diff options
Diffstat (limited to 'sw/lib/LTC2400/LTC24XX_general.cpp')
-rw-r--r-- | sw/lib/LTC2400/LTC24XX_general.cpp | 434 |
1 files changed, 0 insertions, 434 deletions
diff --git a/sw/lib/LTC2400/LTC24XX_general.cpp b/sw/lib/LTC2400/LTC24XX_general.cpp deleted file mode 100644 index 615edff..0000000 --- a/sw/lib/LTC2400/LTC24XX_general.cpp +++ /dev/null @@ -1,434 +0,0 @@ -/*!
-LTC24XX General Library: Functions and defines for all SINC4 Delta Sigma ADCs.
-
-@verbatim
-
-These functions and defines apply to all No Latency Delta Sigmas in the
-LTC2480 EasyDrive family, LTC2410 differential family, LTC2400 single-ended family,
-and the LTC2440 High Speed family with selectable speed / resolution.
-
-It does not cover the LTC2450 tiny, low cost delta sigma ADC famliy.
-
-Please refer to the No Latency Delta Sigma ADC selector guide available at:
-
-http://www.linear.com/docs/41341
-
-
-@endverbatim
-
-http://www.linear.com/product/LTC2449
-
-http://www.linear.com/product/LTC2449#demoboards
-
-REVISION HISTORY
-$Revision: 1807 $
-$Date: 2013-07-29 13:06:06 -0700 (Mon, 29 Jul 2013) $
-
-Copyright (c) 2013, Linear Technology Corp.(LTC)
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
-1. Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
-2. Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
-ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-The views and conclusions contained in the software and documentation are those
-of the authors and should not be interpreted as representing official policies,
-either expressed or implied, of Linear Technology Corp.
-
-The Linear Technology Linduino is not affiliated with the official Arduino team.
-However, the Linduino is only possible because of the Arduino team's commitment
-to the open-source community. Please, visit http://www.arduino.cc and
-http://store.arduino.cc , and consider a purchase that will help fund their
-ongoing work.
-*/
-
-//! @defgroup LTC24XX LTC24XX: All no-latency delta sigma ADCs with SINC4 rejection
-
-/*! @file
- @ingroup LTC24XX
- Library for LTC24XX no-latency delta sigma ADCs with SINC4 rejection
-*/
-
-#include <stdint.h>
-#include <Arduino.h>
-#include "Linduino.h"
-#include <SPI.h>
-#include "LT_SPI.h"
-#include <Wire.h>
-#include "LT_I2C.h"
-#include "LTC24XX_general.h"
-
-
-int8_t LTC24XX_EOC_timeout(uint8_t cs, uint16_t miso_timeout)
-// Checks for EOC with a specified timeout (ms)
-{
- uint16_t timer_count = 0; // Timer count for MISO
- output_low(cs); //! 1) Pull CS low
- while (1) //! 2) Wait for SDO (MISO) to go low
- {
- if (input(MISO) == 0) break; //! 3) If SDO is low, break loop
- if (timer_count++>miso_timeout) // If timeout, return 1 (failure)
- {
- output_high(cs); // Pull CS high
- return(1);
- }
- else
- delay(1);
- }
- output_high(cs); // Pull CS high
- return(0);
-}
-
-// Reads from LTC24XX ADC that has no configuration word and a 32 bit output word.
-void LTC24XX_SPI_32bit_data(uint8_t cs, int32_t *adc_code)
-{
- LT_union_int32_4bytes data, command; // LTC2449 data and command
- command.LT_uint32 = 0; // Set to zero, not necessary but avoids
- // random data in scope shots.
- output_low(cs); //! 1) Pull CS low
-
- spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
-
- output_high(cs); //! 3) Pull CS high
- *adc_code = data.LT_int32;
-}
-
-
-// Reads from a SPI LTC24XX device that has an 8 bit command and a 32 bit output word.
-void LTC24XX_SPI_8bit_command_32bit_data(uint8_t cs, uint8_t adc_command, int32_t *adc_code)
-{
- LT_union_int32_4bytes data, command; // LTC2449 data and command
- command.LT_byte[3] = adc_command;
- command.LT_byte[2] = 0;
- command.LT_byte[1] = 0;
- command.LT_byte[0] = 0;
-
- output_low(cs); //! 1) Pull CS low
-
- spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
-
- output_high(cs); //! 3) Pull CS high
- *adc_code = data.LT_int32;
-}
-
-
-// Reads from a SPI LTC24XX device that has a 16 bit command and a 32 bit output word.
-void LTC24XX_SPI_16bit_command_32bit_data(uint8_t cs, uint8_t adc_command_high, uint8_t adc_command_low, int32_t *adc_code)
-{
-
-
- LT_union_int32_4bytes data, command; // LTC24XX data and command
- command.LT_byte[3] = adc_command_high;
- command.LT_byte[2] = adc_command_low;
- command.LT_byte[1] = 0;
- command.LT_byte[0] = 0;
-
- output_low(cs); //! 1) Pull CS low
- spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
- output_high(cs); //! 3) Pull CS high
- *adc_code = data.LT_int32;
-}
-
-//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
-//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family
-//! @return void
-void LTC24XX_SPI_2ch_ping_pong_32bit_data(uint8_t cs, uint8_t *adc_channel, int32_t *code)
-{
- LT_union_int32_4bytes data, command; // ADC data
-
- command.LT_int32 = 0x00000000; // This is a "don't care"
-
- spi_transfer_block(cs, command.LT_byte , data.LT_byte, (uint8_t)4);
- if(data.LT_byte[3] & 0x40) // Obtains Channel Number
- {
- *adc_channel = 1;
- }
- else
- {
- *adc_channel = 0;
- }
- data.LT_byte[3] &= 0x3F; // Clear channel bit here so code to voltage function doesn't have to.
- *code = data.LT_int32; // Return data
-}
-
-//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
-//! @return void
-void LTC24XX_SPI_24bit_data(uint8_t cs, int32_t *adc_code)
-{
- LT_union_int32_4bytes data, command; // LTC24XX data and command
- command.LT_int32 = 0;
-
- output_low(cs); //! 1) Pull CS low
- spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
- output_high(cs); //! 3) Pull CS high
-
- data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
- data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
- data.LT_byte[1] = data.LT_byte[0]; // justify.
- data.LT_byte[0] = 0x00;
-
- *adc_code = data.LT_int32;
-}
-
-//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 24 bit output word.
-//! @return void
-void LTC24XX_SPI_8bit_command_24bit_data(uint8_t cs, uint8_t adc_command, int32_t *adc_code)
-{
- LT_union_int32_4bytes data, command; // LTC24XX data and command
- command.LT_byte[2] = adc_command;
- command.LT_byte[1] = 0;
- command.LT_byte[0] = 0;
-
- output_low(cs); //! 1) Pull CS low
- spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
- output_high(cs); //! 3) Pull CS high
-
- data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
- data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
- data.LT_byte[1] = data.LT_byte[0]; // justify.
- data.LT_byte[0] = 0x00;
-
- *adc_code = data.LT_int32;
-}
-
-//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 24 bit output word.
-//! @return void
-void LTC24XX_SPI_16bit_command_24bit_data(uint8_t cs, uint8_t adc_command_high, uint8_t adc_command_low, int32_t *adc_code)
-{
- LT_union_int32_4bytes data, command; // LTC24XX data and command
- command.LT_byte[2] = adc_command_high;
- command.LT_byte[1] = adc_command_low;
- command.LT_byte[0] = 0;
-
-
- output_low(cs); //! 1) Pull CS low
- spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
- output_high(cs); //! 3) Pull CS high
-
- data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
- data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
- data.LT_byte[1] = data.LT_byte[0]; // justify.
- data.LT_byte[0] = 0x00;
-
- *adc_code = data.LT_int32;
-}
-
-//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
-//! and returning the 24 bit result with the channel bit cleared so the data format matches the rest of the family
-//! @return void
-void LTC24XX_SPI_2ch_ping_pong_24bit_data(uint8_t cs, uint8_t *adc_channel, int32_t *code)
-{
- LT_union_int32_4bytes data, command; // ADC data
-
- command.LT_int32 = 0x00000000; // This is a "don't care"
-
- spi_transfer_block(cs, command.LT_byte , data.LT_byte, (uint8_t)3);
- data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
- data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
- data.LT_byte[1] = data.LT_byte[0]; // justify.
- data.LT_byte[0] = 0x00;
-
- if(data.LT_byte[3] & 0x40) // Obtains Channel Number
- {
- *adc_channel = 1;
- }
- else
- {
- *adc_channel = 0;
- }
- data.LT_byte[3] &= 0x3F; // Clear channel bit here so code to voltage function doesn't have to.
- *code = data.LT_int32; // Return data
-}
-
-
-//I2C functions
-
-//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 24 bit result.
-//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
-int8_t LTC24XX_I2C_8bit_command_24bit_data(uint8_t i2c_address, uint8_t adc_command, int32_t *adc_code, uint16_t eoc_timeout)
-{
- int8_t ack;
- uint16_t timer_count = 0; // Timer count to wait for ACK
- int8_t buf[4];
- LT_union_int32_4bytes data; // LTC24XX data
- while(1)
- {
- ack = i2c_read_block_data(i2c_address, adc_command, 3, data.LT_byte);
- if(!ack) break; // !ack indicates success
- if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
- return(1);
- else
- delay(1);
- }
- data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
- data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
- data.LT_byte[1] = data.LT_byte[0]; // justify.
- data.LT_byte[0] = 0x00;
- data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
- data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
- *adc_code = data.LT_int32;
- return(ack); // Success
-}
-
-
-
-//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
-//! Data is formatted to match the SPI devices, with the MSB in the bit 28 position.
-//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
-int8_t LTC24XX_I2C_32bit_data(uint8_t i2c_address, //!< I2C address of device
- int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
- uint16_t eoc_timeout //!< Timeout (in milliseconds)
- )
-{
- int8_t ack;
- uint16_t timer_count = 0; // Timer count to wait for ACK
- int8_t buf[4];
- LT_union_int32_4bytes data; // LTC24XX data
- while(1)
- {
- ack = i2c_read_block_data(i2c_address, 4, data.LT_byte);
- if(!ack) break; // !ack indicates success
- if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
- return(1);
- else
- delay(1);
- }
-
- data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
- data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
- *adc_code = data.LT_int32;
- return(ack); // Success
- }
-
-
-//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
-//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
-int8_t LTC24XX_I2C_8bit_command_32bit_data(uint8_t i2c_address, uint8_t adc_command, int32_t *adc_code, uint16_t eoc_timeout)
-{
- int8_t ack;
- uint16_t timer_count = 0; // Timer count to wait for ACK
- int8_t buf[4];
- LT_union_int32_4bytes data; // LTC24XX data
- while(1)
- {
- ack = i2c_read_block_data(i2c_address, adc_command, 4, data.LT_byte);
- if(!ack) break; // !ack indicates success
- if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
- return(1);
- else
- delay(1);
- }
-
- data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
- data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
- *adc_code = data.LT_int32;
- return(ack); // Success
-}
-
-//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
-//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
-int8_t LTC24XX_I2C_16bit_command_32bit_data(uint8_t i2c_address,uint8_t adc_command_high,
- uint8_t adc_command_low,int32_t *adc_code,uint16_t eoc_timeout)
-{
- int8_t ack;
- uint16_t adc_command, timer_count = 0; // Timer count to wait for ACK
- int8_t buf[4];
- LT_union_int32_4bytes data; // LTC24XX data
- adc_command = (adc_command_high << 8) | adc_command_low;
- while(1)
- {
- ack = i2c_two_byte_command_read_block(i2c_address, adc_command, 4, data.LT_byte);
- if(!ack) break; // !ack indicates success
- if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
- return(1);
- else
- delay(1);
- }
-
- data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
- data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
- *adc_code = data.LT_int32;
- return(ack); // Success
-}
-
-// Calculates the voltage corresponding to an adc code, given the reference voltage (in volts)
-float LTC24XX_SE_code_to_voltage(int32_t adc_code, float vref)
-{
- float voltage;
- adc_code -= 0x20000000; //! 1) Subtract offset
- voltage=(float) adc_code;
- voltage = voltage / 268435456.0; //! 2) This calculates the input as a fraction of the reference voltage (dimensionless)
- voltage = voltage * vref; //! 3) Multiply fraction by Vref to get the actual voltage at the input (in volts)
- return(voltage);
-}
-
-// Calculates the voltage corresponding to an adc code, given the reference voltage (in volts)
-// This function handles all differential input parts, including the "single-ended" mode on multichannel
-// differential parts. Data from I2C parts must be right-shifted by two bit positions such that the MSB
-// is in bit 28 (the same as the SPI parts.)
-float LTC24XX_diff_code_to_voltage(int32_t adc_code, float vref)
-{
- float voltage;
-
- #ifndef SKIP_EZDRIVE_2X_ZERO_CHECK
- if(adc_code == 0x00000000)
- {
- adc_code = 0x20000000;
- }
- #endif
-
- adc_code -= 0x20000000; //! 1) Converts offset binary to binary
- voltage=(float) adc_code;
- voltage = voltage / 536870912.0; //! 2) This calculates the input as a fraction of the reference voltage (dimensionless)
- voltage = voltage * vref; //! 3) Multiply fraction by Vref to get the actual voltage at the input (in volts)
- return(voltage);
-}
-
-// Calculates the voltage corresponding to an adc code, given lsb weight (in volts) and the calibrated
-// adc offset code (zero code that is subtracted from adc_code). For use with the LTC24XX_cal_voltage() function.
-float LTC24XX_diff_code_to_calibrated_voltage(int32_t adc_code, float LTC2449_lsb, int32_t LTC2449_offset_code)
-{
- float adc_voltage;
-
- #ifndef SKIP_EZDRIVE_2X_ZERO_CHECK
- if(adc_code == 0x00000000)
- {
- adc_code = 0x20000000;
- }
- #endif
-
- adc_code -= 536870912; //! 1) Converts offset binary to binary
- adc_voltage=(float)(adc_code+LTC2449_offset_code)*LTC2449_lsb; //! 2) Calculate voltage from ADC code, lsb, offset.
- return(adc_voltage);
-}
-
-
-// Calculate the lsb weight and offset code given a full-scale code and a measured zero-code.
-void LTC24XX_calibrate_voltage(int32_t zero_code, int32_t fs_code, float zero_voltage, float fs_voltage, float *LTC24XX_lsb, int32_t *LTC24XX_offset_code)
-{
- zero_code -= 536870912; //! 1) Converts zero code from offset binary to binary
- fs_code -= 536870912; //! 2) Converts full scale code from offset binary to binary
-
- float temp_offset;
- *LTC24XX_lsb = (fs_voltage-zero_voltage)/((float)(fs_code - zero_code)); //! 3) Calculate the LSB
-
- temp_offset = (zero_voltage/ *LTC24XX_lsb) - zero_code; //! 4) Calculate Unipolar offset
- temp_offset = (temp_offset > (floor(temp_offset) + 0.5)) ? ceil(temp_offset) : floor(temp_offset); //! 5) Round
- *LTC24XX_offset_code = (int32_t)temp_offset; //! 6) Cast as int32_t
-}
|