1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
// Final halfband decimator
// Implements impulse responses of the form [A 0 B 0 C .. 0 H 0.5 H 0 .. C 0 B 0 A]
// Strobe in cannot come faster than every 2nd clock cycle
// These taps designed by halfgen4 from ldoolittle
// myfilt = round(2^18 * halfgen4(.7/4,8))
module hb_dec
#(parameter IWIDTH=18, OWIDTH=18, CWIDTH=18, ACCWIDTH=24)
(input clk,
input rst,
input bypass,
input run,
input [8:0] cpi, // Clocks per input -- equal to the decimation ratio ahead of this block
input stb_in,
input [IWIDTH-1:0] data_in,
output reg stb_out,
output reg [OWIDTH-1:0] data_out);
// Control
reg [3:0] addr_odd_a, addr_odd_b, addr_odd_c, addr_odd_d;
wire write_odd, write_even, do_mult;
reg odd;
reg [2:0] phase, phase_d1;
reg stb_out_int;
wire clear, do_acc;
assign do_mult = 1;
always @(posedge clk)
if(rst | ~run)
odd <= 0;
else if(stb_in)
odd <= ~odd;
assign write_odd = stb_in & odd;
assign write_even = stb_in & ~odd;
always @(posedge clk)
if(rst | ~run)
phase <= 0;
else if(stb_in & odd)
phase <= 1;
else if(phase == 4)
phase <= 0;
else if(phase != 0)
phase <= phase + 1;
always @(posedge clk)
phase_d1 <= phase;
reg [15:0] stb_out_pre;
always @(posedge clk)
if(rst)
stb_out_pre <= 0;
else
stb_out_pre <= {stb_out_pre[14:0],(stb_in & odd)};
always @*
case(phase)
1 : begin addr_odd_a = 0; addr_odd_b = 15; end
2 : begin addr_odd_a = 1; addr_odd_b = 14; end
3 : begin addr_odd_a = 2; addr_odd_b = 13; end
4 : begin addr_odd_a = 3; addr_odd_b = 12; end
default : begin addr_odd_a = 0; addr_odd_b = 15; end
endcase // case(phase)
always @*
case(phase)
1 : begin addr_odd_c = 4; addr_odd_d = 11; end
2 : begin addr_odd_c = 5; addr_odd_d = 10; end
3 : begin addr_odd_c = 6; addr_odd_d = 9; end
4 : begin addr_odd_c = 7; addr_odd_d = 8; end
default : begin addr_odd_c = 4; addr_odd_d = 11; end
endcase // case(phase)
assign do_acc = |stb_out_pre[6:3];
assign clear = stb_out_pre[3];
// Data
wire [IWIDTH-1:0] data_odd_a, data_odd_b, data_odd_c, data_odd_d;
wire [IWIDTH-1:0] sum1, sum2;
wire [OWIDTH-1:0] final_sum;
reg [CWIDTH-1:0] coeff1, coeff2;
wire [35:0] prod1, prod2;
always @* // Outer coeffs
case(phase_d1)
1 : coeff1 = -107;
2 : coeff1 = 445;
3 : coeff1 = -1271;
4 : coeff1 = 2959;
default : coeff1 = -107;
endcase // case(phase)
always @* // Inner coeffs
case(phase_d1)
1 : coeff2 = -6107;
2 : coeff2 = 11953;
3 : coeff2 = -24706;
4 : coeff2 = 82359;
default : coeff2 = -6107;
endcase // case(phase)
srl #(.WIDTH(IWIDTH)) srl_odd_a
(.clk(clk),.write(write_odd),.in(data_in),.addr(addr_odd_a),.out(data_odd_a));
srl #(.WIDTH(IWIDTH)) srl_odd_b
(.clk(clk),.write(write_odd),.in(data_in),.addr(addr_odd_b),.out(data_odd_b));
srl #(.WIDTH(IWIDTH)) srl_odd_c
(.clk(clk),.write(write_odd),.in(data_in),.addr(addr_odd_c),.out(data_odd_c));
srl #(.WIDTH(IWIDTH)) srl_odd_d
(.clk(clk),.write(write_odd),.in(data_in),.addr(addr_odd_d),.out(data_odd_d));
add2_reg /*_and_round_reg*/ #(.WIDTH(IWIDTH)) add1 (.clk(clk),.in1(data_odd_a),.in2(data_odd_b),.sum(sum1));
add2_reg /*_and_round_reg*/ #(.WIDTH(IWIDTH)) add2 (.clk(clk),.in1(data_odd_c),.in2(data_odd_d),.sum(sum2));
wire [IWIDTH-1:0] data_even;
reg [3:0] addr_even;
always @(posedge clk)
case(cpi)
// 1 is an error
2 : addr_even <= 9; // Maximum speed (overall decim by 4)
3, 4, 5, 6, 7 : addr_even <= 8;
default : addr_even <= 7;
endcase // case(cpi)
srl #(.WIDTH(IWIDTH)) srl_even
(.clk(clk),.write(write_even),.in(data_in),.addr(addr_even),.out(data_even));
localparam MWIDTH = ACCWIDTH-2;
wire [MWIDTH-1:0] sum_of_prod;
MULT18X18S mult1(.C(clk), .CE(do_mult), .R(rst), .P(prod1), .A(coeff1), .B(sum1) );
MULT18X18S mult2(.C(clk), .CE(do_mult), .R(rst), .P(prod2), .A(coeff2), .B(sum2) );
add2_and_round_reg #(.WIDTH(MWIDTH))
add3 (.clk(clk),.in1(prod1[35:36-MWIDTH]),.in2(prod2[35:36-MWIDTH]),.sum(sum_of_prod));
wire [ACCWIDTH-1:0] acc_out;
acc #(.IWIDTH(MWIDTH),.OWIDTH(ACCWIDTH))
acc (.clk(clk),.clear(clear),.acc(do_acc),.in(sum_of_prod),.out(acc_out));
localparam SHIFT_FACTOR = ACCWIDTH-IWIDTH-5;
wire [ACCWIDTH-1:0] data_even_signext;
wire [ACCWIDTH:0] final_sum_unrounded;
sign_extend #(.bits_in(IWIDTH),.bits_out(ACCWIDTH-SHIFT_FACTOR))
signext_data_even (.in(data_even),.out(data_even_signext[ACCWIDTH-1:SHIFT_FACTOR]));
assign data_even_signext[SHIFT_FACTOR-1:0] = 0;
add2_reg /* add2_and_round_reg */ #(.WIDTH(ACCWIDTH+1))
final_adder (.clk(clk), .in1({acc_out,1'b0}), .in2({data_even_signext,1'b0}), .sum(final_sum_unrounded));
round_reg #(.bits_in(ACCWIDTH-4),.bits_out(OWIDTH))
final_round (.clk(clk),.in(final_sum_unrounded[ACCWIDTH-5:0]),.out(final_sum));
// Output
always @(posedge clk)
if(bypass)
data_out <= data_in;
else if(stb_out_pre[9])
data_out <= final_sum;
always @(posedge clk)
if(rst)
stb_out <= 0;
else if(bypass)
stb_out <= stb_in;
else
stb_out <= stb_out_pre[9];
endmodule // hb_dec
|