x = row_size.x;
+ select_end_ptr = text + text_len;
+ }
+ if (unicode == '\n') {
+ text_size.x = NK_MAX(text_size.x, line_width);
+ total_lines++;
+ line_width = 0;
+ text_len++;
+ glyphs++;
+ row_begin = text_len;
+ glyph_len = nk_utf_decode(text + text_len, &unicode, len-text_len);
+ continue;
+ }
+
+ glyphs++;
+ text_len += glyph_len;
+ line_width += (float)glyph_width;
+
+ glyph_width = font->width(font->userdata, font->height,
+ text+text_len, glyph_len);
+ glyph_len = nk_utf_decode(text + text_len, &unicode, len-text_len);
+ continue;
+ }
+ text_size.y = (float)total_lines * row_height;
+
+ /* handle case if cursor is at end of text buffer */
+ if (!cursor_ptr && edit->cursor == edit->string.len) {
+ cursor_pos.x = line_width;
+ cursor_pos.y = text_size.y - row_height;
+ }
+ }
+ {
+ /* scrollbar */
+ if (cursor_follow)
+ {
+ /* update scrollbar to follow cursor */
+ if (!(flags & NK_EDIT_NO_HORIZONTAL_SCROLL)) {
+ /* horizontal scroll */
+ const float scroll_increment = area.w * 0.25f;
+ if (cursor_pos.x < edit->scrollbar.x)
+ edit->scrollbar.x = (float)(int)NK_MAX(0.0f, cursor_pos.x - scroll_increment);
+ if (cursor_pos.x >= edit->scrollbar.x + area.w)
+ edit->scrollbar.x = (float)(int)NK_MAX(0.0f, cursor_pos.x);
+ } else edit->scrollbar.x = 0;
+
+ if (flags & NK_EDIT_MULTILINE) {
+ /* vertical scroll */
+ if (cursor_pos.y < edit->scrollbar.y)
+ edit->scrollbar.y = NK_MAX(0.0f, cursor_pos.y - row_height);
+ if (cursor_pos.y >= edit->scrollbar.y + area.h)
+ edit->scrollbar.y = edit->scrollbar.y + row_height;
+ } else edit->scrollbar.y = 0;
+ }
+
+ /* scrollbar widget */
+ {nk_flags ws;
+ struct nk_rect scroll;
+ float scroll_target;
+ float scroll_offset;
+ float scroll_step;
+ float scroll_inc;
+
+ scroll.x = (bounds.x + bounds.w) - style->scrollbar_size.x;
+ scroll.y = bounds.y;
+ scroll.w = style->scrollbar_size.x;
+ scroll.h = bounds.h;
+
+ scroll_offset = edit->scrollbar.y;
+ scroll_step = scroll.h * 0.10f;
+ scroll_inc = scroll.h * 0.01f;
+ scroll_target = text_size.y;
+ edit->scrollbar.y = nk_do_scrollbarv(&ws, out, bounds, 0,
+ scroll_offset, scroll_target, scroll_step, scroll_inc,
+ &style->scrollbar, in, font);}
+ }
+
+ /* draw text */
+ {struct nk_color background_color;
+ struct nk_color text_color;
+ struct nk_color sel_background_color;
+ struct nk_color sel_text_color;
+ struct nk_color cursor_color;
+ struct nk_color cursor_text_color;
+ const struct nk_style_item *background;
+
+ /* select correct colors to draw */
+ if (*state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->active;
+ text_color = style->text_active;
+ sel_text_color = style->selected_text_hover;
+ sel_background_color = style->selected_hover;
+ cursor_color = style->cursor_hover;
+ cursor_text_color = style->cursor_text_hover;
+ } else if (*state & NK_WIDGET_STATE_HOVER) {
+ background = &style->hover;
+ text_color = style->text_hover;
+ sel_text_color = style->selected_text_hover;
+ sel_background_color = style->selected_hover;
+ cursor_text_color = style->cursor_text_hover;
+ cursor_color = style->cursor_hover;
+ } else {
+ background = &style->normal;
+ text_color = style->text_normal;
+ sel_text_color = style->selected_text_normal;
+ sel_background_color = style->selected_normal;
+ cursor_color = style->cursor_normal;
+ cursor_text_color = style->cursor_text_normal;
+ }
+ if (background->type == NK_STYLE_ITEM_IMAGE)
+ background_color = nk_rgba(0,0,0,0);
+ else background_color = background->data.color;
+
+
+ if (edit->select_start == edit->select_end) {
+ /* no selection so just draw the complete text */
+ const char *begin = nk_str_get_const(&edit->string);
+ int l = nk_str_len_char(&edit->string);
+ nk_edit_draw_text(out, style, area.x - edit->scrollbar.x,
+ area.y - edit->scrollbar.y, 0, begin, l, row_height, font,
+ background_color, text_color, nk_false);
+ } else {
+ /* edit has selection so draw 1-3 text chunks */
+ if (edit->select_start != edit->select_end && selection_begin > 0){
+ /* draw unselected text before selection */
+ const char *begin = nk_str_get_const(&edit->string);
+ NK_ASSERT(select_begin_ptr);
+ nk_edit_draw_text(out, style, area.x - edit->scrollbar.x,
+ area.y - edit->scrollbar.y, 0, begin, (int)(select_begin_ptr - begin),
+ row_height, font, background_color, text_color, nk_false);
+ }
+ if (edit->select_start != edit->select_end) {
+ /* draw selected text */
+ NK_ASSERT(select_begin_ptr);
+ if (!select_end_ptr) {
+ const char *begin = nk_str_get_const(&edit->string);
+ select_end_ptr = begin + nk_str_len_char(&edit->string);
+ }
+ nk_edit_draw_text(out, style,
+ area.x - edit->scrollbar.x,
+ area.y + selection_offset_start.y - edit->scrollbar.y,
+ selection_offset_start.x,
+ select_begin_ptr, (int)(select_end_ptr - select_begin_ptr),
+ row_height, font, sel_background_color, sel_text_color, nk_true);
+ }
+ if ((edit->select_start != edit->select_end &&
+ selection_end < edit->string.len))
+ {
+ /* draw unselected text after selected text */
+ const char *begin = select_end_ptr;
+ const char *end = nk_str_get_const(&edit->string) +
+ nk_str_len_char(&edit->string);
+ NK_ASSERT(select_end_ptr);
+ nk_edit_draw_text(out, style,
+ area.x - edit->scrollbar.x,
+ area.y + selection_offset_end.y - edit->scrollbar.y,
+ selection_offset_end.x,
+ begin, (int)(end - begin), row_height, font,
+ background_color, text_color, nk_true);
+ }
+ }
+
+ /* cursor */
+ if (edit->select_start == edit->select_end)
+ {
+ if (edit->cursor >= nk_str_len(&edit->string) ||
+ (cursor_ptr && *cursor_ptr == '\n')) {
+ /* draw cursor at end of line */
+ struct nk_rect cursor;
+ cursor.w = style->cursor_size;
+ cursor.h = font->height;
+ cursor.x = area.x + cursor_pos.x - edit->scrollbar.x;
+ cursor.y = area.y + cursor_pos.y + row_height/2.0f - cursor.h/2.0f;
+ cursor.y -= edit->scrollbar.y;
+ nk_fill_rect(out, cursor, 0, cursor_color);
+ } else {
+ /* draw cursor inside text */
+ int glyph_len;
+ struct nk_rect label;
+ struct nk_text txt;
+
+ nk_rune unicode;
+ NK_ASSERT(cursor_ptr);
+ glyph_len = nk_utf_decode(cursor_ptr, &unicode, 4);
+
+ label.x = area.x + cursor_pos.x - edit->scrollbar.x;
+ label.y = area.y + cursor_pos.y - edit->scrollbar.y;
+ label.w = font->width(font->userdata, font->height, cursor_ptr, glyph_len);
+ label.h = row_height;
+
+ txt.padding = nk_vec2(0,0);
+ txt.background = cursor_color;
+ txt.text = cursor_text_color;
+ nk_fill_rect(out, label, 0, cursor_color);
+ nk_widget_text(out, label, cursor_ptr, glyph_len, &txt, NK_TEXT_LEFT, font);
+ }
+ }}
+ } else {
+ /* not active so just draw text */
+ int l = nk_str_len(&edit->string);
+ const char *begin = nk_str_get_const(&edit->string);
+
+ const struct nk_style_item *background;
+ struct nk_color background_color;
+ struct nk_color text_color;
+ if (*state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->active;
+ text_color = style->text_active;
+ } else if (*state & NK_WIDGET_STATE_HOVER) {
+ background = &style->hover;
+ text_color = style->text_hover;
+ } else {
+ background = &style->normal;
+ text_color = style->text_normal;
+ }
+ if (background->type == NK_STYLE_ITEM_IMAGE)
+ background_color = nk_rgba(0,0,0,0);
+ else background_color = background->data.color;
+ nk_edit_draw_text(out, style, area.x - edit->scrollbar.x,
+ area.y - edit->scrollbar.y, 0, begin, l, row_height, font,
+ background_color, text_color, nk_false);
+ }
+ nk_push_scissor(out, old_clip);}
+ return ret;
+}
+
+/* ===============================================================
+ *
+ * PROPERTY
+ *
+ * ===============================================================*/
+enum nk_property_status {
+ NK_PROPERTY_DEFAULT,
+ NK_PROPERTY_EDIT,
+ NK_PROPERTY_DRAG
+};
+
+enum nk_property_filter {
+ NK_FILTER_INT,
+ NK_FILTER_FLOAT
+};
+
+NK_INTERN float
+nk_drag_behavior(nk_flags *state, const struct nk_input *in,
+ struct nk_rect drag, float min, float val, float max, float inc_per_pixel)
+{
+ int left_mouse_down = in && in->mouse.buttons[NK_BUTTON_LEFT].down;
+ int left_mouse_click_in_cursor = in &&
+ nk_input_has_mouse_click_down_in_rect(in, NK_BUTTON_LEFT, drag, nk_true);
+
+ nk_widget_state_reset(state);
+ if (nk_input_is_mouse_hovering_rect(in, drag))
+ *state = NK_WIDGET_STATE_HOVERED;
+
+ if (left_mouse_down && left_mouse_click_in_cursor) {
+ float delta, pixels;
+ pixels = in->mouse.delta.x;
+ delta = pixels * inc_per_pixel;
+ val += delta;
+ val = NK_CLAMP(min, val, max);
+ *state = NK_WIDGET_STATE_ACTIVE;
+ }
+ if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(in, drag))
+ *state |= NK_WIDGET_STATE_ENTERED;
+ else if (nk_input_is_mouse_prev_hovering_rect(in, drag))
+ *state |= NK_WIDGET_STATE_LEFT;
+ return val;
+}
+
+NK_INTERN float
+nk_property_behavior(nk_flags *ws, const struct nk_input *in,
+ struct nk_rect property, struct nk_rect label, struct nk_rect edit,
+ struct nk_rect empty, int *state, float min, float value, float max,
+ float step, float inc_per_pixel)
+{
+ NK_UNUSED(step);
+ if (in && *state == NK_PROPERTY_DEFAULT) {
+ if (nk_button_behavior(ws, edit, in, NK_BUTTON_DEFAULT))
+ *state = NK_PROPERTY_EDIT;
+ else if (nk_input_is_mouse_click_down_in_rect(in, NK_BUTTON_LEFT, label, nk_true))
+ *state = NK_PROPERTY_DRAG;
+ else if (nk_input_is_mouse_click_down_in_rect(in, NK_BUTTON_LEFT, empty, nk_true))
+ *state = NK_PROPERTY_DRAG;
+ }
+ if (*state == NK_PROPERTY_DRAG) {
+ value = nk_drag_behavior(ws, in, property, min, value, max, inc_per_pixel);
+ if (!(*ws & NK_WIDGET_STATE_ACTIVED)) *state = NK_PROPERTY_DEFAULT;
+ }
+ return value;
+}
+
+NK_INTERN void
+nk_draw_property(struct nk_command_buffer *out, const struct nk_style_property *style,
+ const struct nk_rect *bounds, const struct nk_rect *label, nk_flags state,
+ const char *name, int len, const struct nk_user_font *font)
+{
+ struct nk_text text;
+ const struct nk_style_item *background;
+
+ /* select correct background and text color */
+ if (state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->active;
+ text.text = style->label_active;
+ } else if (state & NK_WIDGET_STATE_HOVER) {
+ background = &style->hover;
+ text.text = style->label_hover;
+ } else {
+ background = &style->normal;
+ text.text = style->label_normal;
+ }
+
+ /* draw background */
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ nk_draw_image(out, *bounds, &background->data.image);
+ text.background = nk_rgba(0,0,0,0);
+ } else {
+ text.background = background->data.color;
+ nk_fill_rect(out, *bounds, style->rounding, style->border_color);
+ nk_fill_rect(out, nk_shrink_rect(*bounds,style->border),
+ style->rounding, background->data.color);
+ }
+
+ /* draw label */
+ text.padding = nk_vec2(0,0);
+ nk_widget_text(out, *label, name, len, &text, NK_TEXT_CENTERED, font);
+}
+
+NK_INTERN float
+nk_do_property(nk_flags *ws,
+ struct nk_command_buffer *out, struct nk_rect property,
+ const char *name, float min, float val, float max,
+ float step, float inc_per_pixel, char *buffer, int *len,
+ int *state, int *cursor, const struct nk_style_property *style,
+ enum nk_property_filter filter, struct nk_input *in,
+ const struct nk_user_font *font, struct nk_text_edit *text_edit)
+{
+ const nk_filter filters[] = {
+ nk_filter_decimal,
+ nk_filter_float
+ };
+ int active, old;
+ int num_len, name_len;
+ char string[NK_MAX_NUMBER_BUFFER];
+ float size;
+
+ float property_min;
+ float property_max;
+ float property_value;
+
+ char *dst = 0;
+ int *length;
+
+ struct nk_rect left;
+ struct nk_rect right;
+ struct nk_rect label;
+ struct nk_rect edit;
+ struct nk_rect empty;
+
+ /* make sure the provided values are correct */
+ property_max = NK_MAX(min, max);
+ property_min = NK_MIN(min, max);
+ property_value = NK_CLAMP(property_min, val, property_max);
+
+ /* left decrement button */
+ left.h = font->height/2;
+ left.w = left.h;
+ left.x = property.x + style->border + style->padding.x;
+ left.y = property.y + style->border + property.h/2.0f - left.h/2;
+
+ /* text label */
+ name_len = nk_strlen(name);
+ size = font->width(font->userdata, font->height, name, name_len);
+ label.x = left.x + left.w + style->padding.x;
+ label.w = (float)size + 2 * style->padding.x;
+ label.y = property.y + style->border + style->padding.y;
+ label.h = property.h - (2 * style->border + 2 * style->padding.y);
+
+ /* right increment button */
+ right.y = left.y;
+ right.w = left.w;
+ right.h = left.h;
+ right.x = property.x + property.w - (right.w + style->padding.x);
+
+ /* edit */
+ if (*state == NK_PROPERTY_EDIT) {
+ size = font->width(font->userdata, font->height, buffer, *len);
+ size += style->edit.cursor_size;
+ length = len;
+ dst = buffer;
+ } else {
+ nk_ftos(string, property_value);
+ num_len = nk_string_float_limit(string, NK_MAX_FLOAT_PRECISION);
+ size = font->width(font->userdata, font->height, string, num_len);
+ dst = string;
+ length = &num_len;
+ }
+ edit.w = (float)size + 2 * style->padding.x;
+ edit.w = NK_MIN(edit.w, right.x - (label.x + label.w));
+ edit.x = right.x - (edit.w + style->padding.x);
+ edit.y = property.y + style->border;
+ edit.h = property.h - (2 * style->border);
+
+ /* empty left space activator */
+ empty.w = edit.x - (label.x + label.w);
+ empty.x = label.x + label.w;
+ empty.y = property.y;
+ empty.h = property.h;
+
+ /* update property */
+ old = (*state == NK_PROPERTY_EDIT);
+ property_value = nk_property_behavior(ws, in, property, label, edit, empty,
+ state, property_min, property_value, property_max,
+ step, inc_per_pixel);
+
+ /* draw property */
+ if (style->draw_begin) style->draw_begin(out, style->userdata);
+ nk_draw_property(out, style, &property, &label, *ws, name, name_len, font);
+ if (style->draw_end) style->draw_end(out, style->userdata);
+
+ /* execute right and left button */
+ if (nk_do_button_symbol(ws, out, left, style->sym_left, NK_BUTTON_DEFAULT,
+ &style->dec_button, in, font))
+ property_value = NK_CLAMP(min, property_value - step, max);
+ if (nk_do_button_symbol(ws, out, right, style->sym_right, NK_BUTTON_DEFAULT,
+ &style->inc_button, in, font))
+ property_value = NK_CLAMP(min, property_value + step, max);
+
+ active = (*state == NK_PROPERTY_EDIT);
+ if (old != NK_PROPERTY_EDIT && active) {
+ /* property has been activated so setup buffer */
+ NK_MEMCPY(buffer, dst, (nk_size)*length);
+ *cursor = nk_utf_len(buffer, *length);
+ *len = *length;
+ length = len;
+ dst = buffer;
+ }
+ {
+ /* execute and run text edit field */
+ nk_textedit_clear_state(text_edit, NK_TEXT_EDIT_SINGLE_LINE, filters[filter]);
+ text_edit->active = (unsigned char)active;
+ text_edit->string.len = *length;
+ text_edit->cursor = NK_CLAMP(0, *cursor, *length);
+ text_edit->string.buffer.allocated = (nk_size)*length;
+ text_edit->string.buffer.memory.size = NK_MAX_NUMBER_BUFFER;
+ text_edit->string.buffer.memory.ptr = dst;
+ text_edit->string.buffer.size = NK_MAX_NUMBER_BUFFER;
+ text_edit->mode = NK_TEXT_EDIT_MODE_INSERT;
+ nk_do_edit(ws, out, edit, NK_EDIT_ALWAYS_INSERT_MODE, filters[filter],
+ text_edit, &style->edit, (*state == NK_PROPERTY_EDIT) ? in: 0, font);
+
+ *length = text_edit->string.len;
+ active = text_edit->active;
+ *cursor = text_edit->cursor;
+ }
+ if (active && nk_input_is_key_pressed(in, NK_KEY_ENTER))
+ active = !active;
+
+ if (old && !active) {
+ /* property is now not active so convert edit text to value*/
+ *state = NK_PROPERTY_DEFAULT;
+ buffer[*len] = '\0';
+ nk_string_float_limit(buffer, NK_MAX_FLOAT_PRECISION);
+ nk_strtof(&property_value, buffer);
+ property_value = NK_CLAMP(min, property_value, max);
+ }
+ return property_value;
+}
+/* ===============================================================
+ *
+ * COLOR PICKER
+ *
+ * ===============================================================*/
+NK_INTERN int
+nk_color_picker_behavior(nk_flags *state,
+ const struct nk_rect *bounds, const struct nk_rect *matrix,
+ const struct nk_rect *hue_bar, const struct nk_rect *alpha_bar,
+ struct nk_color *color, const struct nk_input *in)
+{
+ float hsva[4];
+ int value_changed = 0;
+ int hsv_changed = 0;
+
+ NK_ASSERT(state);
+ NK_ASSERT(matrix);
+ NK_ASSERT(hue_bar);
+ NK_ASSERT(color);
+
+ /* color matrix */
+ nk_color_hsva_fv(hsva, *color);
+ if (nk_button_behavior(state, *matrix, in, NK_BUTTON_REPEATER)) {
+ hsva[1] = NK_SATURATE((in->mouse.pos.x - matrix->x) / (matrix->w-1));
+ hsva[2] = 1.0f - NK_SATURATE((in->mouse.pos.y - matrix->y) / (matrix->h-1));
+ value_changed = hsv_changed = 1;
+ }
+
+ /* hue bar */
+ if (nk_button_behavior(state, *hue_bar, in, NK_BUTTON_REPEATER)) {
+ hsva[0] = NK_SATURATE((in->mouse.pos.y - hue_bar->y) / (hue_bar->h-1));
+ value_changed = hsv_changed = 1;
+ }
+
+ /* alpha bar */
+ if (alpha_bar) {
+ if (nk_button_behavior(state, *alpha_bar, in, NK_BUTTON_REPEATER)) {
+ hsva[3] = 1.0f - NK_SATURATE((in->mouse.pos.y - alpha_bar->y) / (alpha_bar->h-1));
+ value_changed = 1;
+ }
+ }
+
+ nk_widget_state_reset(state);
+ if (hsv_changed) {
+ *color = nk_hsva_fv(hsva);
+ *state = NK_WIDGET_STATE_ACTIVE;
+ }
+ if (value_changed) {
+ color->a = (nk_byte)(hsva[3] * 255.0f);
+ *state = NK_WIDGET_STATE_ACTIVE;
+ }
+
+ /* set color picker widget state */
+ if (nk_input_is_mouse_hovering_rect(in, *bounds))
+ *state = NK_WIDGET_STATE_HOVERED;
+ if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(in, *bounds))
+ *state |= NK_WIDGET_STATE_ENTERED;
+ else if (nk_input_is_mouse_prev_hovering_rect(in, *bounds))
+ *state |= NK_WIDGET_STATE_LEFT;
+ return value_changed;
+}
+
+NK_INTERN void
+nk_draw_color_picker(struct nk_command_buffer *o, const struct nk_rect *matrix,
+ const struct nk_rect *hue_bar, const struct nk_rect *alpha_bar,
+ struct nk_color color)
+{
+ NK_STORAGE const struct nk_color black = {0,0,0,255};
+ NK_STORAGE const struct nk_color white = {255, 255, 255, 255};
+ NK_STORAGE const struct nk_color black_trans = {0,0,0,0};
+
+ const float crosshair_size = 7.0f;
+ struct nk_color temp;
+ float hsva[4];
+ float line_y;
+ int i;
+
+ NK_ASSERT(o);
+ NK_ASSERT(matrix);
+ NK_ASSERT(hue_bar);
+ NK_ASSERT(alpha_bar);
+
+ /* draw hue bar */
+ nk_color_hsv_fv(hsva, color);
+ for (i = 0; i < 6; ++i) {
+ NK_GLOBAL const struct nk_color hue_colors[] = {
+ {255, 0, 0, 255}, {255,255,0,255}, {0,255,0,255}, {0, 255,255,255},
+ {0,0,255,255}, {255, 0, 255, 255}, {255, 0, 0, 255}};
+ nk_fill_rect_multi_color(o,
+ nk_rect(hue_bar->x, hue_bar->y + (float)i * (hue_bar->h/6.0f) + 0.5f,
+ hue_bar->w, (hue_bar->h/6.0f) + 0.5f), hue_colors[i], hue_colors[i],
+ hue_colors[i+1], hue_colors[i+1]);
+ }
+ line_y = (float)(int)(hue_bar->y + hsva[0] * matrix->h + 0.5f);
+ nk_stroke_line(o, hue_bar->x-1, line_y, hue_bar->x + hue_bar->w + 2,
+ line_y, 1, nk_rgb(255,255,255));
+
+ /* draw alpha bar */
+ if (alpha_bar) {
+ float alpha = NK_SATURATE((float)color.a/255.0f);
+ line_y = (float)(int)(alpha_bar->y + (1.0f - alpha) * matrix->h + 0.5f);
+
+ nk_fill_rect_multi_color(o, *alpha_bar, white, white, black, black);
+ nk_stroke_line(o, alpha_bar->x-1, line_y, alpha_bar->x + alpha_bar->w + 2,
+ line_y, 1, nk_rgb(255,255,255));
+ }
+
+ /* draw color matrix */
+ temp = nk_hsv_f(hsva[0], 1.0f, 1.0f);
+ nk_fill_rect_multi_color(o, *matrix, white, temp, temp, white);
+ nk_fill_rect_multi_color(o, *matrix, black_trans, black_trans, black, black);
+
+ /* draw cross-hair */
+ {struct nk_vec2 p; float S = hsva[1]; float V = hsva[2];
+ p.x = (float)(int)(matrix->x + S * matrix->w + 0.5f);
+ p.y = (float)(int)(matrix->y + (1.0f - V) * matrix->h + 0.5f);
+ nk_stroke_line(o, p.x - crosshair_size, p.y, p.x-2, p.y, 1.0f, white);
+ nk_stroke_line(o, p.x + crosshair_size, p.y, p.x+2, p.y, 1.0f, white);
+ nk_stroke_line(o, p.x, p.y + crosshair_size, p.x, p.y+2, 1.0f, nk_rgb(255,255,255));
+ nk_stroke_line(o, p.x, p.y - crosshair_size, p.x, p.y-2, 1.0f, nk_rgb(255,255,255));}
+}
+
+NK_INTERN int
+nk_do_color_picker(nk_flags *state,
+ struct nk_command_buffer *out, struct nk_color *color,
+ enum nk_color_format fmt, struct nk_rect bounds,
+ struct nk_vec2 padding, const struct nk_input *in,
+ const struct nk_user_font *font)
+{
+ int ret = 0;
+ struct nk_rect matrix;
+ struct nk_rect hue_bar;
+ struct nk_rect alpha_bar;
+ float bar_w;
+
+ NK_ASSERT(out);
+ NK_ASSERT(color);
+ NK_ASSERT(state);
+ NK_ASSERT(font);
+ if (!out || !color || !state || !font)
+ return ret;
+
+ bar_w = font->height;
+ bounds.x += padding.x;
+ bounds.y += padding.x;
+ bounds.w -= 2 * padding.x;
+ bounds.h -= 2 * padding.y;
+
+ matrix.x = bounds.x;
+ matrix.y = bounds.y;
+ matrix.h = bounds.h;
+ matrix.w = bounds.w - (3 * padding.x + 2 * bar_w);
+
+ hue_bar.w = bar_w;
+ hue_bar.y = bounds.y;
+ hue_bar.h = matrix.h;
+ hue_bar.x = matrix.x + matrix.w + padding.x;
+
+ alpha_bar.x = hue_bar.x + hue_bar.w + padding.x;
+ alpha_bar.y = bounds.y;
+ alpha_bar.w = bar_w;
+ alpha_bar.h = matrix.h;
+
+ ret = nk_color_picker_behavior(state, &bounds, &matrix, &hue_bar,
+ (fmt == NK_RGBA) ? &alpha_bar:0, color, in);
+ nk_draw_color_picker(out, &matrix, &hue_bar, (fmt == NK_RGBA) ? &alpha_bar:0, *color);
+ return ret;
+}
+
+/* ==============================================================
+ *
+ * STYLE
+ *
+ * ===============================================================*/
+NK_API void nk_style_default(struct nk_context *ctx){nk_style_from_table(ctx, 0);}
+#define NK_COLOR_MAP(NK_COLOR)\
+ NK_COLOR(NK_COLOR_TEXT, 175,175,175,255) \
+ NK_COLOR(NK_COLOR_WINDOW, 45, 45, 45, 255) \
+ NK_COLOR(NK_COLOR_HEADER, 40, 40, 40, 255) \
+ NK_COLOR(NK_COLOR_BORDER, 65, 65, 65, 255) \
+ NK_COLOR(NK_COLOR_BUTTON, 50, 50, 50, 255) \
+ NK_COLOR(NK_COLOR_BUTTON_HOVER, 40, 40, 40, 255) \
+ NK_COLOR(NK_COLOR_BUTTON_ACTIVE, 35, 35, 35, 255) \
+ NK_COLOR(NK_COLOR_TOGGLE, 100,100,100,255) \
+ NK_COLOR(NK_COLOR_TOGGLE_HOVER, 120,120,120,255) \
+ NK_COLOR(NK_COLOR_TOGGLE_CURSOR, 45, 45, 45, 255) \
+ NK_COLOR(NK_COLOR_SELECT, 45, 45, 45, 255) \
+ NK_COLOR(NK_COLOR_SELECT_ACTIVE, 35, 35, 35,255) \
+ NK_COLOR(NK_COLOR_SLIDER, 38, 38, 38, 255) \
+ NK_COLOR(NK_COLOR_SLIDER_CURSOR, 100,100,100,255) \
+ NK_COLOR(NK_COLOR_SLIDER_CURSOR_HOVER, 120,120,120,255) \
+ NK_COLOR(NK_COLOR_SLIDER_CURSOR_ACTIVE, 150,150,150,255) \
+ NK_COLOR(NK_COLOR_PROPERTY, 38, 38, 38, 255) \
+ NK_COLOR(NK_COLOR_EDIT, 38, 38, 38, 255) \
+ NK_COLOR(NK_COLOR_EDIT_CURSOR, 175,175,175,255) \
+ NK_COLOR(NK_COLOR_COMBO, 45, 45, 45, 255) \
+ NK_COLOR(NK_COLOR_CHART, 120,120,120,255) \
+ NK_COLOR(NK_COLOR_CHART_COLOR, 45, 45, 45, 255) \
+ NK_COLOR(NK_COLOR_CHART_COLOR_HIGHLIGHT,255, 0, 0, 255) \
+ NK_COLOR(NK_COLOR_SCROLLBAR, 40, 40, 40, 255) \
+ NK_COLOR(NK_COLOR_SCROLLBAR_CURSOR, 100,100,100,255) \
+ NK_COLOR(NK_COLOR_SCROLLBAR_CURSOR_HOVER,120,120,120,255) \
+ NK_COLOR(NK_COLOR_SCROLLBAR_CURSOR_ACTIVE,150,150,150,255) \
+ NK_COLOR(NK_COLOR_TAB_HEADER, 40, 40, 40,255)
+
+NK_GLOBAL const struct nk_color
+nk_default_color_style[NK_COLOR_COUNT] = {
+#define NK_COLOR(a,b,c,d,e) {b,c,d,e},
+NK_COLOR_MAP(NK_COLOR)
+#undef NK_COLOR
+};
+
+NK_GLOBAL const char *nk_color_names[NK_COLOR_COUNT] = {
+#define NK_COLOR(a,b,c,d,e) #a,
+NK_COLOR_MAP(NK_COLOR)
+#undef NK_COLOR
+};
+
+NK_API const char *nk_style_color_name(enum nk_style_colors c)
+{return nk_color_names[c];}
+
+NK_API struct nk_style_item nk_style_item_image(struct nk_image img)
+{struct nk_style_item i; i.type = NK_STYLE_ITEM_IMAGE; i.data.image = img; return i;}
+
+NK_API struct nk_style_item nk_style_item_color(struct nk_color col)
+{struct nk_style_item i; i.type = NK_STYLE_ITEM_COLOR; i.data.color = col; return i;}
+
+NK_API struct nk_style_item nk_style_item_hide(void)
+{struct nk_style_item i; i.type = NK_STYLE_ITEM_COLOR; i.data.color = nk_rgba(0,0,0,0); return i;}
+
+NK_API void
+nk_style_from_table(struct nk_context *ctx, const struct nk_color *table)
+{
+ struct nk_style *style;
+ struct nk_style_text *text;
+ struct nk_style_button *button;
+ struct nk_style_toggle *toggle;
+ struct nk_style_selectable *select;
+ struct nk_style_slider *slider;
+ struct nk_style_progress *prog;
+ struct nk_style_scrollbar *scroll;
+ struct nk_style_edit *edit;
+ struct nk_style_property *property;
+ struct nk_style_combo *combo;
+ struct nk_style_chart *chart;
+ struct nk_style_tab *tab;
+ struct nk_style_window *win;
+
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ style = &ctx->style;
+ table = (!table) ? nk_default_color_style: table;
+
+ /* default text */
+ text = &style->text;
+ text->color = table[NK_COLOR_TEXT];
+ text->padding = nk_vec2(4,4);
+
+ /* default button */
+ button = &style->button;
+ nk_zero_struct(*button);
+ button->normal = nk_style_item_color(table[NK_COLOR_BUTTON]);
+ button->hover = nk_style_item_color(table[NK_COLOR_BUTTON_HOVER]);
+ button->active = nk_style_item_color(table[NK_COLOR_BUTTON_ACTIVE]);
+ button->border_color = table[NK_COLOR_BORDER];
+ button->text_background = table[NK_COLOR_BUTTON];
+ button->text_normal = table[NK_COLOR_TEXT];
+ button->text_hover = table[NK_COLOR_TEXT];
+ button->text_active = table[NK_COLOR_TEXT];
+ button->padding = nk_vec2(4.0f,4.0f);
+ button->image_padding = nk_vec2(0.0f,0.0f);
+ button->touch_padding = nk_vec2(0.0f, 0.0f);
+ button->userdata = nk_handle_ptr(0);
+ button->text_alignment = NK_TEXT_CENTERED;
+ button->border = 1.0f;
+ button->rounding = 4.0f;
+ button->draw_begin = 0;
+ button->draw_end = 0;
+
+ /* contextual button */
+ button = &style->contextual_button;
+ nk_zero_struct(*button);
+ button->normal = nk_style_item_color(table[NK_COLOR_WINDOW]);
+ button->hover = nk_style_item_color(table[NK_COLOR_BUTTON_HOVER]);
+ button->active = nk_style_item_color(table[NK_COLOR_BUTTON_ACTIVE]);
+ button->border_color = table[NK_COLOR_WINDOW];
+ button->text_background = table[NK_COLOR_WINDOW];
+ button->text_normal = table[NK_COLOR_TEXT];
+ button->text_hover = table[NK_COLOR_TEXT];
+ button->text_active = table[NK_COLOR_TEXT];
+ button->padding = nk_vec2(4.0f,4.0f);
+ button->touch_padding = nk_vec2(0.0f,0.0f);
+ button->userdata = nk_handle_ptr(0);
+ button->text_alignment = NK_TEXT_CENTERED;
+ button->border = 0.0f;
+ button->rounding = 0.0f;
+ button->draw_begin = 0;
+ button->draw_end = 0;
+
+ /* menu button */
+ button = &style->menu_button;
+ nk_zero_struct(*button);
+ button->normal = nk_style_item_color(table[NK_COLOR_WINDOW]);
+ button->hover = nk_style_item_color(table[NK_COLOR_WINDOW]);
+ button->active = nk_style_item_color(table[NK_COLOR_WINDOW]);
+ button->border_color = table[NK_COLOR_WINDOW];
+ button->text_background = table[NK_COLOR_WINDOW];
+ button->text_normal = table[NK_COLOR_TEXT];
+ button->text_hover = table[NK_COLOR_TEXT];
+ button->text_active = table[NK_COLOR_TEXT];
+ button->padding = nk_vec2(4.0f,4.0f);
+ button->touch_padding = nk_vec2(0.0f,0.0f);
+ button->userdata = nk_handle_ptr(0);
+ button->text_alignment = NK_TEXT_CENTERED;
+ button->border = 0.0f;
+ button->rounding = 1.0f;
+ button->draw_begin = 0;
+ button->draw_end = 0;
+
+ /* checkbox toggle */
+ toggle = &style->checkbox;
+ nk_zero_struct(*toggle);
+ toggle->normal = nk_style_item_color(table[NK_COLOR_TOGGLE]);
+ toggle->hover = nk_style_item_color(table[NK_COLOR_TOGGLE_HOVER]);
+ toggle->active = nk_style_item_color(table[NK_COLOR_TOGGLE_HOVER]);
+ toggle->cursor_normal = nk_style_item_color(table[NK_COLOR_TOGGLE_CURSOR]);
+ toggle->cursor_hover = nk_style_item_color(table[NK_COLOR_TOGGLE_CURSOR]);
+ toggle->userdata = nk_handle_ptr(0);
+ toggle->text_background = table[NK_COLOR_WINDOW];
+ toggle->text_normal = table[NK_COLOR_TEXT];
+ toggle->text_hover = table[NK_COLOR_TEXT];
+ toggle->text_active = table[NK_COLOR_TEXT];
+ toggle->padding = nk_vec2(4.0f, 4.0f);
+ toggle->touch_padding = nk_vec2(0,0);
+
+ /* option toggle */
+ toggle = &style->option;
+ nk_zero_struct(*toggle);
+ toggle->normal = nk_style_item_color(table[NK_COLOR_TOGGLE]);
+ toggle->hover = nk_style_item_color(table[NK_COLOR_TOGGLE_HOVER]);
+ toggle->active = nk_style_item_color(table[NK_COLOR_TOGGLE_HOVER]);
+ toggle->cursor_normal = nk_style_item_color(table[NK_COLOR_TOGGLE_CURSOR]);
+ toggle->cursor_hover = nk_style_item_color(table[NK_COLOR_TOGGLE_CURSOR]);
+ toggle->userdata = nk_handle_ptr(0);
+ toggle->text_background = table[NK_COLOR_WINDOW];
+ toggle->text_normal = table[NK_COLOR_TEXT];
+ toggle->text_hover = table[NK_COLOR_TEXT];
+ toggle->text_active = table[NK_COLOR_TEXT];
+ toggle->padding = nk_vec2(4.0f, 4.0f);
+ toggle->touch_padding = nk_vec2(0,0);
+
+ /* selectable */
+ select = &style->selectable;
+ nk_zero_struct(*select);
+ select->normal = nk_style_item_color(table[NK_COLOR_SELECT]);
+ select->hover = nk_style_item_color(table[NK_COLOR_SELECT]);
+ select->pressed = nk_style_item_color(table[NK_COLOR_SELECT]);
+ select->normal_active = nk_style_item_color(table[NK_COLOR_SELECT_ACTIVE]);
+ select->hover_active = nk_style_item_color(table[NK_COLOR_SELECT_ACTIVE]);
+ select->pressed_active = nk_style_item_color(table[NK_COLOR_SELECT_ACTIVE]);
+ select->text_normal = table[NK_COLOR_TEXT];
+ select->text_hover = table[NK_COLOR_TEXT];
+ select->text_pressed = table[NK_COLOR_TEXT];
+ select->text_normal_active = table[NK_COLOR_TEXT];
+ select->text_hover_active = table[NK_COLOR_TEXT];
+ select->text_pressed_active = table[NK_COLOR_TEXT];
+ select->padding = nk_vec2(4.0f,4.0f);
+ select->touch_padding = nk_vec2(0,0);
+ select->userdata = nk_handle_ptr(0);
+ select->rounding = 0.0f;
+ select->draw_begin = 0;
+ select->draw_end = 0;
+
+ /* slider */
+ slider = &style->slider;
+ nk_zero_struct(*slider);
+ slider->normal = nk_style_item_hide();
+ slider->hover = nk_style_item_hide();
+ slider->active = nk_style_item_hide();
+ slider->bar_normal = table[NK_COLOR_SLIDER];
+ slider->bar_hover = table[NK_COLOR_SLIDER];
+ slider->bar_active = table[NK_COLOR_SLIDER];
+ slider->bar_filled = table[NK_COLOR_SLIDER_CURSOR];
+ slider->cursor_normal = nk_style_item_color(table[NK_COLOR_SLIDER_CURSOR]);
+ slider->cursor_hover = nk_style_item_color(table[NK_COLOR_SLIDER_CURSOR_HOVER]);
+ slider->cursor_active = nk_style_item_color(table[NK_COLOR_SLIDER_CURSOR_ACTIVE]);
+ slider->inc_symbol = NK_SYMBOL_TRIANGLE_RIGHT;
+ slider->dec_symbol = NK_SYMBOL_TRIANGLE_LEFT;
+ slider->cursor_size = nk_vec2(16,16);
+ slider->padding = nk_vec2(4,4);
+ slider->spacing = nk_vec2(4,4);
+ slider->userdata = nk_handle_ptr(0);
+ slider->show_buttons = nk_false;
+ slider->bar_height = 8;
+ slider->rounding = 0;
+ slider->draw_begin = 0;
+ slider->draw_end = 0;
+
+ /* slider buttons */
+ button = &style->slider.inc_button;
+ button->normal = nk_style_item_color(nk_rgb(40,40,40));
+ button->hover = nk_style_item_color(nk_rgb(42,42,42));
+ button->active = nk_style_item_color(nk_rgb(44,44,44));
+ button->border_color = nk_rgb(65,65,65);
+ button->text_background = nk_rgb(40,40,40);
+ button->text_normal = nk_rgb(175,175,175);
+ button->text_hover = nk_rgb(175,175,175);
+ button->text_active = nk_rgb(175,175,175);
+ button->padding = nk_vec2(8.0f,8.0f);
+ button->touch_padding = nk_vec2(0.0f,0.0f);
+ button->userdata = nk_handle_ptr(0);
+ button->text_alignment = NK_TEXT_CENTERED;
+ button->border = 1.0f;
+ button->rounding = 0.0f;
+ button->draw_begin = 0;
+ button->draw_end = 0;
+ style->slider.dec_button = style->slider.inc_button;
+
+ /* progressbar */
+ prog = &style->progress;
+ nk_zero_struct(*prog);
+ prog->normal = nk_style_item_color(table[NK_COLOR_SLIDER]);
+ prog->hover = nk_style_item_color(table[NK_COLOR_SLIDER]);
+ prog->active = nk_style_item_color(table[NK_COLOR_SLIDER]);
+ prog->cursor_normal = nk_style_item_color(table[NK_COLOR_SLIDER_CURSOR]);
+ prog->cursor_hover = nk_style_item_color(table[NK_COLOR_SLIDER_CURSOR_HOVER]);
+ prog->cursor_active = nk_style_item_color(table[NK_COLOR_SLIDER_CURSOR_ACTIVE]);
+ prog->userdata = nk_handle_ptr(0);
+ prog->padding = nk_vec2(4,4);
+ prog->rounding = 0;
+ prog->draw_begin = 0;
+ prog->draw_end = 0;
+
+ /* scrollbars */
+ scroll = &style->scrollh;
+ nk_zero_struct(*scroll);
+ scroll->normal = nk_style_item_color(table[NK_COLOR_SCROLLBAR]);
+ scroll->hover = nk_style_item_color(table[NK_COLOR_SCROLLBAR]);
+ scroll->active = nk_style_item_color(table[NK_COLOR_SCROLLBAR]);
+ scroll->cursor_normal = nk_style_item_color(table[NK_COLOR_SCROLLBAR_CURSOR]);
+ scroll->cursor_hover = nk_style_item_color(table[NK_COLOR_SCROLLBAR_CURSOR_HOVER]);
+ scroll->cursor_active = nk_style_item_color(table[NK_COLOR_SCROLLBAR_CURSOR_ACTIVE]);
+ scroll->dec_symbol = NK_SYMBOL_CIRCLE_FILLED;
+ scroll->inc_symbol = NK_SYMBOL_CIRCLE_FILLED;
+ scroll->userdata = nk_handle_ptr(0);
+ scroll->border_color = nk_rgb(65,65,65);
+ scroll->padding = nk_vec2(4,4);
+ scroll->show_buttons = nk_false;
+ scroll->border = 0;
+ scroll->rounding = 0;
+ scroll->draw_begin = 0;
+ scroll->draw_end = 0;
+ style->scrollv = style->scrollh;
+
+ /* scrollbars buttons */
+ button = &style->scrollh.inc_button;
+ button->normal = nk_style_item_color(nk_rgb(40,40,40));
+ button->hover = nk_style_item_color(nk_rgb(42,42,42));
+ button->active = nk_style_item_color(nk_rgb(44,44,44));
+ button->border_color = nk_rgb(65,65,65);
+ button->text_background = nk_rgb(40,40,40);
+ button->text_normal = nk_rgb(175,175,175);
+ button->text_hover = nk_rgb(175,175,175);
+ button->text_active = nk_rgb(175,175,175);
+ button->padding = nk_vec2(4.0f,4.0f);
+ button->touch_padding = nk_vec2(0.0f,0.0f);
+ button->userdata = nk_handle_ptr(0);
+ button->text_alignment = NK_TEXT_CENTERED;
+ button->border = 1.0f;
+ button->rounding = 0.0f;
+ button->draw_begin = 0;
+ button->draw_end = 0;
+ style->scrollh.dec_button = style->scrollh.inc_button;
+ style->scrollv.inc_button = style->scrollh.inc_button;
+ style->scrollv.dec_button = style->scrollh.inc_button;
+
+ /* edit */
+ edit = &style->edit;
+ nk_zero_struct(*edit);
+ edit->normal = nk_style_item_color(table[NK_COLOR_EDIT]);
+ edit->hover = nk_style_item_color(table[NK_COLOR_EDIT]);
+ edit->active = nk_style_item_color(table[NK_COLOR_EDIT]);
+ edit->cursor_normal = table[NK_COLOR_TEXT];
+ edit->cursor_hover = table[NK_COLOR_TEXT];
+ edit->cursor_text_normal= table[NK_COLOR_EDIT];
+ edit->cursor_text_hover = table[NK_COLOR_EDIT];
+ edit->border_color = table[NK_COLOR_BORDER];
+ edit->text_normal = table[NK_COLOR_TEXT];
+ edit->text_hover = table[NK_COLOR_TEXT];
+ edit->text_active = table[NK_COLOR_TEXT];
+ edit->selected_normal = table[NK_COLOR_TEXT];
+ edit->selected_hover = table[NK_COLOR_TEXT];
+ edit->selected_text_normal = table[NK_COLOR_EDIT];
+ edit->selected_text_hover = table[NK_COLOR_EDIT];
+ edit->row_padding = 2;
+ edit->padding = nk_vec2(4,4);
+ edit->cursor_size = 4;
+ edit->border = 1;
+ edit->rounding = 0;
+
+ /* property */
+ property = &style->property;
+ nk_zero_struct(*property);
+ property->normal = nk_style_item_color(table[NK_COLOR_PROPERTY]);
+ property->hover = nk_style_item_color(table[NK_COLOR_PROPERTY]);
+ property->active = nk_style_item_color(table[NK_COLOR_PROPERTY]);
+ property->border_color = table[NK_COLOR_BORDER];
+ property->label_normal = table[NK_COLOR_TEXT];
+ property->label_hover = table[NK_COLOR_TEXT];
+ property->label_active = table[NK_COLOR_TEXT];
+ property->sym_left = NK_SYMBOL_TRIANGLE_LEFT;
+ property->sym_right = NK_SYMBOL_TRIANGLE_RIGHT;
+ property->userdata = nk_handle_ptr(0);
+ property->padding = nk_vec2(4,4);
+ property->border = 1;
+ property->rounding = 10;
+ property->draw_begin = 0;
+ property->draw_end = 0;
+
+ /* property buttons */
+ button = &style->property.dec_button;
+ nk_zero_struct(*button);
+ button->normal = nk_style_item_color(table[NK_COLOR_PROPERTY]);
+ button->hover = nk_style_item_color(table[NK_COLOR_PROPERTY]);
+ button->active = nk_style_item_color(table[NK_COLOR_PROPERTY]);
+ button->border_color = nk_rgba(0,0,0,0);
+ button->text_background = table[NK_COLOR_PROPERTY];
+ button->text_normal = table[NK_COLOR_TEXT];
+ button->text_hover = table[NK_COLOR_TEXT];
+ button->text_active = table[NK_COLOR_TEXT];
+ button->padding = nk_vec2(0.0f,0.0f);
+ button->touch_padding = nk_vec2(0.0f,0.0f);
+ button->userdata = nk_handle_ptr(0);
+ button->text_alignment = NK_TEXT_CENTERED;
+ button->border = 0.0f;
+ button->rounding = 0.0f;
+ button->draw_begin = 0;
+ button->draw_end = 0;
+ style->property.inc_button = style->property.dec_button;
+
+ /* property edit */
+ edit = &style->property.edit;
+ nk_zero_struct(*edit);
+ edit->normal = nk_style_item_color(table[NK_COLOR_PROPERTY]);
+ edit->hover = nk_style_item_color(table[NK_COLOR_PROPERTY]);
+ edit->active = nk_style_item_color(table[NK_COLOR_PROPERTY]);
+ edit->border_color = nk_rgba(0,0,0,0);
+ edit->cursor_normal = table[NK_COLOR_TEXT];
+ edit->cursor_hover = table[NK_COLOR_TEXT];
+ edit->cursor_text_normal= table[NK_COLOR_EDIT];
+ edit->cursor_text_hover = table[NK_COLOR_EDIT];
+ edit->text_normal = table[NK_COLOR_TEXT];
+ edit->text_hover = table[NK_COLOR_TEXT];
+ edit->text_active = table[NK_COLOR_TEXT];
+ edit->selected_normal = table[NK_COLOR_TEXT];
+ edit->selected_hover = table[NK_COLOR_TEXT];
+ edit->selected_text_normal = table[NK_COLOR_EDIT];
+ edit->selected_text_hover = table[NK_COLOR_EDIT];
+ edit->padding = nk_vec2(0,0);
+ edit->cursor_size = 8;
+ edit->border = 0;
+ edit->rounding = 0;
+
+ /* chart */
+ chart = &style->chart;
+ nk_zero_struct(*chart);
+ chart->background = nk_style_item_color(table[NK_COLOR_CHART]);
+ chart->border_color = table[NK_COLOR_BORDER];
+ chart->selected_color = table[NK_COLOR_CHART_COLOR_HIGHLIGHT];
+ chart->color = table[NK_COLOR_CHART_COLOR];
+ chart->padding = nk_vec2(4,4);
+ chart->border = 0;
+ chart->rounding = 0;
+
+ /* combo */
+ combo = &style->combo;
+ combo->normal = nk_style_item_color(table[NK_COLOR_COMBO]);
+ combo->hover = nk_style_item_color(table[NK_COLOR_COMBO]);
+ combo->active = nk_style_item_color(table[NK_COLOR_COMBO]);
+ combo->border_color = table[NK_COLOR_BORDER];
+ combo->label_normal = table[NK_COLOR_TEXT];
+ combo->label_hover = table[NK_COLOR_TEXT];
+ combo->label_active = table[NK_COLOR_TEXT];
+ combo->sym_normal = NK_SYMBOL_TRIANGLE_DOWN;
+ combo->sym_hover = NK_SYMBOL_TRIANGLE_DOWN;
+ combo->sym_active = NK_SYMBOL_TRIANGLE_DOWN;
+ combo->content_padding = nk_vec2(4,4);
+ combo->button_padding = nk_vec2(0,4);
+ combo->spacing = nk_vec2(4,0);
+ combo->border = 1;
+ combo->rounding = 0;
+
+ /* combo button */
+ button = &style->combo.button;
+ nk_zero_struct(*button);
+ button->normal = nk_style_item_color(table[NK_COLOR_COMBO]);
+ button->hover = nk_style_item_color(table[NK_COLOR_COMBO]);
+ button->active = nk_style_item_color(table[NK_COLOR_COMBO]);
+ button->border_color = nk_rgba(0,0,0,0);
+ button->text_background = table[NK_COLOR_COMBO];
+ button->text_normal = table[NK_COLOR_TEXT];
+ button->text_hover = table[NK_COLOR_TEXT];
+ button->text_active = table[NK_COLOR_TEXT];
+ button->padding = nk_vec2(2.0f,2.0f);
+ button->touch_padding = nk_vec2(0.0f,0.0f);
+ button->userdata = nk_handle_ptr(0);
+ button->text_alignment = NK_TEXT_CENTERED;
+ button->border = 0.0f;
+ button->rounding = 0.0f;
+ button->draw_begin = 0;
+ button->draw_end = 0;
+
+ /* tab */
+ tab = &style->tab;
+ tab->background = nk_style_item_color(table[NK_COLOR_TAB_HEADER]);
+ tab->border_color = table[NK_COLOR_BORDER];
+ tab->text = table[NK_COLOR_TEXT];
+ tab->sym_minimize = NK_SYMBOL_TRIANGLE_DOWN;
+ tab->sym_maximize = NK_SYMBOL_TRIANGLE_RIGHT;
+ tab->padding = nk_vec2(4,4);
+ tab->spacing = nk_vec2(4,4);
+ tab->border = 1;
+ tab->rounding = 0;
+
+ /* tab button */
+ button = &style->tab.tab_button;
+ nk_zero_struct(*button);
+ button->normal = nk_style_item_color(table[NK_COLOR_TAB_HEADER]);
+ button->hover = nk_style_item_color(table[NK_COLOR_TAB_HEADER]);
+ button->active = nk_style_item_color(table[NK_COLOR_TAB_HEADER]);
+ button->border_color = nk_rgba(0,0,0,0);
+ button->text_background = table[NK_COLOR_TAB_HEADER];
+ button->text_normal = table[NK_COLOR_TEXT];
+ button->text_hover = table[NK_COLOR_TEXT];
+ button->text_active = table[NK_COLOR_TEXT];
+ button->padding = nk_vec2(2.0f,2.0f);
+ button->touch_padding = nk_vec2(0.0f,0.0f);
+ button->userdata = nk_handle_ptr(0);
+ button->text_alignment = NK_TEXT_CENTERED;
+ button->border = 0.0f;
+ button->rounding = 0.0f;
+ button->draw_begin = 0;
+ button->draw_end = 0;
+
+ /* node button */
+ button = &style->tab.node_button;
+ nk_zero_struct(*button);
+ button->normal = nk_style_item_color(table[NK_COLOR_WINDOW]);
+ button->hover = nk_style_item_color(table[NK_COLOR_WINDOW]);
+ button->active = nk_style_item_color(table[NK_COLOR_WINDOW]);
+ button->border_color = nk_rgba(0,0,0,0);
+ button->text_background = table[NK_COLOR_TAB_HEADER];
+ button->text_normal = table[NK_COLOR_TEXT];
+ button->text_hover = table[NK_COLOR_TEXT];
+ button->text_active = table[NK_COLOR_TEXT];
+ button->padding = nk_vec2(2.0f,2.0f);
+ button->touch_padding = nk_vec2(0.0f,0.0f);
+ button->userdata = nk_handle_ptr(0);
+ button->text_alignment = NK_TEXT_CENTERED;
+ button->border = 0.0f;
+ button->rounding = 0.0f;
+ button->draw_begin = 0;
+ button->draw_end = 0;
+
+ /* window header */
+ win = &style->window;
+ win->header.align = NK_HEADER_RIGHT;
+ win->header.close_symbol = NK_SYMBOL_X;
+ win->header.minimize_symbol = NK_SYMBOL_MINUS;
+ win->header.maximize_symbol = NK_SYMBOL_PLUS;
+ win->header.normal = nk_style_item_color(table[NK_COLOR_HEADER]);
+ win->header.hover = nk_style_item_color(table[NK_COLOR_HEADER]);
+ win->header.active = nk_style_item_color(table[NK_COLOR_HEADER]);
+ win->header.label_normal = table[NK_COLOR_TEXT];
+ win->header.label_hover = table[NK_COLOR_TEXT];
+ win->header.label_active = table[NK_COLOR_TEXT];
+ win->header.label_padding = nk_vec2(4,4);
+ win->header.padding = nk_vec2(4,4);
+ win->header.spacing = nk_vec2(0,0);
+
+ /* window header close button */
+ button = &style->window.header.close_button;
+ nk_zero_struct(*button);
+ button->normal = nk_style_item_color(table[NK_COLOR_HEADER]);
+ button->hover = nk_style_item_color(table[NK_COLOR_HEADER]);
+ button->active = nk_style_item_color(table[NK_COLOR_HEADER]);
+ button->border_color = nk_rgba(0,0,0,0);
+ button->text_background = table[NK_COLOR_HEADER];
+ button->text_normal = table[NK_COLOR_TEXT];
+ button->text_hover = table[NK_COLOR_TEXT];
+ button->text_active = table[NK_COLOR_TEXT];
+ button->padding = nk_vec2(0.0f,0.0f);
+ button->touch_padding = nk_vec2(0.0f,0.0f);
+ button->userdata = nk_handle_ptr(0);
+ button->text_alignment = NK_TEXT_CENTERED;
+ button->border = 0.0f;
+ button->rounding = 0.0f;
+ button->draw_begin = 0;
+ button->draw_end = 0;
+
+ /* window header minimize button */
+ button = &style->window.header.minimize_button;
+ nk_zero_struct(*button);
+ button->normal = nk_style_item_color(table[NK_COLOR_HEADER]);
+ button->hover = nk_style_item_color(table[NK_COLOR_HEADER]);
+ button->active = nk_style_item_color(table[NK_COLOR_HEADER]);
+ button->border_color = nk_rgba(0,0,0,0);
+ button->text_background = table[NK_COLOR_HEADER];
+ button->text_normal = table[NK_COLOR_TEXT];
+ button->text_hover = table[NK_COLOR_TEXT];
+ button->text_active = table[NK_COLOR_TEXT];
+ button->padding = nk_vec2(0.0f,0.0f);
+ button->touch_padding = nk_vec2(0.0f,0.0f);
+ button->userdata = nk_handle_ptr(0);
+ button->text_alignment = NK_TEXT_CENTERED;
+ button->border = 0.0f;
+ button->rounding = 0.0f;
+ button->draw_begin = 0;
+ button->draw_end = 0;
+
+ /* window */
+ win->background = table[NK_COLOR_WINDOW];
+ win->fixed_background = nk_style_item_color(table[NK_COLOR_WINDOW]);
+ win->border_color = table[NK_COLOR_BORDER];
+ win->combo_border_color = table[NK_COLOR_BORDER];
+ win->contextual_border_color = table[NK_COLOR_BORDER];
+ win->menu_border_color = table[NK_COLOR_BORDER];
+ win->group_border_color = table[NK_COLOR_BORDER];
+ win->tooltip_border_color = table[NK_COLOR_BORDER];
+ win->scaler = nk_style_item_color(table[NK_COLOR_TEXT]);
+ win->footer_padding = nk_vec2(4,4);
+ win->rounding = 0.0f;
+ win->scaler_size = nk_vec2(16,16);
+ win->padding = nk_vec2(8,8);
+ win->spacing = nk_vec2(4,4);
+ win->scrollbar_size = nk_vec2(10,10);
+ win->min_size = nk_vec2(64,64);
+ win->combo_border = 1.0f;
+ win->contextual_border = 1.0f;
+ win->menu_border = 1.0f;
+ win->group_border = 1.0f;
+ win->tooltip_border = 1.0f;
+ win->border = 2.0f;
+}
+
+NK_API void
+nk_style_set_font(struct nk_context *ctx, const struct nk_user_font *font)
+{
+ struct nk_style *style;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ style = &ctx->style;
+ style->font = *font;
+}
+
+/* ===============================================================
+ *
+ * POOL
+ *
+ * ===============================================================*/
+#define NK_VALUE_PAGE_CAPACITY ((sizeof(struct nk_window) / sizeof(nk_uint)) / 2)
+struct nk_table {
+ unsigned int seq;
+ nk_hash keys[NK_VALUE_PAGE_CAPACITY];
+ nk_uint values[NK_VALUE_PAGE_CAPACITY];
+ struct nk_table *next, *prev;
+};
+
+union nk_page_data {
+ struct nk_table tbl;
+ struct nk_window win;
+};
+
+struct nk_page_element {
+ union nk_page_data data;
+ struct nk_page_element *next;
+ struct nk_page_element *prev;
+};
+
+struct nk_page {
+ unsigned size;
+ struct nk_page *next;
+ struct nk_page_element win[1];
+};
+
+struct nk_pool {
+ struct nk_allocator alloc;
+ enum nk_allocation_type type;
+ unsigned int page_count;
+ struct nk_page *pages;
+ struct nk_page_element *freelist;
+ unsigned capacity;
+ nk_size size;
+ nk_size cap;
+};
+
+NK_INTERN void
+nk_pool_init(struct nk_pool *pool, struct nk_allocator *alloc,
+ unsigned int capacity)
+{
+ nk_zero(pool, sizeof(*pool));
+ pool->alloc = *alloc;
+ pool->capacity = capacity;
+ pool->pages = 0;
+ pool->type = NK_BUFFER_DYNAMIC;
+}
+
+NK_INTERN void
+nk_pool_free(struct nk_pool *pool)
+{
+ struct nk_page *next;
+ struct nk_page *iter = pool->pages;
+ if (!pool) return;
+ if (pool->type == NK_BUFFER_FIXED) return;
+ while (iter) {
+ next = iter->next;
+ pool->alloc.free(pool->alloc.userdata, iter);
+ iter = next;
+ }
+}
+
+NK_INTERN void
+nk_pool_init_fixed(struct nk_pool *pool, void *memory, nk_size size)
+{
+ nk_zero(pool, sizeof(*pool));
+ NK_ASSERT(size >= sizeof(struct nk_page));
+ if (size < sizeof(struct nk_page)) return;
+ pool->capacity = (unsigned)(size - sizeof(struct nk_page)) / sizeof(struct nk_page_element);
+ pool->pages = (struct nk_page*)memory;
+ pool->type = NK_BUFFER_FIXED;
+ pool->size = size;
+}
+
+NK_INTERN struct nk_page_element*
+nk_pool_alloc(struct nk_pool *pool)
+{
+ if (!pool->pages || pool->pages->size >= pool->capacity) {
+ /* allocate new page */
+ struct nk_page *page;
+ if (pool->type == NK_BUFFER_FIXED) {
+ if (!pool->pages) {
+ NK_ASSERT(pool->pages);
+ return 0;
+ }
+ NK_ASSERT(pool->pages->size < pool->capacity);
+ return 0;
+ } else {
+ nk_size size = sizeof(struct nk_page);
+ size += NK_POOL_DEFAULT_CAPACITY * sizeof(union nk_page_data);
+ page = (struct nk_page*)pool->alloc.alloc(pool->alloc.userdata,0, size);
+ page->size = 0;
+ page->next = pool->pages;
+ pool->pages = page;
+ }
+ }
+ return &pool->pages->win[pool->pages->size++];
+}
+
+/* ===============================================================
+ *
+ * CONTEXT
+ *
+ * ===============================================================*/
+NK_INTERN void* nk_create_window(struct nk_context *ctx);
+NK_INTERN void nk_remove_window(struct nk_context*, struct nk_window*);
+NK_INTERN void nk_free_window(struct nk_context *ctx, struct nk_window *win);
+NK_INTERN void nk_free_table(struct nk_context *ctx, struct nk_table *tbl);
+NK_INTERN void nk_remove_table(struct nk_window *win, struct nk_table *tbl);
+
+NK_INTERN void
+nk_setup(struct nk_context *ctx, const struct nk_user_font *font)
+{
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+
+ nk_zero_struct(*ctx);
+ nk_style_default(ctx);
+ if (font) ctx->style.font = *font;
+#ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+ nk_draw_list_init(&ctx->draw_list);
+#endif
+}
+
+#ifdef NK_INCLUDE_DEFAULT_ALLOCATOR
+NK_API int
+nk_init_default(struct nk_context *ctx, const struct nk_user_font *font)
+{
+ struct nk_allocator alloc;
+ alloc.userdata.ptr = 0;
+ alloc.alloc = nk_malloc;
+ alloc.free = nk_mfree;
+ return nk_init(ctx, &alloc, font);
+}
+#endif
+
+NK_API int
+nk_init_fixed(struct nk_context *ctx, void *memory, nk_size size,
+ const struct nk_user_font *font)
+{
+ NK_ASSERT(memory);
+ if (!memory) return 0;
+ nk_setup(ctx, font);
+ nk_buffer_init_fixed(&ctx->memory, memory, size);
+ ctx->pool = 0;
+ return 1;
+}
+
+NK_API int
+nk_init_custom(struct nk_context *ctx, struct nk_buffer *cmds,
+ struct nk_buffer *pool, const struct nk_user_font *font)
+{
+ NK_ASSERT(cmds);
+ NK_ASSERT(pool);
+ if (!cmds || !pool) return 0;
+ nk_setup(ctx, font);
+ ctx->memory = *cmds;
+ if (pool->type == NK_BUFFER_FIXED) {
+ /* take memory from buffer and alloc fixed pool */
+ void *memory = pool->memory.ptr;
+ nk_size size = pool->memory.size;
+ ctx->pool = memory;
+ NK_ASSERT(size > sizeof(struct nk_pool));
+ size -= sizeof(struct nk_pool);
+ nk_pool_init_fixed((struct nk_pool*)ctx->pool,
+ (void*)((nk_byte*)ctx->pool+sizeof(struct nk_pool)), size);
+ } else {
+ /* create dynamic pool from buffer allocator */
+ struct nk_allocator *alloc = &pool->pool;
+ ctx->pool = alloc->alloc(alloc->userdata,0, sizeof(struct nk_pool));
+ nk_pool_init((struct nk_pool*)ctx->pool, alloc, NK_POOL_DEFAULT_CAPACITY);
+ }
+ return 1;
+}
+
+NK_API int
+nk_init(struct nk_context *ctx, struct nk_allocator *alloc,
+ const struct nk_user_font *font)
+{
+ NK_ASSERT(alloc);
+ if (!alloc) return 0;
+ nk_setup(ctx, font);
+ nk_buffer_init(&ctx->memory, alloc, NK_DEFAULT_COMMAND_BUFFER_SIZE);
+ ctx->pool = alloc->alloc(alloc->userdata,0, sizeof(struct nk_pool));
+ nk_pool_init((struct nk_pool*)ctx->pool, alloc, NK_POOL_DEFAULT_CAPACITY);
+ return 1;
+}
+
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+NK_API void
+nk_set_user_data(struct nk_context *ctx, nk_handle handle)
+{
+ if (!ctx) return;
+ ctx->userdata = handle;
+ if (ctx->current)
+ ctx->current->buffer.userdata = handle;
+}
+#endif
+
+NK_API void
+nk_free(struct nk_context *ctx)
+{
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ nk_buffer_free(&ctx->memory);
+ if (ctx->pool) {
+ struct nk_pool *pool = (struct nk_pool*)ctx->pool;
+ nk_pool_free(pool);
+ pool->alloc.free(pool->alloc.userdata, pool);
+ }
+
+ nk_zero(&ctx->input, sizeof(ctx->input));
+ nk_zero(&ctx->style, sizeof(ctx->style));
+ nk_zero(&ctx->memory, sizeof(ctx->memory));
+
+ ctx->seq = 0;
+ ctx->pool = 0;
+ ctx->build = 0;
+ ctx->begin = 0;
+ ctx->end = 0;
+ ctx->active = 0;
+ ctx->current = 0;
+ ctx->freelist = 0;
+ ctx->count = 0;
+}
+
+NK_API void
+nk_clear(struct nk_context *ctx)
+{
+ struct nk_window *iter;
+ struct nk_window *next;
+ NK_ASSERT(ctx);
+
+ if (!ctx) return;
+ if (ctx->pool)
+ nk_buffer_clear(&ctx->memory);
+ else nk_buffer_reset(&ctx->memory, NK_BUFFER_FRONT);
+
+ ctx->build = 0;
+ ctx->memory.calls = 0;
+ ctx->last_widget_state = 0;
+#ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+ nk_draw_list_clear(&ctx->draw_list);
+#endif
+
+ /* garbage collector */
+ iter = ctx->begin;
+ while (iter) {
+ /* make sure minimized windows do not get removed */
+ if (iter->flags & NK_WINDOW_MINIMIZED) {
+ iter = iter->next;
+ continue;
+ }
+
+ /* free unused popup windows */
+ if (iter->popup.win && iter->popup.win->seq != ctx->seq) {
+ nk_free_window(ctx, iter->popup.win);
+ iter->popup.win = 0;
+ }
+
+ {struct nk_table *n, *it = iter->tables;
+ while (it) {
+ /* remove unused window state tables */
+ n = it->next;
+ if (it->seq != ctx->seq) {
+ nk_remove_table(iter, it);
+ nk_zero(it, sizeof(union nk_page_data));
+ nk_free_table(ctx, it);
+ if (it == iter->tables)
+ iter->tables = n;
+ }
+ it = n;
+ }}
+
+ /* window itself is not used anymore so free */
+ if (iter->seq != ctx->seq || iter->flags & NK_WINDOW_HIDDEN) {
+ next = iter->next;
+ nk_remove_window(ctx, iter);
+ nk_free_window(ctx, iter);
+ iter = next;
+ } else iter = iter->next;
+ }
+ ctx->seq++;
+}
+
+/* ----------------------------------------------------------------
+ *
+ * BUFFERING
+ *
+ * ---------------------------------------------------------------*/
+NK_INTERN void
+nk_start(struct nk_context *ctx, struct nk_window *win)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(win);
+ if (!ctx || !win) return;
+ win->buffer.begin = ctx->memory.allocated;
+ win->buffer.end = win->buffer.begin;
+ win->buffer.last = win->buffer.begin;
+ win->buffer.clip = nk_null_rect;
+}
+
+NK_INTERN void
+nk_start_popup(struct nk_context *ctx, struct nk_window *win)
+{
+ struct nk_popup_buffer *buf;
+ struct nk_panel *iter;
+ NK_ASSERT(ctx);
+ NK_ASSERT(win);
+ if (!ctx || !win) return;
+
+ /* make sure to use the correct popup buffer*/
+ iter = win->layout;
+ while (iter->parent)
+ iter = iter->parent;
+
+ /* save buffer fill state for popup */
+ buf = &iter->popup_buffer;
+ buf->begin = win->buffer.end;
+ buf->end = win->buffer.end;
+ buf->parent = win->buffer.last;
+ buf->last = buf->begin;
+ buf->active = nk_true;
+}
+
+NK_INTERN void
+nk_finish_popup(struct nk_context *ctx, struct nk_window *win)
+{
+ struct nk_popup_buffer *buf;
+ struct nk_panel *iter;
+ NK_ASSERT(ctx);
+ NK_ASSERT(win);
+ if (!ctx || !win) return;
+
+ /* make sure to use the correct popup buffer*/
+ iter = win->layout;
+ while (iter->parent)
+ iter = iter->parent;
+
+ buf = &iter->popup_buffer;
+ buf->last = win->buffer.last;
+ buf->end = win->buffer.end;
+}
+
+NK_INTERN void
+nk_finish(struct nk_context *ctx, struct nk_window *win)
+{
+ struct nk_popup_buffer *buf;
+ struct nk_command *parent_last;
+ struct nk_command *sublast;
+ struct nk_command *last;
+ void *memory;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(win);
+ if (!ctx || !win) return;
+ win->buffer.end = ctx->memory.allocated;
+ if (!win->layout->popup_buffer.active) return;
+
+ /* from here this case is for popup windows */
+ buf = &win->layout->popup_buffer;
+ memory = ctx->memory.memory.ptr;
+
+ /* redirect the sub-window buffer to the end of the window command buffer */
+ parent_last = nk_ptr_add(struct nk_command, memory, buf->parent);
+ sublast = nk_ptr_add(struct nk_command, memory, buf->last);
+ last = nk_ptr_add(struct nk_command, memory, win->buffer.last);
+
+ parent_last->next = buf->end;
+ sublast->next = last->next;
+ last->next = buf->begin;
+ win->buffer.last = buf->last;
+ win->buffer.end = buf->end;
+ buf->active = nk_false;
+}
+
+NK_INTERN void
+nk_build(struct nk_context *ctx)
+{
+ struct nk_window *iter;
+ struct nk_window *next;
+ struct nk_command *cmd;
+ nk_byte *buffer;
+
+ iter = ctx->begin;
+ buffer = (nk_byte*)ctx->memory.memory.ptr;
+ while (iter != 0) {
+ next = iter->next;
+ if (iter->buffer.last == iter->buffer.begin || (iter->flags & NK_WINDOW_HIDDEN)) {
+ iter = next;
+ continue;
+ }
+ cmd = nk_ptr_add(struct nk_command, buffer, iter->buffer.last);
+ while (next && ((next->buffer.last == next->buffer.begin) ||
+ (next->flags & NK_WINDOW_HIDDEN)))
+ next = next->next; /* skip empty command buffers */
+
+ if (next) {
+ cmd->next = next->buffer.begin;
+ } else cmd->next = ctx->memory.allocated;
+ iter = next;
+ }
+}
+
+NK_API const struct nk_command*
+nk__begin(struct nk_context *ctx)
+{
+ struct nk_window *iter;
+ nk_byte *buffer;
+ NK_ASSERT(ctx);
+ if (!ctx) return 0;
+ if (!ctx->count) return 0;
+
+ /* build one command list out of all windows */
+ buffer = (nk_byte*)ctx->memory.memory.ptr;
+ if (!ctx->build) {
+ nk_build(ctx);
+ ctx->build = nk_true;
+ }
+
+ iter = ctx->begin;
+ while (iter && ((iter->buffer.begin == iter->buffer.end) || (iter->flags & NK_WINDOW_HIDDEN)))
+ iter = iter->next;
+ if (!iter) return 0;
+ return nk_ptr_add_const(struct nk_command, buffer, iter->buffer.begin);
+}
+
+NK_API const struct nk_command*
+nk__next(struct nk_context *ctx, const struct nk_command *cmd)
+{
+ nk_byte *buffer;
+ const struct nk_command *next;
+ NK_ASSERT(ctx);
+ if (!ctx || !cmd || !ctx->count) return 0;
+ if (cmd->next >= ctx->memory.allocated) return 0;
+ buffer = (nk_byte*)ctx->memory.memory.ptr;
+ next = nk_ptr_add_const(struct nk_command, buffer, cmd->next);
+ return next;
+}
+/* ----------------------------------------------------------------
+ *
+ * PAGE ELEMENT
+ *
+ * ---------------------------------------------------------------*/
+NK_INTERN struct nk_page_element*
+nk_create_page_element(struct nk_context *ctx)
+{
+ struct nk_page_element *elem;
+ if (ctx->freelist) {
+ /* unlink page element from free list */
+ elem = ctx->freelist;
+ ctx->freelist = elem->next;
+ } else if (ctx->pool) {
+ /* allocate page element from memory pool */
+ elem = nk_pool_alloc((struct nk_pool*)ctx->pool);
+ NK_ASSERT(elem);
+ if (!elem) return 0;
+ } else {
+ /* allocate new page element from the back of the fixed size memory buffer */
+ NK_STORAGE const nk_size size = sizeof(struct nk_page_element);
+ NK_STORAGE const nk_size align = NK_ALIGNOF(struct nk_page_element);
+ elem = (struct nk_page_element*)nk_buffer_alloc(&ctx->memory, NK_BUFFER_BACK, size, align);
+ NK_ASSERT(elem);
+ if (!elem) return 0;
+ }
+ nk_zero_struct(*elem);
+ elem->next = 0;
+ elem->prev = 0;
+ return elem;
+}
+
+NK_INTERN void
+nk_free_page_element(struct nk_context *ctx, struct nk_page_element *elem)
+{
+ /* link table into freelist */
+ if (!ctx->freelist) {
+ ctx->freelist = elem;
+ } else {
+ elem->next = ctx->freelist;
+ ctx->freelist = elem;
+ }
+}
+
+/* ----------------------------------------------------------------
+ *
+ * TABLES
+ *
+ * ---------------------------------------------------------------*/
+NK_INTERN struct nk_table*
+nk_create_table(struct nk_context *ctx)
+{
+ struct nk_page_element *elem = nk_create_page_element(ctx);
+ if (!elem) return 0;
+ return &elem->data.tbl;
+}
+
+NK_INTERN void
+nk_free_table(struct nk_context *ctx, struct nk_table *tbl)
+{
+ union nk_page_data *pd = NK_CONTAINER_OF(tbl, union nk_page_data, tbl);
+ struct nk_page_element *pe = NK_CONTAINER_OF(pd, struct nk_page_element, data);
+ nk_free_page_element(ctx, pe);
+}
+
+NK_INTERN void
+nk_push_table(struct nk_window *win, struct nk_table *tbl)
+{
+ if (!win->tables) {
+ win->tables = tbl;
+ tbl->next = 0;
+ tbl->prev = 0;
+ win->table_count = 1;
+ win->table_size = 1;
+ return;
+ }
+ win->tables->prev = tbl;
+ tbl->next = win->tables;
+ tbl->prev = 0;
+ win->tables = tbl;
+ win->table_count++;
+ win->table_size = 0;
+}
+
+NK_INTERN void
+nk_remove_table(struct nk_window *win, struct nk_table *tbl)
+{
+ if (win->tables == tbl)
+ win->tables = tbl->next;
+ if (tbl->next)
+ tbl->next->prev = tbl->prev;
+ if (tbl->prev)
+ tbl->prev->next = tbl->next;
+ tbl->next = 0;
+ tbl->prev = 0;
+}
+
+NK_INTERN nk_uint*
+nk_add_value(struct nk_context *ctx, struct nk_window *win,
+ nk_hash name, nk_uint value)
+{
+ if (!win->tables || win->table_size == NK_VALUE_PAGE_CAPACITY) {
+ struct nk_table *tbl = nk_create_table(ctx);
+ nk_push_table(win, tbl);
+ }
+ win->tables->seq = win->seq;
+ win->tables->keys[win->table_size] = name;
+ win->tables->values[win->table_size] = value;
+ return &win->tables->values[win->table_size++];
+}
+
+NK_INTERN nk_uint*
+nk_find_value(struct nk_window *win, nk_hash name)
+{
+ unsigned short size = win->table_size;
+ struct nk_table *iter = win->tables;
+ while (iter) {
+ unsigned short i = 0;
+ for (i = 0; i < size; ++i) {
+ if (iter->keys[i] == name) {
+ iter->seq = win->seq;
+ return &iter->values[i];
+ }
+ }
+ size = NK_VALUE_PAGE_CAPACITY;
+ iter = iter->next;
+ }
+ return 0;
+}
+
+/* ----------------------------------------------------------------
+ *
+ * WINDOW
+ *
+ * ---------------------------------------------------------------*/
+NK_INTERN int nk_panel_begin(struct nk_context *ctx, const char *title);
+NK_INTERN void nk_panel_end(struct nk_context *ctx);
+
+NK_INTERN void*
+nk_create_window(struct nk_context *ctx)
+{
+ struct nk_page_element *elem = nk_create_page_element(ctx);
+ if (!elem) return 0;
+ elem->data.win.seq = ctx->seq;
+ return &elem->data.win;
+}
+
+NK_INTERN void
+nk_free_window(struct nk_context *ctx, struct nk_window *win)
+{
+ /* unlink windows from list */
+ struct nk_table *n, *it = win->tables;
+ if (win->popup.win) {
+ nk_free_window(ctx, win->popup.win);
+ win->popup.win = 0;
+ }
+ win->next = 0;
+ win->prev = 0;
+
+ while (it) {
+ /*free window state tables */
+ n = it->next;
+ nk_remove_table(win, it);
+ nk_free_table(ctx, it);
+ if (it == win->tables)
+ win->tables = n;
+ it = n;
+ }
+
+ /* link windows into freelist */
+ {union nk_page_data *pd = NK_CONTAINER_OF(win, union nk_page_data, win);
+ struct nk_page_element *pe = NK_CONTAINER_OF(pd, struct nk_page_element, data);
+ nk_free_page_element(ctx, pe);}
+}
+
+NK_INTERN struct nk_window*
+nk_find_window(struct nk_context *ctx, nk_hash hash)
+{
+ struct nk_window *iter;
+ iter = ctx->begin;
+ while (iter) {
+ NK_ASSERT(iter != iter->next);
+ if (iter->name == hash)
+ return iter;
+ iter = iter->next;
+ }
+ return 0;
+}
+
+NK_INTERN void
+nk_insert_window(struct nk_context *ctx, struct nk_window *win)
+{
+ const struct nk_window *iter;
+ struct nk_window *end;
+ NK_ASSERT(ctx);
+ NK_ASSERT(win);
+ if (!win || !ctx) return;
+
+ iter = ctx->begin;
+ while (iter) {
+ NK_ASSERT(iter != iter->next);
+ NK_ASSERT(iter != win);
+ if (iter == win) return;
+ iter = iter->next;
+ }
+
+ if (!ctx->begin) {
+ win->next = 0;
+ win->prev = 0;
+ ctx->begin = win;
+ ctx->end = win;
+ ctx->count = 1;
+ return;
+ }
+
+ end = ctx->end;
+ end->flags |= NK_WINDOW_ROM;
+ end->next = win;
+ win->prev = ctx->end;
+ win->next = 0;
+ ctx->end = win;
+ ctx->count++;
+
+ ctx->active = ctx->end;
+ ctx->end->flags &= ~(nk_flags)NK_WINDOW_ROM;
+}
+
+NK_INTERN void
+nk_remove_window(struct nk_context *ctx, struct nk_window *win)
+{
+ if (win == ctx->begin || win == ctx->end) {
+ if (win == ctx->begin) {
+ ctx->begin = win->next;
+ if (win->next)
+ win->next->prev = 0;
+ }
+ if (win == ctx->end) {
+ ctx->end = win->prev;
+ if (win->prev)
+ win->prev->next = 0;
+ }
+ } else {
+ if (win->next)
+ win->next->prev = win->prev;
+ if (win->prev)
+ win->prev->next = win->next;
+ }
+ if (win == ctx->active || !ctx->active) {
+ ctx->active = ctx->end;
+ if (ctx->end)
+ ctx->end->flags &= ~(nk_flags)NK_WINDOW_ROM;
+ }
+ win->next = 0;
+ win->prev = 0;
+ ctx->count--;
+}
+
+NK_API int
+nk_begin(struct nk_context *ctx, struct nk_panel *layout, const char *title,
+ struct nk_rect bounds, nk_flags flags)
+{
+ struct nk_window *win;
+ struct nk_style *style;
+ nk_hash title_hash;
+ int title_len;
+ int ret = 0;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(!ctx->current && "if this triggers you missed a `nk_end` call");
+ if (!ctx || ctx->current || !title)
+ return 0;
+
+ /* find or create window */
+ style = &ctx->style;
+ title_len = (int)nk_strlen(title);
+ title_hash = nk_murmur_hash(title, (int)title_len, NK_WINDOW_TITLE);
+ win = nk_find_window(ctx, title_hash);
+ if (!win) {
+ /* create new window */
+ win = (struct nk_window*)nk_create_window(ctx);
+ NK_ASSERT(win);
+ if (!win) return 0;
+ nk_insert_window(ctx, win);
+ nk_command_buffer_init(&win->buffer, &ctx->memory, NK_CLIPPING_ON);
+
+ win->flags = flags;
+ win->bounds = bounds;
+ win->name = title_hash;
+ win->popup.win = 0;
+ if (!ctx->active)
+ ctx->active = win;
+ } else {
+ /* update public window flags */
+ win->flags &= ~(nk_flags)(NK_WINDOW_PRIVATE-1);
+ win->flags |= flags;
+ win->seq++;
+ if (!ctx->active)
+ ctx->active = win;
+ }
+ if (win->flags & NK_WINDOW_HIDDEN) {
+ ctx->current = win;
+ return 0;
+ }
+
+ /* window overlapping */
+ if (!(win->flags & NK_WINDOW_SUB) && !(win->flags & NK_WINDOW_HIDDEN))
+ {
+ int inpanel, ishovered;
+ const struct nk_window *iter = win;
+ float h = ctx->style.font.height + 2 * style->window.header.padding.y;
+
+ /* activate window if hovered and no other window is overlapping this window */
+ nk_start(ctx, win);
+ inpanel = nk_input_has_mouse_click_down_in_rect(&ctx->input, NK_BUTTON_LEFT, win->bounds, nk_true);
+ ishovered = nk_input_is_mouse_hovering_rect(&ctx->input, win->bounds);
+ if ((win != ctx->active) && ishovered) {
+ iter = win->next;
+ while (iter) {
+ if (!(iter->flags & NK_WINDOW_MINIMIZED)) {
+ if (NK_INTERSECT(win->bounds.x, win->bounds.y, win->bounds.w, win->bounds.h,
+ iter->bounds.x, iter->bounds.y, iter->bounds.w, iter->bounds.h) &&
+ !(iter->flags & NK_WINDOW_HIDDEN))
+ break;
+ } else {
+ if (NK_INTERSECT(win->bounds.x, win->bounds.y, win->bounds.w, win->bounds.h,
+ iter->bounds.x, iter->bounds.y, iter->bounds.w, h) &&
+ !(iter->flags & NK_WINDOW_HIDDEN))
+ break;
+ }
+ if (iter->popup.win && iter->popup.active && !(iter->flags & NK_WINDOW_HIDDEN) &&
+ NK_INTERSECT(win->bounds.x, win->bounds.y, win->bounds.w, win->bounds.h,
+ iter->popup.win->bounds.x, iter->popup.win->bounds.y,
+ iter->popup.win->bounds.w, iter->popup.win->bounds.h))
+ break;
+ iter = iter->next;
+ }
+ }
+
+ /* activate window if clicked */
+ if (iter && inpanel && (win != ctx->end)) {
+ iter = win->next;
+ while (iter) {
+ /* try to find a panel with higher priority in the same position */
+ if (!(iter->flags & NK_WINDOW_MINIMIZED)) {
+ if (NK_INBOX(ctx->input.mouse.pos.x, ctx->input.mouse.pos.y, iter->bounds.x,
+ iter->bounds.y, iter->bounds.w, iter->bounds.h) &&
+ !(iter->flags & NK_WINDOW_HIDDEN))
+ break;
+ } else {
+ if (NK_INBOX(ctx->input.mouse.pos.x, ctx->input.mouse.pos.y, iter->bounds.x,
+ iter->bounds.y, iter->bounds.w, h) &&
+ !(iter->flags & NK_WINDOW_HIDDEN))
+ break;
+ }
+ if (iter->popup.win && iter->popup.active && !(iter->flags & NK_WINDOW_HIDDEN) &&
+ NK_INTERSECT(win->bounds.x, win->bounds.y, win->bounds.w, win->bounds.h,
+ iter->popup.win->bounds.x, iter->popup.win->bounds.y,
+ iter->popup.win->bounds.w, iter->popup.win->bounds.h))
+ break;
+ iter = iter->next;
+ }
+ }
+
+ if (!iter && ctx->end != win) {
+ /* current window is active in that position so transfer to top
+ * at the highest priority in stack */
+ nk_remove_window(ctx, win);
+ nk_insert_window(ctx, win);
+
+ win->flags &= ~(nk_flags)NK_WINDOW_ROM;
+ ctx->active = win;
+ }
+ if (ctx->end != win)
+ win->flags |= NK_WINDOW_ROM;
+ }
+
+ win->layout = layout;
+ ctx->current = win;
+ ret = nk_panel_begin(ctx, title);
+ layout->offset = &win->scrollbar;
+ return ret;
+}
+
+NK_API void
+nk_end(struct nk_context *ctx)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current) return;
+ if (ctx->current->flags & NK_WINDOW_HIDDEN) {
+ ctx->current = 0;
+ return;
+ }
+ nk_panel_end(ctx);
+ ctx->current = 0;
+}
+
+NK_API struct nk_rect
+nk_window_get_bounds(const struct nk_context *ctx)
+{
+ NK_ASSERT(ctx); NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current) return nk_rect(0,0,0,0);
+ return ctx->current->bounds;
+}
+
+NK_API struct nk_vec2
+nk_window_get_position(const struct nk_context *ctx)
+{
+ NK_ASSERT(ctx); NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current) return nk_vec2(0,0);
+ return nk_vec2(ctx->current->bounds.x, ctx->current->bounds.y);
+}
+
+NK_API struct nk_vec2
+nk_window_get_size(const struct nk_context *ctx)
+{
+ NK_ASSERT(ctx); NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current) return nk_vec2(0,0);
+ return nk_vec2(ctx->current->bounds.w, ctx->current->bounds.h);
+}
+
+NK_API float
+nk_window_get_width(const struct nk_context *ctx)
+{
+ NK_ASSERT(ctx); NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current) return 0;
+ return ctx->current->bounds.w;
+}
+
+NK_API float
+nk_window_get_height(const struct nk_context *ctx)
+{
+ NK_ASSERT(ctx); NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current) return 0;
+ return ctx->current->bounds.h;
+}
+
+NK_API struct nk_rect
+nk_window_get_content_region(struct nk_context *ctx)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current) return nk_rect(0,0,0,0);
+ return ctx->current->layout->clip;
+}
+
+NK_API struct nk_vec2
+nk_window_get_content_region_min(struct nk_context *ctx)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current) return nk_vec2(0,0);
+ return nk_vec2(ctx->current->layout->clip.x, ctx->current->layout->clip.y);
+}
+
+NK_API struct nk_vec2
+nk_window_get_content_region_max(struct nk_context *ctx)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current) return nk_vec2(0,0);
+ return nk_vec2(ctx->current->layout->clip.x + ctx->current->layout->clip.w,
+ ctx->current->layout->clip.y + ctx->current->layout->clip.h);
+}
+
+NK_API struct nk_vec2
+nk_window_get_content_region_size(struct nk_context *ctx)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current) return nk_vec2(0,0);
+ return nk_vec2(ctx->current->layout->clip.w, ctx->current->layout->clip.h);
+}
+
+NK_API struct nk_command_buffer*
+nk_window_get_canvas(struct nk_context *ctx)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current) return 0;
+ return &ctx->current->buffer;
+}
+
+NK_API struct nk_panel*
+nk_window_get_panel(struct nk_context *ctx)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current) return 0;
+ return ctx->current->layout;
+}
+
+NK_API int
+nk_window_has_focus(const struct nk_context *ctx)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current) return 0;
+ return ctx->current == ctx->active;
+}
+
+NK_API int
+nk_window_is_hovered(struct nk_context *ctx)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current) return 0;
+ return nk_input_is_mouse_hovering_rect(&ctx->input, ctx->current->bounds);
+}
+
+NK_API int
+nk_window_is_any_hovered(struct nk_context *ctx)
+{
+ struct nk_window *iter;
+ NK_ASSERT(ctx);
+ if (!ctx) return 0;
+ iter = ctx->begin;
+ while (iter) {
+ /* check if window is being hovered */
+ if (iter->flags & NK_WINDOW_MINIMIZED) {
+ struct nk_rect header = iter->bounds;
+ header.h = ctx->style.font.height + 2 * ctx->style.window.header.padding.y;
+ if (nk_input_is_mouse_hovering_rect(&ctx->input, header))
+ return 1;
+ } else if (nk_input_is_mouse_hovering_rect(&ctx->input, iter->bounds)) {
+ return 1;
+ }
+ /* check if window is being hovered */
+ if (iter->popup.active && nk_input_is_mouse_hovering_rect(&ctx->input, iter->popup.win->bounds))
+ return 1;
+ iter = iter->next;
+ }
+ return 0;
+}
+
+NK_API int
+nk_item_is_any_active(struct nk_context *ctx)
+{
+ int any_hovered = nk_window_is_any_hovered(ctx);
+ int any_active = (ctx->last_widget_state & NK_WIDGET_STATE_MODIFIED);
+ return any_hovered || any_active;
+}
+
+NK_API int
+nk_window_is_collapsed(struct nk_context *ctx, const char *name)
+{
+ int title_len;
+ nk_hash title_hash;
+ struct nk_window *win;
+ NK_ASSERT(ctx);
+ if (!ctx) return 0;
+
+ title_len = (int)nk_strlen(name);
+ title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE);
+ win = nk_find_window(ctx, title_hash);
+ if (!win) return 0;
+ return win->flags & NK_WINDOW_MINIMIZED;
+}
+
+NK_API int
+nk_window_is_closed(struct nk_context *ctx, const char *name)
+{
+ int title_len;
+ nk_hash title_hash;
+ struct nk_window *win;
+ NK_ASSERT(ctx);
+ if (!ctx) return 1;
+
+ title_len = (int)nk_strlen(name);
+ title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE);
+ win = nk_find_window(ctx, title_hash);
+ if (!win) return 1;
+ return (win->flags & NK_WINDOW_HIDDEN);
+}
+
+NK_API int
+nk_window_is_active(struct nk_context *ctx, const char *name)
+{
+ int title_len;
+ nk_hash title_hash;
+ struct nk_window *win;
+ NK_ASSERT(ctx);
+ if (!ctx) return 0;
+
+ title_len = (int)nk_strlen(name);
+ title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE);
+ win = nk_find_window(ctx, title_hash);
+ if (!win) return 0;
+ return win == ctx->active;
+}
+
+NK_API struct nk_window*
+nk_window_find(struct nk_context *ctx, const char *name)
+{
+ int title_len;
+ nk_hash title_hash;
+ title_len = (int)nk_strlen(name);
+ title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE);
+ return nk_find_window(ctx, title_hash);
+}
+
+NK_API void
+nk_window_close(struct nk_context *ctx, const char *name)
+{
+ struct nk_window *win;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ win = nk_window_find(ctx, name);
+ if (!win) return;
+ NK_ASSERT(ctx->current != win && "You cannot close a currently active window");
+ if (ctx->current == win) return;
+ win->flags |= NK_WINDOW_HIDDEN;
+}
+
+NK_API void
+nk_window_set_bounds(struct nk_context *ctx, struct nk_rect bounds)
+{
+ NK_ASSERT(ctx); NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current) return;
+ ctx->current->bounds = bounds;
+}
+
+NK_API void
+nk_window_set_position(struct nk_context *ctx, struct nk_vec2 pos)
+{
+ NK_ASSERT(ctx); NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current) return;
+ ctx->current->bounds.x = pos.x;
+ ctx->current->bounds.y = pos.y;
+}
+
+NK_API void
+nk_window_set_size(struct nk_context *ctx, struct nk_vec2 size)
+{
+ NK_ASSERT(ctx); NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current) return;
+ ctx->current->bounds.w = size.x;
+ ctx->current->bounds.h = size.y;
+}
+
+NK_API void
+nk_window_collapse(struct nk_context *ctx, const char *name,
+ enum nk_collapse_states c)
+{
+ int title_len;
+ nk_hash title_hash;
+ struct nk_window *win;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+
+ title_len = (int)nk_strlen(name);
+ title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE);
+ win = nk_find_window(ctx, title_hash);
+ if (!win) return;
+ if (c == NK_MINIMIZED)
+ win->flags |= NK_WINDOW_MINIMIZED;
+ else win->flags &= ~(nk_flags)NK_WINDOW_MINIMIZED;
+}
+
+NK_API void
+nk_window_collapse_if(struct nk_context *ctx, const char *name,
+ enum nk_collapse_states c, int cond)
+{
+ NK_ASSERT(ctx);
+ if (!ctx || !cond) return;
+ nk_window_collapse(ctx, name, c);
+}
+
+NK_API void
+nk_window_show(struct nk_context *ctx, const char *name, enum nk_show_states s)
+{
+ int title_len;
+ nk_hash title_hash;
+ struct nk_window *win;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+
+ title_len = (int)nk_strlen(name);
+ title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE);
+ win = nk_find_window(ctx, title_hash);
+ if (!win) return;
+ if (s == NK_HIDDEN)
+ win->flags |= NK_WINDOW_HIDDEN;
+ else win->flags &= ~(nk_flags)NK_WINDOW_HIDDEN;
+}
+
+NK_API void
+nk_window_show_if(struct nk_context *ctx, const char *name,
+ enum nk_show_states s, int cond)
+{
+ NK_ASSERT(ctx);
+ if (!ctx || !cond) return;
+ nk_window_show(ctx, name, s);
+}
+
+NK_API void
+nk_window_set_focus(struct nk_context *ctx, const char *name)
+{
+ int title_len;
+ nk_hash title_hash;
+ struct nk_window *win;
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+
+ title_len = (int)nk_strlen(name);
+ title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE);
+ win = nk_find_window(ctx, title_hash);
+ if (win && ctx->end != win) {
+ nk_remove_window(ctx, win);
+ nk_insert_window(ctx, win);
+ }
+ ctx->active = win;
+}
+
+/*----------------------------------------------------------------
+ *
+ * PANEL
+ *
+ * --------------------------------------------------------------*/
+static int
+nk_window_has_header(struct nk_window *win, const char *title)
+{
+ /* window header state */
+ int active = 0;
+ active = (win->flags & (NK_WINDOW_CLOSABLE|NK_WINDOW_MINIMIZABLE));
+ active = active || (win->flags & NK_WINDOW_TITLE);
+ active = active && !(win->flags & NK_WINDOW_HIDDEN) && title;
+ return active;
+}
+
+NK_INTERN int
+nk_panel_begin(struct nk_context *ctx, const char *title)
+{
+ struct nk_input *in;
+ struct nk_window *win;
+ struct nk_panel *layout;
+ struct nk_command_buffer *out;
+ const struct nk_style *style;
+ const struct nk_user_font *font;
+
+ int header_active = 0;
+ struct nk_vec2 scrollbar_size;
+ struct nk_vec2 item_spacing;
+ struct nk_vec2 window_padding;
+ struct nk_vec2 scaler_size;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ style = &ctx->style;
+ font = &style->font;
+ in = &ctx->input;
+ win = ctx->current;
+ layout = win->layout;
+
+ /* cache style data */
+ scrollbar_size = style->window.scrollbar_size;
+ window_padding = style->window.padding;
+ item_spacing = style->window.spacing;
+ scaler_size = style->window.scaler_size;
+
+ /* check arguments */
+ nk_zero(layout, sizeof(*layout));
+ if (win->flags & NK_WINDOW_HIDDEN)
+ return 0;
+
+#ifdef NK_INCLUDE_COMMAND_USERDATA
+ win->buffer.userdata = ctx->userdata;
+#endif
+
+ /* window dragging */
+ if ((win->flags & NK_WINDOW_MOVABLE) && !(win->flags & NK_WINDOW_ROM)) {
+ int left_mouse_down;
+ int left_mouse_click_in_cursor;
+ struct nk_rect move;
+ move.x = win->bounds.x;
+ move.y = win->bounds.y;
+ move.w = win->bounds.w;
+
+ move.h = layout->header_h;
+ if (nk_window_has_header(win, title)) {
+ move.h = font->height + 2.0f * style->window.header.padding.y;
+ move.h += 2.0f * style->window.header.label_padding.y;
+ } else move.h = window_padding.y + item_spacing.y;
+
+ /*incursor = nk_input_is_mouse_prev_hovering_rect(in, move);*/
+ left_mouse_down = in->mouse.buttons[NK_BUTTON_LEFT].down;
+ left_mouse_click_in_cursor = nk_input_has_mouse_click_down_in_rect(in,
+ NK_BUTTON_LEFT, move, nk_true);
+
+ if (left_mouse_down && left_mouse_click_in_cursor) {
+ win->bounds.x = win->bounds.x + in->mouse.delta.x;
+ win->bounds.y = win->bounds.y + in->mouse.delta.y;
+ in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.x += in->mouse.delta.x;
+ in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.y += in->mouse.delta.y;
+ }
+ }
+
+ /* panel space with border */
+ if (win->flags & NK_WINDOW_BORDER) {
+ if (!(win->flags & NK_WINDOW_SUB))
+ layout->bounds = nk_shrink_rect(win->bounds, style->window.border);
+ else if (win->flags & NK_WINDOW_COMBO)
+ layout->bounds = nk_shrink_rect(win->bounds, style->window.combo_border);
+ else if (win->flags & NK_WINDOW_CONTEXTUAL)
+ layout->bounds = nk_shrink_rect(win->bounds, style->window.contextual_border);
+ else if (win->flags & NK_WINDOW_MENU)
+ layout->bounds = nk_shrink_rect(win->bounds, style->window.menu_border);
+ else if (win->flags & NK_WINDOW_GROUP)
+ layout->bounds = nk_shrink_rect(win->bounds, style->window.group_border);
+ else if (win->flags & NK_WINDOW_TOOLTIP)
+ layout->bounds = nk_shrink_rect(win->bounds, style->window.tooltip_border);
+ else layout->bounds = nk_shrink_rect(win->bounds, style->window.border);
+ } else layout->bounds = win->bounds;
+
+ /* setup panel */
+ layout->border = layout->bounds.x - win->bounds.x;
+ layout->at_x = layout->bounds.x;
+ layout->at_y = layout->bounds.y;
+ layout->width = layout->bounds.w;
+ layout->height = layout->bounds.h;
+ layout->max_x = 0;
+ layout->row.index = 0;
+ layout->row.columns = 0;
+ layout->row.height = 0;
+ layout->row.ratio = 0;
+ layout->row.item_width = 0;
+ layout->row.tree_depth = 0;
+ layout->flags = win->flags;
+ out = &win->buffer;
+
+ /* calculate window header */
+ if (win->flags & NK_WINDOW_MINIMIZED) {
+ layout->header_h = 0;
+ layout->row.height = 0;
+ } else {
+ layout->header_h = 0;
+ layout->row.height = item_spacing.y + window_padding.y;
+ }
+
+ /* calculate window footer height */
+ if (!(win->flags & NK_WINDOW_NONBLOCK) &&
+ (!(win->flags & NK_WINDOW_NO_SCROLLBAR) || (win->flags & NK_WINDOW_SCALABLE)))
+ layout->footer_h = scaler_size.y + style->window.footer_padding.y;
+ else layout->footer_h = 0;
+
+ /* calculate the window size */
+ if (!(win->flags & NK_WINDOW_NO_SCROLLBAR))
+ layout->width = layout->bounds.w - scrollbar_size.x;
+ layout->height = layout->bounds.h - (layout->header_h + item_spacing.y + window_padding.y);
+ layout->height -= layout->footer_h;
+
+ /* window header */
+ header_active = nk_window_has_header(win, title);
+ if (header_active)
+ {
+ struct nk_rect header;
+ struct nk_rect button;
+ struct nk_text text;
+ const struct nk_style_item *background = 0;
+
+ /* calculate header bounds */
+ header.x = layout->bounds.x;
+ header.y = layout->bounds.y;
+ header.w = layout->bounds.w;
+
+ /* calculate correct header height */
+ layout->header_h = font->height + 2.0f * style->window.header.padding.y;
+ layout->header_h += 2.0f * style->window.header.label_padding.y;
+ layout->row.height += layout->header_h;
+ header.h = layout->header_h + 0.5f;
+
+ /* update window height */
+ layout->height = layout->bounds.h - (header.h + 2 * item_spacing.y);
+ layout->height -= layout->footer_h;
+
+ /* select correct header background and text color */
+ if (ctx->active == win) {
+ background = &style->window.header.active;
+ text.text = style->window.header.label_active;
+ } else if (nk_input_is_mouse_hovering_rect(&ctx->input, header)) {
+ background = &style->window.header.hover;
+ text.text = style->window.header.label_hover;
+ } else {
+ background = &style->window.header.normal;
+ text.text = style->window.header.label_normal;
+ }
+
+ /* draw header background */
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ text.background = nk_rgba(0,0,0,0);
+ nk_draw_image(&win->buffer, header, &background->data.image);
+ } else {
+ text.background = background->data.color;
+ nk_fill_rect(out, nk_rect(layout->bounds.x, layout->bounds.y,
+ layout->bounds.w, layout->header_h), 0, background->data.color);
+ }
+
+ /* window close button */
+ button.y = header.y + style->window.header.padding.y;
+ button.h = layout->header_h - 2 * style->window.header.padding.y;
+ button.w = button.h;
+ if (win->flags & NK_WINDOW_CLOSABLE) {
+ nk_flags ws = 0;
+ if (style->window.header.align == NK_HEADER_RIGHT) {
+ button.x = (header.w + header.x) - (button.w + style->window.header.padding.x);
+ header.w -= button.w + style->window.header.spacing.x + style->window.header.padding.x;
+ } else {
+ button.x = header.x + style->window.header.padding.x;
+ header.x += button.w + style->window.header.spacing.x + style->window.header.padding.x;
+ }
+ if (nk_do_button_symbol(&ws, &win->buffer, button,
+ style->window.header.close_symbol, NK_BUTTON_DEFAULT,
+ &style->window.header.close_button, in, &style->font))
+ layout->flags |= NK_WINDOW_HIDDEN;
+ }
+
+ /* window minimize button */
+ if (win->flags & NK_WINDOW_MINIMIZABLE) {
+ nk_flags ws = 0;
+ if (style->window.header.align == NK_HEADER_RIGHT) {
+ button.x = (header.w + header.x) - button.w;
+ if (!(win->flags & NK_WINDOW_CLOSABLE)) {
+ button.x -= style->window.header.padding.x;
+ header.w -= style->window.header.padding.x;
+ }
+ header.w -= button.w + style->window.header.spacing.x;
+ } else {
+ button.x = header.x;
+ header.x += button.w + style->window.header.spacing.x + style->window.header.padding.x;
+ }
+ if (nk_do_button_symbol(&ws, &win->buffer, button,
+ (layout->flags & NK_WINDOW_MINIMIZED)?
+ style->window.header.maximize_symbol:
+ style->window.header.minimize_symbol,
+ NK_BUTTON_DEFAULT, &style->window.header.minimize_button, in, &style->font))
+ layout->flags = (layout->flags & NK_WINDOW_MINIMIZED) ?
+ layout->flags & (nk_flags)~NK_WINDOW_MINIMIZED:
+ layout->flags | NK_WINDOW_MINIMIZED;
+ }
+ {
+ /* window header title */
+ int text_len = nk_strlen(title);
+ struct nk_rect label = {0,0,0,0};
+ float t = font->width(font->userdata, font->height, title, text_len);
+
+ label.x = header.x + style->window.header.padding.x;
+ label.x += style->window.header.label_padding.x;
+ label.y = header.y + style->window.header.label_padding.y;
+ label.h = font->height + 2 * style->window.header.label_padding.y;
+ label.w = t + 2 * style->window.header.spacing.x;
+ text.padding = nk_vec2(0,0);
+ nk_widget_text(out, label,(const char*)title, text_len, &text,
+ NK_TEXT_LEFT, font);
+ }
+ }
+
+ /* fix header height for transition between minimized and maximized window state */
+ if (win->flags & NK_WINDOW_MINIMIZED && !(layout->flags & NK_WINDOW_MINIMIZED))
+ layout->row.height += 2 * item_spacing.y + style->window.border;
+
+ if (layout->flags & NK_WINDOW_MINIMIZED) {
+ /* draw window background if minimized */
+ layout->row.height = 0;
+ nk_fill_rect(out, nk_rect(layout->bounds.x, layout->bounds.y,
+ layout->bounds.w, layout->row.height), 0, style->window.background);
+ } else if (!(layout->flags & NK_WINDOW_DYNAMIC)) {
+ /* draw fixed window body */
+ struct nk_rect body = layout->bounds;
+ if (header_active) {
+ body.y += layout->header_h - 0.5f;
+ body.h -= layout->header_h;
+ }
+ if (style->window.fixed_background.type == NK_STYLE_ITEM_IMAGE)
+ nk_draw_image(out, body, &style->window.fixed_background.data.image);
+ else nk_fill_rect(out, body, 0, style->window.fixed_background.data.color);
+ } else {
+ /* draw dynamic window body */
+ nk_fill_rect(out, nk_rect(layout->bounds.x, layout->bounds.y,
+ layout->bounds.w, layout->row.height + window_padding.y), 0,
+ style->window.background);
+ }
+ {
+ /* calculate and set the window clipping rectangle*/
+ struct nk_rect clip;
+ if (!(win->flags & NK_WINDOW_DYNAMIC)) {
+ layout->clip.x = layout->bounds.x + window_padding.x;
+ layout->clip.w = layout->width - 2 * window_padding.x;
+ } else {
+ layout->clip.x = layout->bounds.x;
+ layout->clip.w = layout->width;
+ }
+
+ layout->clip.h = layout->bounds.h - (layout->footer_h + layout->header_h);
+ layout->clip.h -= (2.0f * window_padding.y);
+ layout->clip.y = layout->bounds.y;
+
+ /* combo box and menu do not have header space */
+ if (!(win->flags & NK_WINDOW_COMBO) && !(win->flags & NK_WINDOW_MENU))
+ layout->clip.y += layout->header_h;
+
+ nk_unify(&clip, &win->buffer.clip, layout->clip.x, layout->clip.y,
+ layout->clip.x + layout->clip.w, layout->clip.y + layout->clip.h);
+ nk_push_scissor(out, clip);
+ layout->clip = clip;
+
+ win->buffer.clip.x = layout->bounds.x;
+ win->buffer.clip.w = layout->width;
+ if (!(win->flags & NK_WINDOW_NO_SCROLLBAR))
+ win->buffer.clip.w += scrollbar_size.x;
+ }
+ return !(layout->flags & NK_WINDOW_HIDDEN) && !(layout->flags & NK_WINDOW_MINIMIZED);
+}
+
+NK_INTERN void
+nk_panel_end(struct nk_context *ctx)
+{
+ struct nk_input *in;
+ struct nk_window *window;
+ struct nk_panel *layout;
+ const struct nk_style *style;
+ struct nk_command_buffer *out;
+
+ struct nk_vec2 scrollbar_size;
+ struct nk_vec2 scaler_size;
+ struct nk_vec2 item_spacing;
+ struct nk_vec2 window_padding;
+ struct nk_rect footer = {0,0,0,0};
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ window = ctx->current;
+ layout = window->layout;
+ style = &ctx->style;
+ out = &window->buffer;
+ in = (layout->flags & NK_WINDOW_ROM) ? 0 :&ctx->input;
+ if (!(layout->flags & NK_WINDOW_SUB))
+ nk_push_scissor(out, nk_null_rect);
+
+ /* cache configuration data */
+ item_spacing = style->window.spacing;
+ window_padding = style->window.padding;
+ scrollbar_size = style->window.scrollbar_size;
+ scaler_size = style->window.scaler_size;
+
+ /* update the current cursor Y-position to point over the last added widget */
+ layout->at_y += layout->row.height;
+
+ /* draw footer and fill empty spaces inside a dynamically growing panel */
+ if (layout->flags & NK_WINDOW_DYNAMIC && !(layout->flags & NK_WINDOW_MINIMIZED)) {
+ layout->height = layout->at_y - layout->bounds.y;
+ layout->height = NK_MIN(layout->height, layout->bounds.h);
+
+ if ((layout->offset->x == 0) || (layout->flags & NK_WINDOW_NO_SCROLLBAR)) {
+ /* special case for dynamic windows without horizontal scrollbar
+ * or hidden scrollbars */
+ footer.x = window->bounds.x;
+ footer.y = window->bounds.y + layout->height + item_spacing.y;
+ footer.w = window->bounds.w + scrollbar_size.x;
+ layout->footer_h = 0;
+ footer.h = 0;
+
+ if ((layout->offset->x == 0) && !(layout->flags & NK_WINDOW_NO_SCROLLBAR)) {
+ /* special case for windows like combobox, menu require draw call
+ * to fill the empty scrollbar background */
+ struct nk_rect bounds;
+ bounds.x = layout->bounds.x + layout->width;
+ bounds.y = layout->clip.y;
+ bounds.w = scrollbar_size.x;
+ bounds.h = layout->height;
+ nk_fill_rect(out, bounds, 0, style->window.background);
+ }
+ } else {
+ /* dynamic window with visible scrollbars and therefore bigger footer */
+ footer.x = window->bounds.x;
+ footer.w = window->bounds.w + scrollbar_size.x;
+ footer.h = layout->footer_h;
+ if ((layout->flags & NK_WINDOW_COMBO) || (layout->flags & NK_WINDOW_MENU) ||
+ (layout->flags & NK_WINDOW_CONTEXTUAL))
+ footer.y = window->bounds.y + layout->height;
+ else footer.y = window->bounds.y + layout->height + layout->footer_h;
+ nk_fill_rect(out, footer, 0, style->window.background);
+
+ if (!(layout->flags & NK_WINDOW_COMBO) && !(layout->flags & NK_WINDOW_MENU)) {
+ /* fill empty scrollbar space */
+ struct nk_rect bounds;
+ bounds.x = layout->bounds.x;
+ bounds.y = window->bounds.y + layout->height;
+ bounds.w = layout->bounds.w;
+ bounds.h = layout->row.height;
+ nk_fill_rect(out, bounds, 0, style->window.background);
+ }
+ }
+ }
+
+ /* scrollbars */
+ if (!(layout->flags & NK_WINDOW_NO_SCROLLBAR) && !(layout->flags & NK_WINDOW_MINIMIZED))
+ {
+ struct nk_rect bounds;
+ int scroll_has_scrolling;
+ float scroll_target;
+ float scroll_offset;
+ float scroll_step;
+ float scroll_inc;
+ {
+ /* vertical scrollbar */
+ nk_flags state = 0;
+ bounds.x = layout->bounds.x + layout->width;
+ bounds.y = layout->clip.y;
+ bounds.w = scrollbar_size.y;
+ bounds.h = layout->clip.h;
+ if (layout->flags & NK_WINDOW_BORDER) bounds.h -= 1;
+
+ scroll_offset = layout->offset->y;
+ scroll_step = layout->clip.h * 0.10f;
+ scroll_inc = layout->clip.h * 0.01f;
+ scroll_target = (float)(int)(layout->at_y - layout->clip.y);
+ scroll_has_scrolling = (window == ctx->active);
+ scroll_offset = nk_do_scrollbarv(&state, out, bounds, scroll_has_scrolling,
+ scroll_offset, scroll_target, scroll_step, scroll_inc,
+ &ctx->style.scrollv, in, &style->font);
+ layout->offset->y = (unsigned short)scroll_offset;
+ }
+ {
+ /* horizontal scrollbar */
+ nk_flags state = 0;
+ bounds.x = layout->bounds.x + window_padding.x;
+ if (layout->flags & NK_WINDOW_SUB) {
+ bounds.h = scrollbar_size.x;
+ bounds.y = (layout->flags & NK_WINDOW_BORDER) ?
+ layout->bounds.y + 1 : layout->bounds.y;
+ bounds.y += layout->header_h + layout->menu.h + layout->height;
+ bounds.w = layout->clip.w;
+ } else if (layout->flags & NK_WINDOW_DYNAMIC) {
+ bounds.h = NK_MIN(scrollbar_size.x, layout->footer_h);
+ bounds.w = layout->bounds.w;
+ bounds.y = footer.y;
+ } else {
+ bounds.h = NK_MIN(scrollbar_size.x, layout->footer_h);
+ bounds.y = layout->bounds.y + window->bounds.h;
+ bounds.y -= NK_MAX(layout->footer_h, scrollbar_size.x);
+ bounds.w = layout->width - 2 * window_padding.x;
+ }
+ scroll_offset = layout->offset->x;
+ scroll_target = (float)(int)(layout->max_x - bounds.x);
+ scroll_step = layout->max_x * 0.05f;
+ scroll_inc = layout->max_x * 0.005f;
+ scroll_has_scrolling = nk_false;
+ scroll_offset = nk_do_scrollbarh(&state, out, bounds, scroll_has_scrolling,
+ scroll_offset, scroll_target, scroll_step, scroll_inc,
+ &ctx->style.scrollh, in, &style->font);
+ layout->offset->x = (unsigned short)scroll_offset;
+ }
+ }
+
+ /* scaler */
+ if ((layout->flags & NK_WINDOW_SCALABLE) && in && !(layout->flags & NK_WINDOW_MINIMIZED)) {
+ /* calculate scaler bounds */
+ const struct nk_style_item *scaler;
+ float scaler_w = NK_MAX(0, scaler_size.x - window_padding.x);
+ float scaler_h = NK_MAX(0, scaler_size.y - window_padding.y);
+ float scaler_x = (layout->bounds.x + layout->bounds.w) - (window_padding.x + scaler_w);
+ float scaler_y;
+
+ if (layout->flags & NK_WINDOW_DYNAMIC)
+ scaler_y = footer.y + layout->footer_h - scaler_size.y;
+ else scaler_y = layout->bounds.y + layout->bounds.h - scaler_size.y;
+
+ /* draw scaler */
+ scaler = &style->window.scaler;
+ if (scaler->type == NK_STYLE_ITEM_IMAGE) {
+ nk_draw_image(out, nk_rect(scaler_x, scaler_y, scaler_w, scaler_h),
+ &scaler->data.image);
+ } else {
+ nk_fill_triangle(out, scaler_x + scaler_w, scaler_y, scaler_x + scaler_w,
+ scaler_y + scaler_h, scaler_x, scaler_y + scaler_h, scaler->data.color);
+ }
+
+ /* do window scaling */
+ if (!(window->flags & NK_WINDOW_ROM)) {
+ struct nk_vec2 delta;
+ float prev_x = in->mouse.prev.x;
+ float prev_y = in->mouse.prev.y;
+ struct nk_vec2 window_size = style->window.min_size;
+ int incursor = NK_INBOX(prev_x,prev_y,scaler_x,scaler_y,scaler_w,scaler_h);
+
+ if (nk_input_is_mouse_down(in, NK_BUTTON_LEFT) &&
+ (incursor || window->scaling.active == nk_true))
+ {
+ if(window->scaling.active == nk_false)
+ window->scaling.start_size = nk_rect_size(window->bounds);
+ window->scaling.active = nk_true;
+
+ if (!in || !in->mouse.buttons[NK_BUTTON_LEFT].down)
+ delta = nk_vec2(0,0);
+ else delta = nk_vec2_sub(in->mouse.pos, in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos);
+ window->bounds.w = NK_MAX(window_size.x, window->scaling.start_size.x + delta.x);
+
+ /* dragging in y-direction is only possible if static window */
+ if (!(layout->flags & NK_WINDOW_DYNAMIC))
+ window->bounds.h = NK_MAX(window->scaling.start_size.y + delta.y, window_size.y);
+ } else window->scaling.active = nk_false;
+ }
+ }
+
+ /* window border */
+ if (layout->flags & NK_WINDOW_BORDER)
+ {
+ const float padding_y = (layout->flags & NK_WINDOW_MINIMIZED) ?
+ 2.0f*style->window.border + window->bounds.y + layout->header_h:
+ (layout->flags & NK_WINDOW_DYNAMIC)?
+ layout->footer_h + footer.y:
+ layout->bounds.y + layout->bounds.h;
+
+ /* select correct border color */
+ struct nk_color border;
+ if (!(layout->flags & NK_WINDOW_SUB))
+ border = style->window.border_color;
+ else if (layout->flags & NK_WINDOW_COMBO)
+ border = style->window.combo_border_color;
+ else if (layout->flags & NK_WINDOW_CONTEXTUAL)
+ border = style->window.contextual_border_color;
+ else if (layout->flags & NK_WINDOW_MENU)
+ border = style->window.menu_border_color;
+ else if (layout->flags & NK_WINDOW_GROUP)
+ border = style->window.group_border_color;
+ else if (layout->flags & NK_WINDOW_TOOLTIP)
+ border = style->window.tooltip_border_color;
+ else border = style->window.border_color;
+
+ /* draw border between header and window body */
+ if (window->flags & NK_WINDOW_BORDER_HEADER)
+ nk_stroke_line(out, window->bounds.x + layout->border/2.0f,
+ window->bounds.y + layout->header_h - layout->border,
+ window->bounds.x + window->bounds.w - layout->border,
+ window->bounds.y + layout->header_h - layout->border,
+ layout->border, border);
+
+ /* draw border top */
+ nk_stroke_line(out, window->bounds.x + layout->border/2.0f,
+ window->bounds.y + layout->border/2.0f,
+ window->bounds.x + window->bounds.w - layout->border,
+ window->bounds.y + layout->border/2.0f,
+ layout->border, border);
+
+ /* draw bottom border */
+ nk_stroke_line(out, window->bounds.x + layout->border/2.0f,
+ padding_y - layout->border,
+ window->bounds.x + window->bounds.w - layout->border,
+ padding_y - layout->border,
+ layout->border, border);
+
+ /* draw left border */
+ nk_stroke_line(out, window->bounds.x + layout->border/2.0f,
+ window->bounds.y + layout->border/2.0f, window->bounds.x + layout->border/2.0f,
+ padding_y - layout->border, layout->border, border);
+
+ /* draw right border */
+ nk_stroke_line(out, window->bounds.x + window->bounds.w - layout->border,
+ window->bounds.y + layout->border/2.0f,
+ window->bounds.x + window->bounds.w - layout->border,
+ padding_y - layout->border, layout->border, border);
+ }
+
+ if (!(window->flags & NK_WINDOW_SUB)) {
+ /* window is hidden so clear command buffer */
+ if (layout->flags & NK_WINDOW_HIDDEN)
+ nk_command_buffer_reset(&window->buffer);
+ /* window is visible and not tab */
+ else nk_finish(ctx, window);
+ }
+
+ /* NK_WINDOW_REMOVE_ROM flag was set so remove NK_WINDOW_ROM */
+ if (layout->flags & NK_WINDOW_REMOVE_ROM) {
+ layout->flags &= ~(nk_flags)NK_WINDOW_ROM;
+ layout->flags &= ~(nk_flags)NK_WINDOW_REMOVE_ROM;
+ }
+ window->flags = layout->flags;
+
+ /* property garbage collector */
+ if (window->property.active && window->property.old != window->property.seq &&
+ window->property.active == window->property.prev) {
+ nk_zero(&window->property, sizeof(window->property));
+ } else {
+ window->property.old = window->property.seq;
+ window->property.prev = window->property.active;
+ window->property.seq = 0;
+ }
+
+ /* edit garbage collector */
+ if (window->edit.active && window->edit.old != window->edit.seq &&
+ window->edit.active == window->edit.prev) {
+ nk_zero(&window->edit, sizeof(window->edit));
+ } else {
+ window->edit.old = window->edit.seq;
+ window->edit.prev = window->edit.active;
+ window->edit.seq = 0;
+ }
+
+ /* contextual garbage collector */
+ if (window->popup.active_con && window->popup.con_old != window->popup.con_count) {
+ window->popup.con_count = 0;
+ window->popup.con_old = 0;
+ window->popup.active_con = 0;
+ } else {
+ window->popup.con_old = window->popup.con_count;
+ window->popup.con_count = 0;
+ }
+ window->popup.combo_count = 0;
+ /* helper to make sure you have a 'nk_tree_push'
+ * for every 'nk_tree_pop' */
+ NK_ASSERT(!layout->row.tree_depth);
+}
+
+NK_API void
+nk_menubar_begin(struct nk_context *ctx)
+{
+ struct nk_panel *layout;
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ layout = ctx->current->layout;
+ if (layout->flags & NK_WINDOW_HIDDEN || layout->flags & NK_WINDOW_MINIMIZED)
+ return;
+
+ layout->menu.x = layout->at_x;
+ layout->menu.y = layout->bounds.y + layout->header_h;
+ layout->menu.w = layout->width;
+ layout->menu.offset = *layout->offset;
+ layout->offset->y = 0;
+}
+
+NK_API void
+nk_menubar_end(struct nk_context *ctx)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ struct nk_command_buffer *out;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ win = ctx->current;
+ layout = win->layout;
+ if (!ctx || layout->flags & NK_WINDOW_HIDDEN || layout->flags & NK_WINDOW_MINIMIZED)
+ return;
+
+ out = &win->buffer;
+ layout->menu.h = layout->at_y - layout->menu.y;
+ layout->clip.y = layout->bounds.y + layout->header_h + layout->menu.h + layout->row.height;
+ layout->height -= layout->menu.h;
+ *layout->offset = layout->menu.offset;
+ layout->clip.h -= layout->menu.h + layout->row.height;
+ layout->at_y = layout->menu.y + layout->menu.h;
+ nk_push_scissor(out, layout->clip);
+}
+/* -------------------------------------------------------------
+ *
+ * LAYOUT
+ *
+ * --------------------------------------------------------------*/
+#define NK_LAYOUT_DYNAMIC_FIXED 0
+#define NK_LAYOUT_DYNAMIC_ROW 1
+#define NK_LAYOUT_DYNAMIC_FREE 2
+#define NK_LAYOUT_DYNAMIC 3
+#define NK_LAYOUT_STATIC_FIXED 4
+#define NK_LAYOUT_STATIC_ROW 5
+#define NK_LAYOUT_STATIC_FREE 6
+#define NK_LAYOUT_STATIC 7
+
+NK_INTERN void
+nk_panel_layout(const struct nk_context *ctx, struct nk_window *win,
+ float height, int cols)
+{
+ struct nk_panel *layout;
+ const struct nk_style *style;
+ struct nk_command_buffer *out;
+
+ struct nk_vec2 item_spacing;
+ struct nk_vec2 panel_padding;
+ struct nk_color color;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ /* prefetch some configuration data */
+ layout = win->layout;
+ style = &ctx->style;
+ out = &win->buffer;
+ color = style->window.background;
+ item_spacing = style->window.spacing;
+ panel_padding = style->window.padding;
+
+ /* update the current row and set the current row layout */
+ layout->row.index = 0;
+ layout->at_y += layout->row.height;
+ layout->row.columns = cols;
+ layout->row.height = height + item_spacing.y;
+ layout->row.item_offset = 0;
+ if (layout->flags & NK_WINDOW_DYNAMIC)
+ nk_fill_rect(out, nk_rect(layout->bounds.x, layout->at_y,
+ layout->bounds.w, height + panel_padding.y), 0, color);
+}
+
+NK_INTERN void
+nk_row_layout(struct nk_context *ctx, enum nk_layout_format fmt,
+ float height, int cols, int width)
+{
+ /* update the current row and set the current row layout */
+ struct nk_window *win;
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ win = ctx->current;
+ nk_panel_layout(ctx, win, height, cols);
+ if (fmt == NK_DYNAMIC)
+ win->layout->row.type = NK_LAYOUT_DYNAMIC_FIXED;
+ else win->layout->row.type = NK_LAYOUT_STATIC_FIXED;
+
+ win->layout->row.item_width = (float)width;
+ win->layout->row.ratio = 0;
+ win->layout->row.item_offset = 0;
+ win->layout->row.filled = 0;
+}
+
+NK_API void
+nk_layout_row_dynamic(struct nk_context *ctx, float height, int cols)
+{
+ nk_row_layout(ctx, NK_DYNAMIC, height, cols, 0);
+}
+
+NK_API void
+nk_layout_row_static(struct nk_context *ctx, float height, int item_width, int cols)
+{
+ nk_row_layout(ctx, NK_STATIC, height, cols, item_width);
+}
+
+NK_API void
+nk_layout_row_begin(struct nk_context *ctx, enum nk_layout_format fmt,
+ float row_height, int cols)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ win = ctx->current;
+ layout = win->layout;
+
+ nk_panel_layout(ctx, win, row_height, cols);
+ if (fmt == NK_DYNAMIC)
+ layout->row.type = NK_LAYOUT_DYNAMIC_ROW;
+ else layout->row.type = NK_LAYOUT_STATIC_ROW;
+
+ layout->row.ratio = 0;
+ layout->row.item_width = 0;
+ layout->row.item_offset = 0;
+ layout->row.filled = 0;
+ layout->row.columns = cols;
+}
+
+NK_API void
+nk_layout_row_push(struct nk_context *ctx, float ratio_or_width)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ win = ctx->current;
+ layout = win->layout;
+
+ if (layout->row.type == NK_LAYOUT_DYNAMIC_ROW) {
+ float ratio = ratio_or_width;
+ if ((ratio + layout->row.filled) > 1.0f) return;
+ if (ratio > 0.0f)
+ layout->row.item_width = NK_SATURATE(ratio);
+ else layout->row.item_width = 1.0f - layout->row.filled;
+ } else layout->row.item_width = ratio_or_width;
+}
+
+NK_API void
+nk_layout_row_end(struct nk_context *ctx)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ win = ctx->current;
+ layout = win->layout;
+ layout->row.item_width = 0;
+ layout->row.item_offset = 0;
+}
+
+NK_API void
+nk_layout_row(struct nk_context *ctx, enum nk_layout_format fmt,
+ float height, int cols, const float *ratio)
+{
+ int i;
+ int n_undef = 0;
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ win = ctx->current;
+ layout = win->layout;
+ nk_panel_layout(ctx, win, height, cols);
+ if (fmt == NK_DYNAMIC) {
+ /* calculate width of undefined widget ratios */
+ float r = 0;
+ layout->row.ratio = ratio;
+ for (i = 0; i < cols; ++i) {
+ if (ratio[i] < 0.0f)
+ n_undef++;
+ else r += ratio[i];
+ }
+ r = NK_SATURATE(1.0f - r);
+ layout->row.type = NK_LAYOUT_DYNAMIC;
+ layout->row.item_width = (r > 0 && n_undef > 0) ? (r / (float)n_undef):0;
+ } else {
+ layout->row.ratio = ratio;
+ layout->row.type = NK_LAYOUT_STATIC;
+ layout->row.item_width = 0;
+ layout->row.item_offset = 0;
+ }
+ layout->row.item_offset = 0;
+ layout->row.filled = 0;
+}
+
+NK_API void
+nk_layout_space_begin(struct nk_context *ctx, enum nk_layout_format fmt,
+ float height, int widget_count)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ win = ctx->current;
+ layout = win->layout;
+ nk_panel_layout(ctx, win, height, widget_count);
+ if (fmt == NK_STATIC)
+ layout->row.type = NK_LAYOUT_STATIC_FREE;
+ else layout->row.type = NK_LAYOUT_DYNAMIC_FREE;
+
+ layout->row.ratio = 0;
+ layout->row.item_width = 0;
+ layout->row.item_offset = 0;
+ layout->row.filled = 0;
+}
+
+NK_API void
+nk_layout_space_end(struct nk_context *ctx)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ win = ctx->current;
+ layout = win->layout;
+ layout->row.item_width = 0;
+ layout->row.item_height = 0;
+ layout->row.item_offset = 0;
+ nk_zero(&layout->row.item, sizeof(layout->row.item));
+}
+
+NK_API void
+nk_layout_space_push(struct nk_context *ctx, struct nk_rect rect)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ win = ctx->current;
+ layout = win->layout;
+ layout->row.item = rect;
+}
+
+NK_API struct nk_rect
+nk_layout_space_bounds(struct nk_context *ctx)
+{
+ struct nk_rect ret;
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ win = ctx->current;
+ layout = win->layout;
+
+ ret.x = layout->clip.x;
+ ret.y = layout->clip.y;
+ ret.w = layout->clip.w;
+ ret.h = layout->row.height;
+ return ret;
+}
+
+NK_API struct nk_vec2
+nk_layout_space_to_screen(struct nk_context *ctx, struct nk_vec2 ret)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ win = ctx->current;
+ layout = win->layout;
+
+ ret.x += layout->at_x - layout->offset->x;
+ ret.y += layout->at_y - layout->offset->y;
+ return ret;
+}
+
+NK_API struct nk_vec2
+nk_layout_space_to_local(struct nk_context *ctx, struct nk_vec2 ret)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ win = ctx->current;
+ layout = win->layout;
+
+ ret.x += -layout->at_x + layout->offset->x;
+ ret.y += -layout->at_y + layout->offset->y;
+ return ret;
+}
+
+NK_API struct nk_rect
+nk_layout_space_rect_to_screen(struct nk_context *ctx, struct nk_rect ret)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ win = ctx->current;
+ layout = win->layout;
+
+ ret.x += layout->at_x - layout->offset->x;
+ ret.y += layout->at_y - layout->offset->y;
+ return ret;
+}
+
+NK_API struct nk_rect
+nk_layout_space_rect_to_local(struct nk_context *ctx, struct nk_rect ret)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ win = ctx->current;
+ layout = win->layout;
+
+ ret.x += -layout->at_x + layout->offset->x;
+ ret.y += -layout->at_y + layout->offset->y;
+ return ret;
+}
+
+NK_INTERN void
+nk_panel_alloc_row(const struct nk_context *ctx, struct nk_window *win)
+{
+ struct nk_panel *layout = win->layout;
+ struct nk_vec2 spacing = ctx->style.window.spacing;
+ const float row_height = layout->row.height - spacing.y;
+ nk_panel_layout(ctx, win, row_height, layout->row.columns);
+}
+
+NK_INTERN void
+nk_layout_widget_space(struct nk_rect *bounds, const struct nk_context *ctx,
+ struct nk_window *win, int modify)
+{
+ struct nk_panel *layout;
+ float item_offset = 0;
+ float item_width = 0;
+ float item_spacing = 0;
+
+ float panel_padding;
+ float panel_spacing;
+ float panel_space;
+
+ struct nk_vec2 spacing;
+ struct nk_vec2 padding;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ win = ctx->current;
+ layout = win->layout;
+ NK_ASSERT(bounds);
+
+ /* cache some configuration data */
+ spacing = ctx->style.window.spacing;
+ padding = ctx->style.window.padding;
+
+ /* calculate the usable panel space */
+ panel_padding = 2 * padding.x;
+ panel_spacing = (float)(layout->row.columns - 1) * spacing.x;
+ panel_space = layout->width - panel_padding - panel_spacing;
+
+ /* calculate the width of one item inside the current layout space */
+ switch (layout->row.type) {
+ case NK_LAYOUT_DYNAMIC_FIXED: {
+ /* scaling fixed size widgets item width */
+ item_width = panel_space / (float)layout->row.columns;
+ item_offset = (float)layout->row.index * item_width;
+ item_spacing = (float)layout->row.index * spacing.x;
+ } break;
+ case NK_LAYOUT_DYNAMIC_ROW: {
+ /* scaling single ratio widget width */
+ item_width = layout->row.item_width * panel_space;
+ item_offset = layout->row.item_offset;
+ item_spacing = (float)layout->row.index * spacing.x;
+
+ if (modify) {
+ layout->row.item_offset += item_width + spacing.x;
+ layout->row.filled += layout->row.item_width;
+ layout->row.index = 0;
+ }
+ } break;
+ case NK_LAYOUT_DYNAMIC_FREE: {
+ /* panel width depended free widget placing */
+ bounds->x = layout->at_x + (layout->width * layout->row.item.x);
+ bounds->x -= layout->offset->x;
+ bounds->y = layout->at_y + (layout->row.height * layout->row.item.y);
+ bounds->y -= layout->offset->y;
+ bounds->w = layout->width * layout->row.item.w;
+ bounds->h = layout->row.height * layout->row.item.h;
+ return;
+ };
+ case NK_LAYOUT_DYNAMIC: {
+ /* scaling arrays of panel width ratios for every widget */
+ float ratio;
+ NK_ASSERT(layout->row.ratio);
+ ratio = (layout->row.ratio[layout->row.index] < 0) ?
+ layout->row.item_width : layout->row.ratio[layout->row.index];
+
+ item_spacing = (float)layout->row.index * spacing.x;
+ item_width = (ratio * panel_space);
+ item_offset = layout->row.item_offset;
+ if (modify) {
+ layout->row.item_offset += item_width;
+ layout->row.filled += ratio;
+ }
+ } break;
+ case NK_LAYOUT_STATIC_FIXED: {
+ /* non-scaling fixed widgets item width */
+ item_width = layout->row.item_width;
+ item_offset = (float)layout->row.index * item_width;
+ item_spacing = (float)layout->row.index * spacing.x;
+ } break;
+ case NK_LAYOUT_STATIC_ROW: {
+ /* scaling single ratio widget width */
+ item_width = layout->row.item_width;
+ item_offset = layout->row.item_offset;
+ item_spacing = (float)layout->row.index * spacing.x;
+ if (modify) {
+ layout->row.item_offset += item_width;
+ layout->row.index = 0;
+ }
+ } break;
+ case NK_LAYOUT_STATIC_FREE: {
+ /* free widget placing */
+ bounds->x = layout->at_x + layout->row.item.x;
+ bounds->w = layout->row.item.w;
+ if (((bounds->x + bounds->w) > layout->max_x) && modify)
+ layout->max_x = (bounds->x + bounds->w);
+ bounds->x -= layout->offset->x;
+ bounds->y = layout->at_y + layout->row.item.y;
+ bounds->y -= layout->offset->y;
+ bounds->h = layout->row.item.h;
+ return;
+ };
+ case NK_LAYOUT_STATIC: {
+ /* non-scaling array of panel pixel width for every widget */
+ item_spacing = (float)layout->row.index * spacing.x;
+ item_width = layout->row.ratio[layout->row.index];
+ item_offset = layout->row.item_offset;
+ if (modify) layout->row.item_offset += item_width;
+ } break;
+ default: NK_ASSERT(0); break;
+ };
+
+ /* set the bounds of the newly allocated widget */
+ bounds->w = item_width;
+ bounds->h = layout->row.height - spacing.y;
+ bounds->y = layout->at_y - layout->offset->y;
+ bounds->x = layout->at_x + item_offset + item_spacing + padding.x;
+ if (((bounds->x + bounds->w) > layout->max_x) && modify)
+ layout->max_x = bounds->x + bounds->w;
+ bounds->x -= layout->offset->x;
+}
+
+NK_INTERN void
+nk_panel_alloc_space(struct nk_rect *bounds, const struct nk_context *ctx)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ /* check if the end of the row has been hit and begin new row if so */
+ win = ctx->current;
+ layout = win->layout;
+ if (layout->row.index >= layout->row.columns)
+ nk_panel_alloc_row(ctx, win);
+
+ /* calculate widget position and size */
+ nk_layout_widget_space(bounds, ctx, win, nk_true);
+ layout->row.index++;
+}
+
+NK_INTERN void
+nk_layout_peek(struct nk_rect *bounds, struct nk_context *ctx)
+{
+ float y;
+ int index;
+ struct nk_window *win;
+ struct nk_panel *layout;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ win = ctx->current;
+ layout = win->layout;
+ y = layout->at_y;
+ index = layout->row.index;
+ if (layout->row.index >= layout->row.columns) {
+ layout->at_y += layout->row.height;
+ layout->row.index = 0;
+ }
+ nk_layout_widget_space(bounds, ctx, win, nk_false);
+ layout->at_y = y;
+ layout->row.index = index;
+}
+
+NK_INTERN int
+nk_tree_base(struct nk_context *ctx, enum nk_tree_type type,
+ struct nk_image *img, const char *title, enum nk_collapse_states initial_state,
+ const char *hash, int len, int line)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_style *style;
+ struct nk_command_buffer *out;
+ const struct nk_input *in;
+
+ struct nk_vec2 item_spacing;
+ struct nk_vec2 panel_padding;
+ struct nk_rect header = {0,0,0,0};
+ struct nk_rect sym = {0,0,0,0};
+ struct nk_text text;
+
+ nk_flags ws = 0;
+ int title_len = 0;
+ nk_hash title_hash = 0;
+ nk_uint *state = 0;
+ enum nk_widget_layout_states widget_state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ /* cache some data */
+ win = ctx->current;
+ layout = win->layout;
+ out = &win->buffer;
+ style = &ctx->style;
+
+ item_spacing = style->window.spacing;
+ panel_padding = style->window.padding;
+
+ /* calculate header bounds and draw background */
+ nk_layout_row_dynamic(ctx, style->font.height + 2 * style->tab.padding.y, 1);
+ widget_state = nk_widget(&header, ctx);
+ if (type == NK_TREE_TAB) {
+ const struct nk_style_item *background = &style->tab.background;
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ nk_draw_image(out, header, &background->data.image);
+ text.background = nk_rgba(0,0,0,0);
+ } else {
+ text.background = background->data.color;
+ nk_fill_rect(out, header, 0, style->tab.border_color);
+ nk_fill_rect(out, nk_shrink_rect(header, style->tab.border),
+ style->tab.rounding, background->data.color);
+ }
+ } else text.background = style->window.background;
+
+ /* find, create or set tab persistent state (open/closed) */
+ title_len = (int)nk_strlen(title);
+ title_hash = nk_murmur_hash(title, (int)title_len, (nk_hash)type);
+ if (hash) title_hash += nk_murmur_hash(hash, len, (nk_hash)line);
+ state = nk_find_value(win, title_hash);
+ if (!state) {
+ state = nk_add_value(ctx, win, title_hash, 0);
+ *state = initial_state;
+ }
+
+ /* update node state */
+ in = (!(layout->flags & NK_WINDOW_ROM)) ? &ctx->input: 0;
+ in = (in && widget_state == NK_WIDGET_VALID) ? &ctx->input : 0;
+ if (nk_button_behavior(&ws, header, in, NK_BUTTON_DEFAULT))
+ *state = (*state == NK_MAXIMIZED) ? NK_MINIMIZED : NK_MAXIMIZED;
+
+ {/* draw triangle button */
+ sym.w = sym.h = style->font.height;
+ sym.y = header.y + style->tab.padding.y;
+ sym.x = header.x + panel_padding.x + style->tab.padding.x;
+ nk_do_button_symbol(&ws, &win->buffer, sym,
+ (*state == NK_MAXIMIZED)? style->tab.sym_minimize: style->tab.sym_maximize,
+ NK_BUTTON_DEFAULT, (type == NK_TREE_TAB)?
+ &style->tab.tab_button: &style->tab.node_button, 0, &style->font);
+
+ if (img) {
+ /* draw optional image icon */
+ sym.x = sym.x + sym.w + 4 * item_spacing.x;
+ nk_draw_image(&win->buffer, sym, img);
+ sym.w = style->font.height + style->tab.spacing.x;}
+ }
+
+ {/* draw label */
+ struct nk_rect label;
+ header.w = NK_MAX(header.w, sym.w + item_spacing.x + panel_padding.x);
+ label.x = sym.x + sym.w + item_spacing.x;
+ label.y = sym.y;
+ label.w = header.w - (sym.w + item_spacing.y + panel_padding.x);
+ label.h = style->font.height;
+ text.text = style->tab.text;
+ text.padding = nk_vec2(0,0);
+ nk_widget_text(out, label, title, nk_strlen(title), &text,
+ NK_TEXT_LEFT, &style->font);}
+
+ /* increase x-axis cursor widget position pointer */
+ if (*state == NK_MAXIMIZED) {
+ layout->at_x = header.x + layout->offset->x;
+ layout->width = NK_MAX(layout->width, 2 * panel_padding.x);
+ layout->width -= 2 * panel_padding.x;
+ layout->row.tree_depth++;
+ return nk_true;
+ } else return nk_false;
+}
+
+NK_API int
+nk_tree_push_hashed(struct nk_context *ctx, enum nk_tree_type type,
+ const char *title, enum nk_collapse_states initial_state,
+ const char *hash, int len, int line)
+{return nk_tree_base(ctx, type, 0, title, initial_state, hash, len, line);}
+
+NK_API int
+nk_tree_image_push_hashed(struct nk_context *ctx, enum nk_tree_type type,
+ struct nk_image img, const char *title, enum nk_collapse_states initial_state,
+ const char *hash, int len,int seed)
+{return nk_tree_base(ctx, type, &img, title, initial_state, hash, len, seed);}
+
+NK_API void
+nk_tree_pop(struct nk_context *ctx)
+{
+ struct nk_vec2 panel_padding;
+ struct nk_window *win = 0;
+ struct nk_panel *layout = 0;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ win = ctx->current;
+ layout = win->layout;
+ panel_padding = ctx->style.window.padding;
+ layout->at_x -= panel_padding.x;
+ layout->width += 2 * panel_padding.x;
+ NK_ASSERT(layout->row.tree_depth);
+ layout->row.tree_depth--;
+}
+/*----------------------------------------------------------------
+ *
+ * WIDGETS
+ *
+ * --------------------------------------------------------------*/
+NK_API struct nk_rect
+nk_widget_bounds(struct nk_context *ctx)
+{
+ struct nk_rect bounds;
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current)
+ return nk_rect(0,0,0,0);
+ nk_layout_peek(&bounds, ctx);
+ return bounds;
+}
+
+NK_API struct nk_vec2
+nk_widget_position(struct nk_context *ctx)
+{
+ struct nk_rect bounds;
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current)
+ return nk_vec2(0,0);
+
+ nk_layout_peek(&bounds, ctx);
+ return nk_vec2(bounds.x, bounds.y);
+}
+
+NK_API struct nk_vec2
+nk_widget_size(struct nk_context *ctx)
+{
+ struct nk_rect bounds;
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current)
+ return nk_vec2(0,0);
+
+ nk_layout_peek(&bounds, ctx);
+ return nk_vec2(bounds.w, bounds.h);
+}
+
+NK_API int
+nk_widget_is_hovered(struct nk_context *ctx)
+{
+ int ret;
+ struct nk_rect bounds;
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current)
+ return 0;
+
+ nk_layout_peek(&bounds, ctx);
+ ret = (ctx->active == ctx->current);
+ ret = ret && nk_input_is_mouse_hovering_rect(&ctx->input, bounds);
+ return ret;
+}
+
+NK_API int
+nk_widget_is_mouse_clicked(struct nk_context *ctx, enum nk_buttons btn)
+{
+ int ret;
+ struct nk_rect bounds;
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current)
+ return 0;
+
+ nk_layout_peek(&bounds, ctx);
+ ret = (ctx->active == ctx->current);
+ ret = ret && nk_input_mouse_clicked(&ctx->input, btn, bounds);
+ return ret;
+}
+
+NK_API int
+nk_widget_has_mouse_click_down(struct nk_context *ctx, enum nk_buttons btn, int down)
+{
+ int ret;
+ struct nk_rect bounds;
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current)
+ return 0;
+
+ nk_layout_peek(&bounds, ctx);
+ ret = (ctx->active == ctx->current);
+ ret = ret && nk_input_has_mouse_click_down_in_rect(&ctx->input, btn, bounds, down);
+ return ret;
+}
+
+NK_API enum nk_widget_layout_states
+nk_widget(struct nk_rect *bounds, const struct nk_context *ctx)
+{
+ struct nk_rect *c = 0;
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return NK_WIDGET_INVALID;
+
+ /* allocate space and check if the widget needs to be updated and drawn */
+ nk_panel_alloc_space(bounds, ctx);
+ c = &ctx->current->layout->clip;
+ if (!NK_INTERSECT(c->x, c->y, c->w, c->h, bounds->x, bounds->y, bounds->w, bounds->h))
+ return NK_WIDGET_INVALID;
+ if (!NK_CONTAINS(bounds->x, bounds->y, bounds->w, bounds->h, c->x, c->y, c->w, c->h))
+ return NK_WIDGET_ROM;
+ return NK_WIDGET_VALID;
+}
+
+NK_API enum nk_widget_layout_states
+nk_widget_fitting(struct nk_rect *bounds, struct nk_context *ctx,
+ struct nk_vec2 item_padding)
+{
+ /* update the bounds to stand without padding */
+ struct nk_window *win;
+ struct nk_style *style;
+ struct nk_panel *layout;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return NK_WIDGET_INVALID;
+
+ win = ctx->current;
+ style = &ctx->style;
+ layout = win->layout;
+ state = nk_widget(bounds, ctx);
+ if (layout->row.index == 1) {
+ bounds->w += style->window.padding.x;
+ bounds->x -= style->window.padding.x;
+ } else bounds->x -= item_padding.x;
+
+ if (layout->row.index == layout->row.columns)
+ bounds->w += style->window.padding.x;
+ else bounds->w += item_padding.x;
+ return state;
+}
+
+/*----------------------------------------------------------------
+ *
+ * MISC
+ *
+ * --------------------------------------------------------------*/
+NK_API void
+nk_spacing(struct nk_context *ctx, int cols)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ struct nk_rect nil;
+ int i, index, rows;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ /* spacing over row boundaries */
+ win = ctx->current;
+ layout = win->layout;
+ index = (layout->row.index + cols) % layout->row.columns;
+ rows = (layout->row.index + cols) / layout->row.columns;
+ if (rows) {
+ for (i = 0; i < rows; ++i)
+ nk_panel_alloc_row(ctx, win);
+ cols = index;
+ }
+
+ /* non table layout need to allocate space */
+ if (layout->row.type != NK_LAYOUT_DYNAMIC_FIXED &&
+ layout->row.type != NK_LAYOUT_STATIC_FIXED) {
+ for (i = 0; i < cols; ++i)
+ nk_panel_alloc_space(&nil, ctx);
+ }
+ layout->row.index = index;
+}
+
+/*----------------------------------------------------------------
+ *
+ * TEXT
+ *
+ * --------------------------------------------------------------*/
+NK_API void
+nk_text_colored(struct nk_context *ctx, const char *str, int len,
+ nk_flags alignment, struct nk_color color)
+{
+ struct nk_window *win;
+ const struct nk_style *style;
+
+ struct nk_vec2 item_padding;
+ struct nk_rect bounds;
+ struct nk_text text;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout) return;
+
+ win = ctx->current;
+ style = &ctx->style;
+ nk_panel_alloc_space(&bounds, ctx);
+ item_padding = style->text.padding;
+
+ text.padding.x = item_padding.x;
+ text.padding.y = item_padding.y;
+ text.background = style->window.background;
+ text.text = color;
+ nk_widget_text(&win->buffer, bounds, str, len, &text, alignment, &style->font);
+}
+
+NK_API void
+nk_text_wrap_colored(struct nk_context *ctx, const char *str,
+ int len, struct nk_color color)
+{
+ struct nk_window *win;
+ const struct nk_style *style;
+
+ struct nk_vec2 item_padding;
+ struct nk_rect bounds;
+ struct nk_text text;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout) return;
+
+ win = ctx->current;
+ style = &ctx->style;
+ nk_panel_alloc_space(&bounds, ctx);
+ item_padding = style->text.padding;
+
+ text.padding.x = item_padding.x;
+ text.padding.y = item_padding.y;
+ text.background = style->window.background;
+ text.text = color;
+ nk_widget_text_wrap(&win->buffer, bounds, str, len, &text, &style->font);
+}
+
+#ifdef NK_INCLUDE_STANDARD_IO
+NK_API void
+nk_labelf_colored(struct nk_context *ctx, nk_flags flags,
+ struct nk_color color, const char *fmt, ...)
+{
+ char buf[256];
+ va_list args;
+ va_start(args, fmt);
+ nk_strfmtv(buf, NK_LEN(buf), fmt, args);
+ nk_label_colored(ctx, buf, flags, color);
+ va_end(args);
+}
+
+NK_API void
+nk_labelf_colored_wrap(struct nk_context *ctx, struct nk_color color,
+ const char *fmt, ...)
+{
+ char buf[256];
+ va_list args;
+ va_start(args, fmt);
+ nk_strfmtv(buf, NK_LEN(buf), fmt, args);
+ nk_label_colored_wrap(ctx, buf, color);
+ va_end(args);
+}
+
+NK_API void
+nk_labelf(struct nk_context *ctx, nk_flags flags, const char *fmt, ...)
+{
+ char buf[256];
+ va_list args;
+ va_start(args, fmt);
+ nk_strfmtv(buf, NK_LEN(buf), fmt, args);
+ nk_label(ctx, buf, flags);
+ va_end(args);
+}
+
+NK_API void
+nk_labelf_wrap(struct nk_context *ctx, const char *fmt,...)
+{
+ char buf[256];
+ va_list args;
+ va_start(args, fmt);
+ nk_strfmtv(buf, NK_LEN(buf), fmt, args);
+ nk_label_wrap(ctx, buf);
+ va_end(args);
+}
+
+NK_API void
+nk_value_bool(struct nk_context *ctx, const char *prefix, int value)
+{nk_labelf(ctx, NK_TEXT_LEFT, "%s: %s", prefix, ((value) ? "true": "false"));}
+
+NK_API void
+nk_value_int(struct nk_context *ctx, const char *prefix, int value)
+{nk_labelf(ctx, NK_TEXT_LEFT, "%s: %d", prefix, value);}
+
+NK_API void
+nk_value_uint(struct nk_context *ctx, const char *prefix, unsigned int value)
+{nk_labelf(ctx, NK_TEXT_LEFT, "%s: %u", prefix, value);}
+
+NK_API void
+nk_value_float(struct nk_context *ctx, const char *prefix, float value)
+{nk_labelf(ctx, NK_TEXT_LEFT, "%s: %.3f", prefix, value);}
+
+NK_API void
+nk_value_color_byte(struct nk_context *ctx, const char *p, struct nk_color c)
+{nk_labelf(ctx, NK_TEXT_LEFT, "%s: (%c, %c, %c, %c)", p, c.r, c.g, c.b, c.a);}
+
+NK_API void
+nk_value_color_float(struct nk_context *ctx, const char *p, struct nk_color color)
+{
+ float c[4]; nk_color_fv(c, color);
+ nk_labelf(ctx, NK_TEXT_LEFT, "%s: (%.2f, %.2f, %.2f, %.2f)",
+ p, c[0], c[1], c[2], c[3]);
+}
+
+NK_API void
+nk_value_color_hex(struct nk_context *ctx, const char *prefix, struct nk_color color)
+{
+ char hex[16];
+ nk_color_hex_rgba(hex, color);
+ nk_labelf(ctx, NK_TEXT_LEFT, "%s: %s", prefix, hex);
+}
+#endif
+
+NK_API void
+nk_text(struct nk_context *ctx, const char *str, int len, nk_flags alignment)
+{
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ nk_text_colored(ctx, str, len, alignment, ctx->style.text.color);
+}
+
+NK_API void
+nk_text_wrap(struct nk_context *ctx, const char *str, int len)
+{
+ NK_ASSERT(ctx);
+ if (!ctx) return;
+ nk_text_wrap_colored(ctx, str, len, ctx->style.text.color);
+}
+
+NK_API void
+nk_label(struct nk_context *ctx, const char *str, nk_flags alignment)
+{nk_text(ctx, str, nk_strlen(str), alignment);}
+
+NK_API void
+nk_label_colored(struct nk_context *ctx, const char *str, nk_flags align,
+ struct nk_color color)
+{nk_text_colored(ctx, str, nk_strlen(str), align, color);}
+
+NK_API void
+nk_label_wrap(struct nk_context *ctx, const char *str)
+{nk_text_wrap(ctx, str, nk_strlen(str));}
+
+NK_API void
+nk_label_colored_wrap(struct nk_context *ctx, const char *str, struct nk_color color)
+{nk_text_wrap_colored(ctx, str, nk_strlen(str), color);}
+
+NK_API void
+nk_image(struct nk_context *ctx, struct nk_image img)
+{
+ struct nk_window *win;
+ struct nk_rect bounds;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout) return;
+
+ win = ctx->current;
+ if (!nk_widget(&bounds, ctx)) return;
+ nk_draw_image(&win->buffer, bounds, &img);
+}
+
+/*----------------------------------------------------------------
+ *
+ * BUTTON
+ *
+ * --------------------------------------------------------------*/
+NK_API int
+nk_button_text(struct nk_context *ctx, const char *title, int len,
+ enum nk_button_behavior behavior)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_input *in;
+ const struct nk_style *style;
+
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout) return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ layout = win->layout;
+ state = nk_widget(&bounds, ctx);
+
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ return nk_do_button_text(&ctx->last_widget_state, &win->buffer, bounds,
+ title, len, style->button.text_alignment, behavior,
+ &style->button, in, &style->font);
+}
+
+NK_API int nk_button_label(struct nk_context *ctx, const char *title,
+ enum nk_button_behavior behavior)
+{return nk_button_text(ctx, title, nk_strlen(title), behavior);}
+
+NK_API int
+nk_button_color(struct nk_context *ctx, struct nk_color color,
+ enum nk_button_behavior behavior)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_input *in;
+ struct nk_style_button button;
+
+ int ret = 0;
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ layout = win->layout;
+
+ state = nk_widget(&bounds, ctx);
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+
+ button = ctx->style.button;
+ button.normal = nk_style_item_color(color);
+ button.hover = nk_style_item_color(color);
+ button.active = nk_style_item_color(color);
+ button.padding = nk_vec2(0,0);
+ ret = nk_do_button(&ctx->last_widget_state, &win->buffer, bounds,
+ &button, in, behavior, &bounds);
+ nk_draw_button(&win->buffer, &bounds, ctx->last_widget_state, &button);
+ return ret;
+}
+
+NK_API int
+nk_button_symbol(struct nk_context *ctx, enum nk_symbol_type symbol,
+ enum nk_button_behavior behavior)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_input *in;
+ const struct nk_style *style;
+
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ layout = win->layout;
+
+ state = nk_widget(&bounds, ctx);
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ return nk_do_button_symbol(&ctx->last_widget_state, &win->buffer, bounds,
+ symbol, behavior, &style->button, in, &style->font);
+}
+
+NK_API int
+nk_button_image(struct nk_context *ctx, struct nk_image img,
+ enum nk_button_behavior behavior)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_input *in;
+ const struct nk_style *style;
+
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ layout = win->layout;
+
+ state = nk_widget(&bounds, ctx);
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ return nk_do_button_image(&ctx->last_widget_state, &win->buffer, bounds,
+ img, behavior, &style->button, in);
+}
+
+NK_API int
+nk_button_symbol_text(struct nk_context *ctx, enum nk_symbol_type symbol,
+ const char* text, int len, nk_flags align, enum nk_button_behavior behavior)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_input *in;
+ const struct nk_style *style;
+
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ layout = win->layout;
+
+ state = nk_widget(&bounds, ctx);
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ return nk_do_button_text_symbol(&ctx->last_widget_state, &win->buffer, bounds,
+ symbol, text, len, align, behavior, &style->button, &style->font, in);
+}
+
+NK_API int nk_button_symbol_label(struct nk_context *ctx, enum nk_symbol_type symbol,
+ const char *label, nk_flags align, enum nk_button_behavior behavior)
+{return nk_button_symbol_text(ctx, symbol, label, nk_strlen(label), align, behavior);}
+
+NK_API int
+nk_button_image_text(struct nk_context *ctx, struct nk_image img,
+ const char *text, int len, nk_flags align, enum nk_button_behavior behavior)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_input *in;
+ const struct nk_style *style;
+
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ layout = win->layout;
+
+ state = nk_widget(&bounds, ctx);
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ return nk_do_button_text_image(&ctx->last_widget_state, &win->buffer,
+ bounds, img, text, len, align, behavior, &style->button, &style->font, in);
+}
+
+NK_API int nk_button_image_label(struct nk_context *ctx, struct nk_image img,
+ const char *label, nk_flags align, enum nk_button_behavior behavior)
+{return nk_button_image_text(ctx, img, label, nk_strlen(label), align, behavior);}
+
+/*----------------------------------------------------------------
+ *
+ * SELECTABLE
+ *
+ * --------------------------------------------------------------*/
+NK_API int
+nk_selectable_text(struct nk_context *ctx, const char *str, int len,
+ nk_flags align, int *value)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_input *in;
+ const struct nk_style *style;
+
+ enum nk_widget_layout_states state;
+ struct nk_rect bounds;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(value);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout || !value)
+ return 0;
+
+ win = ctx->current;
+ layout = win->layout;
+ style = &ctx->style;
+ state = nk_widget(&bounds, ctx);
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ return nk_do_selectable(&ctx->last_widget_state, &win->buffer, bounds,
+ str, len, align, value, &style->selectable, in, &style->font);
+}
+
+NK_API int
+nk_selectable_image_text(struct nk_context *ctx, struct nk_image img,
+ const char *str, int len, nk_flags align, int *value)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_input *in;
+ const struct nk_style *style;
+
+ enum nk_widget_layout_states state;
+ struct nk_rect bounds;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(value);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout || !value)
+ return 0;
+
+ win = ctx->current;
+ layout = win->layout;
+ style = &ctx->style;
+ state = nk_widget(&bounds, ctx);
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ return nk_do_selectable_image(&ctx->last_widget_state, &win->buffer, bounds,
+ str, len, align, value, &img, &style->selectable, in, &style->font);
+}
+
+NK_API int nk_select_text(struct nk_context *ctx, const char *str, int len,
+ nk_flags align, int value)
+{nk_selectable_text(ctx, str, len, align, &value);return value;}
+
+NK_API int nk_selectable_label(struct nk_context *ctx, const char *str, nk_flags align, int *value)
+{return nk_selectable_text(ctx, str, nk_strlen(str), align, value);}
+
+NK_API int nk_selectable_image_label(struct nk_context *ctx,struct nk_image img,
+ const char *str, nk_flags align, int *value)
+{return nk_selectable_image_text(ctx, img, str, nk_strlen(str), align, value);}
+
+NK_API int nk_select_label(struct nk_context *ctx, const char *str, nk_flags align, int value)
+{nk_selectable_text(ctx, str, nk_strlen(str), align, &value);return value;}
+
+NK_API int nk_select_image_label(struct nk_context *ctx, struct nk_image img,
+ const char *str, nk_flags align, int value)
+{nk_selectable_image_text(ctx, img, str, nk_strlen(str), align, &value);return value;}
+
+NK_API int nk_select_image_text(struct nk_context *ctx, struct nk_image img,
+ const char *str, int len, nk_flags align, int value)
+{nk_selectable_image_text(ctx, img, str, len, align, &value);return value;}
+
+/*----------------------------------------------------------------
+ *
+ * CHECKBOX
+ *
+ * --------------------------------------------------------------*/
+NK_API int
+nk_check_text(struct nk_context *ctx, const char *text, int len, int active)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_input *in;
+ const struct nk_style *style;
+
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return active;
+
+ win = ctx->current;
+ style = &ctx->style;
+ layout = win->layout;
+ state = nk_widget(&bounds, ctx);
+ if (!state) return active;
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ nk_do_toggle(&ctx->last_widget_state, &win->buffer, bounds, &active,
+ text, len, NK_TOGGLE_CHECK, &style->checkbox, in, &style->font);
+ return active;
+}
+
+NK_API unsigned int
+nk_check_flags_text(struct nk_context *ctx, const char *text, int len,
+ unsigned int flags, unsigned int value)
+{
+ int old_active;
+ NK_ASSERT(ctx);
+ NK_ASSERT(text);
+ if (!ctx || !text) return flags;
+ old_active = (int)((flags & value) & value);
+ if (nk_check_text(ctx, text, len, old_active))
+ flags |= value;
+ else flags &= ~value;
+ return flags;
+}
+
+NK_API int
+nk_checkbox_text(struct nk_context *ctx, const char *text, int len, int *active)
+{
+ int old_val;
+ NK_ASSERT(ctx);
+ NK_ASSERT(text);
+ NK_ASSERT(active);
+ if (!ctx || !text || !active) return 0;
+ old_val = *active;
+ *active = nk_check_text(ctx, text, len, *active);
+ return old_val != *active;
+}
+
+NK_API int
+nk_checkbox_flags_text(struct nk_context *ctx, const char *text, int len,
+ unsigned int *flags, unsigned int value)
+{
+ int active;
+ NK_ASSERT(ctx);
+ NK_ASSERT(text);
+ NK_ASSERT(flags);
+ if (!ctx || !text || !flags) return 0;
+ active = (int)((*flags & value) & value);
+ if (nk_checkbox_text(ctx, text, len, &active)) {
+ if (active) *flags |= value;
+ else *flags &= ~value;
+ return 1;
+ }
+ return 0;
+}
+
+NK_API int nk_check_label(struct nk_context *ctx, const char *label, int active)
+{return nk_check_text(ctx, label, nk_strlen(label), active);}
+
+NK_API unsigned int nk_check_flags_label(struct nk_context *ctx, const char *label,
+ unsigned int flags, unsigned int value)
+{return nk_check_flags_text(ctx, label, nk_strlen(label), flags, value);}
+
+NK_API int nk_checkbox_label(struct nk_context *ctx, const char *label, int *active)
+{return nk_checkbox_text(ctx, label, nk_strlen(label), active);}
+
+NK_API int nk_checkbox_flags_label(struct nk_context *ctx, const char *label,
+ unsigned int *flags, unsigned int value)
+{return nk_checkbox_flags_text(ctx, label, nk_strlen(label), flags, value);}
+
+/*----------------------------------------------------------------
+ *
+ * OPTION
+ *
+ * --------------------------------------------------------------*/
+NK_API int
+nk_option_text(struct nk_context *ctx, const char *text, int len, int is_active)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_input *in;
+ const struct nk_style *style;
+
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return is_active;
+
+ win = ctx->current;
+ style = &ctx->style;
+ layout = win->layout;
+ state = nk_widget(&bounds, ctx);
+ if (!state) return state;
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ nk_do_toggle(&ctx->last_widget_state, &win->buffer, bounds, &is_active,
+ text, len, NK_TOGGLE_OPTION, &style->option, in, &style->font);
+ return is_active;
+}
+
+NK_API int
+nk_radio_text(struct nk_context *ctx, const char *text, int len, int *active)
+{
+ int old_value;
+ NK_ASSERT(ctx);
+ NK_ASSERT(text);
+ NK_ASSERT(active);
+ if (!ctx || !text || !active) return 0;
+ old_value = *active;
+ *active = nk_option_text(ctx, text, len, old_value);
+ return old_value != *active;
+}
+
+NK_API int
+nk_option_label(struct nk_context *ctx, const char *label, int active)
+{return nk_option_text(ctx, label, nk_strlen(label), active);}
+
+NK_API int
+nk_radio_label(struct nk_context *ctx, const char *label, int *active)
+{return nk_radio_text(ctx, label, nk_strlen(label), active);}
+
+/*----------------------------------------------------------------
+ *
+ * SLIDER
+ *
+ * --------------------------------------------------------------*/
+NK_API int
+nk_slider_float(struct nk_context *ctx, float min_value, float *value, float max_value,
+ float value_step)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ struct nk_input *in;
+ const struct nk_style *style;
+
+ int ret = 0;
+ float old_value;
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ NK_ASSERT(value);
+ if (!ctx || !ctx->current || !ctx->current->layout || !value)
+ return ret;
+
+ win = ctx->current;
+ style = &ctx->style;
+ layout = win->layout;
+ state = nk_widget(&bounds, ctx);
+ if (!state) return ret;
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+
+ old_value = *value;
+ *value = nk_do_slider(&ctx->last_widget_state, &win->buffer, bounds, min_value,
+ old_value, max_value, value_step, &style->slider, in, &style->font);
+ return (old_value > *value || old_value < *value);
+}
+
+NK_API float
+nk_slide_float(struct nk_context *ctx, float min, float val, float max, float step)
+{
+ nk_slider_float(ctx, min, &val, max, step); return val;
+}
+
+NK_API int
+nk_slide_int(struct nk_context *ctx, int min, int val, int max, int step)
+{
+ float value = (float)val;
+ nk_slider_float(ctx, (float)min, &value, (float)max, (float)step);
+ return (int)value;
+}
+
+NK_API int
+nk_slider_int(struct nk_context *ctx, int min, int *val, int max, int step)
+{
+ int ret;
+ float value = (float)*val;
+ ret = nk_slider_float(ctx, (float)min, &value, (float)max, (float)step);
+ *val = (int)value;
+ return ret;
+}
+
+/*----------------------------------------------------------------
+ *
+ * PROGRESSBAR
+ *
+ * --------------------------------------------------------------*/
+NK_API int
+nk_progress(struct nk_context *ctx, nk_size *cur, nk_size max, int is_modifyable)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_style *style;
+ const struct nk_input *in;
+
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+ nk_size old_value;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(cur);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout || !cur)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ layout = win->layout;
+ state = nk_widget(&bounds, ctx);
+ if (!state) return 0;
+
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ old_value = *cur;
+ *cur = nk_do_progress(&ctx->last_widget_state, &win->buffer, bounds,
+ *cur, max, is_modifyable, &style->progress, in);
+ return (*cur != old_value);
+}
+
+NK_API nk_size nk_prog(struct nk_context *ctx, nk_size cur, nk_size max, int modifyable)
+{nk_progress(ctx, &cur, max, modifyable);return cur;}
+
+/*----------------------------------------------------------------
+ *
+ * EDIT
+ *
+ * --------------------------------------------------------------*/
+NK_API nk_flags
+nk_edit_string(struct nk_context *ctx, nk_flags flags,
+ char *memory, int *len, int max, nk_filter filter)
+{
+ nk_hash hash;
+ nk_flags state;
+ struct nk_text_edit *edit;
+ struct nk_window *win;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(memory);
+ NK_ASSERT(len);
+ if (!ctx || !memory || !len)
+ return 0;
+
+ filter = (!filter) ? nk_filter_default: filter;
+ win = ctx->current;
+ hash = win->edit.seq;
+ edit = &ctx->text_edit;
+ nk_textedit_clear_state(&ctx->text_edit, (flags & NK_EDIT_MULTILINE)?
+ NK_TEXT_EDIT_MULTI_LINE: NK_TEXT_EDIT_SINGLE_LINE, filter);
+
+ if (win->edit.active && hash == win->edit.name) {
+ if (flags & NK_EDIT_NO_CURSOR)
+ edit->cursor = nk_utf_len(memory, *len);
+ else edit->cursor = win->edit.cursor;
+ if (!(flags & NK_EDIT_SELECTABLE)) {
+ edit->select_start = win->edit.cursor;
+ edit->select_end = win->edit.cursor;
+ } else {
+ edit->select_start = win->edit.sel_start;
+ edit->select_end = win->edit.sel_end;
+ }
+ edit->mode = win->edit.mode;
+ edit->scrollbar.x = (float)win->edit.scrollbar.x;
+ edit->scrollbar.y = (float)win->edit.scrollbar.y;
+ edit->active = nk_true;
+ } else edit->active = nk_false;
+
+ max = NK_MAX(1, max);
+ *len = NK_MIN(*len, max-1);
+ nk_str_init_fixed(&edit->string, memory, (nk_size)max);
+ edit->string.buffer.allocated = (nk_size)*len;
+ edit->string.len = nk_utf_len(memory, *len);
+ state = nk_edit_buffer(ctx, flags, edit, filter);
+ *len = (int)edit->string.buffer.allocated;
+
+ if (edit->active) {
+ win->edit.cursor = edit->cursor;
+ win->edit.sel_start = edit->select_start;
+ win->edit.sel_end = edit->select_end;
+ win->edit.mode = edit->mode;
+ win->edit.scrollbar.x = (unsigned short)edit->scrollbar.x;
+ win->edit.scrollbar.y = (unsigned short)edit->scrollbar.y;
+ }
+ return state;
+}
+
+NK_API nk_flags
+nk_edit_buffer(struct nk_context *ctx, nk_flags flags,
+ struct nk_text_edit *edit, nk_filter filter)
+{
+ struct nk_window *win;
+ struct nk_style *style;
+ struct nk_input *in;
+
+ enum nk_widget_layout_states state;
+ struct nk_rect bounds;
+
+ nk_flags ret_flags = 0;
+ unsigned char prev_state;
+ nk_hash hash;
+
+ /* make sure correct values */
+ NK_ASSERT(ctx);
+ NK_ASSERT(edit);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ state = nk_widget(&bounds, ctx);
+ if (!state) return state;
+ in = (win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+
+ /* check if edit is currently hot item */
+ hash = win->edit.seq++;
+ if (win->edit.active && hash == win->edit.name) {
+ if (flags & NK_EDIT_NO_CURSOR)
+ edit->cursor = edit->string.len;
+ if (!(flags & NK_EDIT_SELECTABLE)) {
+ edit->select_start = edit->cursor;
+ edit->select_end = edit->cursor;
+ }
+ if (flags & NK_EDIT_CLIPBOARD)
+ edit->clip = ctx->clip;
+ }
+
+ filter = (!filter) ? nk_filter_default: filter;
+ prev_state = (unsigned char)edit->active;
+ in = (flags & NK_EDIT_READ_ONLY) ? 0: in;
+ ret_flags = nk_do_edit(&ctx->last_widget_state, &win->buffer, bounds, flags,
+ filter, edit, &style->edit, in, &style->font);
+
+ if (edit->active && prev_state != edit->active) {
+ /* current edit is now hot */
+ win->edit.active = nk_true;
+ win->edit.name = hash;
+ } else if (prev_state && !edit->active) {
+ /* current edit is now cold */
+ win->edit.active = nk_false;
+ }
+ return ret_flags;
+}
+
+/*----------------------------------------------------------------
+ *
+ * PROPERTY
+ *
+ * --------------------------------------------------------------*/
+NK_INTERN float
+nk_property(struct nk_context *ctx, const char *name, float min, float val,
+ float max, float step, float inc_per_pixel, const enum nk_property_filter filter)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ struct nk_input *in;
+ const struct nk_style *style;
+
+ struct nk_rect bounds;
+ enum nk_widget_layout_states s;
+
+ int *state = 0;
+ nk_hash hash = 0;
+ char *buffer = 0;
+ int *len = 0;
+ int *cursor = 0;
+ int old_state;
+
+ char dummy_buffer[NK_MAX_NUMBER_BUFFER];
+ int dummy_state = NK_PROPERTY_DEFAULT;
+ int dummy_length = 0;
+ int dummy_cursor = 0;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return val;
+
+ win = ctx->current;
+ layout = win->layout;
+ style = &ctx->style;
+ s = nk_widget(&bounds, ctx);
+ if (!s) return val;
+ in = (s == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+
+ /* calculate hash from name */
+ if (name[0] == '#') {
+ hash = nk_murmur_hash(name, (int)nk_strlen(name), win->property.seq++);
+ name++; /* special number hash */
+ } else hash = nk_murmur_hash(name, (int)nk_strlen(name), 42);
+
+ /* check if property is currently hot item */
+ if (win->property.active && hash == win->property.name) {
+ buffer = win->property.buffer;
+ len = &win->property.length;
+ cursor = &win->property.cursor;
+ state = &win->property.state;
+ } else {
+ buffer = dummy_buffer;
+ len = &dummy_length;
+ cursor = &dummy_cursor;
+ state = &dummy_state;
+ }
+
+ /* execute property widget */
+ old_state = *state;
+ val = nk_do_property(&ctx->last_widget_state, &win->buffer, bounds, name,
+ min, val, max, step, inc_per_pixel, buffer, len, state, cursor,
+ &style->property, filter, in, &style->font, &ctx->text_edit);
+
+ if (in && *state != NK_PROPERTY_DEFAULT && !win->property.active) {
+ /* current property is now hot */
+ win->property.active = 1;
+ NK_MEMCPY(win->property.buffer, buffer, (nk_size)*len);
+ win->property.length = *len;
+ win->property.cursor = *cursor;
+ win->property.state = *state;
+ win->property.name = hash;
+ if (*state == NK_PROPERTY_DRAG) {
+ ctx->input.mouse.grab = nk_true;
+ ctx->input.mouse.grabbed = nk_true;
+ }
+ }
+
+ /* check if previously active property is now inactive */
+ if (*state == NK_PROPERTY_DEFAULT && old_state != NK_PROPERTY_DEFAULT) {
+ if (old_state == NK_PROPERTY_DRAG) {
+ ctx->input.mouse.grab = nk_false;
+ ctx->input.mouse.grabbed = nk_false;
+ ctx->input.mouse.ungrab = nk_true;
+ }
+ win->property.active = 0;
+ }
+ return val;
+}
+
+NK_API void
+nk_property_float(struct nk_context *ctx, const char *name,
+ float min, float *val, float max, float step, float inc_per_pixel)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(name);
+ NK_ASSERT(val);
+ if (!ctx || !ctx->current || !name || !val) return;
+ *val = nk_property(ctx, name, min, *val, max, step, inc_per_pixel, NK_FILTER_FLOAT);
+}
+
+NK_API void
+nk_property_int(struct nk_context *ctx, const char *name,
+ int min, int *val, int max, int step, int inc_per_pixel)
+{
+ float value;
+ NK_ASSERT(ctx);
+ NK_ASSERT(name);
+ NK_ASSERT(val);
+ if (!ctx || !ctx->current || !name || !val) return;
+ value = nk_property(ctx, name, (float)min, (float)*val, (float)max, (float)step,
+ (float)inc_per_pixel, NK_FILTER_FLOAT);
+ *val = (int)value;
+}
+
+NK_API float
+nk_propertyf(struct nk_context *ctx, const char *name, float min,
+ float val, float max, float step, float inc_per_pixel)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(name);
+ if (!ctx || !ctx->current || !name) return val;
+ return nk_property(ctx, name, min, val, max, step, inc_per_pixel, NK_FILTER_FLOAT);
+}
+
+NK_API int
+nk_propertyi(struct nk_context *ctx, const char *name, int min, int val,
+ int max, int step, int inc_per_pixel)
+{
+ float value;
+ NK_ASSERT(ctx);
+ NK_ASSERT(name);
+ if (!ctx || !ctx->current || !name) return val;
+ value = nk_property(ctx, name, (float)min, (float)val, (float)max, (float)step,
+ (float)inc_per_pixel, NK_FILTER_FLOAT);
+ return (int)value;
+}
+
+/*----------------------------------------------------------------
+ *
+ * COLOR PICKER
+ *
+ * --------------------------------------------------------------*/
+NK_API int
+nk_color_pick(struct nk_context * ctx, struct nk_color *color,
+ enum nk_color_format fmt)
+{
+ struct nk_window *win;
+ struct nk_panel *layout;
+ const struct nk_style *config;
+ const struct nk_input *in;
+
+ enum nk_widget_layout_states state;
+ struct nk_rect bounds;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(color);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout || !color)
+ return 0;
+
+ win = ctx->current;
+ config = &ctx->style;
+ layout = win->layout;
+ state = nk_widget(&bounds, ctx);
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ return nk_do_color_picker(&ctx->last_widget_state, &win->buffer, color, fmt, bounds,
+ nk_vec2(0,0), in, &config->font);
+}
+
+NK_API struct nk_color
+nk_color_picker(struct nk_context *ctx, struct nk_color color,
+ enum nk_color_format fmt)
+{
+ nk_color_pick(ctx, &color, fmt);
+ return color;
+}
+
+/* -------------------------------------------------------------
+ *
+ * CHART
+ *
+ * --------------------------------------------------------------*/
+NK_API int
+nk_chart_begin_colored(struct nk_context *ctx, enum nk_chart_type type,
+ struct nk_color color, struct nk_color highlight,
+ int count, float min_value, float max_value)
+{
+ struct nk_window *win;
+ struct nk_chart *chart;
+ const struct nk_style *config;
+ const struct nk_style_chart *style;
+
+ const struct nk_style_item *background;
+ struct nk_rect bounds = {0, 0, 0, 0};
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout) return 0;
+ if (!nk_widget(&bounds, ctx)) {
+ chart = &ctx->current->layout->chart;
+ nk_zero(chart, sizeof(*chart));
+ return 0;
+ }
+
+ win = ctx->current;
+ config = &ctx->style;
+ chart = &win->layout->chart;
+ style = &config->chart;
+
+ /* setup basic generic chart */
+ nk_zero(chart, sizeof(*chart));
+ chart->x = bounds.x + style->padding.x;
+ chart->y = bounds.y + style->padding.y;
+ chart->w = bounds.w - 2 * style->padding.x;
+ chart->h = bounds.h - 2 * style->padding.y;
+ chart->w = NK_MAX(chart->w, 2 * style->padding.x);
+ chart->h = NK_MAX(chart->h, 2 * style->padding.y);
+
+ /* add first slot into chart */
+ {struct nk_chart_slot *slot = &chart->slots[chart->slot++];
+ slot->type = type;
+ slot->count = count;
+ slot->color = color;
+ slot->highlight = highlight;
+ slot->min = NK_MIN(min_value, max_value);
+ slot->max = NK_MAX(min_value, max_value);
+ slot->range = slot->max - slot->min;}
+
+ /* draw chart background */
+ background = &style->background;
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ nk_draw_image(&win->buffer, bounds, &background->data.image);
+ } else {
+ nk_fill_rect(&win->buffer, bounds, style->rounding, style->border_color);
+ nk_fill_rect(&win->buffer, nk_shrink_rect(bounds, style->border),
+ style->rounding, style->border_color);
+ }
+ return 1;
+}
+
+NK_API int
+nk_chart_begin(struct nk_context *ctx, const enum nk_chart_type type,
+ int count, float min_value, float max_value)
+{return nk_chart_begin_colored(ctx, type, ctx->style.chart.color, ctx->style.chart.selected_color, count, min_value, max_value);}
+
+NK_API void
+nk_chart_add_slot_colored(struct nk_context *ctx, const enum nk_chart_type type,
+ struct nk_color color, struct nk_color highlight,
+ int count, float min_value, float max_value)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ NK_ASSERT(ctx->current->layout->chart.slot < NK_CHART_MAX_SLOT);
+ if (!ctx || !ctx->current || !ctx->current->layout) return;
+ if (ctx->current->layout->chart.slot >= NK_CHART_MAX_SLOT) return;
+
+ /* add another slot into the graph */
+ {struct nk_chart *chart = &ctx->current->layout->chart;
+ struct nk_chart_slot *slot = &chart->slots[chart->slot++];
+ slot->type = type;
+ slot->count = count;
+ slot->color = color;
+ slot->highlight = highlight;
+ slot->min = NK_MIN(min_value, max_value);
+ slot->max = NK_MAX(min_value, max_value);
+ slot->range = slot->max - slot->min;}
+}
+
+NK_API void
+nk_chart_add_slot(struct nk_context *ctx, const enum nk_chart_type type,
+ int count, float min_value, float max_value)
+{nk_chart_add_slot_colored(ctx, type, ctx->style.chart.color, ctx->style.chart.selected_color, count, min_value, max_value);}
+
+NK_INTERN nk_flags
+nk_chart_push_line(struct nk_context *ctx, struct nk_window *win,
+ struct nk_chart *g, float value, int slot)
+{
+ struct nk_panel *layout = win->layout;
+ const struct nk_input *i = &ctx->input;
+ struct nk_command_buffer *out = &win->buffer;
+ struct nk_style_chart *style;
+
+ nk_flags ret = 0;
+ struct nk_vec2 cur;
+ struct nk_rect bounds;
+ struct nk_color color;
+ float step;
+ float range;
+ float ratio;
+
+ NK_ASSERT(slot >= 0 && slot < NK_CHART_MAX_SLOT);
+ step = g->w / (float)g->slots[slot].count;
+ range = g->slots[slot].max - g->slots[slot].min;
+ ratio = (value - g->slots[slot].min) / range;
+ style = &ctx->style.chart;
+
+ if (g->slots[slot].index == 0) {
+ /* first data point does not have a connection */
+ g->slots[slot].last.x = g->x;
+ g->slots[slot].last.y = (g->y + g->h) - ratio * (float)g->h;
+
+ bounds.x = g->slots[slot].last.x - 2;
+ bounds.y = g->slots[slot].last.y - 2;
+ bounds.w = 4;
+ bounds.h = 4;
+
+ color = g->slots[slot].color;
+ if (!(layout->flags & NK_WINDOW_ROM) &&
+ NK_INBOX(i->mouse.pos.x,i->mouse.pos.y, g->slots[slot].last.x-3, g->slots[slot].last.y-3, 6, 6)){
+ ret = nk_input_is_mouse_hovering_rect(i, bounds) ? NK_CHART_HOVERING : 0;
+ ret |= (i->mouse.buttons[NK_BUTTON_LEFT].down &&
+ i->mouse.buttons[NK_BUTTON_LEFT].clicked) ? NK_CHART_CLICKED: 0;
+ color = g->slots[slot].highlight;
+ }
+ nk_fill_rect(out, bounds, 0, color);
+ g->slots[slot].index += 1;
+ return ret;
+ }
+
+ /* draw a line between the last data point and the new one */
+ color = g->slots[slot].color;
+ cur.x = g->x + (float)(step * (float)g->slots[slot].index);
+ cur.y = (g->y + g->h) - (ratio * (float)g->h);
+ nk_stroke_line(out, g->slots[slot].last.x, g->slots[slot].last.y, cur.x, cur.y, 1.0f, color);
+
+ bounds.x = cur.x - 3;
+ bounds.y = cur.y - 3;
+ bounds.w = 6;
+ bounds.h = 6;
+
+ /* user selection of current data point */
+ if (!(layout->flags & NK_WINDOW_ROM)) {
+ if (nk_input_is_mouse_hovering_rect(i, bounds)) {
+ ret = NK_CHART_HOVERING;
+ ret |= (!i->mouse.buttons[NK_BUTTON_LEFT].down &&
+ i->mouse.buttons[NK_BUTTON_LEFT].clicked) ? NK_CHART_CLICKED: 0;
+ color = g->slots[slot].highlight;
+ }
+ }
+ nk_fill_rect(out, nk_rect(cur.x - 2, cur.y - 2, 4, 4), 0, color);
+
+ /* save current data point position */
+ g->slots[slot].last.x = cur.x;
+ g->slots[slot].last.y = cur.y;
+ g->slots[slot].index += 1;
+ return ret;
+}
+
+NK_INTERN nk_flags
+nk_chart_push_column(const struct nk_context *ctx, struct nk_window *win,
+ struct nk_chart *chart, float value, int slot)
+{
+ struct nk_command_buffer *out = &win->buffer;
+ const struct nk_input *in = &ctx->input;
+ struct nk_panel *layout = win->layout;
+ const struct nk_style_chart *style;
+
+ float ratio;
+ nk_flags ret = 0;
+ struct nk_color color;
+ struct nk_rect item = {0,0,0,0};
+
+ NK_ASSERT(slot >= 0 && slot < NK_CHART_MAX_SLOT);
+ if (chart->slots[slot].index >= chart->slots[slot].count)
+ return nk_false;
+ if (chart->slots[slot].count) {
+ float padding = (float)(chart->slots[slot].count-1);
+ item.w = (chart->w - padding) / (float)(chart->slots[slot].count);
+ }
+
+ /* calculate bounds of current bar chart entry */
+ style = &ctx->style.chart;
+ color = chart->slots[slot].color;;
+ item.h = chart->h * NK_ABS((value/chart->slots[slot].range));
+ if (value >= 0) {
+ ratio = (value + NK_ABS(chart->slots[slot].min)) / NK_ABS(chart->slots[slot].range);
+ item.y = (chart->y + chart->h) - chart->h * ratio;
+ } else {
+ ratio = (value - chart->slots[slot].max) / chart->slots[slot].range;
+ item.y = chart->y + (chart->h * NK_ABS(ratio)) - item.h;
+ }
+ item.x = chart->x + ((float)chart->slots[slot].index * item.w);
+ item.x = item.x + ((float)chart->slots[slot].index);
+
+ /* user chart bar selection */
+ if (!(layout->flags & NK_WINDOW_ROM) &&
+ NK_INBOX(in->mouse.pos.x,in->mouse.pos.y,item.x,item.y,item.w,item.h)) {
+ ret = NK_CHART_HOVERING;
+ ret |= (!in->mouse.buttons[NK_BUTTON_LEFT].down &&
+ in->mouse.buttons[NK_BUTTON_LEFT].clicked) ? NK_CHART_CLICKED: 0;
+ color = chart->slots[slot].highlight;
+ }
+ nk_fill_rect(out, item, 0, color);
+ chart->slots[slot].index += 1;
+ return ret;
+}
+
+NK_API nk_flags
+nk_chart_push_slot(struct nk_context *ctx, float value, int slot)
+{
+ nk_flags flags;
+ struct nk_window *win;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(slot >= 0 && slot < NK_CHART_MAX_SLOT);
+ NK_ASSERT(slot < ctx->current->layout->chart.slot);
+ if (!ctx || !ctx->current || slot >= NK_CHART_MAX_SLOT) return nk_false;
+ if (slot >= ctx->current->layout->chart.slot) return nk_false;
+
+ win = ctx->current;
+ if (win->layout->chart.slot < slot) return nk_false;
+ switch (win->layout->chart.slots[slot].type) {
+ case NK_CHART_LINES:
+ flags = nk_chart_push_line(ctx, win, &win->layout->chart, value, slot); break;
+ case NK_CHART_COLUMN:
+ flags = nk_chart_push_column(ctx, win, &win->layout->chart, value, slot); break;
+ default:
+ case NK_CHART_MAX:
+ flags = 0;
+ }
+ return flags;
+}
+
+NK_API nk_flags
+nk_chart_push(struct nk_context *ctx, float value)
+{return nk_chart_push_slot(ctx, value, 0);}
+
+NK_API void
+nk_chart_end(struct nk_context *ctx)
+{
+ struct nk_window *win;
+ struct nk_chart *chart;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current)
+ return;
+
+ win = ctx->current;
+ chart = &win->layout->chart;
+ memset(chart, 0, sizeof(*chart));
+ return;
+}
+
+NK_API void
+nk_plot(struct nk_context *ctx, enum nk_chart_type type, const float *values,
+ int count, int offset)
+{
+ int i = 0;
+ float min_value;
+ float max_value;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(values);
+ if (!ctx || !values || !count) return;
+
+ min_value = values[offset];
+ max_value = values[offset];
+ for (i = 0; i < count; ++i) {
+ min_value = NK_MIN(values[i + offset], min_value);
+ max_value = NK_MAX(values[i + offset], max_value);
+ }
+ nk_chart_begin(ctx, type, count, min_value, max_value);
+ for (i = 0; i < count; ++i)
+ nk_chart_push(ctx, values[i + offset]);
+ nk_chart_end(ctx);
+}
+
+NK_API void
+nk_plot_function(struct nk_context *ctx, enum nk_chart_type type, void *userdata,
+ float(*value_getter)(void* user, int index), int count, int offset)
+{
+ int i = 0;
+ float min_value;
+ float max_value;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(value_getter);
+ if (!ctx || !value_getter || !count) return;
+
+ max_value = min_value = value_getter(userdata, offset);
+ for (i = 0; i < count; ++i) {
+ float value = value_getter(userdata, i + offset);
+ min_value = NK_MIN(value, min_value);
+ max_value = NK_MAX(value, max_value);
+ }
+ nk_chart_begin(ctx, type, count, min_value, max_value);
+ for (i = 0; i < count; ++i)
+ nk_chart_push(ctx, value_getter(userdata, i + offset));
+ nk_chart_end(ctx);
+}
+
+/* -------------------------------------------------------------
+ *
+ * GROUP
+ *
+ * --------------------------------------------------------------*/
+NK_API int
+nk_group_begin(struct nk_context *ctx, struct nk_panel *layout, const char *title,
+ nk_flags flags)
+{
+ struct nk_window *win;
+ const struct nk_rect *c;
+ union {struct nk_scroll *s; nk_uint *i;} value;
+ struct nk_window panel;
+ struct nk_rect bounds;
+ nk_hash title_hash;
+ int title_len;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(title);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout || !title)
+ return 0;
+
+ /* allocate space for the group panel inside the panel */
+ win = ctx->current;
+ c = &win->layout->clip;
+ nk_panel_alloc_space(&bounds, ctx);
+ nk_zero(layout, sizeof(*layout));
+
+ /* find persistent group scrollbar value */
+ title_len = (int)nk_strlen(title);
+ title_hash = nk_murmur_hash(title, (int)title_len, NK_WINDOW_SUB);
+ value.i = nk_find_value(win, title_hash);
+ if (!value.i) {
+ value.i = nk_add_value(ctx, win, title_hash, 0);
+ *value.i = 0;
+ }
+ if (!NK_INTERSECT(c->x, c->y, c->w, c->h, bounds.x, bounds.y, bounds.w, bounds.h) &&
+ !(flags & NK_WINDOW_MOVABLE)) {
+ return 0;
+ }
+
+ flags |= NK_WINDOW_SUB;
+ if (win->flags & NK_WINDOW_ROM)
+ flags |= NK_WINDOW_ROM;
+
+ /* initialize a fake window to create the layout from */
+ nk_zero(&panel, sizeof(panel));
+ panel.bounds = bounds;
+ panel.flags = flags;
+ panel.scrollbar.x = (unsigned short)value.s->x;
+ panel.scrollbar.y = (unsigned short)value.s->y;
+ panel.buffer = win->buffer;
+ panel.layout = layout;
+ ctx->current = &panel;
+ nk_panel_begin(ctx, (flags & NK_WINDOW_TITLE) ? title: 0);
+
+ win->buffer = panel.buffer;
+ win->buffer.clip = layout->clip;
+ layout->offset = value.s;
+ layout->parent = win->layout;
+ win->layout = layout;
+ ctx->current = win;
+ return 1;
+}
+
+NK_API void
+nk_group_end(struct nk_context *ctx)
+{
+ struct nk_window *win;
+ struct nk_panel *parent;
+ struct nk_panel *g;
+
+ struct nk_rect clip;
+ struct nk_window pan;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current)
+ return;
+
+ /* make sure nk_group_begin was called correctly */
+ NK_ASSERT(ctx->current);
+ win = ctx->current;
+ NK_ASSERT(win->layout);
+ g = win->layout;
+ NK_ASSERT(g->parent);
+ parent = g->parent;
+
+ /* dummy window */
+ nk_zero_struct(pan);
+ pan.bounds = g->bounds;
+ pan.scrollbar.x = (unsigned short)g->offset->x;
+ pan.scrollbar.y = (unsigned short)g->offset->y;
+ pan.flags = g->flags|NK_WINDOW_SUB;
+ pan.buffer = win->buffer;
+ pan.layout = g;
+ ctx->current = &pan;
+
+ /* make sure group has correct clipping rectangle */
+ nk_unify(&clip, &parent->clip,
+ g->bounds.x, g->clip.y - g->header_h,
+ g->bounds.x + g->bounds.w+1,
+ g->bounds.y + g->bounds.h + 1);
+ nk_push_scissor(&pan.buffer, clip);
+ nk_end(ctx);
+
+ win->buffer = pan.buffer;
+ nk_push_scissor(&win->buffer, parent->clip);
+ ctx->current = win;
+ win->layout = parent;
+ return;
+}
+
+/* --------------------------------------------------------------
+ *
+ * POPUP
+ *
+ * --------------------------------------------------------------*/
+NK_API int
+nk_popup_begin(struct nk_context *ctx, struct nk_panel *layout,
+ enum nk_popup_type type, const char *title, nk_flags flags, struct nk_rect rect)
+{
+ struct nk_window *popup;
+ struct nk_window *win;
+
+ int title_len;
+ nk_hash title_hash;
+ nk_size allocated;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(title);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ NK_ASSERT(!(win->flags & NK_WINDOW_POPUP));
+ title_len = (int)nk_strlen(title);
+ title_hash = nk_murmur_hash(title, (int)title_len, NK_WINDOW_POPUP);
+
+ popup = win->popup.win;
+ if (!popup) {
+ popup = (struct nk_window*)nk_create_window(ctx);
+ win->popup.win = popup;
+ win->popup.active = 0;
+ }
+
+ /* make sure we have to correct popup */
+ if (win->popup.name != title_hash) {
+ if (!win->popup.active) {
+ nk_zero(popup, sizeof(*popup));
+ win->popup.name = title_hash;
+ win->popup.active = 1;
+ } else return 0;
+ }
+
+ /* popup position is local to window */
+ ctx->current = popup;
+ rect.x += win->layout->clip.x;
+ rect.y += win->layout->clip.y;
+
+ /* setup popup data */
+ popup->parent = win;
+ popup->bounds = rect;
+ popup->seq = ctx->seq;
+ popup->layout = layout;
+ popup->flags = flags;
+ popup->flags |= NK_WINDOW_BORDER|NK_WINDOW_SUB|NK_WINDOW_POPUP;
+ if (type == NK_POPUP_DYNAMIC)
+ popup->flags |= NK_WINDOW_DYNAMIC;
+
+ popup->buffer = win->buffer;
+ nk_start_popup(ctx, win);
+ allocated = ctx->memory.allocated;
+ nk_push_scissor(&popup->buffer, nk_null_rect);
+
+ if (nk_panel_begin(ctx, title)) {
+ /* popup is running therefore invalidate parent window */
+ win->layout->flags |= NK_WINDOW_ROM;
+ win->layout->flags &= ~(nk_flags)NK_WINDOW_REMOVE_ROM;
+ win->popup.active = 1;
+ layout->offset = &popup->scrollbar;
+ return 1;
+ } else {
+ /* popup was closed/is invalid so cleanup */
+ win->layout->flags |= NK_WINDOW_REMOVE_ROM;
+ win->layout->popup_buffer.active = 0;
+ win->popup.active = 0;
+ ctx->memory.allocated = allocated;
+ ctx->current = win;
+ return 0;
+ }
+}
+
+NK_INTERN int
+nk_nonblock_begin(struct nk_panel *layout, struct nk_context *ctx,
+ nk_flags flags, struct nk_rect body, struct nk_rect header)
+{
+ struct nk_window *popup;
+ struct nk_window *win;
+ int is_active = nk_true;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ /* popups cannot have popups */
+ win = ctx->current;
+ NK_ASSERT(!(win->flags & NK_WINDOW_POPUP));
+ popup = win->popup.win;
+ if (!popup) {
+ /* create window for nonblocking popup */
+ popup = (struct nk_window*)nk_create_window(ctx);
+ win->popup.win = popup;
+ nk_command_buffer_init(&popup->buffer, &ctx->memory, NK_CLIPPING_ON);
+ } else {
+ /* check if user clicked outside the popup and close if so */
+ int clicked, in_body, in_header;
+ clicked = nk_input_has_mouse_click(&ctx->input, NK_BUTTON_LEFT);
+ in_body = nk_input_is_mouse_click_in_rect(&ctx->input, NK_BUTTON_LEFT, body);
+ in_header = nk_input_is_mouse_click_in_rect(&ctx->input, NK_BUTTON_LEFT, header);
+
+ if (clicked && !in_body && !in_header)
+ is_active = nk_false;
+ }
+
+ if (!is_active) {
+ win->layout->flags |= NK_WINDOW_REMOVE_ROM;
+ return is_active;
+ }
+
+ popup->bounds = body;
+ popup->parent = win;
+ popup->layout = layout;
+ popup->flags = flags;
+ popup->flags |= NK_WINDOW_BORDER|NK_WINDOW_POPUP;
+ popup->flags |= NK_WINDOW_DYNAMIC|NK_WINDOW_SUB;
+ popup->flags |= NK_WINDOW_NONBLOCK;
+ popup->seq = ctx->seq;
+ win->popup.active = 1;
+
+ nk_start_popup(ctx, win);
+ popup->buffer = win->buffer;
+ nk_push_scissor(&popup->buffer, nk_null_rect);
+ ctx->current = popup;
+
+ nk_panel_begin(ctx, 0);
+ win->buffer = popup->buffer;
+ win->layout->flags |= NK_WINDOW_ROM;
+ layout->offset = &popup->scrollbar;
+ return is_active;
+}
+
+NK_API void
+nk_popup_close(struct nk_context *ctx)
+{
+ struct nk_window *popup;
+ NK_ASSERT(ctx);
+ if (!ctx || !ctx->current) return;
+
+ popup = ctx->current;
+ NK_ASSERT(popup->parent);
+ NK_ASSERT(popup->flags & NK_WINDOW_POPUP);
+ popup->flags |= NK_WINDOW_HIDDEN;
+}
+
+NK_API void
+nk_popup_end(struct nk_context *ctx)
+{
+ struct nk_window *win;
+ struct nk_window *popup;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ popup = ctx->current;
+ if (!popup->parent) return;
+ win = popup->parent;
+ if (popup->flags & NK_WINDOW_HIDDEN) {
+ win->layout->flags |= NK_WINDOW_REMOVE_ROM;
+ win->popup.active = 0;
+ }
+ nk_push_scissor(&popup->buffer, nk_null_rect);
+ nk_end(ctx);
+
+ win->buffer = popup->buffer;
+ nk_finish_popup(ctx, win);
+ ctx->current = win;
+ nk_push_scissor(&win->buffer, win->layout->clip);
+}
+/* -------------------------------------------------------------
+ *
+ * TOOLTIP
+ *
+ * -------------------------------------------------------------- */
+NK_API int
+nk_tooltip_begin(struct nk_context *ctx, struct nk_panel *layout, float width)
+{
+ struct nk_window *win;
+ const struct nk_input *in;
+ struct nk_rect bounds;
+ int ret;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ /* make sure that no nonblocking popup is currently active */
+ win = ctx->current;
+ in = &ctx->input;
+ if (win->popup.win && (win->popup.win->flags & NK_WINDOW_NONBLOCK))
+ return 0;
+
+ bounds.w = width;
+ bounds.h = nk_null_rect.h;
+ bounds.x = (in->mouse.pos.x + 1) - win->layout->clip.x;
+ bounds.y = (in->mouse.pos.y + 1) - win->layout->clip.y;
+
+ ret = nk_popup_begin(ctx, layout, NK_POPUP_DYNAMIC,
+ "__##Tooltip##__", NK_WINDOW_NO_SCROLLBAR|NK_WINDOW_TOOLTIP|NK_WINDOW_BORDER, bounds);
+ if (ret) win->layout->flags &= ~(nk_flags)NK_WINDOW_ROM;
+ return ret;
+}
+
+NK_API void
+nk_tooltip_end(struct nk_context *ctx)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ if (!ctx || !ctx->current)
+ return;
+ nk_popup_close(ctx);
+ nk_popup_end(ctx);
+}
+
+NK_API void
+nk_tooltip(struct nk_context *ctx, const char *text)
+{
+ const struct nk_style *style;
+ struct nk_vec2 padding;
+ struct nk_panel layout;
+
+ int text_len;
+ float text_width;
+ float text_height;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ NK_ASSERT(text);
+ if (!ctx || !ctx->current || !ctx->current->layout || !text)
+ return;
+
+ /* fetch configuration data */
+ style = &ctx->style;
+ padding = style->window.padding;
+
+ /* calculate size of the text and tooltip */
+ text_len = nk_strlen(text);
+ text_width = style->font.width(style->font.userdata,
+ style->font.height, text, text_len);
+ text_width += (4 * padding.x);
+ text_height = (style->font.height + 2 * padding.y);
+
+ /* execute tooltip and fill with text */
+ if (nk_tooltip_begin(ctx, &layout, (float)text_width)) {
+ nk_layout_row_dynamic(ctx, (float)text_height, 1);
+ nk_text(ctx, text, text_len, NK_TEXT_LEFT);
+ nk_tooltip_end(ctx);
+ }
+}
+/* -------------------------------------------------------------
+ *
+ * CONTEXTUAL
+ *
+ * -------------------------------------------------------------- */
+NK_API int
+nk_contextual_begin(struct nk_context *ctx, struct nk_panel *layout,
+ nk_flags flags, struct nk_vec2 size, struct nk_rect trigger_bounds)
+{
+ struct nk_window *win;
+ struct nk_window *popup;
+ struct nk_rect body;
+
+ NK_STORAGE const struct nk_rect null_rect = {0,0,0,0};
+ int is_clicked = 0;
+ int is_active = 0;
+ int is_open = 0;
+ int ret = 0;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ ++win->popup.con_count;
+
+ /* check if currently active contextual is active */
+ popup = win->popup.win;
+ is_open = (popup && (popup->flags & NK_WINDOW_CONTEXTUAL) && win->popup.type == NK_WINDOW_CONTEXTUAL);
+ is_clicked = nk_input_mouse_clicked(&ctx->input, NK_BUTTON_RIGHT, trigger_bounds);
+ if (win->popup.active_con && win->popup.con_count != win->popup.active_con)
+ return 0;
+ if ((is_clicked && is_open && !is_active) || (!is_open && !is_active && !is_clicked))
+ return 0;
+
+ /* calculate contextual position on click */
+ win->popup.active_con = win->popup.con_count;
+ if (is_clicked) {
+ body.x = ctx->input.mouse.pos.x;
+ body.y = ctx->input.mouse.pos.y;
+ } else {
+ body.x = popup->bounds.x;
+ body.y = popup->bounds.y;
+ }
+ body.w = size.x;
+ body.h = size.y;
+
+ /* start nonblocking contextual popup */
+ ret = nk_nonblock_begin(layout, ctx,
+ flags|NK_WINDOW_CONTEXTUAL|NK_WINDOW_NO_SCROLLBAR, body, null_rect);
+ if (ret) win->popup.type = NK_WINDOW_CONTEXTUAL;
+ else {
+ win->popup.active_con = 0;
+ win->popup.win->flags = 0;
+ }
+ return ret;
+}
+
+NK_API int
+nk_contextual_item_text(struct nk_context *ctx, const char *text, int len,
+ nk_flags alignment)
+{
+ struct nk_window *win;
+ const struct nk_input *in;
+ const struct nk_style *style;
+
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ state = nk_widget_fitting(&bounds, ctx, style->contextual_button.padding);
+ if (!state) return nk_false;
+
+ in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ if (nk_do_button_text(&ctx->last_widget_state, &win->buffer, bounds,
+ text, len, alignment, NK_BUTTON_DEFAULT, &style->contextual_button, in, &style->font)) {
+ nk_contextual_close(ctx);
+ return nk_true;
+ }
+ return nk_false;
+}
+
+NK_API int nk_contextual_item_label(struct nk_context *ctx, const char *label, nk_flags align)
+{return nk_contextual_item_text(ctx, label, nk_strlen(label), align);}
+
+NK_API int
+nk_contextual_item_image_text(struct nk_context *ctx, struct nk_image img,
+ const char *text, int len, nk_flags align)
+{
+ struct nk_window *win;
+ const struct nk_input *in;
+ const struct nk_style *style;
+
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ state = nk_widget_fitting(&bounds, ctx, style->contextual_button.padding);
+ if (!state) return nk_false;
+
+ in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ if (nk_do_button_text_image(&ctx->last_widget_state, &win->buffer, bounds,
+ img, text, len, align, NK_BUTTON_DEFAULT, &style->contextual_button, &style->font, in)){
+ nk_contextual_close(ctx);
+ return nk_true;
+ }
+ return nk_false;
+}
+
+NK_API int nk_contextual_item_image_label(struct nk_context *ctx, struct nk_image img,
+ const char *label, nk_flags align)
+{return nk_contextual_item_image_text(ctx, img, label, nk_strlen(label), align);}
+
+NK_API int
+nk_contextual_item_symbol_text(struct nk_context *ctx, enum nk_symbol_type symbol,
+ const char *text, int len, nk_flags align)
+{
+ struct nk_window *win;
+ const struct nk_input *in;
+ const struct nk_style *style;
+
+ struct nk_rect bounds;
+ enum nk_widget_layout_states state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ state = nk_widget_fitting(&bounds, ctx, style->contextual_button.padding);
+ if (!state) return nk_false;
+
+ in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ if (nk_do_button_text_symbol(&ctx->last_widget_state, &win->buffer, bounds,
+ symbol, text, len, align, NK_BUTTON_DEFAULT, &style->contextual_button, &style->font, in)) {
+ nk_contextual_close(ctx);
+ return nk_true;
+ }
+ return nk_false;
+}
+
+NK_API int nk_contextual_item_symbol_label(struct nk_context *ctx, enum nk_symbol_type symbol,
+ const char *text, nk_flags align)
+{return nk_contextual_item_symbol_text(ctx, symbol, text, nk_strlen(text), align);}
+
+NK_API void
+nk_contextual_close(struct nk_context *ctx)
+{
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return;
+
+ if (!ctx->current)
+ return;
+ nk_popup_close(ctx);
+}
+
+NK_API void
+nk_contextual_end(struct nk_context *ctx)
+{
+ struct nk_window *popup;
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ popup = ctx->current;
+ NK_ASSERT(popup->parent);
+ if (popup->flags & NK_WINDOW_HIDDEN)
+ popup->seq = 0;
+ nk_popup_end(ctx);
+ return;
+}
+/* -------------------------------------------------------------
+ *
+ * COMBO
+ *
+ * --------------------------------------------------------------*/
+NK_INTERN int
+nk_combo_begin(struct nk_panel *layout, struct nk_context *ctx, struct nk_window *win,
+ int height, int is_clicked, struct nk_rect header)
+{
+ struct nk_window *popup;
+ int is_open = 0;
+ int is_active = 0;
+ struct nk_rect body;
+ nk_hash hash;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ popup = win->popup.win;
+ body.x = header.x;
+ body.w = header.w;
+ body.y = header.y + header.h-1;
+ body.h = (float)height;
+
+ hash = win->popup.combo_count++;
+ is_open = (popup && (popup->flags & NK_WINDOW_COMBO));
+ is_active = (popup && (win->popup.name == hash) && win->popup.type == NK_WINDOW_COMBO);
+ if ((is_clicked && is_open && !is_active) || (is_open && !is_active) ||
+ (!is_open && !is_active && !is_clicked)) return 0;
+ if (!nk_nonblock_begin(layout, ctx, NK_WINDOW_COMBO,
+ body, (is_clicked && is_open)?nk_rect(0,0,0,0):header)) return 0;
+
+ win->popup.type = NK_WINDOW_COMBO;
+ win->popup.name = hash;
+ return 1;
+}
+
+NK_API int
+nk_combo_begin_text(struct nk_context *ctx, struct nk_panel *layout,
+ const char *selected, int len, int height)
+{
+ const struct nk_input *in;
+ struct nk_window *win;
+ struct nk_style *style;
+
+ enum nk_widget_layout_states s;
+ int is_clicked = nk_false;
+ struct nk_rect header;
+
+ const struct nk_style_item *background;
+ struct nk_text text;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(selected);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout || !selected)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ s = nk_widget(&header, ctx);
+ if (s == NK_WIDGET_INVALID)
+ return 0;
+
+ in = (win->layout->flags & NK_WINDOW_ROM || s == NK_WIDGET_ROM)? 0: &ctx->input;
+ if (nk_button_behavior(&ctx->last_widget_state, header, in, NK_BUTTON_DEFAULT))
+ is_clicked = nk_true;
+
+ /* draw combo box header background and border */
+ if (ctx->last_widget_state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->combo.active;
+ text.text = style->combo.label_active;
+ } else if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) {
+ background = &style->combo.hover;
+ text.text = style->combo.label_hover;
+ } else {
+ background = &style->combo.normal;
+ text.text = style->combo.label_normal;
+ }
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ text.background = nk_rgba(0,0,0,0);
+ nk_draw_image(&win->buffer, header, &background->data.image);
+ } else {
+ text.background = background->data.color;
+ nk_fill_rect(&win->buffer, header, style->combo.rounding, style->combo.border_color);
+ nk_fill_rect(&win->buffer, nk_shrink_rect(header, 1), style->combo.rounding,
+ background->data.color);
+ }
+ {
+ /* print currently selected text item */
+ struct nk_rect label;
+ struct nk_rect button;
+ struct nk_rect content;
+
+ enum nk_symbol_type sym;
+ if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER)
+ sym = style->combo.sym_hover;
+ else if (is_clicked)
+ sym = style->combo.sym_active;
+ else sym = style->combo.sym_normal;
+
+ /* calculate button */
+ button.w = header.h - 2 * style->combo.button_padding.y;
+ button.x = (header.x + header.w - header.h) - style->combo.button_padding.x;
+ button.y = header.y + style->combo.button_padding.y;
+ button.h = button.w;
+
+ content.x = button.x + style->combo.button.padding.x;
+ content.y = button.y + style->combo.button.padding.y;
+ content.w = button.w - 2 * style->combo.button.padding.x;
+ content.h = button.h - 2 * style->combo.button.padding.y;
+
+ /* draw selected label */
+ text.padding = nk_vec2(0,0);
+ label.x = header.x + style->combo.content_padding.x;
+ label.y = header.y + style->combo.content_padding.y;
+ label.w = button.x - (style->combo.content_padding.x + style->combo.spacing.x) - label.x;;
+ label.h = header.h - 2 * style->combo.content_padding.y;
+ nk_widget_text(&win->buffer, label, selected, len, &text,
+ NK_TEXT_LEFT, &ctx->style.font);
+
+ /* draw open/close button */
+ nk_draw_button_symbol(&win->buffer, &button, &content, ctx->last_widget_state,
+ &ctx->style.combo.button, sym, &style->font);
+ }
+ return nk_combo_begin(layout, ctx, win, height, is_clicked, header);
+}
+
+NK_API int nk_combo_begin_label(struct nk_context *ctx, struct nk_panel *layout,
+ const char *selected, int max_height)
+{return nk_combo_begin_text(ctx, layout, selected, nk_strlen(selected), max_height);}
+
+NK_API int
+nk_combo_begin_color(struct nk_context *ctx, struct nk_panel *layout,
+ struct nk_color color, int height)
+{
+ struct nk_window *win;
+ struct nk_style *style;
+ const struct nk_input *in;
+
+ struct nk_rect header;
+ int is_clicked = nk_false;
+ enum nk_widget_layout_states s;
+ const struct nk_style_item *background;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ s = nk_widget(&header, ctx);
+ if (s == NK_WIDGET_INVALID)
+ return 0;
+
+ in = (win->layout->flags & NK_WINDOW_ROM || s == NK_WIDGET_ROM)? 0: &ctx->input;
+ if (nk_button_behavior(&ctx->last_widget_state, header, in, NK_BUTTON_DEFAULT))
+ is_clicked = nk_true;
+
+ /* draw combo box header background and border */
+ if (ctx->last_widget_state & NK_WIDGET_STATE_ACTIVED)
+ background = &style->combo.active;
+ else if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER)
+ background = &style->combo.hover;
+ else background = &style->combo.normal;
+
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ nk_draw_image(&win->buffer, header, &background->data.image);
+ } else {
+ nk_fill_rect(&win->buffer, header, 0, style->combo.border_color);
+ nk_fill_rect(&win->buffer, nk_shrink_rect(header, 1), 0,
+ background->data.color);
+ }
+ {
+ struct nk_rect content;
+ struct nk_rect button;
+ struct nk_rect bounds;
+
+ enum nk_symbol_type sym;
+ if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER)
+ sym = style->combo.sym_hover;
+ else if (is_clicked)
+ sym = style->combo.sym_active;
+ else sym = style->combo.sym_normal;
+
+ /* calculate button */
+ button.w = header.h - 2 * style->combo.button_padding.y;
+ button.x = (header.x + header.w - header.h) - style->combo.button_padding.x;
+ button.y = header.y + style->combo.button_padding.y;
+ button.h = button.w;
+
+ content.x = button.x + style->combo.button.padding.x;
+ content.y = button.y + style->combo.button.padding.y;
+ content.w = button.w - 2 * style->combo.button.padding.x;
+ content.h = button.h - 2 * style->combo.button.padding.y;
+
+ /* draw color */
+ bounds.h = header.h - 4 * style->combo.content_padding.y;
+ bounds.y = header.y + 2 * style->combo.content_padding.y;
+ bounds.x = header.x + 2 * style->combo.content_padding.x;
+ bounds.w = (button.x - (style->combo.content_padding.x + style->combo.spacing.x)) - bounds.x;
+ nk_fill_rect(&win->buffer, bounds, 0, color);
+
+ /* draw open/close button */
+ nk_draw_button_symbol(&win->buffer, &button, &content, ctx->last_widget_state,
+ &ctx->style.combo.button, sym, &style->font);
+ }
+ return nk_combo_begin(layout, ctx, win, height, is_clicked, header);
+}
+
+NK_API int
+nk_combo_begin_symbol(struct nk_context *ctx, struct nk_panel *layout,
+ enum nk_symbol_type symbol, int height)
+{
+ struct nk_window *win;
+ struct nk_style *style;
+ const struct nk_input *in;
+
+ struct nk_rect header;
+ int is_clicked = nk_false;
+ enum nk_widget_layout_states s;
+ const struct nk_style_item *background;
+ struct nk_color sym_background;
+ struct nk_color symbol_color;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ s = nk_widget(&header, ctx);
+ if (s == NK_WIDGET_INVALID)
+ return 0;
+
+ in = (win->layout->flags & NK_WINDOW_ROM || s == NK_WIDGET_ROM)? 0: &ctx->input;
+ if (nk_button_behavior(&ctx->last_widget_state, header, in, NK_BUTTON_DEFAULT))
+ is_clicked = nk_true;
+
+ /* draw combo box header background and border */
+ if (ctx->last_widget_state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->combo.active;
+ symbol_color = style->combo.symbol_active;
+ } else if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) {
+ background = &style->combo.hover;
+ symbol_color = style->combo.symbol_hover;
+ } else {
+ background = &style->combo.normal;
+ symbol_color = style->combo.symbol_hover;
+ }
+
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ sym_background = nk_rgba(0,0,0,0);
+ nk_draw_image(&win->buffer, header, &background->data.image);
+ } else {
+ sym_background = background->data.color;
+ nk_fill_rect(&win->buffer, header, 0, style->combo.border_color);
+ nk_fill_rect(&win->buffer, nk_shrink_rect(header, 1), 0,
+ background->data.color);
+ }
+ {
+ struct nk_rect bounds = {0,0,0,0};
+ struct nk_rect content;
+ struct nk_rect button;
+
+ enum nk_symbol_type sym;
+ if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER)
+ sym = style->combo.sym_hover;
+ else if (is_clicked)
+ sym = style->combo.sym_active;
+ else sym = style->combo.sym_normal;
+
+ /* calculate button */
+ button.w = header.h - 2 * style->combo.button_padding.y;
+ button.x = (header.x + header.w - header.h) - style->combo.button_padding.y;
+ button.y = header.y + style->combo.button_padding.y;
+ button.h = button.w;
+
+ content.x = button.x + style->combo.button.padding.x;
+ content.y = button.y + style->combo.button.padding.y;
+ content.w = button.w - 2 * style->combo.button.padding.x;
+ content.h = button.h - 2 * style->combo.button.padding.y;
+
+ /* draw symbol */
+ bounds.h = header.h - 2 * style->combo.content_padding.y;
+ bounds.y = header.y + style->combo.content_padding.y;
+ bounds.x = header.x + style->combo.content_padding.x;
+ bounds.w = (button.x - style->combo.content_padding.y) - bounds.x;
+ nk_draw_symbol(&win->buffer, symbol, bounds, sym_background, symbol_color,
+ 1.0f, &style->font);
+
+ /* draw open/close button */
+ nk_draw_button_symbol(&win->buffer, &bounds, &content, ctx->last_widget_state,
+ &ctx->style.combo.button, sym, &style->font);
+ }
+ return nk_combo_begin(layout, ctx, win, height, is_clicked, header);
+}
+
+NK_API int
+nk_combo_begin_symbol_text(struct nk_context *ctx, struct nk_panel *layout,
+ const char *selected, int len, enum nk_symbol_type symbol, int height)
+{
+ struct nk_window *win;
+ struct nk_style *style;
+ struct nk_input *in;
+
+ struct nk_rect header;
+ int is_clicked = nk_false;
+ enum nk_widget_layout_states s;
+ const struct nk_style_item *background;
+ struct nk_color symbol_color;
+ struct nk_text text;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ s = nk_widget(&header, ctx);
+ if (!s) return 0;
+
+ in = (win->layout->flags & NK_WINDOW_ROM || s == NK_WIDGET_ROM)? 0: &ctx->input;
+ if (nk_button_behavior(&ctx->last_widget_state, header, in, NK_BUTTON_DEFAULT))
+ is_clicked = nk_true;
+
+ /* draw combo box header background and border */
+ if (ctx->last_widget_state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->combo.active;
+ symbol_color = style->combo.symbol_active;
+ text.text = style->combo.label_active;
+ } else if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) {
+ background = &style->combo.hover;
+ symbol_color = style->combo.symbol_hover;
+ text.text = style->combo.label_hover;
+ } else {
+ background = &style->combo.normal;
+ symbol_color = style->combo.symbol_normal;
+ text.text = style->combo.label_normal;
+ }
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ text.background = nk_rgba(0,0,0,0);
+ nk_draw_image(&win->buffer, header, &background->data.image);
+ } else {
+ text.background = background->data.color;
+ nk_fill_rect(&win->buffer, header, 0, style->combo.border_color);
+ nk_fill_rect(&win->buffer, nk_shrink_rect(header, 1), 0,
+ background->data.color);
+ }
+ {
+ struct nk_rect content;
+ struct nk_rect button;
+ struct nk_rect label;
+ struct nk_rect image;
+
+ enum nk_symbol_type sym;
+ if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER)
+ sym = style->combo.sym_hover;
+ else if (is_clicked)
+ sym = style->combo.sym_active;
+ else sym = style->combo.sym_normal;
+
+ /* calculate button */
+ button.w = header.h - 2 * style->combo.button_padding.y;
+ button.x = (header.x + header.w - header.h) - style->combo.button_padding.x;
+ button.y = header.y + style->combo.button_padding.y;
+ button.h = button.w;
+
+ content.x = button.x + style->combo.button.padding.x;
+ content.y = button.y + style->combo.button.padding.y;
+ content.w = button.w - 2 * style->combo.button.padding.x;
+ content.h = button.h - 2 * style->combo.button.padding.y;
+ nk_draw_button_symbol(&win->buffer, &button, &content, ctx->last_widget_state,
+ &ctx->style.combo.button, sym, &style->font);
+
+ /* draw symbol */
+ image.x = header.x + style->combo.content_padding.x;
+ image.y = header.y + style->combo.content_padding.y;
+ image.h = header.h - 2 * style->combo.content_padding.y;
+ image.w = image.h;
+ nk_draw_symbol(&win->buffer, symbol, image, text.background, symbol_color,
+ 1.0f, &style->font);
+
+ /* draw label */
+ text.padding = nk_vec2(0,0);
+ label.x = image.x + image.w + style->combo.spacing.x + style->combo.content_padding.x;
+ label.y = header.y + style->combo.content_padding.y;
+ label.w = (button.x - style->combo.content_padding.x) - label.x;
+ label.h = header.h - 2 * style->combo.content_padding.y;
+ nk_widget_text(&win->buffer, label, selected, len, &text, NK_TEXT_LEFT, &style->font);
+ }
+ return nk_combo_begin(layout, ctx, win, height, is_clicked, header);
+}
+
+NK_API int
+nk_combo_begin_image(struct nk_context *ctx, struct nk_panel *layout,
+ struct nk_image img, int height)
+{
+ struct nk_window *win;
+ struct nk_style *style;
+ const struct nk_input *in;
+
+ struct nk_rect header;
+ int is_clicked = nk_false;
+ enum nk_widget_layout_states s;
+ const struct nk_style_item *background;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ s = nk_widget(&header, ctx);
+ if (s == NK_WIDGET_INVALID)
+ return 0;
+
+ in = (win->layout->flags & NK_WINDOW_ROM || s == NK_WIDGET_ROM)? 0: &ctx->input;
+ if (nk_button_behavior(&ctx->last_widget_state, header, in, NK_BUTTON_DEFAULT))
+ is_clicked = nk_true;
+
+ /* draw combo box header background and border */
+ if (ctx->last_widget_state & NK_WIDGET_STATE_ACTIVED)
+ background = &style->combo.active;
+ else if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER)
+ background = &style->combo.hover;
+ else background = &style->combo.normal;
+
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ nk_draw_image(&win->buffer, header, &background->data.image);
+ } else {
+ nk_fill_rect(&win->buffer, header, 0, style->combo.border_color);
+ nk_fill_rect(&win->buffer, nk_shrink_rect(header, 1), 0,
+ background->data.color);
+ }
+ {
+ struct nk_rect bounds = {0,0,0,0};
+ struct nk_rect content;
+ struct nk_rect button;
+
+ enum nk_symbol_type sym;
+ if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER)
+ sym = style->combo.sym_hover;
+ else if (is_clicked)
+ sym = style->combo.sym_active;
+ else sym = style->combo.sym_normal;
+
+ /* calculate button */
+ button.w = header.h - 2 * style->combo.button_padding.y;
+ button.x = (header.x + header.w - header.h) - style->combo.button_padding.y;
+ button.y = header.y + style->combo.button_padding.y;
+ button.h = button.w;
+
+ content.x = button.x + style->combo.button.padding.x;
+ content.y = button.y + style->combo.button.padding.y;
+ content.w = button.w - 2 * style->combo.button.padding.x;
+ content.h = button.h - 2 * style->combo.button.padding.y;
+
+ /* draw image */
+ bounds.h = header.h - 2 * style->combo.content_padding.y;
+ bounds.y = header.y + style->combo.content_padding.y;
+ bounds.x = header.x + style->combo.content_padding.x;
+ bounds.w = (button.x - style->combo.content_padding.y) - bounds.x;
+ nk_draw_image(&win->buffer, bounds, &img);
+
+ /* draw open/close button */
+ nk_draw_button_symbol(&win->buffer, &bounds, &content, ctx->last_widget_state,
+ &ctx->style.combo.button, sym, &style->font);
+ }
+ return nk_combo_begin(layout, ctx, win, height, is_clicked, header);
+}
+
+NK_API int
+nk_combo_begin_image_text(struct nk_context *ctx, struct nk_panel *layout,
+ const char *selected, int len, struct nk_image img, int height)
+{
+ struct nk_window *win;
+ struct nk_style *style;
+ struct nk_input *in;
+
+ struct nk_rect header;
+ int is_clicked = nk_false;
+ enum nk_widget_layout_states s;
+ const struct nk_style_item *background;
+ struct nk_text text;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ style = &ctx->style;
+ s = nk_widget(&header, ctx);
+ if (!s) return 0;
+
+ in = (win->layout->flags & NK_WINDOW_ROM || s == NK_WIDGET_ROM)? 0: &ctx->input;
+ if (nk_button_behavior(&ctx->last_widget_state, header, in, NK_BUTTON_DEFAULT))
+ is_clicked = nk_true;
+
+ /* draw combo box header background and border */
+ if (ctx->last_widget_state & NK_WIDGET_STATE_ACTIVED) {
+ background = &style->combo.active;
+ text.text = style->combo.label_active;
+ } else if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) {
+ background = &style->combo.hover;
+ text.text = style->combo.label_hover;
+ } else {
+ background = &style->combo.normal;
+ text.text = style->combo.label_normal;
+ }
+ if (background->type == NK_STYLE_ITEM_IMAGE) {
+ text.background = nk_rgba(0,0,0,0);
+ nk_draw_image(&win->buffer, header, &background->data.image);
+ } else {
+ text.background = background->data.color;
+ nk_fill_rect(&win->buffer, header, 0, style->combo.border_color);
+ nk_fill_rect(&win->buffer, nk_shrink_rect(header, 1), 0,
+ background->data.color);
+ }
+ {
+ struct nk_rect content;
+ struct nk_rect button;
+ struct nk_rect label;
+ struct nk_rect image;
+
+ enum nk_symbol_type sym;
+ if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER)
+ sym = style->combo.sym_hover;
+ else if (is_clicked)
+ sym = style->combo.sym_active;
+ else sym = style->combo.sym_normal;
+
+ /* calculate button */
+ button.w = header.h - 2 * style->combo.button_padding.y;
+ button.x = (header.x + header.w - header.h) - style->combo.button_padding.x;
+ button.y = header.y + style->combo.button_padding.y;
+ button.h = button.w;
+
+ content.x = button.x + style->combo.button.padding.x;
+ content.y = button.y + style->combo.button.padding.y;
+ content.w = button.w - 2 * style->combo.button.padding.x;
+ content.h = button.h - 2 * style->combo.button.padding.y;
+ nk_draw_button_symbol(&win->buffer, &button, &content, ctx->last_widget_state,
+ &ctx->style.combo.button, sym, &style->font);
+
+ /* draw image */
+ image.x = header.x + style->combo.content_padding.x;
+ image.y = header.y + style->combo.content_padding.y;
+ image.h = header.h - 2 * style->combo.content_padding.y;
+ image.w = image.h;
+ nk_draw_image(&win->buffer, image, &img);
+
+ /* draw label */
+ text.padding = nk_vec2(0,0);
+ label.x = image.x + image.w + style->combo.spacing.x + style->combo.content_padding.x;
+ label.y = header.y + style->combo.content_padding.y;
+ label.w = (button.x - style->combo.content_padding.x) - label.x;
+ label.h = header.h - 2 * style->combo.content_padding.y;
+ nk_widget_text(&win->buffer, label, selected, len, &text, NK_TEXT_LEFT, &style->font);
+ }
+ return nk_combo_begin(layout, ctx, win, height, is_clicked, header);
+}
+
+NK_API int nk_combo_begin_symbol_label(struct nk_context *ctx, struct nk_panel *layout,
+ const char *selected, enum nk_symbol_type type, int height)
+{return nk_combo_begin_symbol_text(ctx, layout, selected, nk_strlen(selected), type, height);}
+
+NK_API int nk_combo_begin_image_label(struct nk_context *ctx, struct nk_panel *layout,
+ const char *selected, struct nk_image img, int height)
+{return nk_combo_begin_image_text(ctx, layout, selected, nk_strlen(selected), img, height);}
+
+NK_API int nk_combo_item_text(struct nk_context *ctx, const char *text, int len,nk_flags align)
+{return nk_contextual_item_text(ctx, text, len, align);}
+
+NK_API int nk_combo_item_label(struct nk_context *ctx, const char *label, nk_flags align)
+{return nk_contextual_item_label(ctx, label, align);}
+
+NK_API int nk_combo_item_image_text(struct nk_context *ctx, struct nk_image img, const char *text,
+ int len, nk_flags alignment)
+{return nk_contextual_item_image_text(ctx, img, text, len, alignment);}
+
+NK_API int nk_combo_item_image_label(struct nk_context *ctx, struct nk_image img,
+ const char *text, nk_flags alignment)
+{return nk_contextual_item_image_label(ctx, img, text, alignment);}
+
+NK_API int nk_combo_item_symbol_text(struct nk_context *ctx, enum nk_symbol_type sym,
+ const char *text, int len, nk_flags alignment)
+{return nk_contextual_item_symbol_text(ctx, sym, text, len, alignment);}
+
+NK_API int nk_combo_item_symbol_label(struct nk_context *ctx, enum nk_symbol_type sym,
+ const char *label, nk_flags alignment)
+{return nk_contextual_item_symbol_label(ctx, sym, label, alignment);}
+
+NK_API void nk_combo_end(struct nk_context *ctx)
+{nk_contextual_end(ctx);}
+
+NK_API void nk_combo_close(struct nk_context *ctx)
+{nk_contextual_close(ctx);}
+
+NK_API int
+nk_combo(struct nk_context *ctx, const char **items, int count,
+ int selected, int item_height)
+{
+ int i = 0;
+ int max_height;
+ struct nk_panel combo;
+ float item_padding;
+ float window_padding;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(items);
+ if (!ctx || !items ||!count)
+ return selected;
+
+ item_padding = ctx->style.combo.button_padding.y;
+ window_padding = ctx->style.window.padding.y;
+ max_height = (count+1) * item_height + (int)item_padding * 3 + (int)window_padding * 2;
+ if (nk_combo_begin_label(ctx, &combo, items[selected], max_height)) {
+ nk_layout_row_dynamic(ctx, (float)item_height, 1);
+ for (i = 0; i < count; ++i) {
+ if (nk_combo_item_label(ctx, items[i], NK_TEXT_LEFT))
+ selected = i;
+ }
+ nk_combo_end(ctx);
+ }
+ return selected;
+}
+
+NK_API int
+nk_combo_separator(struct nk_context *ctx, const char *items_separated_by_separator,
+ int separator, int selected, int count, int item_height)
+{
+ int i;
+ int max_height;
+ struct nk_panel combo;
+ float item_padding;
+ float window_padding;
+ const char *current_item;
+ const char *iter;
+ int length = 0;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(items_separated_by_separator);
+ if (!ctx || !items_separated_by_separator)
+ return selected;
+
+ /* calculate popup window */
+ item_padding = ctx->style.combo.content_padding.y;
+ window_padding = ctx->style.window.padding.y;
+ max_height = (count+1) * item_height + (int)item_padding * 3 + (int)window_padding * 2;
+
+ /* find selected item */
+ current_item = items_separated_by_separator;
+ for (i = 0; i < selected; ++i) {
+ iter = current_item;
+ while (*iter != separator) iter++;
+ length = (int)(iter - current_item);
+ current_item = iter + 1;
+ }
+
+ if (nk_combo_begin_text(ctx, &combo, current_item, length, max_height)) {
+ current_item = items_separated_by_separator;
+ nk_layout_row_dynamic(ctx, (float)item_height, 1);
+ for (i = 0; i < count; ++i) {
+ iter = current_item;
+ while (*iter != separator) iter++;
+ length = (int)(iter - current_item);
+ if (nk_combo_item_text(ctx, current_item, length, NK_TEXT_LEFT))
+ selected = i;
+ current_item = current_item + length + 1;
+ }
+ nk_combo_end(ctx);
+ }
+ return selected;
+}
+
+NK_API int
+nk_combo_string(struct nk_context *ctx, const char *items_separated_by_zeros,
+ int selected, int count, int item_height)
+{return nk_combo_separator(ctx, items_separated_by_zeros, '\0', selected, count, item_height);}
+
+NK_API int
+nk_combo_callback(struct nk_context *ctx, void(*item_getter)(void*, int, const char**),
+ void *userdata, int selected, int count, int item_height)
+{
+ int i;
+ int max_height;
+ struct nk_panel combo;
+ float item_padding;
+ float window_padding;
+ const char *item;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(item_getter);
+ if (!ctx || !item_getter)
+ return selected;
+
+ /* calculate popup window */
+ item_padding = ctx->style.combo.content_padding.y;
+ window_padding = ctx->style.window.padding.y;
+ max_height = (count+1) * item_height + (int)item_padding * 3 + (int)window_padding * 2;
+
+ item_getter(userdata, selected, &item);
+ if (nk_combo_begin_label(ctx, &combo, item, max_height)) {
+ nk_layout_row_dynamic(ctx, (float)item_height, 1);
+ for (i = 0; i < count; ++i) {
+ item_getter(userdata, i, &item);
+ if (nk_combo_item_label(ctx, item, NK_TEXT_LEFT))
+ selected = i;
+ }
+ nk_combo_end(ctx);
+ }
+ return selected;
+}
+
+NK_API void nk_combobox(struct nk_context *ctx, const char **items, int count,
+ int *selected, int item_height)
+{*selected = nk_combo(ctx, items, count, *selected, item_height);}
+
+NK_API void nk_combobox_string(struct nk_context *ctx, const char *items_separated_by_zeros,
+ int *selected, int count, int item_height)
+{*selected = nk_combo_string(ctx, items_separated_by_zeros, *selected, count, item_height);}
+
+NK_API void nk_combobox_separator(struct nk_context *ctx, const char *items_separated_by_separator,
+ int separator,int *selected, int count, int item_height)
+{*selected = nk_combo_separator(ctx, items_separated_by_separator, separator,
+ *selected, count, item_height);}
+
+NK_API void nk_combobox_callback(struct nk_context *ctx,
+ void(*item_getter)(void* data, int id, const char **out_text),
+ void *userdata, int *selected, int count, int item_height)
+{*selected = nk_combo_callback(ctx, item_getter, userdata, *selected, count, item_height);}
+
+/*
+ * -------------------------------------------------------------
+ *
+ * MENU
+ *
+ * --------------------------------------------------------------
+ */
+NK_INTERN int
+nk_menu_begin(struct nk_panel *layout, struct nk_context *ctx, struct nk_window *win,
+ const char *id, int is_clicked, struct nk_rect header, float width)
+{
+ int is_open = 0;
+ int is_active = 0;
+ struct nk_rect body;
+ struct nk_window *popup;
+ nk_hash hash = nk_murmur_hash(id, (int)nk_strlen(id), NK_WINDOW_MENU);
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ body.x = header.x;
+ body.w = width;
+ body.y = header.y + header.h;
+ body.h = nk_null_rect.h;
+
+ popup = win->popup.win;
+ is_open = (popup && (popup->flags & NK_WINDOW_MENU));
+ is_active = (popup && (win->popup.name == hash) && win->popup.type == NK_WINDOW_MENU);
+ if ((is_clicked && is_open && !is_active) || (is_open && !is_active) ||
+ (!is_open && !is_active && !is_clicked)) return 0;
+ if (!nk_nonblock_begin(layout, ctx, NK_WINDOW_MENU|NK_WINDOW_NO_SCROLLBAR, body, header))
+ return 0;
+ win->popup.type = NK_WINDOW_MENU;
+ win->popup.name = hash;
+ return 1;
+}
+
+NK_API int
+nk_menu_begin_text(struct nk_context *ctx, struct nk_panel *layout,
+ const char *title, int len, nk_flags align, float width)
+{
+ struct nk_window *win;
+ const struct nk_input *in;
+ struct nk_rect header;
+ int is_clicked = nk_false;
+ nk_flags state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ state = nk_widget(&header, ctx);
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || win->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ if (nk_do_button_text(&ctx->last_widget_state, &win->buffer, header,
+ title, len, align, NK_BUTTON_DEFAULT, &ctx->style.menu_button, in, &ctx->style.font))
+ is_clicked = nk_true;
+ return nk_menu_begin(layout, ctx, win, title, is_clicked, header, width);
+}
+
+NK_API int nk_menu_begin_label(struct nk_context *ctx, struct nk_panel *layout,
+ const char *text, nk_flags align, float width)
+{return nk_menu_begin_text(ctx, layout, text, nk_strlen(text), align, width);}
+
+NK_API int
+nk_menu_begin_image(struct nk_context *ctx, struct nk_panel *layout,
+ const char *id, struct nk_image img, float width)
+{
+ struct nk_window *win;
+ struct nk_rect header;
+ const struct nk_input *in;
+ int is_clicked = nk_false;
+ nk_flags state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ state = nk_widget(&header, ctx);
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ if (nk_do_button_image(&ctx->last_widget_state, &win->buffer, header,
+ img, NK_BUTTON_DEFAULT, &ctx->style.menu_button, in))
+ is_clicked = nk_true;
+ return nk_menu_begin(layout, ctx, win, id, is_clicked, header, width);
+}
+
+NK_API int
+nk_menu_begin_symbol(struct nk_context *ctx, struct nk_panel *layout,
+ const char *id, enum nk_symbol_type sym, float width)
+{
+ struct nk_window *win;
+ const struct nk_input *in;
+ struct nk_rect header;
+ int is_clicked = nk_false;
+ nk_flags state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ state = nk_widget(&header, ctx);
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ if (nk_do_button_symbol(&ctx->last_widget_state, &win->buffer, header,
+ sym, NK_BUTTON_DEFAULT, &ctx->style.menu_button, in, &ctx->style.font))
+ is_clicked = nk_true;
+ return nk_menu_begin(layout, ctx, win, id, is_clicked, header, width);
+}
+
+NK_API int
+nk_menu_begin_image_text(struct nk_context *ctx, struct nk_panel *layout,
+ const char *title, int len, nk_flags align, struct nk_image img, float width)
+{
+ struct nk_window *win;
+ struct nk_rect header;
+ const struct nk_input *in;
+ int is_clicked = nk_false;
+ nk_flags state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ state = nk_widget(&header, ctx);
+ if (!state) return 0;
+ in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ if (nk_do_button_text_image(&ctx->last_widget_state, &win->buffer,
+ header, img, title, len, align, NK_BUTTON_DEFAULT, &ctx->style.menu_button,
+ &ctx->style.font, in))
+ is_clicked = nk_true;
+ return nk_menu_begin(layout, ctx, win, title, is_clicked, header, width);
+}
+
+NK_API int nk_menu_begin_image_label(struct nk_context *ctx, struct nk_panel *layout,
+ const char *title, nk_flags align, struct nk_image img, float width)
+{return nk_menu_begin_image_text(ctx, layout, title, nk_strlen(title), align, img, width);}
+
+NK_API int
+nk_menu_begin_symbol_text(struct nk_context *ctx, struct nk_panel *layout,
+ const char *title, int size, nk_flags align, enum nk_symbol_type sym, float width)
+{
+ struct nk_window *win;
+ struct nk_rect header;
+ const struct nk_input *in;
+ int is_clicked = nk_false;
+ nk_flags state;
+
+ NK_ASSERT(ctx);
+ NK_ASSERT(ctx->current);
+ NK_ASSERT(ctx->current->layout);
+ if (!ctx || !ctx->current || !ctx->current->layout)
+ return 0;
+
+ win = ctx->current;
+ state = nk_widget(&header, ctx);
+ if (!state) return 0;
+
+ in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input;
+ if (nk_do_button_text_symbol(&ctx->last_widget_state, &win->buffer,
+ header, sym, title, size, align, NK_BUTTON_DEFAULT, &ctx->style.menu_button,
+ &ctx->style.font, in)) is_clicked = nk_true;
+ return nk_menu_begin(layout, ctx, win, title, is_clicked, header, width);
+}
+
+NK_API int nk_menu_begin_symbol_label(struct nk_context *ctx, struct nk_panel *layout,
+ const char *title, nk_flags align, enum nk_symbol_type sym, float width)
+{return nk_menu_begin_symbol_text(ctx, layout, title, nk_strlen(title), align,sym, width);}
+
+NK_API int nk_menu_item_text(struct nk_context *ctx, const char *title, int len, nk_flags align)
+{return nk_contextual_item_text(ctx, title, len, align);}
+
+NK_API int nk_menu_item_label(struct nk_context *ctx, const char *label, nk_flags align)
+{return nk_contextual_item_label(ctx, label, align);}
+
+NK_API int nk_menu_item_image_label(struct nk_context *ctx, struct nk_image img,
+ const char *label, nk_flags align)
+{return nk_contextual_item_image_label(ctx, img, label, align);}
+
+NK_API int nk_menu_item_image_text(struct nk_context *ctx, struct nk_image img,
+ const char *text, int len, nk_flags align)
+{return nk_contextual_item_image_text(ctx, img, text, len, align);}
+
+NK_API int nk_menu_item_symbol_text(struct nk_context *ctx, enum nk_symbol_type sym,
+ const char *text, int len, nk_flags align)
+{return nk_contextual_item_symbol_text(ctx, sym, text, len, align);}
+
+NK_API int nk_menu_item_symbol_label(struct nk_context *ctx, enum nk_symbol_type sym,
+ const char *label, nk_flags align)
+{return nk_contextual_item_symbol_label(ctx, sym, label, align);}
+
+NK_API void nk_menu_close(struct nk_context *ctx)
+{nk_contextual_close(ctx);}
+
+NK_API void
+nk_menu_end(struct nk_context *ctx)
+{nk_contextual_end(ctx);}
+
+#endif
diff --git a/src/simulator/src/Gui/nuklear_xlib_gl3.h b/src/simulator/src/Gui/nuklear_xlib_gl3.h
new file mode 100644
index 0000000..183c104
--- /dev/null
+++ b/src/simulator/src/Gui/nuklear_xlib_gl3.h
@@ -0,0 +1,687 @@
+/*
+ * Nuklear - v1.00 - public domain
+ * no warrenty implied; use at your own risk.
+ * authored from 2015-2016 by Micha Mettke
+ */
+/*
+ * ==============================================================
+ *
+ * API
+ *
+ * ===============================================================
+ */
+#ifndef NK_XLIB_GL3_H_
+#define NK_XLIB_GL3_H_
+
+#include <X11/Xlib.h>
+NK_API struct nk_context* nk_x11_init(Display *dpy, Window win);
+NK_API void nk_x11_font_stash_begin(struct nk_font_atlas **atlas);
+NK_API void nk_x11_font_stash_end(void);
+NK_API void nk_x11_handle_event(XEvent *evt);
+NK_API void nk_x11_render(enum nk_anti_aliasing, int max_vertex_buffer, int max_element_buffer);
+NK_API void nk_x11_shutdown(void);
+NK_API int nk_x11_device_create(void);
+NK_API void nk_x11_device_destroy(void);
+
+#endif
+/*
+ * ==============================================================
+ *
+ * IMPLEMENTATION
+ *
+ * ===============================================================
+ */
+#ifdef NK_XLIB_GL3_IMPLEMENTATION
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <X11/Xlib.h>
+#include <X11/Xutil.h>
+#include <X11/Xresource.h>
+#include <X11/Xlocale.h>
+
+#include <GL/gl.h>
+#include <GL/glx.h>
+
+#ifndef FALSE
+#define FALSE 0
+#endif
+#ifndef TRUE
+#define TRUE 1
+#endif
+
+#ifdef NK_XLIB_LOAD_OPENGL_EXTENSIONS
+#include <GL/glxext.h>
+
+/* GL_ARB_vertex_buffer_object */
+typedef void(*nkglGenBuffers)(GLsizei, GLuint*);
+typedef void(*nkglBindBuffer)(GLenum, GLuint);
+typedef void(*nkglBufferData)(GLenum, GLsizeiptr, const GLvoid*, GLenum);
+typedef void(*nkglBufferSubData)(GLenum, GLintptr, GLsizeiptr, const GLvoid*);
+typedef void*(*nkglMapBuffer)(GLenum, GLenum);
+typedef GLboolean(*nkglUnmapBuffer)(GLenum);
+typedef void(*nkglDeleteBuffers)(GLsizei, GLuint*);
+/* GL_ARB_vertex_array_object */
+typedef void (*nkglGenVertexArrays)(GLsizei, GLuint*);
+typedef void (*nkglBindVertexArray)(GLuint);
+typedef void (*nkglDeleteVertexArrays)(GLsizei, const GLuint*);
+/* GL_ARB_vertex_program / GL_ARB_fragment_program */
+typedef void(*nkglVertexAttribPointer)(GLuint, GLint, GLenum, GLboolean, GLsizei, const GLvoid*);
+typedef void(*nkglEnableVertexAttribArray)(GLuint);
+typedef void(*nkglDisableVertexAttribArray)(GLuint);
+/* GL_ARB_framebuffer_object */
+typedef void(*nkglGenerateMipmap)(GLenum target);
+/* GLSL/OpenGL 2.0 core */
+typedef GLuint(*nkglCreateShader)(GLenum);
+typedef void(*nkglShaderSource)(GLuint, GLsizei, const GLchar**, const GLint*);
+typedef void(*nkglCompileShader)(GLuint);
+typedef void(*nkglGetShaderiv)(GLuint, GLenum, GLint*);
+typedef void(*nkglGetShaderInfoLog)(GLuint, GLsizei, GLsizei*, GLchar*);
+typedef void(*nkglDeleteShader)(GLuint);
+typedef GLuint(*nkglCreateProgram)(void);
+typedef void(*nkglAttachShader)(GLuint, GLuint);
+typedef void(*nkglDetachShader)(GLuint, GLuint);
+typedef void(*nkglLinkProgram)(GLuint);
+typedef void(*nkglUseProgram)(GLuint);
+typedef void(*nkglGetProgramiv)(GLuint, GLenum, GLint*);
+typedef void(*nkglGetProgramInfoLog)(GLuint, GLsizei, GLsizei*, GLchar*);
+typedef void(*nkglDeleteProgram)(GLuint);
+typedef GLint(*nkglGetUniformLocation)(GLuint, const GLchar*);
+typedef GLint(*nkglGetAttribLocation)(GLuint, const GLchar*);
+typedef void(*nkglUniform1i)(GLint, GLint);
+typedef void(*nkglUniform1f)(GLint, GLfloat);
+typedef void(*nkglUniformMatrix3fv)(GLint, GLsizei, GLboolean, const GLfloat*);
+typedef void(*nkglUniformMatrix4fv)(GLint, GLsizei, GLboolean, const GLfloat*);
+
+static nkglGenBuffers glGenBuffers;
+static nkglBindBuffer glBindBuffer;
+static nkglBufferData glBufferData;
+static nkglBufferSubData glBufferSubData;
+static nkglMapBuffer glMapBuffer;
+static nkglUnmapBuffer glUnmapBuffer;
+static nkglDeleteBuffers glDeleteBuffers;
+static nkglGenVertexArrays glGenVertexArrays;
+static nkglBindVertexArray glBindVertexArray;
+static nkglDeleteVertexArrays glDeleteVertexArrays;
+static nkglVertexAttribPointer glVertexAttribPointer;
+static nkglEnableVertexAttribArray glEnableVertexAttribArray;
+static nkglDisableVertexAttribArray glDisableVertexAttribArray;
+static nkglGenerateMipmap glGenerateMipmap;
+static nkglCreateShader glCreateShader;
+static nkglShaderSource glShaderSource;
+static nkglCompileShader glCompileShader;
+static nkglGetShaderiv glGetShaderiv;
+static nkglGetShaderInfoLog glGetShaderInfoLog;
+static nkglDeleteShader glDeleteShader;
+static nkglCreateProgram glCreateProgram;
+static nkglAttachShader glAttachShader;
+static nkglDetachShader glDetachShader;
+static nkglLinkProgram glLinkProgram;
+static nkglUseProgram glUseProgram;
+static nkglGetProgramiv glGetProgramiv;
+static nkglGetProgramInfoLog glGetProgramInfoLog;
+static nkglDeleteProgram glDeleteProgram;
+static nkglGetUniformLocation glGetUniformLocation;
+static nkglGetAttribLocation glGetAttribLocation;
+static nkglUniform1i glUniform1i;
+static nkglUniform1f glUniform1f;
+static nkglUniformMatrix3fv glUniformMatrix3fv;
+static nkglUniformMatrix4fv glUniformMatrix4fv;
+
+enum graphics_card_vendors {
+ VENDOR_UNKNOWN,
+ VENDOR_NVIDIA,
+ VENDOR_AMD,
+ VENDOR_INTEL
+};
+
+struct opengl_info {
+ /* info */
+ const char *vendor_str;
+ const char *version_str;
+ const char *extensions_str;
+ const char *renderer_str;
+ const char *glsl_version_str;
+ enum graphics_card_vendors vendor;
+ /* version */
+ float version;
+ int major_version;
+ int minor_version;
+ /* extensions */
+ int glsl_available;
+ int vertex_buffer_obj_available;
+ int vertex_array_obj_available;
+ int map_buffer_range_available;
+ int fragment_program_available;
+ int frame_buffer_object_available;
+};
+#endif
+
+struct nk_x11_device {
+#ifdef NK_XLIB_LOAD_OPENGL_EXTENSIONS
+ struct opengl_info info;
+#endif
+ struct nk_buffer cmds;
+ struct nk_draw_null_texture null;
+ GLuint vbo, vao, ebo;
+ GLuint prog;
+ GLuint vert_shdr;
+ GLuint frag_shdr;
+ GLint attrib_pos;
+ GLint attrib_uv;
+ GLint attrib_col;
+ GLint uniform_tex;
+ GLint uniform_proj;
+ GLuint font_tex;
+};
+
+static struct nk_x11 {
+ struct nk_x11_device ogl;
+ struct nk_context ctx;
+ struct nk_font_atlas atlas;
+ Cursor cursor;
+ Display *dpy;
+ Window win;
+} x11;
+
+#ifdef __APPLE__
+ #define NK_SHADER_VERSION "#version 150\n"
+#else
+ #define NK_SHADER_VERSION "#version 300 es\n"
+#endif
+
+#ifdef NK_XLIB_LOAD_OPENGL_EXTENSIONS
+#include <GL/glx.h>
+
+NK_INTERN int
+nk_x11_stricmpn(const char *a, const char *b, int len)
+{
+ int i = 0;
+ for (i = 0; i < len && a[i] && b[i]; ++i)
+ if (a[i] != b[i]) return 1;
+ if (i != len) return 1;
+ return 0;
+}
+
+NK_INTERN int
+nk_x11_check_extension(struct opengl_info *GL, const char *ext)
+{
+ const char *start, *where, *term;
+ where = strchr(ext, ' ');
+ if (where || *ext == '\0')
+ return FALSE;
+
+ for (start = GL->extensions_str;;) {
+ where = strstr((const char*)start, ext);
+ if (!where) break;
+ term = where + strlen(ext);
+ if (where == start || *(where - 1) == ' ') {
+ if (*term == ' ' || *term == '\0')
+ return TRUE;
+ }
+ start = term;
+ }
+ return FALSE;
+}
+
+#define GL_EXT(name) (nk##name)nk_gl_ext(#name)
+NK_INTERN __GLXextFuncPtr
+nk_gl_ext(const char *name)
+{
+ __GLXextFuncPtr func;
+ func = glXGetProcAddress((const GLubyte*)name);
+ if (!func) {
+ fprintf(stdout, "[GL]: failed to load extension: %s", name);
+ return NULL;
+ }
+ return func;
+}
+
+NK_INTERN int
+nk_load_opengl(struct opengl_info *gl)
+{
+ int failed = FALSE;
+ gl->version_str = (const char*)glGetString(GL_VERSION);
+ glGetIntegerv(GL_MAJOR_VERSION, &gl->major_version);
+ glGetIntegerv(GL_MINOR_VERSION, &gl->minor_version);
+ if (gl->major_version < 2) {
+ fprintf(stderr, "[GL]: Graphics card does not fullfill minimum OpenGL 2.0 support\n");
+ return 0;
+ }
+
+ gl->version = (float)gl->major_version + (float)gl->minor_version * 0.1f;
+ gl->renderer_str = (const char*)glGetString(GL_RENDERER);
+ gl->extensions_str = (const char*)glGetString(GL_EXTENSIONS);
+ gl->glsl_version_str = (const char*)glGetString(GL_SHADING_LANGUAGE_VERSION);
+ gl->vendor_str = (const char*)glGetString(GL_VENDOR);
+ if (!nk_x11_stricmpn(gl->vendor_str, "ATI", 4) ||
+ !nk_x11_stricmpn(gl->vendor_str, "AMD", 4))
+ gl->vendor = VENDOR_AMD;
+ else if (!nk_x11_stricmpn(gl->vendor_str, "NVIDIA", 6))
+ gl->vendor = VENDOR_NVIDIA;
+ else if (!nk_x11_stricmpn(gl->vendor_str, "Intel", 5))
+ gl->vendor = VENDOR_INTEL;
+ else gl->vendor = VENDOR_UNKNOWN;
+
+ /* Extensions */
+ gl->glsl_available = (gl->version >= 2.0f);
+ if (gl->glsl_available) {
+ /* GLSL core in OpenGL > 2 */
+ glCreateShader = GL_EXT(glCreateShader);
+ glShaderSource = GL_EXT(glShaderSource);
+ glCompileShader = GL_EXT(glCompileShader);
+ glGetShaderiv = GL_EXT(glGetShaderiv);
+ glGetShaderInfoLog = GL_EXT(glGetShaderInfoLog);
+ glDeleteShader = GL_EXT(glDeleteShader);
+ glCreateProgram = GL_EXT(glCreateProgram);
+ glAttachShader = GL_EXT(glAttachShader);
+ glDetachShader = GL_EXT(glDetachShader);
+ glLinkProgram = GL_EXT(glLinkProgram);
+ glUseProgram = GL_EXT(glUseProgram);
+ glGetProgramiv = GL_EXT(glGetProgramiv);
+ glGetProgramInfoLog = GL_EXT(glGetProgramInfoLog);
+ glDeleteProgram = GL_EXT(glDeleteProgram);
+ glGetUniformLocation = GL_EXT(glGetUniformLocation);
+ glGetAttribLocation = GL_EXT(glGetAttribLocation);
+ glUniform1i = GL_EXT(glUniform1i);
+ glUniform1f = GL_EXT(glUniform1f);
+ glUniformMatrix3fv = GL_EXT(glUniformMatrix3fv);
+ glUniformMatrix4fv = GL_EXT(glUniformMatrix4fv);
+ }
+ gl->vertex_buffer_obj_available = nk_x11_check_extension(gl, "GL_ARB_vertex_buffer_object");
+ if (gl->vertex_buffer_obj_available) {
+ /* GL_ARB_vertex_buffer_object */
+ glGenBuffers = GL_EXT(glGenBuffers);
+ glBindBuffer = GL_EXT(glBindBuffer);
+ glBufferData = GL_EXT(glBufferData);
+ glBufferSubData = GL_EXT(glBufferSubData);
+ glMapBuffer = GL_EXT(glMapBuffer);
+ glUnmapBuffer = GL_EXT(glUnmapBuffer);
+ glDeleteBuffers = GL_EXT(glDeleteBuffers);
+ }
+ gl->fragment_program_available = nk_x11_check_extension(gl, "GL_ARB_fragment_program");
+ if (gl->fragment_program_available) {
+ /* GL_ARB_vertex_program / GL_ARB_fragment_program */
+ glVertexAttribPointer = GL_EXT(glVertexAttribPointer);
+ glEnableVertexAttribArray = GL_EXT(glEnableVertexAttribArray);
+ glDisableVertexAttribArray = GL_EXT(glDisableVertexAttribArray);
+ }
+ gl->vertex_array_obj_available = nk_x11_check_extension(gl, "GL_ARB_vertex_array_object");
+ if (gl->vertex_array_obj_available) {
+ /* GL_ARB_vertex_array_object */
+ glGenVertexArrays = GL_EXT(glGenVertexArrays);
+ glBindVertexArray = GL_EXT(glBindVertexArray);
+ glDeleteVertexArrays = GL_EXT(glDeleteVertexArrays);
+ }
+ gl->frame_buffer_object_available = nk_x11_check_extension(gl, "GL_ARB_framebuffer_object");
+ if (gl->frame_buffer_object_available) {
+ /* GL_ARB_framebuffer_object */
+ glGenerateMipmap = GL_EXT(glGenerateMipmap);
+ }
+ if (!gl->vertex_buffer_obj_available) {
+ fprintf(stdout, "[GL] Error: GL_ARB_vertex_buffer_object is not available!\n");
+ failed = TRUE;
+ }
+ if (!gl->fragment_program_available) {
+ fprintf(stdout, "[GL] Error: GL_ARB_fragment_program is not available!\n");
+ failed = TRUE;
+ }
+ if (!gl->vertex_array_obj_available) {
+ fprintf(stdout, "[GL] Error: GL_ARB_vertex_array_object is not available!\n");
+ failed = TRUE;
+ }
+ if (!gl->frame_buffer_object_available) {
+ fprintf(stdout, "[GL] Error: GL_ARB_framebuffer_object is not available!\n");
+ failed = TRUE;
+ }
+ return !failed;
+}
+#endif
+
+NK_API int
+nk_x11_device_create(void)
+{
+ GLint status;
+ static const GLchar *vertex_shader =
+ NK_SHADER_VERSION
+ "uniform mat4 ProjMtx;\n"
+ "in vec2 Position;\n"
+ "in vec2 TexCoord;\n"
+ "in vec4 Color;\n"
+ "out vec2 Frag_UV;\n"
+ "out vec4 Frag_Color;\n"
+ "void main() {\n"
+ " Frag_UV = TexCoord;\n"
+ " Frag_Color = Color;\n"
+ " gl_Position = ProjMtx * vec4(Position.xy, 0, 1);\n"
+ "}\n";
+ static const GLchar *fragment_shader =
+ NK_SHADER_VERSION
+ "precision mediump float;\n"
+ "uniform sampler2D Texture;\n"
+ "in vec2 Frag_UV;\n"
+ "in vec4 Frag_Color;\n"
+ "out vec4 Out_Color;\n"
+ "void main(){\n"
+ " Out_Color = Frag_Color * texture(Texture, Frag_UV.st);\n"
+ "}\n";
+
+ struct nk_x11_device *dev = &x11.ogl;
+#ifdef NK_XLIB_LOAD_OPENGL_EXTENSIONS
+ if (!nk_load_opengl(&dev->info)) return 0;
+#endif
+ nk_buffer_init_default(&dev->cmds);
+
+ dev->prog = glCreateProgram();
+ dev->vert_shdr = glCreateShader(GL_VERTEX_SHADER);
+ dev->frag_shdr = glCreateShader(GL_FRAGMENT_SHADER);
+ glShaderSource(dev->vert_shdr, 1, &vertex_shader, 0);
+ glShaderSource(dev->frag_shdr, 1, &fragment_shader, 0);
+ glCompileShader(dev->vert_shdr);
+ glCompileShader(dev->frag_shdr);
+ glGetShaderiv(dev->vert_shdr, GL_COMPILE_STATUS, &status);
+ assert(status == GL_TRUE);
+ glGetShaderiv(dev->frag_shdr, GL_COMPILE_STATUS, &status);
+ assert(status == GL_TRUE);
+ glAttachShader(dev->prog, dev->vert_shdr);
+ glAttachShader(dev->prog, dev->frag_shdr);
+ glLinkProgram(dev->prog);
+ glGetProgramiv(dev->prog, GL_LINK_STATUS, &status);
+ assert(status == GL_TRUE);
+
+ dev->uniform_tex = glGetUniformLocation(dev->prog, "Texture");
+ dev->uniform_proj = glGetUniformLocation(dev->prog, "ProjMtx");
+ dev->attrib_pos = glGetAttribLocation(dev->prog, "Position");
+ dev->attrib_uv = glGetAttribLocation(dev->prog, "TexCoord");
+ dev->attrib_col = glGetAttribLocation(dev->prog, "Color");
+
+ {
+ /* buffer setup */
+ GLsizei vs = sizeof(struct nk_draw_vertex);
+ size_t vp = offsetof(struct nk_draw_vertex, position);
+ size_t vt = offsetof(struct nk_draw_vertex, uv);
+ size_t vc = offsetof(struct nk_draw_vertex, col);
+
+ glGenBuffers(1, &dev->vbo);
+ glGenBuffers(1, &dev->ebo);
+ glGenVertexArrays(1, &dev->vao);
+
+ glBindVertexArray(dev->vao);
+ glBindBuffer(GL_ARRAY_BUFFER, dev->vbo);
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, dev->ebo);
+
+ glEnableVertexAttribArray((GLuint)dev->attrib_pos);
+ glEnableVertexAttribArray((GLuint)dev->attrib_uv);
+ glEnableVertexAttribArray((GLuint)dev->attrib_col);
+
+ glVertexAttribPointer((GLuint)dev->attrib_pos, 2, GL_FLOAT, GL_FALSE, vs, (void*)vp);
+ glVertexAttribPointer((GLuint)dev->attrib_uv, 2, GL_FLOAT, GL_FALSE, vs, (void*)vt);
+ glVertexAttribPointer((GLuint)dev->attrib_col, 4, GL_UNSIGNED_BYTE, GL_TRUE, vs, (void*)vc);
+ }
+
+ glBindTexture(GL_TEXTURE_2D, 0);
+ glBindBuffer(GL_ARRAY_BUFFER, 0);
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
+ glBindVertexArray(0);
+ return 1;
+}
+
+NK_INTERN void
+nk_x11_device_upload_atlas(const void *image, int width, int height)
+{
+ struct nk_x11_device *dev = &x11.ogl;
+ glGenTextures(1, &dev->font_tex);
+ glBindTexture(GL_TEXTURE_2D, dev->font_tex);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
+ glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)width, (GLsizei)height, 0,
+ GL_RGBA, GL_UNSIGNED_BYTE, image);
+}
+
+NK_API void
+nk_x11_device_destroy(void)
+{
+ struct nk_x11_device *dev = &x11.ogl;
+ glDetachShader(dev->prog, dev->vert_shdr);
+ glDetachShader(dev->prog, dev->frag_shdr);
+ glDeleteShader(dev->vert_shdr);
+ glDeleteShader(dev->frag_shdr);
+ glDeleteProgram(dev->prog);
+ glDeleteTextures(1, &dev->font_tex);
+ glDeleteBuffers(1, &dev->vbo);
+ glDeleteBuffers(1, &dev->ebo);
+ nk_buffer_free(&dev->cmds);
+}
+
+NK_API void
+nk_x11_render(enum nk_anti_aliasing AA, int max_vertex_buffer, int max_element_buffer)
+{
+ int width, height;
+ XWindowAttributes attr;
+ struct nk_x11_device *dev = &x11.ogl;
+ GLfloat ortho[4][4] = {
+ {2.0f, 0.0f, 0.0f, 0.0f},
+ {0.0f,-2.0f, 0.0f, 0.0f},
+ {0.0f, 0.0f,-1.0f, 0.0f},
+ {-1.0f,1.0f, 0.0f, 1.0f},
+ };
+ XGetWindowAttributes(x11.dpy, x11.win, &attr);
+ width = attr.width;
+ height = attr.height;
+
+ ortho[0][0] /= (GLfloat)width;
+ ortho[1][1] /= (GLfloat)height;
+
+ /* setup global state */
+ glEnable(GL_BLEND);
+ glBlendEquation(GL_FUNC_ADD);
+ glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
+ glDisable(GL_CULL_FACE);
+ glDisable(GL_DEPTH_TEST);
+ glEnable(GL_SCISSOR_TEST);
+ glActiveTexture(GL_TEXTURE0);
+
+ /* setup program */
+ glUseProgram(dev->prog);
+ glUniform1i(dev->uniform_tex, 0);
+ glUniformMatrix4fv(dev->uniform_proj, 1, GL_FALSE, &ortho[0][0]);
+ glViewport(0,0,(GLsizei)width,(GLsizei)height);
+ {
+ /* convert from command queue into draw list and draw to screen */
+ const struct nk_draw_command *cmd;
+ void *vertices, *elements;
+ const nk_draw_index *offset = NULL;
+
+ /* allocate vertex and element buffer */
+ glBindVertexArray(dev->vao);
+ glBindBuffer(GL_ARRAY_BUFFER, dev->vbo);
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, dev->ebo);
+
+ glBufferData(GL_ARRAY_BUFFER, max_vertex_buffer, NULL, GL_STREAM_DRAW);
+ glBufferData(GL_ELEMENT_ARRAY_BUFFER, max_element_buffer, NULL, GL_STREAM_DRAW);
+
+ /* load draw vertices & elements directly into vertex + element buffer */
+ vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
+ elements = glMapBuffer(GL_ELEMENT_ARRAY_BUFFER, GL_WRITE_ONLY);
+ {
+ /* fill converting configuration */
+ struct nk_convert_config config;
+ memset(&config, 0, sizeof(config));
+ config.global_alpha = 1.0f;
+ config.shape_AA = AA;
+ config.line_AA = AA;
+ config.circle_segment_count = 22;
+ config.curve_segment_count = 22;
+ config.arc_segment_count = 22;
+ config.null = dev->null;
+
+ /* setup buffers to load vertices and elements */
+ {struct nk_buffer vbuf, ebuf;
+ nk_buffer_init_fixed(&vbuf, vertices, (size_t)max_vertex_buffer);
+ nk_buffer_init_fixed(&ebuf, elements, (size_t)max_element_buffer);
+ nk_convert(&x11.ctx, &dev->cmds, &vbuf, &ebuf, &config);}
+ }
+ glUnmapBuffer(GL_ARRAY_BUFFER);
+ glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
+
+ /* iterate over and execute each draw command */
+ nk_draw_foreach(cmd, &x11.ctx, &dev->cmds)
+ {
+ if (!cmd->elem_count) continue;
+ glBindTexture(GL_TEXTURE_2D, (GLuint)cmd->texture.id);
+ glScissor(
+ (GLint)(cmd->clip_rect.x),
+ (GLint)((height - (GLint)(cmd->clip_rect.y + cmd->clip_rect.h))),
+ (GLint)(cmd->clip_rect.w),
+ (GLint)(cmd->clip_rect.h));
+ glDrawElements(GL_TRIANGLES, (GLsizei)cmd->elem_count, GL_UNSIGNED_SHORT, offset);
+ offset += cmd->elem_count;
+ }
+ nk_clear(&x11.ctx);
+ }
+
+ /* default OpenGL state */
+ glUseProgram(0);
+ glBindBuffer(GL_ARRAY_BUFFER, 0);
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
+ glBindVertexArray(0);
+ glDisable(GL_BLEND);
+ glDisable(GL_SCISSOR_TEST);
+}
+
+NK_API void
+nk_x11_font_stash_begin(struct nk_font_atlas **atlas)
+{
+ nk_font_atlas_init_default(&x11.atlas);
+ nk_font_atlas_begin(&x11.atlas);
+ *atlas = &x11.atlas;
+}
+
+NK_API void
+nk_x11_font_stash_end(void)
+{
+ const void *image; int w, h;
+ image = nk_font_atlas_bake(&x11.atlas, &w, &h, NK_FONT_ATLAS_RGBA32);
+ nk_x11_device_upload_atlas(image, w, h);
+ nk_font_atlas_end(&x11.atlas, nk_handle_id((int)x11.ogl.font_tex), &x11.ogl.null);
+ if (x11.atlas.default_font)
+ nk_style_set_font(&x11.ctx, &x11.atlas.default_font->handle);
+}
+
+NK_API void
+nk_x11_handle_event(XEvent *evt)
+{
+ struct nk_context *ctx = &x11.ctx;
+
+ /* optional grabbing behavior */
+ if (ctx->input.mouse.grab) {
+ XDefineCursor(x11.dpy, x11.win, x11.cursor);
+ ctx->input.mouse.grab = 0;
+ } else if (ctx->input.mouse.ungrab) {
+ XWarpPointer(x11.dpy, None, x11.win, 0, 0, 0, 0,
+ (int)ctx->input.mouse.prev.x, (int)ctx->input.mouse.prev.y);
+ XUndefineCursor(x11.dpy, x11.win);
+ ctx->input.mouse.ungrab = 0;
+ }
+
+ if (evt->type == KeyPress || evt->type == KeyRelease)
+ {
+ /* Key handler */
+ int ret, down = (evt->type == KeyPress);
+ KeySym *code = XGetKeyboardMapping(x11.dpy, (KeyCode)evt->xkey.keycode, 1, &ret);
+ if (*code == XK_Shift_L || *code == XK_Shift_R) nk_input_key(ctx, NK_KEY_SHIFT, down);
+ else if (*code == XK_Delete) nk_input_key(ctx, NK_KEY_DEL, down);
+ else if (*code == XK_Return) nk_input_key(ctx, NK_KEY_ENTER, down);
+ else if (*code == XK_Tab) nk_input_key(ctx, NK_KEY_TAB, down);
+ else if (*code == XK_Left) nk_input_key(ctx, NK_KEY_LEFT, down);
+ else if (*code == XK_Right) nk_input_key(ctx, NK_KEY_RIGHT, down);
+ else if (*code == XK_BackSpace) nk_input_key(ctx, NK_KEY_BACKSPACE, down);
+ else if (*code == XK_Home) nk_input_key(ctx, NK_KEY_TEXT_START, down);
+ else if (*code == XK_End) nk_input_key(ctx, NK_KEY_TEXT_END, down);
+ else if (*code == XK_space && !down) nk_input_char(ctx, ' ');
+ else {
+ if (*code == 'c' && (evt->xkey.state & ControlMask))
+ nk_input_key(ctx, NK_KEY_COPY, down);
+ else if (*code == 'v' && (evt->xkey.state & ControlMask))
+ nk_input_key(ctx, NK_KEY_PASTE, down);
+ else if (*code == 'x' && (evt->xkey.state & ControlMask))
+ nk_input_key(ctx, NK_KEY_CUT, down);
+ else if (*code == 'z' && (evt->xkey.state & ControlMask))
+ nk_input_key(ctx, NK_KEY_TEXT_UNDO, down);
+ else if (*code == 'r' && (evt->xkey.state & ControlMask))
+ nk_input_key(ctx, NK_KEY_TEXT_REDO, down);
+ else if (*code == XK_Left && (evt->xkey.state & ControlMask))
+ nk_input_key(ctx, NK_KEY_TEXT_WORD_LEFT, down);
+ else if (*code == XK_Right && (evt->xkey.state & ControlMask))
+ nk_input_key(ctx, NK_KEY_TEXT_WORD_RIGHT, down);
+ else if (*code == 'b' && (evt->xkey.state & ControlMask))
+ nk_input_key(ctx, NK_KEY_TEXT_LINE_START, down);
+ else if (*code == 'e' && (evt->xkey.state & ControlMask))
+ nk_input_key(ctx, NK_KEY_TEXT_LINE_END, down);
+ else if (!down) {
+ char buf[32];
+ KeySym keysym = 0;
+ if (XLookupString((XKeyEvent*)evt, buf, 32, &keysym, NULL) != NoSymbol)
+ nk_input_glyph(ctx, buf);
+ }
+ }
+ XFree(code);
+ } else if (evt->type == ButtonPress || evt->type == ButtonRelease) {
+ /* Button handler */
+ int down = (evt->type == ButtonPress);
+ const int x = evt->xbutton.x, y = evt->xbutton.y;
+ if (evt->xbutton.button == Button1)
+ nk_input_button(ctx, NK_BUTTON_LEFT, x, y, down);
+ if (evt->xbutton.button == Button2)
+ nk_input_button(ctx, NK_BUTTON_MIDDLE, x, y, down);
+ else if (evt->xbutton.button == Button3)
+ nk_input_button(ctx, NK_BUTTON_RIGHT, x, y, down);
+ else if (evt->xbutton.button == Button4)
+ nk_input_scroll(ctx, 1.0f);
+ else if (evt->xbutton.button == Button5)
+ nk_input_scroll(ctx, -1.0f);
+
+ } else if (evt->type == MotionNotify) {
+ /* Mouse motion handler */
+ const int x = evt->xmotion.x, y = evt->xmotion.y;
+ nk_input_motion(ctx, x, y);
+ if (ctx->input.mouse.grabbed)
+ XWarpPointer(x11.dpy, None, x11.win, 0, 0, 0, 0, (int)ctx->input.mouse.prev.x, (int)ctx->input.mouse.prev.y);
+ } else if (evt->type == KeymapNotify)
+ XRefreshKeyboardMapping(&evt->xmapping);
+}
+
+NK_API struct nk_context*
+nk_x11_init(Display *dpy, Window win)
+{
+ if (!setlocale(LC_ALL,"")) return 0;
+ if (!XSupportsLocale()) return 0;
+ if (!XSetLocaleModifiers("@im=none")) return 0;
+ if (!nk_x11_device_create()) return 0;
+
+ x11.dpy = dpy;
+ x11.win = win;
+
+ /* create invisible cursor */
+ {XColor dummy; char data[1] = {0};
+ Pixmap blank = XCreateBitmapFromData(dpy, win, data, 1, 1);
+ if (blank == None) return 0;
+ x11.cursor = XCreatePixmapCursor(dpy, blank, blank, &dummy, &dummy, 0, 0);
+ XFreePixmap(dpy, blank);}
+
+ nk_init_default(&x11.ctx, 0);
+ return &x11.ctx;
+}
+
+NK_API void
+nk_x11_shutdown(void)
+{
+ nk_font_atlas_clear(&x11.atlas);
+ nk_free(&x11.ctx);
+ nk_x11_device_destroy();
+ XFreeCursor(x11.dpy, x11.cursor);
+ memset(&x11, 0, sizeof(x11));
+}
+
+#endif
diff --git a/src/simulator/src/Gui/test.c b/src/simulator/src/Gui/test.c
new file mode 100644
index 0000000..f742fe8
--- /dev/null
+++ b/src/simulator/src/Gui/test.c
@@ -0,0 +1,285 @@
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <stdarg.h>
+#include <string.h>
+#include <math.h>
+#include <assert.h>
+#include <math.h>
+#include <time.h>
+#include <limits.h>
+
+#define NK_INCLUDE_FIXED_TYPES
+#define NK_INCLUDE_STANDARD_IO
+#define NK_INCLUDE_DEFAULT_ALLOCATOR
+#define NK_INCLUDE_VERTEX_BUFFER_OUTPUT
+#define NK_INCLUDE_FONT_BAKING
+#define NK_INCLUDE_DEFAULT_FONT
+#define NK_IMPLEMENTATION
+#define NK_XLIB_GL3_IMPLEMENTATION
+#define NK_XLIB_LOAD_OPENGL_EXTENSIONS
+#include "nuklear.h"
+#include "nuklear_xlib_gl3.h"
+
+#define WINDOW_WIDTH 1200
+#define WINDOW_HEIGHT 800
+
+#define MAX_VERTEX_BUFFER 512 * 1024
+#define MAX_ELEMENT_BUFFER 128 * 1024
+
+#define UNUSED(a) (void)a
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+#define MAX(a,b) ((a) < (b) ? (b) : (a))
+#define LEN(a) (sizeof(a)/sizeof(a)[0])
+
+
+struct XWindow {
+ Display *dpy;
+ Window win;
+ XVisualInfo *vis;
+ Colormap cmap;
+ XSetWindowAttributes swa;
+ XWindowAttributes attr;
+ GLXFBConfig fbc;
+ int width, height;
+};
+
+static int gl_err = FALSE;
+static int gl_error_handler(Display *dpy, XErrorEvent *ev) {
+ UNUSED((dpy, ev));
+ gl_err = TRUE;
+ return 0;
+}
+
+static void die(const char *fmt, ...) {
+ va_list ap;
+ va_start(ap, fmt);
+ vfprintf(stderr, fmt, ap);
+ va_end(ap);
+ fputs("\n", stderr);
+ exit(EXIT_FAILURE);
+}
+
+static int has_extension(const char *string, const char *ext) {
+
+ const char *start, *where, *term;
+ where = strchr(ext, ' ');
+
+ if (where || *ext == '\0')
+ return FALSE;
+
+ for (start = string;;) {
+ where = strstr((const char*)start, ext);
+ if (!where) break;
+ term = where + strlen(ext);
+ if (where == start || *(where - 1) == ' ') {
+ if (*term == ' ' || *term == '\0')
+ return TRUE;
+ }
+ start = term;
+ }
+ return FALSE;
+}
+
+int main2() {
+ /* Platform */
+ int running = 1;
+ struct XWindow win;
+ GLXContext glContext;
+ struct nk_context *ctx;
+ struct nk_color background;
+
+ memset(&win, 0, sizeof(win));
+ win.dpy = XOpenDisplay(NULL);
+
+ if (!win.dpy) {
+ die("Failed to open X display\n");
+ }
+
+ {
+ /* check glx version */
+ int glx_major, glx_minor;
+ if (!glXQueryVersion(win.dpy, &glx_major, &glx_minor))
+ die("[X11]: Error: Failed to query OpenGL version\n");
+ if ((glx_major == 1 && glx_minor < 3) || (glx_major < 1))
+ die("[X11]: Error: Invalid GLX version!\n");
+ }
+
+ {
+ /* find and pick matching framebuffer visual */
+ int fb_count;
+ static GLint attr[] = {
+ GLX_X_RENDERABLE, True,
+ GLX_DRAWABLE_TYPE, GLX_WINDOW_BIT,
+ GLX_RENDER_TYPE, GLX_RGBA_BIT,
+ GLX_X_VISUAL_TYPE, GLX_TRUE_COLOR,
+ GLX_RED_SIZE, 8,
+ GLX_GREEN_SIZE, 8,
+ GLX_BLUE_SIZE, 8,
+ GLX_ALPHA_SIZE, 8,
+ GLX_DEPTH_SIZE, 24,
+ GLX_STENCIL_SIZE, 8,
+ GLX_DOUBLEBUFFER, True,
+ None
+ };
+ GLXFBConfig *fbc;
+ fbc = glXChooseFBConfig(win.dpy, DefaultScreen(win.dpy), attr, &fb_count);
+
+ if (!fbc) {
+ die("[X11]: Error: failed to retrieve framebuffer configuration\n");
+ }
+
+ {
+ /* pick framebuffer with most samples per pixel */
+ int i;
+ int fb_best = -1, best_num_samples = -1;
+ for (i = 0; i < fb_count; ++i) {
+ XVisualInfo *vi = glXGetVisualFromFBConfig(win.dpy, fbc[i]);
+ if (vi) {
+ int sample_buffer, samples;
+ glXGetFBConfigAttrib(win.dpy, fbc[i], GLX_SAMPLE_BUFFERS, &sample_buffer);
+ glXGetFBConfigAttrib(win.dpy, fbc[i], GLX_SAMPLES, &samples);
+ if ((fb_best < 0) || (sample_buffer && samples > best_num_samples))
+ fb_best = i; best_num_samples = samples;
+ }
+ }
+ win.fbc = fbc[fb_best];
+ XFree(fbc);
+ win.vis = glXGetVisualFromFBConfig(win.dpy, win.fbc);
+ }
+ }
+ {
+ /* create window */
+ win.cmap = XCreateColormap(win.dpy, RootWindow(win.dpy, win.vis->screen), win.vis->visual, AllocNone);
+ win.swa.colormap = win.cmap;
+ win.swa.background_pixmap = None;
+ win.swa.border_pixel = 0;
+ win.swa.event_mask =
+ ExposureMask | KeyPressMask | KeyReleaseMask |
+ ButtonPress | ButtonReleaseMask| ButtonMotionMask |
+ Button1MotionMask | Button3MotionMask | Button4MotionMask | Button5MotionMask|
+ PointerMotionMask| StructureNotifyMask;
+ win.win = XCreateWindow(win.dpy, RootWindow(win.dpy, win.vis->screen), 0, 0,
+ WINDOW_WIDTH, WINDOW_HEIGHT, 0, win.vis->depth, InputOutput,
+ win.vis->visual, CWBorderPixel|CWColormap|CWEventMask, &win.swa);
+ if (!win.win) die("[X11]: Failed to create window\n");
+ XFree(win.vis);
+ XStoreName(win.dpy, win.win, "glutt-o-matique simulator 3000");
+ XMapWindow(win.dpy, win.win);
+ }
+ {
+ /* create opengl context */
+ typedef GLXContext(*glxCreateContext)(Display*, GLXFBConfig, GLXContext, Bool, const int*);
+ int(*old_handler)(Display*, XErrorEvent*) = XSetErrorHandler(gl_error_handler);
+ const char *extensions_str = glXQueryExtensionsString(win.dpy, DefaultScreen(win.dpy));
+ glxCreateContext create_context = (glxCreateContext)
+ glXGetProcAddressARB((const GLubyte*)"glXCreateContextAttribsARB");
+
+ gl_err = FALSE;
+ if (!has_extension(extensions_str, "GLX_ARB_create_context") || !create_context) {
+ fprintf(stdout, "[X11]: glXCreateContextAttribARB() not found...\n");
+ fprintf(stdout, "[X11]: ... using old-style GLX context\n");
+ glContext = glXCreateNewContext(win.dpy, win.fbc, GLX_RGBA_TYPE, 0, True);
+ } else {
+ GLint attr[] = {
+ GLX_CONTEXT_MAJOR_VERSION_ARB, 3,
+ GLX_CONTEXT_MINOR_VERSION_ARB, 0,
+ None
+ };
+ glContext = create_context(win.dpy, win.fbc, 0, True, attr);
+ XSync(win.dpy, False);
+ if (gl_err || !glContext) {
+ /* Could not create GL 3.0 context. Fallback to old 2.x context.
+ * If a version below 3.0 is requested, implementations will
+ * return the newest context version compatible with OpenGL
+ * version less than version 3.0.*/
+ attr[1] = 1; attr[3] = 0;
+ gl_err = FALSE;
+ fprintf(stdout, "[X11] Failed to create OpenGL 3.0 context\n");
+ fprintf(stdout, "[X11] ... using old-style GLX context!\n");
+ glContext = create_context(win.dpy, win.fbc, 0, True, attr);
+ }
+ }
+ XSync(win.dpy, False);
+ XSetErrorHandler(old_handler);
+ if (gl_err || !glContext)
+ die("[X11]: Failed to create an OpenGL context\n");
+ glXMakeCurrent(win.dpy, win.win, glContext);
+ }
+
+ ctx = nk_x11_init(win.dpy, win.win);
+ /* Load Fonts: if none of these are loaded a default font will be used */
+ {struct nk_font_atlas *atlas;
+ nk_x11_font_stash_begin(&atlas);
+ nk_x11_font_stash_end();
+ }
+
+
+ background = nk_rgb(28,48,62);
+
+ static char box_buffer[512];
+ static int box_len;
+
+ while (running)
+ {
+ /* Input */
+ XEvent evt;
+ nk_input_begin(ctx);
+ while (XCheckWindowEvent(win.dpy, win.win, win.swa.event_mask, &evt)){
+ if (XFilterEvent(&evt, win.win)) continue;
+ nk_x11_handle_event(&evt);
+ }
+ nk_input_end(ctx);
+
+ /* GUI */
+ {struct nk_panel layout;
+ if (nk_begin(ctx, &layout, "UART", nk_rect(50, 50, 400, 200), NK_WINDOW_BORDER|NK_WINDOW_MOVABLE|NK_WINDOW_SCALABLE|NK_WINDOW_MINIMIZABLE|NK_WINDOW_TITLE)) {
+
+ nk_layout_row_dynamic(ctx, 25, 1);
+
+ nk_label(ctx, "UART Output:", NK_TEXT_LEFT);
+
+ nk_layout_row_dynamic(ctx, 75, 1);
+ nk_edit_string(ctx, NK_EDIT_BOX, box_buffer, &box_len, 512, nk_filter_default);
+
+ /* #<{(| nk_layout_row(ctx, NK_STATIC, 25, 2, ratio); |)}># */
+ /* active = nk_edit_string(ctx, NK_EDIT_FIELD|NK_EDIT_SIG_ENTER, text[7], &text_len[7], 64, nk_filter_ascii); */
+ /* if (nk_button_label(ctx, "Submit", NK_BUTTON_DEFAULT) || */
+ /* (active & NK_EDIT_COMMITED)) */
+ /* { */
+ /* text[7][text_len[7]] = '\n'; */
+ /* text_len[7]++; */
+ /* memcpy(&box_buffer[box_len], &text[7], (nk_size)text_len[7]); */
+ /* box_len += text_len[7]; */
+ /* text_len[7] = 0; */
+ /* } */
+ nk_layout_row_end(ctx);
+
+ /* nk_property_int(ctx, "Compression:", 0, &property, 100, 10, 1); */
+
+ }
+ nk_end(ctx);}
+ /* if (nk_window_is_closed(ctx, "Demo")) break; */
+
+ {
+ float bg[4];
+ nk_color_fv(bg, background);
+ XGetWindowAttributes(win.dpy, win.win, &win.attr);
+ glViewport(0, 0, win.width, win.height);
+ glClear(GL_COLOR_BUFFER_BIT);
+ glClearColor(bg[0], bg[1], bg[2], bg[3]);
+ nk_x11_render(NK_ANTI_ALIASING_ON, MAX_VERTEX_BUFFER, MAX_ELEMENT_BUFFER);
+ glXSwapBuffers(win.dpy, win.win);
+ }
+ }
+
+ nk_x11_shutdown();
+ glXMakeCurrent(win.dpy, 0, 0);
+ glXDestroyContext(win.dpy, glContext);
+ XUnmapWindow(win.dpy, win.win);
+ XFreeColormap(win.dpy, win.cmap);
+ XDestroyWindow(win.dpy, win.win);
+ XCloseDisplay(win.dpy);
+ return 0;
+
+}
diff --git a/src/simulator/vc.h b/src/simulator/vc.h
new file mode 100644
index 0000000..d8d7797
--- /dev/null
+++ b/src/simulator/vc.h
@@ -0,0 +1,4 @@
+// This file is generated by Makefile.
+// Do not edit this file!
+#define GIT_VERSION "4803231"
+
diff --git a/src/stm32f/.gitignore b/src/stm32f/.gitignore
new file mode 100644
index 0000000..6533942
--- /dev/null
+++ b/src/stm32f/.gitignore
@@ -0,0 +1 @@
+vc.h
diff --git a/src/fsm/FreeRTOS b/src/stm32f/FreeRTOS
index 51f4e96..51f4e96 120000
--- a/src/fsm/FreeRTOS
+++ b/src/stm32f/FreeRTOS
diff --git a/src/stm32f/Makefile b/src/stm32f/Makefile
new file mode 100644
index 0000000..a26cdbd
--- /dev/null
+++ b/src/stm32f/Makefile
@@ -0,0 +1,131 @@
+###
+# GNU ARM Embedded Toolchain
+CC=arm-none-eabi-gcc
+LD=arm-none-eabi-ld
+AR=arm-none-eabi-ar
+AS=arm-none-eabi-as
+CP=arm-none-eabi-objcopy
+OD=arm-none-eabi-objdump
+SIZE=arm-none-eabi-size
+
+###
+# Directory Structure
+BINDIR=bin
+SRCDIR=.
+ODIR=obj
+
+###
+# Find source files
+ASOURCES=$(shell find -L $(SRCDIR) -name '*.s')
+CSOURCES+=$(shell find -L $(SRCDIR) -name '*.c')
+# Find header directories
+INC=$(shell find -L . -name '*.h' -exec dirname {} \; | uniq)
+INCLUDES=$(INC:%=-I%) -I ../common/includes/
+# Create object list
+OBJECTS=$(ASOURCES:%.s=%.o)
+OBJECTS+=$(CSOURCES:%.c=obj/%.o)
+# Define output files ELF & IHEX
+BINELF=outp.elf
+BINHEX=outp.hex
+
+###
+# MCU FLAGS
+MCFLAGS=-mcpu=cortex-m4 -mthumb -mlittle-endian \
+-mfpu=fpv4-sp-d16 -mfloat-abi=softfp -mthumb-interwork
+# COMPILE FLAGS
+DEFS=-DUSE_STDPERIPH_DRIVER -DSTM32F4XX -DARM_MATH_CM4 -D__FPU_PRESENT=1
+CFLAGS =-Wall -ggdb -std=c99 -c $(MCFLAGS) $(DEFS) $(INCLUDES)
+# LINKER FLAGS
+LDSCRIPT= bsp/stm32_flash.ld
+LDFLAGS =-T $(LDSCRIPT) --specs=nosys.specs $(MCFLAGS) -Wl,-Map=$(BINDIR)/outp.map
+
+###
+# Optimizations
+OPT?='O2 O3 O6'
+# O1 and O4 are irrelevant
+# O5 breaks FreeRTOS somehow
+# I'm not trusting O7
+
+ifneq ($(filter O1,$(OPT)),)
+CXXFLAGS+=-fno-exceptions # Uncomment to disable exception handling
+DEFS+=-DNO_EXCEPTIONS # The source code has to comply with this rule
+endif
+
+ifneq ($(filter O2,$(OPT)),)
+CFLAGS+=-Os # Optimize for size https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
+CXXFLAGS+=-Os
+LDFLAGS+=-Os # Optimize for size https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
+endif
+
+ifneq ($(filter O3,$(OPT)),)
+CFLAGS+=-ffunction-sections -fdata-sections # Place each function or data item into its own section in the output file
+CXXFLAGS+=-ffunction-sections -fdata-sections # -||-
+LDFLAGS+=-Wl,-gc-sections # Remove isolated unused sections
+endif
+
+ifneq ($(filter O4,$(OPT)),)
+CFLAGS+=-fno-builtin # Disable C++ exception handling
+CXXFLAGS+=-fno-builtin # Disable C++ exception handling
+endif
+
+ifneq ($(filter O5,$(OPT)),)
+CFLAGS+=-flto # Enable link time optimization
+CXXFLAGS+=-flto # Enable link time optimization
+LDFLAGS+=-flto # Enable link time optimization
+endif
+
+ifneq ($(filter O6,$(OPT)),)
+CXXFLAGS+=-fno-rtti # Disable type introspection
+endif
+
+ifneq ($(findstring O7,$(OPT)),)
+LDFLAGS+=--specs=nano.specs # Use size optimized newlib
+endif
+
+###
+# Build Rules
+.PHONY: all release debug clean
+
+all: release
+
+release: $(BINDIR)/$(BINHEX)
+
+debug: CFLAGS+=-g
+debug: LDFLAGS+=-g
+debug: release
+
+$(BINDIR)/$(BINHEX): $(BINDIR)/$(BINELF)
+ $(CP) -O ihex $< $@
+
+$(BINDIR)/$(BINELF): $(OBJECTS) vc.h
+ $(CC) $(LDFLAGS) $(OBJECTS) -o $@
+ $(SIZE) $(BINDIR)/$(BINELF)
+
+dir_guard=@mkdir -p $(@D)
+
+obj/%.o: %.c $(INC)
+ $(dir_guard)
+ $(CC) $(CFLAGS) $< -o $@
+
+obj/%.o: %.s
+ $(dir_guard)
+ $(CC) $(CFLAGS) $< -o $@
+
+vc.h: ../../.git/logs/HEAD
+ echo "// This file is generated by Makefile." > vc.h
+ echo "// Do not edit this file!" >> vc.h
+ git log -1 --format="format:#define GIT_VERSION \"%h\"" >> vc.h
+ echo >> vc.h
+ echo >> vc.h
+
+clean:
+ rm -f $(OBJECTS) $(BINDIR)/$(BINELF) $(BINDIR)/$(BINHEX)
+
+# Connect to openocd's gdb server on port 3333
+deploy: $(BINDIR)/$(BINELF)
+ifeq ($(wildcard /opt/openocd/bin/openocd),)
+ /usr/bin/openocd -f /usr/share/openocd/scripts/board/stm32f4discovery.cfg -c "program bin/"$(BINELF)" verify reset" -c "init" -c "reset" -c "exit"
+else
+ /opt/openocd/bin/openocd -f /opt/openocd/share/openocd/scripts/board/stm32f4discovery.cfg -c "program bin/"$(BINELF)" verify reset" -c "init" -c "reset" -c "exit"
+endif
+
diff --git a/src/stm32f/bin/.gitignore b/src/stm32f/bin/.gitignore
new file mode 100644
index 0000000..d6b7ef3
--- /dev/null
+++ b/src/stm32f/bin/.gitignore
@@ -0,0 +1,2 @@
+*
+!.gitignore
diff --git a/src/fsm/bsp b/src/stm32f/bsp
index 5d9120a..5d9120a 120000
--- a/src/fsm/bsp
+++ b/src/stm32f/bsp
diff --git a/src/stm32f/obj/.gitignore b/src/stm32f/obj/.gitignore
new file mode 100644
index 0000000..d6b7ef3
--- /dev/null
+++ b/src/stm32f/obj/.gitignore
@@ -0,0 +1,2 @@
+*
+!.gitignore
diff --git a/src/stm32f/src/Core/FreeRTOSConfig.h b/src/stm32f/src/Core/FreeRTOSConfig.h
new file mode 100644
index 0000000..8d6f128
--- /dev/null
+++ b/src/stm32f/src/Core/FreeRTOSConfig.h
@@ -0,0 +1,3 @@
+#include "../../../common/src/Core/FreeRTOSConfig.h"
+
+#define configCHECK_FOR_STACK_OVERFLOW 2 // Default: 2
diff --git a/src/stm32f/src/Core/common.c b/src/stm32f/src/Core/common.c
new file mode 100644
index 0000000..a647d26
--- /dev/null
+++ b/src/stm32f/src/Core/common.c
@@ -0,0 +1,7 @@
+#include <stm32f4xx.h>
+
+#include "../../../common/src/Core/common.c"
+
+void hard_fault_handler_extra() {
+ usart_debug("SCB_SHCSR = %x\n", SCB->SHCSR);
+}
diff --git a/src/stm32f/src/Core/main.c b/src/stm32f/src/Core/main.c
new file mode 100644
index 0000000..65d535e
--- /dev/null
+++ b/src/stm32f/src/Core/main.c
@@ -0,0 +1,74 @@
+/*
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2016 Matthias P. Braendli, Maximilien Cuony
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+*/
+
+#include "stm32f4xx_conf.h"
+
+
+#define GPIOD_BOARD_LED_GREEN GPIO_Pin_12
+#define GPIOD_BOARD_LED_ORANGE GPIO_Pin_13
+#define GPIOD_BOARD_LED_RED GPIO_Pin_14
+#define GPIOD_BOARD_LED_BLUE GPIO_Pin_15
+
+#include "../../../common/src/Core/main.c"
+
+
+void init() {
+ /* Initialise the onboard peripherals
+ * Four LEDs and one push-button
+ */
+ RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
+ RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
+
+ // Configure PD12, PD13, PD14 and PD15 in output pushpull mode
+ GPIO_InitTypeDef GPIO_InitStructure;
+ GPIO_InitStructure.GPIO_Pin =
+ GPIOD_BOARD_LED_GREEN |
+ GPIOD_BOARD_LED_ORANGE |
+ GPIOD_BOARD_LED_RED |
+ GPIOD_BOARD_LED_BLUE;
+
+ GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
+ GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
+ GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
+ GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
+ GPIO_Init(GPIOD, &GPIO_InitStructure);
+
+ // Init PushButton
+ GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
+ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
+ GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; // TODO is there an external pullup ?
+ GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
+ GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
+ GPIO_Init(GPIOA, &GPIO_InitStructure);
+
+
+ /* Setup Watchdog
+ * The IWDG runs at 32kHz. With a prescaler of 32 -> 1kHz.
+ * Counting to 2000 / 1000 = 2 seconds
+ */
+ IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
+ IWDG_SetPrescaler(IWDG_Prescaler_32);
+ IWDG_SetReload(2000);
+ IWDG_Enable();
+}
diff --git a/src/fsm/usart.c b/src/stm32f/src/Core/usart.c
index a1a5ab2..29c8a20 100644
--- a/src/fsm/usart.c
+++ b/src/stm32f/src/Core/usart.c
@@ -1,3 +1,4 @@
+
/*
* The MIT License (MIT)
*
@@ -26,8 +27,8 @@
#include <stdarg.h>
#include <string.h>
#include <inttypes.h>
-#include "common.h"
-#include "usart.h"
+#include "Core/common.h"
+#include "Core/usart.h"
#include <stm32f4xx.h>
#include <stm32f4xx_usart.h>
#include <stm32f4xx_conf.h>
@@ -277,4 +278,3 @@ void USART2_IRQHandler(void)
}
}
}
-
diff --git a/src/fsm/tm_stm32f4_ds18b20.c b/src/stm32f/tm_stm32f4_ds18b20.c
index 1dca5f5..1dca5f5 120000
--- a/src/fsm/tm_stm32f4_ds18b20.c
+++ b/src/stm32f/tm_stm32f4_ds18b20.c
diff --git a/src/fsm/tm_stm32f4_ds18b20.h b/src/stm32f/tm_stm32f4_ds18b20.h
index 6b8bae8..6b8bae8 120000
--- a/src/fsm/tm_stm32f4_ds18b20.h
+++ b/src/stm32f/tm_stm32f4_ds18b20.h
diff --git a/src/fsm/tm_stm32f4_onewire.c b/src/stm32f/tm_stm32f4_onewire.c
index 21e6c82..21e6c82 120000
--- a/src/fsm/tm_stm32f4_onewire.c
+++ b/src/stm32f/tm_stm32f4_onewire.c
diff --git a/src/fsm/tm_stm32f4_onewire.h b/src/stm32f/tm_stm32f4_onewire.h
index 1779648..1779648 120000
--- a/src/fsm/tm_stm32f4_onewire.h
+++ b/src/stm32f/tm_stm32f4_onewire.h