aboutsummaryrefslogtreecommitdiffstats
path: root/usrp2/sdr_lib/dsp_core_tx.v
blob: 79d92c9b33dab5a6c1bc644b2a3708f6f8ac1c75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
module dsp_core_tx
  #(parameter BASE=0)
  (input clk, input rst,
   input set_stb, input [7:0] set_addr, input [31:0] set_data,

   output reg [15:0] dac_a,
   output reg [15:0] dac_b,

   // To tx_control
   input [31:0] sample,
   input run,
   output strobe,
   output [31:0] debug
   );

   wire [15:0] i, q, scale_i, scale_q;
   wire [31:0] phase_inc;
   reg [31:0]  phase;
   wire [7:0]  interp_rate;
   wire [3:0]  dacmux_a, dacmux_b;
   wire        enable_hb1, enable_hb2;

   setting_reg #(.my_addr(BASE+0)) sr_0
     (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
      .in(set_data),.out(phase_inc),.changed());

   setting_reg #(.my_addr(BASE+1)) sr_1
     (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
      .in(set_data),.out({scale_i,scale_q}),.changed());
   
   setting_reg #(.my_addr(BASE+2), .width(10)) sr_2
     (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
      .in(set_data),.out({enable_hb1, enable_hb2, interp_rate}),.changed());

   setting_reg #(.my_addr(BASE+4), .width(8)) sr_4
     (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
      .in(set_data),.out({dacmux_b,dacmux_a}),.changed());

   // Strobes are all now delayed by 1 cycle for timing reasons
   wire        strobe_cic_pre, strobe_hb1_pre, strobe_hb2_pre;
   reg 	       strobe_cic = 1;
   reg 	       strobe_hb1 = 1;
   reg 	       strobe_hb2 = 1;
   
   cic_strober #(.WIDTH(8))
     cic_strober(.clock(clk),.reset(rst),.enable(run),.rate(interp_rate),
		 .strobe_fast(1),.strobe_slow(strobe_cic_pre) );
   cic_strober #(.WIDTH(2))
     hb2_strober(.clock(clk),.reset(rst),.enable(run),.rate(enable_hb2 ? 2 : 1),
		 .strobe_fast(strobe_cic_pre),.strobe_slow(strobe_hb2_pre) );
   cic_strober #(.WIDTH(2))
     hb1_strober(.clock(clk),.reset(rst),.enable(run),.rate(enable_hb1 ? 2 : 1),
		 .strobe_fast(strobe_hb2_pre),.strobe_slow(strobe_hb1_pre) );
   
   always @(posedge clk) strobe_hb1 <= strobe_hb1_pre;
   always @(posedge clk) strobe_hb2 <= strobe_hb2_pre;
   always @(posedge clk) strobe_cic <= strobe_cic_pre;

   // NCO
   always @(posedge clk)
     if(rst)
       phase <= 0;
     else if(~run)
       phase <= 0;
     else
       phase <= phase + phase_inc;
   
   wire        signed [17:0] da, db;
   wire        signed [35:0] prod_i, prod_q;

   wire [17:0] bb_i = {sample[31:16],2'b0};
   wire [17:0] bb_q = {sample[15:0],2'b0};
   wire [17:0] i_interp, q_interp;

   wire [17:0] hb1_i, hb1_q, hb2_i, hb2_q;

   wire [7:0]  cpo = enable_hb2 ? ({interp_rate,1'b0}) : interp_rate;
   // Note that max CIC rate is 128, which would give an overflow on cpo if enable_hb2 is true,
   //   but the default case inside hb_interp handles this
   
   hb_interp #(.IWIDTH(18),.OWIDTH(18),.ACCWIDTH(24)) hb_interp_i
     (.clk(clk),.rst(rst),.bypass(~enable_hb1),.cpo(cpo),.stb_in(strobe_hb1),.data_in(bb_i),.stb_out(strobe_hb2),.data_out(hb1_i));
   hb_interp #(.IWIDTH(18),.OWIDTH(18),.ACCWIDTH(24)) hb_interp_q
     (.clk(clk),.rst(rst),.bypass(~enable_hb1),.cpo(cpo),.stb_in(strobe_hb1),.data_in(bb_q),.stb_out(strobe_hb2),.data_out(hb1_q));
   
   small_hb_int #(.WIDTH(18)) small_hb_interp_i
     (.clk(clk),.rst(rst),.bypass(~enable_hb2),.stb_in(strobe_hb2),.data_in(hb1_i),
      .output_rate(interp_rate),.stb_out(strobe_cic),.data_out(hb2_i));
   small_hb_int #(.WIDTH(18)) small_hb_interp_q
     (.clk(clk),.rst(rst),.bypass(~enable_hb2),.stb_in(strobe_hb2),.data_in(hb1_q),
      .output_rate(interp_rate),.stb_out(strobe_cic),.data_out(hb2_q));
   
   cic_interp  #(.bw(18),.N(4),.log2_of_max_rate(7))
     cic_interp_i(.clock(clk),.reset(rst),.enable(run),.rate(interp_rate),
		  .strobe_in(strobe_cic),.strobe_out(1),
		  .signal_in(hb2_i),.signal_out(i_interp));
   
   cic_interp  #(.bw(18),.N(4),.log2_of_max_rate(7))
     cic_interp_q(.clock(clk),.reset(rst),.enable(run),.rate(interp_rate),
		  .strobe_in(strobe_cic),.strobe_out(1),
		  .signal_in(hb2_q),.signal_out(q_interp));

   assign      strobe = strobe_hb1;

   localparam  cwidth = 24;  // was 18
   localparam  zwidth = 24;  // was 16

   wire [cwidth-1:0] da_c, db_c;
   
   cordic_z24 #(.bitwidth(cwidth))
     cordic(.clock(clk), .reset(rst), .enable(run),
	    .xi({i_interp,{(cwidth-18){1'b0}}}),.yi({q_interp,{(cwidth-18){1'b0}}}),
	    .zi(phase[31:32-zwidth]),
	    .xo(da_c),.yo(db_c),.zo() );
   
   MULT18X18S MULT18X18S_inst 
     (.P(prod_i),    // 36-bit multiplier output
      .A(da_c[cwidth-1:cwidth-18]),    // 18-bit multiplier input
      .B({{2{scale_i[15]}},scale_i}),    // 18-bit multiplier input
      .C(clk),    // Clock input
      .CE(1),  // Clock enable input
      .R(rst)     // Synchronous reset input
      );
   
   MULT18X18S MULT18X18S_inst_2 
     (.P(prod_q),    // 36-bit multiplier output
      .A(db_c[cwidth-1:cwidth-18]),    // 18-bit multiplier input
      .B({{2{scale_q[15]}},scale_q}),    // 18-bit multiplier input
      .C(clk),    // Clock input
      .CE(1),  // Clock enable input
      .R(rst)     // Synchronous reset input
      );
   
   always @(posedge clk)
     case(dacmux_a)
       0 : dac_a <= prod_i[28:13];
       1 : dac_a <= prod_q[28:13];
       default : dac_a <= 0;
     endcase // case(dacmux_a)
   
   always @(posedge clk)
     case(dacmux_b)
       0 : dac_b <= prod_i[28:13];
       1 : dac_b <= prod_q[28:13];
       default : dac_b <= 0;
     endcase // case(dacmux_b)
   
   assign      debug = {strobe_cic, strobe_hb1, strobe_hb2,run};

endmodule // dsp_core