1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
/*******************************************************************************
*
* File Name : idt71v65603s150.v
* Product : IDT71V65603
* Function : 256K x 36 pipeline ZBT Static RAM
* Simulation Tool/Version : Verilog-XL 2.5
* Date : 07/19/00
*
* Copyright 1999 Integrated Device Technology, Inc.
*
* Revision Notes: 07/19/00 Rev00
*
******************************************************************************/
/*******************************************************************************
* Module Name: idt71v65603s150
*
* Notes : This model is believed to be functionally
* accurate. Please direct any inquiries to
* IDT SRAM Applications at: sramhelp@idt.com
*
*******************************************************************************/
/***************************************************************
*
* Integrated Device Technology, Inc. ("IDT") hereby grants the
* user of this Verilog/VCS model a non-exclusive, nontransferable
* license to use this Verilog/VCS model under the following terms.
* The user is granted this license only to use the Verilog/VCS
* model and is not granted rights to sell, copy (except as needed
* to run the IBIS model), rent, lease or sub-license the Verilog/VCS
* model in whole or in part, or in modified form to anyone. The User
* may modify the Verilog/VCS model to suit its specific applications,
* but rights to derivative works and such modifications shall belong
* to IDT.
*
* This Verilog/VCS model is provided on an "AS IS" basis and
* IDT makes absolutely no warranty with respect to the information
* contained herein. IDT DISCLAIMS AND CUSTOMER WAIVES ALL
* WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
* ENTIRE RISK AS TO QUALITY AND PERFORMANCE IS WITH THE
* USER ACCORDINGLY, IN NO EVENT SHALL IDT BE LIABLE
* FOR ANY DIRECT OR INDIRECT DAMAGES, WHETHER IN CONTRACT OR
* TORT, INCLUDING ANY LOST PROFITS OR OTHER INCIDENTAL,
* CONSEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES ARISING OUT OF
* THE USE OR APPLICATION OF THE VERILOG/VCS model. Further,
* IDT reserves the right to make changes without notice to any
* product herein to improve reliability, function, or design.
* IDT does not convey any license under patent rights or
* any other intellectual property rights, including those of
* third parties. IDT is not obligated to provide maintenance
* or support for the licensed Verilog/VCS model.
*
***************************************************************/
`timescale 1ns/100ps
module idt71v65603s150 (A,
adv_ld_, // advance (high) / load (low)
bw1_, bw2_, bw3_, bw4_, // byte write enables (low)
ce1_, ce2, ce2_, // chip enables
cen_, // clock enable (low)
clk, // clock
IO, IOP, // data bus
lbo_, // linear burst order (low)
oe_, // output enable (low)
r_w_); // read (high) / write (low)
initial
begin
$write("\n********************************************************\n");
$write(" idt71v65603s150, 256K x 36 Pipelined burst ZBT SRAM \n");
$write(" Rev: 00 July 2000 \n");
$write(" copyright 1997,1998,1999,2000 by IDT, Inc. \n");
$write("********************************************************\n\n");
end
input [17:0] A;
inout [31:0] IO;
inout [4:1] IOP;
input adv_ld_, bw1_, bw2_, bw3_, bw4_, ce1_, ce2, ce2_,
cen_, clk, lbo_, oe_, r_w_;
//internal registers for data, address, etc
reg [8:0] mem1[0:262143]; //memory array
reg [8:0] mem2[0:262143]; //memory array
reg [8:0] mem3[0:262143]; //memory array
reg [8:0] mem4[0:262143]; //memory array
reg [35:0] dout;
reg [17:0] addr_a,
addr_b;
reg wren_a, wren_b;
reg cs_a, cs_b;
reg bw_a1, bw_b1;
reg bw_a2, bw_b2;
reg bw_a3, bw_b3;
reg bw_a4, bw_b4;
reg [1:0] brst_cnt;
wire[35:0] data_out;
wire doe;
wire cs = (~ce1_ & ce2 & ~ce2_);
wire baddr0, baddr1;
parameter regdelay = 0.2;
parameter outdly = 0.2;
specify
specparam
//Clock Parameters
tCYC = 6.7, //clock cycle time
tCH = 2.0, //clock high time
tCL = 2.0, //clock low time
//Output Parameters
tCD = 3.8, //clk to data valid
tCLZ = 1.5, //clk to output Low-Z
tCHZ = 3.0, //clk to data Hi-Z
tOE = 3.8, //OE to output valid
tOLZ = 0.0, //OE to output Hi-Z
tOHZ = 3.8, //OE to output Hi-Z
//Set up times
tSE = 1.5, //clock enable set-up
tSA = 1.5, //address set-up
tSD = 1.5, //data set-up
tSW = 1.5, //Read/Write set-up
tSADV = 1.5, //Advance/Load set-up
tSC = 1.5, //Chip enable set-up
tSB = 1.5, //Byte write enable set-up
//Hold times
tHE = 0.5, //clock enable hold
tHA = 0.5, //address hold
tHD = 0.5, //data hold
tHW = 0.5, //Read/Write hold
tHADV = 0.5, //Advance/Load hold
tHC = 0.5, //Chip enable hold
tHB = 0.5; //Byte write enable hold
(oe_ *> IO) = (tOE,tOE,tOHZ,tOLZ,tOHZ,tOLZ); //(01,10,0z,z1,1z,z0)
(clk *> IO) = (tCD,tCD,tCHZ,tCLZ,tCHZ,tCLZ); //(01,10,0z,z1,1z,z0)
(oe_ *> IOP) = (tOE,tOE,tOHZ,tOLZ,tOHZ,tOLZ); //(01,10,0z,z1,1z,z0)
(clk *> IOP) = (tCD,tCD,tCHZ,tCLZ,tCHZ,tCLZ); //(01,10,0z,z1,1z,z0)
//timing checks
$period(posedge clk, tCYC );
$width (posedge clk, tCH );
$width (negedge clk, tCL );
$setuphold(posedge clk, A, tSA, tHA);
$setuphold(posedge clk, IO, tSD, tHD);
$setuphold(posedge clk, IOP, tSD, tHD);
$setuphold(posedge clk, adv_ld_, tSADV, tHADV);
$setuphold(posedge clk, bw1_, tSB, tHB);
$setuphold(posedge clk, bw2_, tSB, tHB);
$setuphold(posedge clk, bw3_, tSB, tHB);
$setuphold(posedge clk, bw4_, tSB, tHB);
$setuphold(posedge clk, ce1_, tSC, tHC);
$setuphold(posedge clk, ce2, tSC, tHC);
$setuphold(posedge clk, ce2_, tSC, tHC);
$setuphold(posedge clk, cen_, tSE, tHE);
$setuphold(posedge clk, r_w_, tSW, tHW);
endspecify
initial begin
cs_a = 0;
cs_b = 0;
end
/////////////////////////////////////////////////////////////////////////
//input registers
//--------------------
always @(posedge clk)
begin
if ( ~cen_ & ~adv_ld_ ) cs_a <= #regdelay cs;
if ( ~cen_ ) cs_b <= #regdelay cs_a;
if ( ~cen_ & ~adv_ld_ ) wren_a <= #regdelay (cs & ~r_w_);
if ( ~cen_ ) wren_b <= #regdelay wren_a;
if ( ~cen_ ) bw_a1 <= #regdelay ~bw1_;
if ( ~cen_ ) bw_a2 <= #regdelay ~bw2_;
if ( ~cen_ ) bw_a3 <= #regdelay ~bw3_;
if ( ~cen_ ) bw_a4 <= #regdelay ~bw4_;
if ( ~cen_ ) bw_b1 <= #regdelay bw_a1;
if ( ~cen_ ) bw_b2 <= #regdelay bw_a2;
if ( ~cen_ ) bw_b3 <= #regdelay bw_a3;
if ( ~cen_ ) bw_b4 <= #regdelay bw_a4;
if ( ~cen_ & ~adv_ld_ ) addr_a[17:0] <= #regdelay A[17:0];
if ( ~cen_ ) addr_b[17:0] <= #regdelay {addr_a[17:2], baddr1, baddr0};
end
/////////////////////////////////////////////////////////////////////////
//burst counter
//--------------------
always @(posedge clk)
begin
if ( lbo_ & ~cen_ & ~adv_ld_) brst_cnt <= #regdelay 0;
else if (~lbo_ & ~cen_ & ~adv_ld_) brst_cnt <= #regdelay A[1:0];
else if ( ~cen_ & adv_ld_) brst_cnt <= #regdelay brst_cnt + 1;
end
/////////////////////////////////////////////////////////////////////////
//address logic
//--------------------
assign baddr1 = lbo_ ? (brst_cnt[1] ^ addr_a[1]) : brst_cnt[1];
assign baddr0 = lbo_ ? (brst_cnt[0] ^ addr_a[0]) : brst_cnt[0];
/////////////////////////////////////////////////////////////////////////
//data output register
//--------------------
always @(posedge clk)
begin
#regdelay;
#regdelay;
dout[8:0] = mem1[addr_b];
dout[17:9] = mem2[addr_b];
dout[26:18] = mem3[addr_b];
dout[35:27] = mem4[addr_b];
end
assign data_out = dout;
/////////////////////////////////////////////////////////////////////////
//Output buffers: using a bufif1 has the same effect as...
//
// assign D = doe ? data_out : 36'hz;
//
//It was coded this way to support SPECIFY delays in the specparam section.
//--------------------
bufif1 #outdly (IO[0],data_out[0],doe);
bufif1 #outdly (IO[1],data_out[1],doe);
bufif1 #outdly (IO[2],data_out[2],doe);
bufif1 #outdly (IO[3],data_out[3],doe);
bufif1 #outdly (IO[4],data_out[4],doe);
bufif1 #outdly (IO[5],data_out[5],doe);
bufif1 #outdly (IO[6],data_out[6],doe);
bufif1 #outdly (IO[7],data_out[7],doe);
bufif1 #outdly (IOP[1],data_out[8],doe);
bufif1 #outdly (IO[8],data_out[9],doe);
bufif1 #outdly (IO[9],data_out[10],doe);
bufif1 #outdly (IO[10],data_out[11],doe);
bufif1 #outdly (IO[11],data_out[12],doe);
bufif1 #outdly (IO[12],data_out[13],doe);
bufif1 #outdly (IO[13],data_out[14],doe);
bufif1 #outdly (IO[14],data_out[15],doe);
bufif1 #outdly (IO[15],data_out[16],doe);
bufif1 #outdly (IOP[2],data_out[17],doe);
bufif1 #outdly (IO[16],data_out[18],doe);
bufif1 #outdly (IO[17],data_out[19],doe);
bufif1 #outdly (IO[18],data_out[20],doe);
bufif1 #outdly (IO[19],data_out[21],doe);
bufif1 #outdly (IO[20],data_out[22],doe);
bufif1 #outdly (IO[21],data_out[23],doe);
bufif1 #outdly (IO[22],data_out[24],doe);
bufif1 #outdly (IO[23],data_out[25],doe);
bufif1 #outdly (IOP[3],data_out[26],doe);
bufif1 #outdly (IO[24],data_out[27],doe);
bufif1 #outdly (IO[25],data_out[28],doe);
bufif1 #outdly (IO[26],data_out[29],doe);
bufif1 #outdly (IO[27],data_out[30],doe);
bufif1 #outdly (IO[28],data_out[31],doe);
bufif1 #outdly (IO[29],data_out[32],doe);
bufif1 #outdly (IO[30],data_out[33],doe);
bufif1 #outdly (IO[31],data_out[34],doe);
bufif1 #outdly (IOP[4],data_out[35],doe);
assign doe = cs_b & ~wren_b & ~oe_ ;
/////////////////////////////////////////////////////////////////////////
// write to ram
//-------------
always @(posedge clk)
begin
if (wren_b & bw_b1 & ~cen_) mem1[addr_b] = {IOP[1], IO[7:0]};
if (wren_b & bw_b2 & ~cen_) mem2[addr_b] = {IOP[2], IO[15:8]};
if (wren_b & bw_b3 & ~cen_) mem3[addr_b] = {IOP[3], IO[23:16]};
if (wren_b & bw_b4 & ~cen_) mem4[addr_b] = {IOP[4], IO[31:24]};
end
endmodule
|