aboutsummaryrefslogtreecommitdiffstats
path: root/usrp2/opencores/i2c/rtl/vhdl/I2C.VHD
blob: 64d1eb656363fd5bafc2441414c63e3f8245af41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
--
-- Simple I2C controller
--
-- 1) No multimaster
-- 2) No slave mode
-- 3) No fifo's
--
-- notes:
-- Every command is acknowledged. Do not set a new command before previous is acknowledged.
-- Dout is available 1 clock cycle later as cmd_ack
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

package I2C is
	component simple_i2c is
	port (
		clk : in std_logic;
		ena : in std_logic;
		nReset : in std_logic;

		clk_cnt : in unsigned(7 downto 0);	-- 4x SCL 

		-- input signals
		start,
		stop,
		read,
		write,
		ack_in : std_logic;
		Din : in std_logic_vector(7 downto 0);

		-- output signals
		cmd_ack : out std_logic;
		ack_out : out std_logic;
		Dout : out std_logic_vector(7 downto 0);

		-- i2c signals
		SCL : inout std_logic;
		SDA : inout std_logic
	);
	end component simple_i2c;
end package I2C;


library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity simple_i2c is
	port (
		clk : in std_logic;
		ena : in std_logic;
		nReset : in std_logic;

		clk_cnt : in unsigned(7 downto 0);	-- 4x SCL 

		-- input signals
		start,
		stop,
		read,
		write,
		ack_in : std_logic;
		Din : in std_logic_vector(7 downto 0);

		-- output signals
		cmd_ack : out std_logic;
		ack_out : out std_logic;
		Dout : out std_logic_vector(7 downto 0);

		-- i2c signals
		SCL : inout std_logic;
		SDA : inout std_logic
	);
end entity simple_i2c;

architecture structural of simple_i2c is
	component i2c_core is
	port (
		clk : in std_logic;
		nReset : in std_logic;

		clk_cnt : in unsigned(7 downto 0);

		cmd : in std_logic_vector(2 downto 0);
		cmd_ack : out std_logic;
		busy : out std_logic;

		Din : in std_logic;
		Dout : out std_logic;

		SCL : inout std_logic;
		SDA : inout std_logic
	);
	end component i2c_core;

	-- commands for i2c_core
	constant CMD_NOP	: std_logic_vector(2 downto 0) := "000";
	constant CMD_START	: std_logic_vector(2 downto 0) := "010";
	constant CMD_STOP	: std_logic_vector(2 downto 0) := "011";
	constant CMD_READ	: std_logic_vector(2 downto 0) := "100";
	constant CMD_WRITE	: std_logic_vector(2 downto 0) := "101";

	-- signals for i2c_core
	signal core_cmd : std_logic_vector(2 downto 0);
	signal core_ack, core_busy, core_txd, core_rxd : std_logic;

	-- signals for shift register
	signal sr : std_logic_vector(7 downto 0); -- 8bit shift register
	signal shift, ld : std_logic;

	-- signals for state machine
	signal go, host_ack : std_logic;
begin
	-- hookup i2c core
	u1: i2c_core port map (clk, nReset, clk_cnt, core_cmd, core_ack, core_busy, core_txd, core_rxd, SCL, SDA);

	-- generate host-command-acknowledge
	cmd_ack <= host_ack;
	
	-- generate go-signal
	go <= (read or write) and not host_ack;

	-- assign Dout output to shift-register
	Dout <= sr;

	-- assign ack_out output to core_rxd (contains last received bit)
	ack_out <= core_rxd;

	-- generate shift register
	shift_register: process(clk)
	begin
		if (clk'event and clk = '1') then
			if (ld = '1') then
				sr <= din;
			elsif (shift = '1') then
				sr <= (sr(6 downto 0) & core_rxd);
			end if;
		end if;
	end process shift_register;

	--
	-- state machine
	--
	statemachine : block
		type states is (st_idle, st_start, st_read, st_write, st_ack, st_stop);
		signal state : states;
		signal dcnt : unsigned(2 downto 0);
	begin
		--
		-- command interpreter, translate complex commands into simpler I2C commands
		--
		nxt_state_decoder: process(clk, nReset, state)
			variable nxt_state : states;
			variable idcnt : unsigned(2 downto 0);
			variable ihost_ack : std_logic;
			variable icore_cmd : std_logic_vector(2 downto 0);
			variable icore_txd : std_logic;
			variable ishift, iload : std_logic;
		begin
			-- 8 databits (1byte) of data to shift-in/out
			idcnt := dcnt;

			-- no acknowledge (until command complete)
			ihost_ack := '0';

			icore_txd := core_txd;

			-- keep current command to i2c_core
			icore_cmd := core_cmd;

			-- no shifting or loading of shift-register
			ishift := '0';
			iload := '0';

			-- keep current state;
			nxt_state := state;
			case state is
				when st_idle =>
					if (go = '1') then
						if (start = '1') then
							nxt_state := st_start;	
							icore_cmd := CMD_START;
						elsif (read = '1') then
							nxt_state := st_read;
							icore_cmd := CMD_READ;
							idcnt := "111";
						else
							nxt_state := st_write;
							icore_cmd := CMD_WRITE;
							idcnt := "111";
							iload := '1';
						end if;
					end if;

				when st_start =>
					if (core_ack = '1') then
						if (read = '1') then
							nxt_state := st_read;
							icore_cmd := CMD_READ;
							idcnt := "111";
						else
							nxt_state := st_write;
							icore_cmd := CMD_WRITE;
							idcnt := "111";
							iload := '1';
						end if;
					end if;

				when st_write =>
					if (core_ack = '1') then
						idcnt := dcnt -1;	-- count down Data_counter
						icore_txd := sr(7);
						if (dcnt = 0) then
							nxt_state := st_ack;
							icore_cmd := CMD_READ;
						else
							ishift := '1';
--							icore_txd := sr(7);
						end if;
					end if;			

				when st_read =>
					if (core_ack = '1') then
						idcnt := dcnt -1;	-- count down Data_counter
						ishift := '1';
						if (dcnt = 0) then
							nxt_state := st_ack;
							icore_cmd := CMD_WRITE;
							icore_txd := ack_in;
						end if;
					end if;			

				when st_ack =>
					if (core_ack = '1') then
						-- generate command acknowledge signal
						ihost_ack := '1';

						-- Perform an additional shift, needed for 'read' (store last received bit in shift register)
						ishift := '1';

						-- check for stop; Should a STOP command be generated ?
						if (stop = '1') then
							nxt_state := st_stop;
							icore_cmd := CMD_STOP;
						else
							nxt_state := st_idle;
							icore_cmd := CMD_NOP;
						end if;
					end if;

				when st_stop =>
					if (core_ack = '1') then
						nxt_state := st_idle;
						icore_cmd := CMD_NOP;
					end if;

				when others => -- illegal states
					nxt_state := st_idle;
					icore_cmd := CMD_NOP;
			end case;

			-- generate registers
			if (nReset = '0') then
				core_cmd <= CMD_NOP;
				core_txd <= '0';
				
				shift <= '0';
				ld <= '0';

				dcnt <= "111";
				host_ack <= '0';

				state <= st_idle;
			elsif (clk'event and clk = '1') then
				if (ena = '1') then
					state <= nxt_state;

					dcnt <= idcnt;
					shift <= ishift;
					ld <= iload;

					core_cmd <= icore_cmd;
					core_txd <= icore_txd;

					host_ack <= ihost_ack;
				end if;
			end if;
		end process nxt_state_decoder;

	end block statemachine;

end architecture structural;


--
--
-- I2C Core
--
-- Translate simple commands into SCL/SDA transitions
-- Each command has 5 states, A/B/C/D/idle
--
-- start:	SCL	~~~~~~~~~~\____
--	SDA	~~~~~~~~\______
--		 x | A | B | C | D | i
--
-- repstart	SCL	____/~~~~\___
--	SDA	__/~~~\______
--		 x | A | B | C | D | i
--
-- stop	SCL	____/~~~~~~~~
--	SDA	==\____/~~~~~
--		 x | A | B | C | D | i
--
--- write	SCL	____/~~~~\____
--	SDA	==X=========X=
--		 x | A | B | C | D | i
--
--- read	SCL	____/~~~~\____
--	SDA	XXXX=====XXXX
--		 x | A | B | C | D | i
--

-- Timing:		Normal mode	Fast mode
-----------------------------------------------------------------
-- Fscl		100KHz		400KHz
-- Th_scl		4.0us		0.6us	High period of SCL
-- Tl_scl		4.7us		1.3us	Low period of SCL
-- Tsu:sta		4.7us		0.6us	setup time for a repeated start condition
-- Tsu:sto		4.0us		0.6us	setup time for a stop conditon
-- Tbuf		4.7us		1.3us	Bus free time between a stop and start condition
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity i2c_core is
	port (
		clk : in std_logic;
		nReset : in std_logic;

		clk_cnt : in unsigned(7 downto 0);

		cmd : in std_logic_vector(2 downto 0);
		cmd_ack : out std_logic;
		busy : out std_logic;

		Din : in std_logic;
		Dout : out std_logic;

		SCL : inout std_logic;
		SDA : inout std_logic
	);
end entity i2c_core;

architecture structural of i2c_core is
	constant CMD_NOP	: std_logic_vector(2 downto 0) := "000";
	constant CMD_START	: std_logic_vector(2 downto 0) := "010";
	constant CMD_STOP	: std_logic_vector(2 downto 0) := "011";
	constant CMD_READ	: std_logic_vector(2 downto 0) := "100";
	constant CMD_WRITE	: std_logic_vector(2 downto 0) := "101";

	type cmds is (idle, start_a, start_b, start_c, start_d, stop_a, stop_b, stop_c, rd_a, rd_b, rd_c, rd_d, wr_a, wr_b, wr_c, wr_d);
	signal state : cmds;
	signal SDAo, SCLo : std_logic;
	signal txd : std_logic;
	signal clk_en, slave_wait :std_logic;
	signal cnt : unsigned(7 downto 0) := clk_cnt;
begin
	-- whenever the slave is not ready it can delay the cycle by pulling SCL low
	slave_wait <= '1' when ((SCLo = '1') and (SCL = '0')) else '0';

	-- generate clk enable signal
	gen_clken: process(clk, nReset)
	begin
		if (nReset = '0') then
			cnt <= (others => '0');
			clk_en <= '1'; --'0';
		elsif (clk'event and clk = '1') then
			if (cnt = 0) then
				clk_en <= '1';
				cnt <= clk_cnt;
			else
				if (slave_wait = '0') then
					cnt <= cnt -1;
				end if;
				clk_en <= '0';
			end if;
		end if;
	end process gen_clken;

	-- generate statemachine
	nxt_state_decoder : process (clk, nReset, state, cmd, SDA)
		variable nxt_state : cmds;
		variable icmd_ack, ibusy, store_sda : std_logic;
		variable itxd : std_logic;
	begin

		nxt_state := state;

		icmd_ack := '0'; -- default no acknowledge
		ibusy := '1'; -- default busy

		store_sda := '0';

		itxd := txd;

		case (state) is
			-- idle
			when idle =>
				case cmd is
					when CMD_START =>
						nxt_state := start_a;
						icmd_ack := '1'; -- command completed

					when CMD_STOP =>
						nxt_state := stop_a;
						icmd_ack := '1'; -- command completed

					when CMD_WRITE =>
						nxt_state := wr_a;
						icmd_ack := '1'; -- command completed
						itxd := Din;

					when CMD_READ =>
						nxt_state := rd_a;
						icmd_ack := '1'; -- command completed

					when others =>
						nxt_state := idle;
-- don't acknowledge NOP command						icmd_ack := '1'; -- command completed
						ibusy := '0';
				end case;

			-- start
			when start_a =>
				nxt_state := start_b;

			when start_b =>
				nxt_state := start_c;

			when start_c =>
				nxt_state := start_d;

			when start_d =>
				nxt_state := idle;
				ibusy := '0'; -- not busy when idle


			-- stop
			when stop_a =>
				nxt_state := stop_b;

			when stop_b =>
				nxt_state := stop_c;

			when stop_c =>
--				nxt_state := stop_d;

--			when stop_d =>
				nxt_state := idle;
				ibusy := '0'; -- not busy when idle

			-- read
			when rd_a =>
				nxt_state := rd_b;

			when rd_b =>
				nxt_state := rd_c;

			when rd_c =>
				nxt_state := rd_d;
				store_sda := '1';

			when rd_d =>
				nxt_state := idle;
				ibusy := '0'; -- not busy when idle

			-- write
			when wr_a =>
				nxt_state := wr_b;

			when wr_b =>
				nxt_state := wr_c;

			when wr_c =>
				nxt_state := wr_d;

			when wr_d =>
				nxt_state := idle;
				ibusy := '0'; -- not busy when idle

		end case;

		-- generate regs
		if (nReset = '0') then
			state <= idle;
			cmd_ack <= '0';
			busy <= '0';
			txd <= '0';
			Dout <= '0';
		elsif (clk'event and clk = '1') then
			if (clk_en = '1') then
				state <= nxt_state;
				busy <= ibusy;

				txd <= itxd;
				if (store_sda = '1') then
					Dout <= SDA;
				end if;
			end if;

			cmd_ack <= icmd_ack and clk_en;
		end if;
	end process nxt_state_decoder;

	--
	-- convert states to SCL and SDA signals
	--
	output_decoder: process (clk, nReset, state)
		variable iscl, isda : std_logic;
	begin
		case (state) is
			when idle =>
				iscl := SCLo; -- keep SCL in same state
				isda := SDA; -- keep SDA in same state

			-- start
			when start_a =>
				iscl := SCLo; -- keep SCL in same state (for repeated start)
				isda := '1'; -- set SDA high

			when start_b =>
				iscl := '1';	-- set SCL high
				isda := '1'; -- keep SDA high

			when start_c =>
				iscl := '1';	-- keep SCL high
				isda := '0'; -- sel SDA low

			when start_d =>
				iscl := '0'; -- set SCL low
				isda := '0'; -- keep SDA low

			-- stop
			when stop_a =>
				iscl := '0'; -- keep SCL disabled
				isda := '0'; -- set SDA low

			when stop_b =>
				iscl := '1'; -- set SCL high
				isda := '0'; -- keep SDA low

			when stop_c =>
				iscl := '1'; -- keep SCL high
				isda := '1'; -- set SDA high

			-- write
			when wr_a =>
				iscl := '0';	-- keep SCL low
--				isda := txd; -- set SDA
				isda := Din;

			when wr_b =>
				iscl := '1';	-- set SCL high
--				isda := txd; -- set SDA
				isda := Din;

			when wr_c =>
				iscl := '1';	-- keep SCL high
--				isda := txd; -- set SDA
				isda := Din;

			when wr_d =>
				iscl := '0'; -- set SCL low
--				isda := txd; -- set SDA
				isda := Din;

			-- read
			when rd_a =>
				iscl := '0'; -- keep SCL low
				isda := '1'; -- tri-state SDA

			when rd_b =>
				iscl := '1'; -- set SCL high
				isda := '1'; -- tri-state SDA

			when rd_c =>
				iscl := '1'; -- keep SCL high
				isda := '1'; -- tri-state SDA

			when rd_d =>
				iscl := '0'; -- set SCL low
				isda := '1'; -- tri-state SDA
		end case;

		-- generate registers
		if (nReset = '0') then
			SCLo <= '1';
			SDAo <= '1';
		elsif (clk'event and clk = '1') then
			if (clk_en = '1') then
				SCLo <= iscl;
				SDAo <= isda;
			end if;
		end if;
	end process output_decoder;

	SCL <= '0' when (SCLo = '0') else 'Z'; -- since SCL is externally pulled-up convert a '1' to a 'Z'(tri-state)
	SDA <= '0' when (SDAo = '0') else 'Z'; -- since SDA is externally pulled-up convert a '1' to a 'Z'(tri-state)
--	SCL <= SCLo;
--	SDA <= SDAo;

end architecture structural;