1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
/* $Id: edk32.v,v 1.12 2007/12/23 20:40:51 sybreon Exp $
**
** AEMB EDK 3.2 Compatible Core TEST
** Copyright (C) 2004-2007 Shawn Tan Ser Ngiap <shawn.tan@aeste.net>
**
** This file is part of AEMB.
**
** AEMB is free software: you can redistribute it and/or modify it
** under the terms of the GNU Lesser General Public License as
** published by the Free Software Foundation, either version 3 of the
** License, or (at your option) any later version.
**
** AEMB is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
** or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
** Public License for more details.
**
** You should have received a copy of the GNU Lesser General Public
** License along with AEMB. If not, see <http://www.gnu.org/licenses/>.
*/
`define AEMB_SIMULATION_KERNEL
module edk32 ();
`include "random.v"
// INITIAL SETUP //////////////////////////////////////////////////////
reg sys_clk_i, sys_rst_i, sys_int_i, sys_exc_i;
reg svc;
integer inttime;
integer seed;
integer theend;
always #5 sys_clk_i = ~sys_clk_i;
initial begin
//$dumpfile("dump.vcd");
//$dumpvars(1,dut);
end
initial begin
seed = randseed;
theend = 0;
svc = 0;
sys_clk_i = $random(seed);
sys_rst_i = 1;
sys_int_i = 0;
sys_exc_i = 0;
#50 sys_rst_i = 0;
end
initial fork
//inttime $display("FSADFASDFSDAF");
//#10000 sys_int_i = 1;
//#1100 sys_int_i = 0;
//#100000 $displayh("\nTest Completed.");
//#4000 $finish;
join
// FAKE MEMORY ////////////////////////////////////////////////////////
wire fsl_stb_o;
wire fsl_wre_o;
wire [31:0] fsl_dat_o;
wire [31:0] fsl_dat_i;
wire [6:2] fsl_adr_o;
wire [15:2] iwb_adr_o;
wire iwb_stb_o;
wire dwb_stb_o;
reg [31:0] rom [0:65535];
wire [31:0] iwb_dat_i;
reg iwb_ack_i, dwb_ack_i, fsl_ack_i;
reg [31:0] ram[0:65535];
wire [31:0] dwb_dat_i;
reg [31:0] dwblat;
wire dwb_we_o;
reg [15:2] dadr,iadr;
wire [3:0] dwb_sel_o;
wire [31:0] dwb_dat_o;
wire [15:2] dwb_adr_o;
wire [31:0] dwb_dat_t;
initial begin
dwb_ack_i = 0;
iwb_ack_i = 0;
fsl_ack_i = 0;
end
assign dwb_dat_t = ram[dwb_adr_o];
assign iwb_dat_i = ram[iadr];
assign dwb_dat_i = ram[dadr];
assign fsl_dat_i = fsl_adr_o;
`ifdef POSEDGE
always @(posedge sys_clk_i)
if (sys_rst_i) begin
/*AUTORESET*/
// Beginning of autoreset for uninitialized flops
dwb_ack_i <= 1'h0;
fsl_ack_i <= 1'h0;
iwb_ack_i <= 1'h0;
// End of automatics
end else begin
iwb_ack_i <= #1 iwb_stb_o ^ iwb_ack_i;
dwb_ack_i <= #1 dwb_stb_o ^ dwb_ack_i;
fsl_ack_i <= #1 fsl_stb_o ^ fsl_ack_i;
end // else: !if(sys_rst_i)
always @(posedge sys_clk_i) begin
iadr <= #1 iwb_adr_o;
dadr <= #1 dwb_adr_o;
if (dwb_we_o & dwb_stb_o) begin
case (dwb_sel_o)
4'h1: ram[dwb_adr_o] <= {dwb_dat_t[31:8], dwb_dat_o[7:0]};
4'h2: ram[dwb_adr_o] <= {dwb_dat_t[31:16], dwb_dat_o[15:8], dwb_dat_t[7:0]};
4'h4: ram[dwb_adr_o] <= {dwb_dat_t[31:24], dwb_dat_o[23:16], dwb_dat_t[15:0]};
4'h8: ram[dwb_adr_o] <= {dwb_dat_o[31:24], dwb_dat_t[23:0]};
4'h3: ram[dwb_adr_o] <= {dwb_dat_t[31:16], dwb_dat_o[15:0]};
4'hC: ram[dwb_adr_o] <= {dwb_dat_o[31:16], dwb_dat_t[15:0]};
4'hF: ram[dwb_adr_o] <= {dwb_dat_o};
endcase // case (dwb_sel_o)
end // if (dwb_we_o & dwb_stb_o)
end // always @ (posedge sys_clk_i)
`else // !`ifdef POSEDGE
always @(negedge sys_clk_i)
if (sys_rst_i) begin
/*AUTORESET*/
// Beginning of autoreset for uninitialized flops
dwb_ack_i <= 1'h0;
fsl_ack_i <= 1'h0;
iwb_ack_i <= 1'h0;
// End of automatics
end else begin
iwb_ack_i <= #1 iwb_stb_o;
dwb_ack_i <= #1 dwb_stb_o;
fsl_ack_i <= #1 fsl_stb_o;
end // else: !if(sys_rst_i)
always @(negedge sys_clk_i) begin
iadr <= #1 iwb_adr_o;
dadr <= #1 dwb_adr_o;
if (dwb_we_o & dwb_stb_o) begin
case (dwb_sel_o)
4'h1: ram[dwb_adr_o] <= {dwb_dat_t[31:8], dwb_dat_o[7:0]};
4'h2: ram[dwb_adr_o] <= {dwb_dat_t[31:16], dwb_dat_o[15:8], dwb_dat_t[7:0]};
4'h4: ram[dwb_adr_o] <= {dwb_dat_t[31:24], dwb_dat_o[23:16], dwb_dat_t[15:0]};
4'h8: ram[dwb_adr_o] <= {dwb_dat_o[31:24], dwb_dat_t[23:0]};
4'h3: ram[dwb_adr_o] <= {dwb_dat_t[31:16], dwb_dat_o[15:0]};
4'hC: ram[dwb_adr_o] <= {dwb_dat_o[31:16], dwb_dat_t[15:0]};
4'hF: ram[dwb_adr_o] <= {dwb_dat_o};
endcase // case (dwb_sel_o)
end // if (dwb_we_o & dwb_stb_o)
end // always @ (negedge sys_clk_i)
`endif // !`ifdef POSEDGE
integer i;
initial begin
for (i=0;i<65535;i=i+1) begin
ram[i] <= $random;
end
#1 $readmemh("dump.vmem",ram);
end
// DISPLAY OUTPUTS ///////////////////////////////////////////////////
integer rnd;
always @(posedge sys_clk_i) begin
// Interrupt Monitors
if (!dut.cpu.rMSR_IE) begin
rnd = $random % 30;
inttime = $stime + 1000 + (rnd*rnd * 10);
end
if ($stime > inttime) begin
sys_int_i = 1;
svc = 0;
end
if (($stime > inttime + 500) && !svc) begin
$display("\n\t*** INTERRUPT TIMEOUT ***", inttime);
$finish;
end
if (dwb_we_o & (dwb_dat_o == "RTNI")) sys_int_i = 0;
if (dut.cpu.regf.fRDWE && (dut.cpu.rRD == 5'h0e) && !svc && dut.cpu.gena) begin
svc = 1;
//$display("\nLATENCY: ", ($stime - inttime)/10);
end
// Pass/Fail Monitors
if (dwb_we_o & (dwb_dat_o == "FAIL")) begin
$display("\n\tFAIL");
$finish;
end
if (iwb_dat_i == 32'hb8000000) begin
theend = theend + 1;
end
if (theend == 5) begin
$display("\n\t*** PASSED ALL TESTS ***");
$finish;
end
end // always @ (posedge sys_clk_i)
// INTERNAL WIRING ////////////////////////////////////////////////////
aeMB_sim #(16,16)
dut (
.sys_int_i(sys_int_i),
.dwb_ack_i(dwb_ack_i),
.dwb_stb_o(dwb_stb_o),
.dwb_adr_o(dwb_adr_o),
.dwb_dat_o(dwb_dat_o),
.dwb_dat_i(dwb_dat_i),
.dwb_wre_o(dwb_we_o),
.dwb_sel_o(dwb_sel_o),
.fsl_ack_i(fsl_ack_i),
.fsl_stb_o(fsl_stb_o),
.fsl_adr_o(fsl_adr_o),
.fsl_dat_o(fsl_dat_o),
.fsl_dat_i(fsl_dat_i),
.fsl_wre_o(fsl_we_o),
.iwb_adr_o(iwb_adr_o),
.iwb_dat_i(iwb_dat_i),
.iwb_stb_o(iwb_stb_o),
.iwb_ack_i(iwb_ack_i),
.sys_clk_i(sys_clk_i),
.sys_rst_i(sys_rst_i)
);
endmodule // edk32
/*
$Log: edk32.v,v $
Revision 1.12 2007/12/23 20:40:51 sybreon
Abstracted simulation kernel (aeMB_sim) to split simulation models from synthesis models.
Revision 1.11 2007/12/11 00:44:31 sybreon
Modified for AEMB2
Revision 1.10 2007/11/30 17:08:30 sybreon
Moved simulation kernel into code.
Revision 1.9 2007/11/20 18:36:00 sybreon
Removed unnecessary byte acrobatics with VMEM data.
Revision 1.8 2007/11/18 19:41:45 sybreon
Minor simulation fixes.
Revision 1.7 2007/11/14 22:11:41 sybreon
Added posedge/negedge bus interface.
Modified interrupt test system.
Revision 1.6 2007/11/13 23:37:28 sybreon
Updated simulation to also check BRI 0x00 instruction.
Revision 1.5 2007/11/09 20:51:53 sybreon
Added GET/PUT support through a FSL bus.
Revision 1.4 2007/11/08 14:18:00 sybreon
Parameterised optional components.
Revision 1.3 2007/11/05 10:59:31 sybreon
Added random seed for simulation.
Revision 1.2 2007/11/02 19:16:10 sybreon
Added interrupt simulation.
Changed "human readable" simulation output.
Revision 1.1 2007/11/02 03:25:45 sybreon
New EDK 3.2 compatible design with optional barrel-shifter and multiplier.
Fixed various minor data hazard bugs.
Code compatible with -O0/1/2/3/s generated code.
*/
|