diff options
author | Matthias P. Braendli <matthias.braendli@mpb.li> | 2019-10-19 15:25:33 +0200 |
---|---|---|
committer | Matthias P. Braendli <matthias.braendli@mpb.li> | 2019-10-19 15:25:33 +0200 |
commit | 73fdbdf50e1d024eea755407765991ed5c61c90b (patch) | |
tree | 0af7ecf0433b7170bcdf0d13eb3a2d13511ccf1b /sw/lib/LTC2400 | |
parent | bf92e6739056e3a4b46a0febbddd860d32096d81 (diff) | |
download | glutte-batteries-73fdbdf50e1d024eea755407765991ed5c61c90b.tar.gz glutte-batteries-73fdbdf50e1d024eea755407765991ed5c61c90b.tar.bz2 glutte-batteries-73fdbdf50e1d024eea755407765991ed5c61c90b.zip |
Restructure lib, add uart
Diffstat (limited to 'sw/lib/LTC2400')
-rw-r--r-- | sw/lib/LTC2400/LTC24XX_general.cpp | 434 | ||||
-rw-r--r-- | sw/lib/LTC2400/LTC24XX_general.h | 501 |
2 files changed, 0 insertions, 935 deletions
diff --git a/sw/lib/LTC2400/LTC24XX_general.cpp b/sw/lib/LTC2400/LTC24XX_general.cpp deleted file mode 100644 index 615edff..0000000 --- a/sw/lib/LTC2400/LTC24XX_general.cpp +++ /dev/null @@ -1,434 +0,0 @@ -/*!
-LTC24XX General Library: Functions and defines for all SINC4 Delta Sigma ADCs.
-
-@verbatim
-
-These functions and defines apply to all No Latency Delta Sigmas in the
-LTC2480 EasyDrive family, LTC2410 differential family, LTC2400 single-ended family,
-and the LTC2440 High Speed family with selectable speed / resolution.
-
-It does not cover the LTC2450 tiny, low cost delta sigma ADC famliy.
-
-Please refer to the No Latency Delta Sigma ADC selector guide available at:
-
-http://www.linear.com/docs/41341
-
-
-@endverbatim
-
-http://www.linear.com/product/LTC2449
-
-http://www.linear.com/product/LTC2449#demoboards
-
-REVISION HISTORY
-$Revision: 1807 $
-$Date: 2013-07-29 13:06:06 -0700 (Mon, 29 Jul 2013) $
-
-Copyright (c) 2013, Linear Technology Corp.(LTC)
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
-1. Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
-2. Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
-ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-The views and conclusions contained in the software and documentation are those
-of the authors and should not be interpreted as representing official policies,
-either expressed or implied, of Linear Technology Corp.
-
-The Linear Technology Linduino is not affiliated with the official Arduino team.
-However, the Linduino is only possible because of the Arduino team's commitment
-to the open-source community. Please, visit http://www.arduino.cc and
-http://store.arduino.cc , and consider a purchase that will help fund their
-ongoing work.
-*/
-
-//! @defgroup LTC24XX LTC24XX: All no-latency delta sigma ADCs with SINC4 rejection
-
-/*! @file
- @ingroup LTC24XX
- Library for LTC24XX no-latency delta sigma ADCs with SINC4 rejection
-*/
-
-#include <stdint.h>
-#include <Arduino.h>
-#include "Linduino.h"
-#include <SPI.h>
-#include "LT_SPI.h"
-#include <Wire.h>
-#include "LT_I2C.h"
-#include "LTC24XX_general.h"
-
-
-int8_t LTC24XX_EOC_timeout(uint8_t cs, uint16_t miso_timeout)
-// Checks for EOC with a specified timeout (ms)
-{
- uint16_t timer_count = 0; // Timer count for MISO
- output_low(cs); //! 1) Pull CS low
- while (1) //! 2) Wait for SDO (MISO) to go low
- {
- if (input(MISO) == 0) break; //! 3) If SDO is low, break loop
- if (timer_count++>miso_timeout) // If timeout, return 1 (failure)
- {
- output_high(cs); // Pull CS high
- return(1);
- }
- else
- delay(1);
- }
- output_high(cs); // Pull CS high
- return(0);
-}
-
-// Reads from LTC24XX ADC that has no configuration word and a 32 bit output word.
-void LTC24XX_SPI_32bit_data(uint8_t cs, int32_t *adc_code)
-{
- LT_union_int32_4bytes data, command; // LTC2449 data and command
- command.LT_uint32 = 0; // Set to zero, not necessary but avoids
- // random data in scope shots.
- output_low(cs); //! 1) Pull CS low
-
- spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
-
- output_high(cs); //! 3) Pull CS high
- *adc_code = data.LT_int32;
-}
-
-
-// Reads from a SPI LTC24XX device that has an 8 bit command and a 32 bit output word.
-void LTC24XX_SPI_8bit_command_32bit_data(uint8_t cs, uint8_t adc_command, int32_t *adc_code)
-{
- LT_union_int32_4bytes data, command; // LTC2449 data and command
- command.LT_byte[3] = adc_command;
- command.LT_byte[2] = 0;
- command.LT_byte[1] = 0;
- command.LT_byte[0] = 0;
-
- output_low(cs); //! 1) Pull CS low
-
- spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
-
- output_high(cs); //! 3) Pull CS high
- *adc_code = data.LT_int32;
-}
-
-
-// Reads from a SPI LTC24XX device that has a 16 bit command and a 32 bit output word.
-void LTC24XX_SPI_16bit_command_32bit_data(uint8_t cs, uint8_t adc_command_high, uint8_t adc_command_low, int32_t *adc_code)
-{
-
-
- LT_union_int32_4bytes data, command; // LTC24XX data and command
- command.LT_byte[3] = adc_command_high;
- command.LT_byte[2] = adc_command_low;
- command.LT_byte[1] = 0;
- command.LT_byte[0] = 0;
-
- output_low(cs); //! 1) Pull CS low
- spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
- output_high(cs); //! 3) Pull CS high
- *adc_code = data.LT_int32;
-}
-
-//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
-//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family
-//! @return void
-void LTC24XX_SPI_2ch_ping_pong_32bit_data(uint8_t cs, uint8_t *adc_channel, int32_t *code)
-{
- LT_union_int32_4bytes data, command; // ADC data
-
- command.LT_int32 = 0x00000000; // This is a "don't care"
-
- spi_transfer_block(cs, command.LT_byte , data.LT_byte, (uint8_t)4);
- if(data.LT_byte[3] & 0x40) // Obtains Channel Number
- {
- *adc_channel = 1;
- }
- else
- {
- *adc_channel = 0;
- }
- data.LT_byte[3] &= 0x3F; // Clear channel bit here so code to voltage function doesn't have to.
- *code = data.LT_int32; // Return data
-}
-
-//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
-//! @return void
-void LTC24XX_SPI_24bit_data(uint8_t cs, int32_t *adc_code)
-{
- LT_union_int32_4bytes data, command; // LTC24XX data and command
- command.LT_int32 = 0;
-
- output_low(cs); //! 1) Pull CS low
- spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
- output_high(cs); //! 3) Pull CS high
-
- data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
- data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
- data.LT_byte[1] = data.LT_byte[0]; // justify.
- data.LT_byte[0] = 0x00;
-
- *adc_code = data.LT_int32;
-}
-
-//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 24 bit output word.
-//! @return void
-void LTC24XX_SPI_8bit_command_24bit_data(uint8_t cs, uint8_t adc_command, int32_t *adc_code)
-{
- LT_union_int32_4bytes data, command; // LTC24XX data and command
- command.LT_byte[2] = adc_command;
- command.LT_byte[1] = 0;
- command.LT_byte[0] = 0;
-
- output_low(cs); //! 1) Pull CS low
- spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
- output_high(cs); //! 3) Pull CS high
-
- data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
- data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
- data.LT_byte[1] = data.LT_byte[0]; // justify.
- data.LT_byte[0] = 0x00;
-
- *adc_code = data.LT_int32;
-}
-
-//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 24 bit output word.
-//! @return void
-void LTC24XX_SPI_16bit_command_24bit_data(uint8_t cs, uint8_t adc_command_high, uint8_t adc_command_low, int32_t *adc_code)
-{
- LT_union_int32_4bytes data, command; // LTC24XX data and command
- command.LT_byte[2] = adc_command_high;
- command.LT_byte[1] = adc_command_low;
- command.LT_byte[0] = 0;
-
-
- output_low(cs); //! 1) Pull CS low
- spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
- output_high(cs); //! 3) Pull CS high
-
- data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
- data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
- data.LT_byte[1] = data.LT_byte[0]; // justify.
- data.LT_byte[0] = 0x00;
-
- *adc_code = data.LT_int32;
-}
-
-//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
-//! and returning the 24 bit result with the channel bit cleared so the data format matches the rest of the family
-//! @return void
-void LTC24XX_SPI_2ch_ping_pong_24bit_data(uint8_t cs, uint8_t *adc_channel, int32_t *code)
-{
- LT_union_int32_4bytes data, command; // ADC data
-
- command.LT_int32 = 0x00000000; // This is a "don't care"
-
- spi_transfer_block(cs, command.LT_byte , data.LT_byte, (uint8_t)3);
- data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
- data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
- data.LT_byte[1] = data.LT_byte[0]; // justify.
- data.LT_byte[0] = 0x00;
-
- if(data.LT_byte[3] & 0x40) // Obtains Channel Number
- {
- *adc_channel = 1;
- }
- else
- {
- *adc_channel = 0;
- }
- data.LT_byte[3] &= 0x3F; // Clear channel bit here so code to voltage function doesn't have to.
- *code = data.LT_int32; // Return data
-}
-
-
-//I2C functions
-
-//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 24 bit result.
-//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
-int8_t LTC24XX_I2C_8bit_command_24bit_data(uint8_t i2c_address, uint8_t adc_command, int32_t *adc_code, uint16_t eoc_timeout)
-{
- int8_t ack;
- uint16_t timer_count = 0; // Timer count to wait for ACK
- int8_t buf[4];
- LT_union_int32_4bytes data; // LTC24XX data
- while(1)
- {
- ack = i2c_read_block_data(i2c_address, adc_command, 3, data.LT_byte);
- if(!ack) break; // !ack indicates success
- if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
- return(1);
- else
- delay(1);
- }
- data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
- data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
- data.LT_byte[1] = data.LT_byte[0]; // justify.
- data.LT_byte[0] = 0x00;
- data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
- data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
- *adc_code = data.LT_int32;
- return(ack); // Success
-}
-
-
-
-//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
-//! Data is formatted to match the SPI devices, with the MSB in the bit 28 position.
-//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
-int8_t LTC24XX_I2C_32bit_data(uint8_t i2c_address, //!< I2C address of device
- int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
- uint16_t eoc_timeout //!< Timeout (in milliseconds)
- )
-{
- int8_t ack;
- uint16_t timer_count = 0; // Timer count to wait for ACK
- int8_t buf[4];
- LT_union_int32_4bytes data; // LTC24XX data
- while(1)
- {
- ack = i2c_read_block_data(i2c_address, 4, data.LT_byte);
- if(!ack) break; // !ack indicates success
- if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
- return(1);
- else
- delay(1);
- }
-
- data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
- data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
- *adc_code = data.LT_int32;
- return(ack); // Success
- }
-
-
-//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
-//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
-int8_t LTC24XX_I2C_8bit_command_32bit_data(uint8_t i2c_address, uint8_t adc_command, int32_t *adc_code, uint16_t eoc_timeout)
-{
- int8_t ack;
- uint16_t timer_count = 0; // Timer count to wait for ACK
- int8_t buf[4];
- LT_union_int32_4bytes data; // LTC24XX data
- while(1)
- {
- ack = i2c_read_block_data(i2c_address, adc_command, 4, data.LT_byte);
- if(!ack) break; // !ack indicates success
- if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
- return(1);
- else
- delay(1);
- }
-
- data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
- data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
- *adc_code = data.LT_int32;
- return(ack); // Success
-}
-
-//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
-//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
-int8_t LTC24XX_I2C_16bit_command_32bit_data(uint8_t i2c_address,uint8_t adc_command_high,
- uint8_t adc_command_low,int32_t *adc_code,uint16_t eoc_timeout)
-{
- int8_t ack;
- uint16_t adc_command, timer_count = 0; // Timer count to wait for ACK
- int8_t buf[4];
- LT_union_int32_4bytes data; // LTC24XX data
- adc_command = (adc_command_high << 8) | adc_command_low;
- while(1)
- {
- ack = i2c_two_byte_command_read_block(i2c_address, adc_command, 4, data.LT_byte);
- if(!ack) break; // !ack indicates success
- if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
- return(1);
- else
- delay(1);
- }
-
- data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
- data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
- *adc_code = data.LT_int32;
- return(ack); // Success
-}
-
-// Calculates the voltage corresponding to an adc code, given the reference voltage (in volts)
-float LTC24XX_SE_code_to_voltage(int32_t adc_code, float vref)
-{
- float voltage;
- adc_code -= 0x20000000; //! 1) Subtract offset
- voltage=(float) adc_code;
- voltage = voltage / 268435456.0; //! 2) This calculates the input as a fraction of the reference voltage (dimensionless)
- voltage = voltage * vref; //! 3) Multiply fraction by Vref to get the actual voltage at the input (in volts)
- return(voltage);
-}
-
-// Calculates the voltage corresponding to an adc code, given the reference voltage (in volts)
-// This function handles all differential input parts, including the "single-ended" mode on multichannel
-// differential parts. Data from I2C parts must be right-shifted by two bit positions such that the MSB
-// is in bit 28 (the same as the SPI parts.)
-float LTC24XX_diff_code_to_voltage(int32_t adc_code, float vref)
-{
- float voltage;
-
- #ifndef SKIP_EZDRIVE_2X_ZERO_CHECK
- if(adc_code == 0x00000000)
- {
- adc_code = 0x20000000;
- }
- #endif
-
- adc_code -= 0x20000000; //! 1) Converts offset binary to binary
- voltage=(float) adc_code;
- voltage = voltage / 536870912.0; //! 2) This calculates the input as a fraction of the reference voltage (dimensionless)
- voltage = voltage * vref; //! 3) Multiply fraction by Vref to get the actual voltage at the input (in volts)
- return(voltage);
-}
-
-// Calculates the voltage corresponding to an adc code, given lsb weight (in volts) and the calibrated
-// adc offset code (zero code that is subtracted from adc_code). For use with the LTC24XX_cal_voltage() function.
-float LTC24XX_diff_code_to_calibrated_voltage(int32_t adc_code, float LTC2449_lsb, int32_t LTC2449_offset_code)
-{
- float adc_voltage;
-
- #ifndef SKIP_EZDRIVE_2X_ZERO_CHECK
- if(adc_code == 0x00000000)
- {
- adc_code = 0x20000000;
- }
- #endif
-
- adc_code -= 536870912; //! 1) Converts offset binary to binary
- adc_voltage=(float)(adc_code+LTC2449_offset_code)*LTC2449_lsb; //! 2) Calculate voltage from ADC code, lsb, offset.
- return(adc_voltage);
-}
-
-
-// Calculate the lsb weight and offset code given a full-scale code and a measured zero-code.
-void LTC24XX_calibrate_voltage(int32_t zero_code, int32_t fs_code, float zero_voltage, float fs_voltage, float *LTC24XX_lsb, int32_t *LTC24XX_offset_code)
-{
- zero_code -= 536870912; //! 1) Converts zero code from offset binary to binary
- fs_code -= 536870912; //! 2) Converts full scale code from offset binary to binary
-
- float temp_offset;
- *LTC24XX_lsb = (fs_voltage-zero_voltage)/((float)(fs_code - zero_code)); //! 3) Calculate the LSB
-
- temp_offset = (zero_voltage/ *LTC24XX_lsb) - zero_code; //! 4) Calculate Unipolar offset
- temp_offset = (temp_offset > (floor(temp_offset) + 0.5)) ? ceil(temp_offset) : floor(temp_offset); //! 5) Round
- *LTC24XX_offset_code = (int32_t)temp_offset; //! 6) Cast as int32_t
-}
diff --git a/sw/lib/LTC2400/LTC24XX_general.h b/sw/lib/LTC2400/LTC24XX_general.h deleted file mode 100644 index 42fd65a..0000000 --- a/sw/lib/LTC2400/LTC24XX_general.h +++ /dev/null @@ -1,501 +0,0 @@ -/*! -LTC24XX General Library: Functions and defines for all SINC4 Delta Sigma ADCs. - -@verbatim - - -LTC2442 / LTC2444 / LTC2445 / LTC2448 / LTC2449 (Are there don't care bits in the low channel counts? -SPI DATA FORMAT (MSB First): - - Byte #1 Byte #2 - -Data Out : !EOC DMY SIG D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 -Data In : 1 0 EN SGL OS S2 S1 S0 OSR3 OSR2 OSR1 OSR1 SPD X X X - - Byte #3 Byte #4 - D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 *D3 *D2 *D1 *D0 - X X X X X X X X X X X X X X X X - -!EOC : End of Conversion Bit (Active Low) -DMY : Dummy Bit (Always 0) -SIG : Sign Bit (1-data positive, 0-data negative) -Dx : Data Bits -*Dx : Data Bits Below lsb -EN : Enable Bit (0-keep previous mode, 1-change mode) -SGL : Enable Single-Ended Bit (0-differential, 1-single-ended) -OS : ODD/Sign Bit -Sx : Address Select Bit -0SRX : Over Sampling Rate Bits -SPD : Double Output Rate Select Bit (0-Normal rate, auto-calibration on, 2x rate, auto_calibration off) - -Command Byte #1 -1 0 EN SGL OS S2 S1 S0 Comments -1 0 0 X X X X X Keep Previous Mode -1 0 1 0 X X X X Differential Mode -1 0 1 1 X X X X Single-Ended Mode - -| Coversion Rate | RMS | ENOB | OSR | Latency -Command Byte #2 |Internal | External | Noise | | | -| 9MHz | 10.24MHz | | | | -OSR3 OSR2 OSR1 OSR1 SPD | Clock | Clock | | | | -0 0 0 0 0 Keep Previous Speed/Resolution -0 0 0 1 0 3.52kHz 4kHz 23uV 17 64 none -0 0 1 0 0 1.76kHz 2kHz 3.5uV 20.1 128 none -0 0 1 1 0 880Hz 1kHz 2uV 21.3 256 none -0 1 0 0 0 440Hz 500Hz 1.4uV 21.8 512 none -0 1 0 1 0 220Hz 250Hz 1uV 22.4 1024 none -0 1 1 0 0 110Hz 125Hz 750nV 22.9 2048 none -0 1 1 1 0 55Hz 62.5Hz 510nV 23.4 4096 none -1 0 0 0 0 27.5Hz 31.25Hz 375nV 24 8192 none -1 0 0 1 0 13.75Hz 15.625Hz 250nV 24.4 16384 none -1 1 1 1 0 6.87kHz 7.8125Hz 200nV 24.6 32768 none -0 0 0 0 1 Keep Previous Speed/Resolution -OSR3 OSR2 OSR1 OSR1 1 2X Mode *all clock speeds double - -Example Code: - -Read Channel 0 in Single-Ended with OSR of 65536 - - uint16_t miso_timeout = 1000; - adc_command = LTC2449_CH0 | LTC2449_OSR_32768 | LTC2449_SPEED_2X; // Build ADC command for channel 0 - // OSR = 32768*2 = 65536 - - if(LTC2449_EOC_timeout(LTC2449_CS, miso_timeout)) // Check for EOC - return; // Exit if timeout is reached - LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out last reading - - if(LTC2449_EOC_timeout(LTC2449_CS, miso_timeout)) // Check for EOC - return; // Exit if timeout is reached - LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Obtains the current reading and stores to adc_code variable - - // Convert adc_code to voltage - adc_voltage = LTC2449_code_to_voltage(adc_code, LTC2449_lsb, LTC2449_offset_code); - -@endverbatim - -http://www.linear.com/product/LTC2449 - -http://www.linear.com/product/LTC2449#demoboards - -REVISION HISTORY -$Revision: 1881 $ -$Date: 2013-08-15 09:16:50 -0700 (Thu, 15 Aug 2013) $ - -Copyright (c) 2013, Linear Technology Corp.(LTC) -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - -1. Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. -2. Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR -ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND -ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -The views and conclusions contained in the software and documentation are those -of the authors and should not be interpreted as representing official policies, -either expressed or implied, of Linear Technology Corp. - -The Linear Technology Linduino is not affiliated with the official Arduino team. -However, the Linduino is only possible because of the Arduino team's commitment -to the open-source community. Please, visit http://www.arduino.cc and -http://store.arduino.cc , and consider a purchase that will help fund their -ongoing work. -*/ - -/*! @file - @ingroup LTC24XX_general - Header for LTC2449: 24-Bit, 16-Channel Delta Sigma ADCs with Selectable Speed/Resolution -*/ - -#ifndef LTC24XX_general_H -#define LTC24XX_general_H - -//! Define the SPI CS pin -#ifndef LTC24XX_CS -#define LTC24XX_CS QUIKEVAL_CS -#endif - -//! In 2X Mode, A non offset binary 0 can be produced. This is corrected in the -//! differential code to voltage functions. To disable this correction, uncomment -//! The following #define. -//#define SKIP_EZDRIVE_2X_ZERO_CHECK - -/*! @name Mode Configuration for High Speed Family - @{ -*/ -#define LTC24XX_HS_MULTI_KEEP_PREVIOUS_MODE 0x80 -#define LTC24XX_HS_MULTI_KEEP_PREVIOUS_SPEED_RESOLUTION 0x00 -#define LTC24XX_HS_MULTI_SPEED_1X 0x00 -#define LTC24XX_HS_MULTI_SPEED_2X 0x08 -/*! - @} -*/ - -/*! @name Mode Configuration for EasyDrive Family - @{ -*/ -// Select ADC source - differential input or PTAT circuit -#define LTC24XX_EZ_MULTI_VIN 0b10000000 -#define LTC24XX_EZ_MULTI_PTAT 0b11000000 - -// Select rejection frequency - 50, 55, or 60Hz -#define LTC24XX_EZ_MULTI_R50 0b10010000 -#define LTC24XX_EZ_MULTI_R55 0b10000000 -#define LTC24XX_EZ_MULTI_R60 0b10100000 - -// Speed settings is bit 7 in the 2nd byte -#define LTC24XX_EZ_MULTI_SLOW 0b10000000 // slow output rate with autozero -#define LTC24XX_EZ_MULTI_FAST 0b10001000 // fast output rate with no autozero -/*! - @} -*/ - - -/*! @name Single-Ended Channel Configuration -@verbatim -Channel selection for all multi-channel, differential input ADCs, even those that only require -8 bits of configuration (no further options.) Most devices in this category require a second -byte of configuration for speed mode, temperature sensor selection, etc., but for the sake -of simplicity a single function will be used to read all devices, sending zeros in the second -configuration byte if only the channel is specified. - -Applicable devices: -Easy Drive: -LTC2486, LTC2487, LTC2488, LTC2489, LTC2492, LTC2493, -LTC2494, LTC2495, LTC2496, LTC2497, LTC2498, LTC2499 -First Generation Differential: -LTC2414, LTC2418, LTC2439 -High Speed: -LTC2442, LTC2444, LTC2445, LTC2448, LTC2449 -@endverbatim -@{ */ -#define LTC24XX_MULTI_CH_CH0 0xB0 -#define LTC24XX_MULTI_CH_CH1 0xB8 -#define LTC24XX_MULTI_CH_CH2 0xB1 -#define LTC24XX_MULTI_CH_CH3 0xB9 -#define LTC24XX_MULTI_CH_CH4 0xB2 -#define LTC24XX_MULTI_CH_CH5 0xBA -#define LTC24XX_MULTI_CH_CH6 0xB3 -#define LTC24XX_MULTI_CH_CH7 0xBB -#define LTC24XX_MULTI_CH_CH8 0xB4 -#define LTC24XX_MULTI_CH_CH9 0xBC -#define LTC24XX_MULTI_CH_CH10 0xB5 -#define LTC24XX_MULTI_CH_CH11 0xBD -#define LTC24XX_MULTI_CH_CH12 0xB6 -#define LTC24XX_MULTI_CH_CH13 0xBE -#define LTC24XX_MULTI_CH_CH14 0xB7 -#define LTC24XX_MULTI_CH_CH15 0xBF -/*! @} */ - -/*! @name Differential Channel Configuration -@verbatim -See note for single-ended configuration above. - -@endverbatim -@{ */ -#define LTC24XX_MULTI_CH_P0_N1 0xA0 -#define LTC24XX_MULTI_CH_P1_N0 0xA8 - -#define LTC24XX_MULTI_CH_P2_N3 0xA1 -#define LTC24XX_MULTI_CH_P3_N2 0xA9 - -#define LTC24XX_MULTI_CH_P4_N5 0xA2 -#define LTC24XX_MULTI_CH_P5_N4 0xAA - -#define LTC24XX_MULTI_CH_P6_N7 0xA3 -#define LTC24XX_MULTI_CH_P7_N6 0xAB - -#define LTC24XX_MULTI_CH_P8_N9 0xA4 -#define LTC24XX_MULTI_CH_P9_N8 0xAC - -#define LTC24XX_MULTI_CH_P10_N11 0xA5 -#define LTC24XX_MULTI_CH_P11_N10 0xAD - -#define LTC24XX_MULTI_CH_P12_N13 0xA6 -#define LTC24XX_MULTI_CH_P13_N12 0xAE - -#define LTC24XX_MULTI_CH_P14_N15 0xA7 -#define LTC24XX_MULTI_CH_P15_N14 0xAF -/*! @} */ - -/*Commands -Construct a channel / resolution control word by bitwise ORing one choice from the channel configuration -and one choice from the Oversample ratio configuration. You can also enable 2Xmode, which will increase -sample rate by a factor of 2 but introduce one cycle of latency. - -Example - read channel 3 single-ended at OSR2048, with 2X mode enabled. -adc_command = (LTC2449_CH3 | LTC2449_OSR_2048) | LTC2449_SPEED_2X; -*/ - -/*! @name Oversample Ratio (OSR) Commands -@{ */ -#define LTC24XX_MULTI_CH_OSR_64 0x10 -#define LTC24XX_MULTI_CH_OSR_128 0x20 -#define LTC24XX_MULTI_CH_OSR_256 0x30 -#define LTC24XX_MULTI_CH_OSR_512 0x40 -#define LTC24XX_MULTI_CH_OSR_1024 0x50 -#define LTC24XX_MULTI_CH_OSR_2048 0x60 -#define LTC24XX_MULTI_CH_OSR_4096 0x70 -#define LTC24XX_MULTI_CH_OSR_8192 0x80 -#define LTC24XX_MULTI_CH_OSR_16384 0x90 -#define LTC24XX_MULTI_CH_OSR_32768 0xF0 -/*! @}*/ - -//! Checks for EOC with a specified timeout. Applies to all SPI interface delta sigma -//! ADCs that have SINC4 rejection, does NOT apply to LTC2450/60/70 family. -//! @return Returns 0=successful, 1=unsuccessful (exceeded timeout) -int8_t LTC24XX_EOC_timeout(uint8_t cs, //!< Chip Select pin - uint16_t miso_timeout //!< Timeout (in milliseconds) - ); - - -// Read functions for SPI interface ADCs with a 32 bit output word. These functions are used with both -// Single-ended and differential parts, as there is no interpretation of the data done in -// the function. Also note that these functions can be used for devices that have shorter output lengths, -// the lower bits will read out as "1", as the conversion will be triggered by the last data bit being -// read, which causes SDO to go high. - - -//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result. -//! @return void -void LTC24XX_SPI_32bit_data(uint8_t cs, //!< Chip Select pin - int32_t *adc_code //!< 4 byte conversion code read from LTC24XX - ); - -//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result. -//! @return void -void LTC24XX_SPI_8bit_command_32bit_data(uint8_t cs, //!< Chip Select pin - uint8_t adc_command, //!< 1 byte command written to LTC24XX - int32_t *adc_code //!< 4 byte conversion code read from LTC24XX - ); - -//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result. -//! @return void -void LTC24XX_SPI_16bit_command_32bit_data(uint8_t cs, //!< Chip Select pin - uint8_t adc_command_high, //!< First command byte written to LTC24XX - uint8_t adc_command_low, //!< Second command written to LTC24XX - int32_t *adc_code //!< 4 byte conversion code read from LTC24XX - ); - -//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter -//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family -//! @return void -void LTC24XX_SPI_2ch_ping_pong_32bit_data(uint8_t cs, //!< Chip Select pin - uint8_t *adc_channel, //!< Returns channel number read. - int32_t *code //!< 4 byte conversion code read from LTC24XX - ); - - -// Read functions for SPI interface ADCs with a 24 bit or 19 bit output word. These functions -// are used with both Single-ended and differential parts, as there is no interpretation of -// the data done in the function. 24 bits will be read out of 19 bit devices -// (LTC2433, LTC2436, LTC2439), with the additional 5 bits being set to 1. - -//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result. -//! @return void -void LTC24XX_SPI_24bit_data(uint8_t cs, //!< Chip Select pin - int32_t *adc_code //!< 4 byte conversion code read from LTC24XX - ); - -//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result. -//! @return void -void LTC24XX_SPI_8bit_command_24bit_data(uint8_t cs, //!< Chip Select pin - uint8_t adc_command, //!< 1 byte command written to LTC24XX - int32_t *adc_code //!< 4 byte conversion code read from LTC24XX - ); - -//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result. -//! @return void -void LTC24XX_SPI_16bit_command_24bit_data(uint8_t cs, //!< Chip Select pin - uint8_t adc_command_high, //!< First command byte written to LTC24XX - uint8_t adc_command_low, //!< Second command written to LTC24XX - int32_t *adc_code //!< 4 byte conversion code read from LTC24XX - ); - -//! Reads from LTC24XX ADC that accepts a 8 bit configuration and returns a 16 bit result. -//! @return void -void LTC24XX_SPI_8bit_command_16bit_data(uint8_t cs, //!< Chip Select pin - uint8_t adc_command, //!< First command byte written to LTC24XX - int32_t *adc_code //!< 4 byte conversion code read from LTC24XX - ); - - -//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter -//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family -//! @return void -void LTC24XX_SPI_2ch_ping_pong_24bit_data(uint8_t cs, //!< Chip Select pin - uint8_t *adc_channel, //!< Returns channel number read. - int32_t *code //!< 4 byte conversion code read from LTC24XX - ); - -// Read functions for I2C interface ADCs with a 32 bit output word. These functions are used with both -// Single-ended and differential parts, as there is no interpretation of the data done in -// the function. Also note that these functions can be used for devices that have shorter output lengths, -// the lower bits will read out as "1", as the conversion will be triggered by the last data bit being -// read, which causes SDO to go high. -// Data is formatted to match the SPI devices, with the MSB in the bit 28 position. -// Unlike the SPI members of this family, checking for EOC MUST immediately be followed by reading the data. This -// is because a stop condition will trigger a new conversion. - - -//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result. -//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge. -int8_t LTC24XX_I2C_32bit_data(uint8_t i2c_address, //!< I2C address of device - int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX - uint16_t eoc_timeout //!< Timeout (in milliseconds) - ); - - -//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result. -//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge. -int8_t LTC24XX_I2C_8bit_command_32bit_data(uint8_t i2c_address, //!< I2C address of device - uint8_t adc_command, //!< 1 byte command written to LTC24XX - int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX - uint16_t eoc_timeout //!< Timeout (in milliseconds) - ); - - -//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result. -//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge. -int8_t LTC24XX_I2C_16bit_command_32bit_data(uint8_t i2c_address, //!< I2C address of device - uint8_t adc_command_high, //!< First command byte written to LTC24XX - uint8_t adc_command_low, //!< Second command written to LTC24XX - int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX - uint16_t eoc_timeout //!< Timeout (in milliseconds) - ); - - -// Read functions for I2C interface ADCs with a 24 bit or 19 bit output word. These functions -// are used with both Single-ended and differential parts, as there is no interpretation of -// the data done in the function. 24 bits will be read out of 19 bit devices -// (LTC2433, LTC2436, LTC2439), with the additional 5 bits being set to 1. - - -//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result. -//! Applies to: LTC2483 (only this lonely one!) -//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge. -int8_t LTC24XX_I2C_24bit_data(uint8_t i2c_address, //!< I2C address of device - int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX - uint16_t eoc_timeout //!< Timeout (in milliseconds) - ); - - -//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result. -//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge. -int8_t LTC24XX_I2C_8bit_command_24bit_data(uint8_t i2c_address, //!< I2C address of device - uint8_t adc_command, //!< 1 byte command written to LTC24XX - int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX - uint16_t eoc_timeout //!< Timeout (in milliseconds) - ); - -//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result. -//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge. -int8_t LTC24XX_I2C_16bit_command_24bit_data(uint8_t i2c_address, //!< I2C address of device - uint8_t adc_command_high, //!< First command byte written to LTC24XX - uint8_t adc_command_low, //!< Second command written to LTC24XX - int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX - uint16_t eoc_timeout //!< Timeout (in milliseconds) - ); - -//! Calculates the voltage corresponding to an ADC code, given the reference voltage. -//! Applies to Single-Ended input parts (LTC2400-type input) -//! @return Returns voltage calculated from ADC code. -float LTC24XX_SE_code_to_voltage(int32_t adc_code, //!< Code read from ADC - float vref //!< Reference voltage - ); -//! Calculates the voltage corresponding to an ADC code, given the reference voltage. -//! Applies to differential input parts (LTC2410 type input) -//! @return Returns voltage calculated from ADC code. -float LTC24XX_diff_code_to_voltage(int32_t adc_code, //!< Code read from ADC - float vref //!< Reference voltage - ); - -//! Calculates the voltage corresponding to an ADC code, given lsb weight (in volts) and the calibrated -//! ADC offset code (zero code that is subtracted from adc_code). -//! Applies to differential input, SPI interface parts. -//! @return Returns voltage calculated from ADC code. -float LTC24XX_diff_code_to_calibrated_voltage(int32_t adc_code, //!< Code read from ADC - float LTC24XX_lsb, //!< LSB weight (in volts) - int32_t LTC24XX_offset_code //!< The calibrated offset code (This is the ADC code zero code that will be subtracted from adc_code) - ); - -//! Calculate the lsb weight and offset code given a full-scale code and a measured zero-code. -//! @return Void -void LTC24XX_calibrate_voltage(int32_t zero_code, //!< Measured code with the inputs shorted to ground - int32_t fs_code, //!< Measured code at nearly full-scale - float zero_voltage, //!< Measured zero voltage - float fs_voltage, //!< Voltage measured at input (with voltmeter) when fs_code was read from ADC - float *LTC24XX_lsb, //!< Overwritten with lsb weight (in volts) - int32_t *LTC24XX_offset_code //!< Overwritten with offset code (zero code) - ); - - - -// I2C Addresses for 8/16 channel parts (LTC2495/7/9) -// ADDRESS CA2 CA1 CA0 -// #define LTC24XX_16CH_I2C_ADDRESS 0b0010100 // LOW LOW LOW -// #define LTC24XX_16CH_I2C_ADDRESS 0b0010110 // LOW LOW HIGH -// #define LTC24XX_16CH_I2C_ADDRESS 0b0010101 // LOW LOW FLOAT -// #define LTC24XX_16CH_I2C_ADDRESS 0b0100110 // LOW HIGH LOW -// #define LTC24XX_16CH_I2C_ADDRESS 0b0110100 // LOW HIGH HIGH -// #define LTC24XX_16CH_I2C_ADDRESS 0b0100111 // LOW HIGH FLOAT -// #define LTC24XX_16CH_I2C_ADDRESS 0b0010111 // LOW FLOAT LOW -// #define LTC24XX_16CH_I2C_ADDRESS 0b0100101 // LOW FLOAT HIGH -// #define LTC24XX_16CH_I2C_ADDRESS 0b0100100 // LOW FLOAT FLOAT -// #define LTC24XX_16CH_I2C_ADDRESS 0b1010110 // HIGH LOW LOW -// #define LTC24XX_16CH_I2C_ADDRESS 0b1100100 // HIGH LOW HIGH -// #define LTC24XX_16CH_I2C_ADDRESS 0b1010111 // HIGH LOW FLOAT -// #define LTC24XX_16CH_I2C_ADDRESS 0b1110100 // HIGH HIGH LOW -// #define LTC24XX_16CH_I2C_ADDRESS 0b1110110 // HIGH HIGH HIGH -// #define LTC24XX_16CH_I2C_ADDRESS 0b1110101 // HIGH HIGH FLOAT -// #define LTC24XX_16CH_I2C_ADDRESS 0b1100101 // HIGH FLOAT LOW -// #define LTC24XX_16CH_I2C_ADDRESS 0b1100111 // HIGH FLOAT HIGH -// #define LTC24XX_16CH_I2C_ADDRESS 0b1100110 // HIGH FLOAT FLOAT -// #define LTC24XX_16CH_I2C_ADDRESS 0b0110101 // FLOAT LOW LOW -// #define LTC24XX_16CH_I2C_ADDRESS 0b0110111 // FLOAT LOW HIGH -// #define LTC24XX_16CH_I2C_ADDRESS 0b0110110 // FLOAT LOW FLOAT -// #define LTC24XX_16CH_I2C_ADDRESS 0b1000111 // FLOAT HIGH LOW -// #define LTC24XX_16CH_I2C_ADDRESS 0b1010101 // FLOAT HIGH HIGH -// #define LTC24XX_16CH_I2C_ADDRESS 0b1010100 // FLOAT HIGH FLOAT -// #define LTC24XX_16CH_I2C_ADDRESS 0b1000100 // FLOAT FLOAT LOW -// #define LTC24XX_16CH_I2C_ADDRESS 0b1000110 // FLOAT FLOAT HIGH -// #define LTC24XX_16CH_I2C_ADDRESS 0b1000101 // FLOAT FLOAT FLOAT - -// I2C Addresses for 2/4 channel parts -// ADDRESS CA1 CA0 -// #define LTC24XX_4CH_I2C_ADDRESS 0b0010100 // LOW LOW -// #define LTC24XX_4CH_I2C_ADDRESS 0b0010110 // LOW HIGH -// #define LTC24XX_4CH_I2C_ADDRESS 0b0010101 // LOW FLOAT -// #define LTC24XX_4CH_I2C_ADDRESS 0b0100110 // HIGH LOW -// #define LTC24XX_4CH_I2C_ADDRESS 0b0110100 // HIGH HIGH -// #define LTC24XX_4CH_I2C_ADDRESS 0b0100111 // HIGH FLOAT -// #define LTC24XX_4CH_I2C_ADDRESS 0b0010111 // FLOAT LOW -// #define LTC24XX_4CH_I2C_ADDRESS 0b0100101 // FLOAT HIGH -// #define LTC24XX_4CH_I2C_ADDRESS 0b0100100 // FLOAT FLOAT - - -// I2C Addresses for Single channel parts (LTC2481/83/85) -// ADDRESS CA1 CA0/f0* -// #define LTC24XX_1CH_I2C_ADDRESS 0b0010100 // LOW HIGH -// #define LTC24XX_1CH_I2C_ADDRESS 0b0010101 // LOW FLOAT -// #define LTC24XX_1CH_I2C_ADDRESS 0b0010111 // FLOAT HIGH -// #define LTC24XX_1CH_I2C_ADDRESS 0b0100100 // FLOAT FLOAT -// #define LTC24XX_1CH_I2C_ADDRESS 0b0100110 // HIGH HIGH -// #define LTC24XX_1CH_I2C_ADDRESS 0b0100111 // HIGH FLOAT - - -#endif // LTC24XX_general_H -
|