1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
//
// Copyright 2011-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
//////////////////////////////////////////////////////////////////////////////////
//this is a FIFO master interface for the FX2 in "slave fifo" mode.
module slave_fifo
#(parameter TXFIFOSIZE = 12, parameter RXFIFOSIZE = 12)
(// GPIF signals
input gpif_clk, input gpif_rst,
inout [15:0] gpif_d,
input [3:0] gpif_ctl,
output sloe, output slrd, output slwr, output pktend, output [1:0] fifoadr,
// Wishbone signals
input wb_clk, input wb_rst,
output [15:0] wb_adr_o, output [15:0] wb_dat_mosi, input [15:0] wb_dat_miso,
output [1:0] wb_sel_o, output wb_cyc_o, output wb_stb_o, output wb_we_o, input wb_ack_i,
input [7:0] triggers,
input dsp_rx_run,
// FIFO interface
input fifo_clk, input fifo_rst, input clear_tx, input clear_rx,
output [35:0] tx_data_o, output tx_src_rdy_o, input tx_dst_rdy_i,
input [35:0] rx_data_i, input rx_src_rdy_i, output rx_dst_rdy_o,
input [35:0] tx_err_data_i, input tx_err_src_rdy_i, output tx_err_dst_rdy_o,
output tx_underrun, output rx_overrun,
input [15:0] test_len, input [7:0] test_rate, input [3:0] test_ctrl,
output [31:0] debug0, output [31:0] debug1
);
reg FX2_DE, FX2_CE, FX2_DF, FX2_CF;
// inputs to FPGA (all active low)
always @(posedge gpif_clk) begin
FX2_DE <= ~gpif_ctl[0]; //EP2 FX2 FIFO empty (FLAGA)
FX2_CE <= ~gpif_ctl[1]; //EP4 FX2 FIFO empty (FLAGB)
FX2_DF <= ~gpif_ctl[2]; //EP6 FX2 FIFO full (FLAGC)
FX2_CF <= ~gpif_ctl[3]; //EP8 FX2 FIFO full (FLAGD)
end
wire [17:0] gpif_d_out_ctrl, gpif_d_out_data, gpif_d_out;
// ////////////////////////////////////////////////////////////////////
// GPIF bus master state machine
//transfer size for GPIF data. this can be anything really, it's specified only for
//fairness in bus sharing. 256 lines is 512 bytes over the wire, half the size of
//the double buffers in B100/B150. this should probably be a toplevel parameter or even
//a settings register value.
localparam data_transfer_size = 256;
localparam ctrl_transfer_size = 16; //probably unnecessary since ctrl xfers won't back up
// state machine i/o to four fifos
//tx
wire ctrl_tx_dst_rdy; //sm input, ctrl tx path has space
wire ctrl_tx_src_rdy; //sm output, ctrl tx path enable
wire data_tx_dst_rdy; //sm input, data tx path has space
wire data_tx_src_rdy; //sm output, data tx path enable
//rx
wire ctrl_rx_dst_rdy; //sm output, ctrl rx path enable
wire ctrl_rx_src_rdy; //sm input, ctrl rx path has space
wire data_rx_dst_rdy; //sm output, data rx path enable
wire data_rx_src_rdy; //sm input, data rx path has space
reg tx_data_enough_space;
reg [9:0] transfer_count; //number of lines (a line is 16 bits) in active transfer
wire sop, eop; //SOP/EOP markers for TX data packets
reg pktend_latch;
reg [3:0] state; //state machine current state
localparam STATE_IDLE = 0;
localparam STATE_DATA_RX = 5;
localparam STATE_DATA_TX = 3;
localparam STATE_CTRL_RX = 6;
localparam STATE_CTRL_TX = 9;
localparam STATE_DATA_TX_SLOE = 2;
localparam STATE_CTRL_TX_SLOE = 8;
localparam STATE_DATA_RX_ADR = 1;
localparam STATE_CTRL_RX_ADR = 4;
localparam STATE_PKTEND_ADR = 10;
localparam STATE_PKTEND = 7;
//logs the last bus user for xfer fairness
//we only care about data rx vs. tx since ctrl pkts are so short
reg last_data_bus_hog;
localparam BUS_HOG_RX = 0;
localparam BUS_HOG_TX = 1;
// //////////////////////////////////////////////////////////////
// FX2 slave FIFO bus master state machine
//
always @(posedge gpif_clk)
if(gpif_rst)
state <= STATE_IDLE;
else
begin
case (state)
STATE_IDLE:
begin
transfer_count <= 0;
//handle transitions to other states
if(ctrl_tx_dst_rdy & ~FX2_CE) //if there's room in the ctrl fifo and the FX2 has ctrl data
state <= STATE_CTRL_TX_SLOE;
else if(ctrl_rx_src_rdy & ~FX2_CF) //if the ctrl fifo has data and the FX2 isn't full
state <= STATE_CTRL_RX_ADR;
else if(data_tx_dst_rdy & ~FX2_DE & last_data_bus_hog == BUS_HOG_RX & tx_data_enough_space) //if there's room in the data fifo and the FX2 has data
state <= STATE_DATA_TX_SLOE;
else if(data_rx_src_rdy & ~FX2_DF & last_data_bus_hog == BUS_HOG_TX) //if the data fifo has data and the FX2 isn't full
state <= STATE_DATA_RX_ADR;
else if(data_tx_dst_rdy & ~FX2_DE & tx_data_enough_space)
state <= STATE_DATA_TX_SLOE;
else if(data_rx_src_rdy & ~FX2_DF)
state <= STATE_DATA_RX_ADR;
else if(~data_rx_src_rdy & ~dsp_rx_run & pktend_latch & ~FX2_DF)
state <= STATE_PKTEND_ADR;
if(data_rx_src_rdy)
pktend_latch <= 1;
end
STATE_DATA_TX_SLOE: //just to assert SLOE one cycle before SLRD
state <= STATE_DATA_TX;
STATE_CTRL_TX_SLOE:
state <= STATE_CTRL_TX;
STATE_DATA_RX_ADR: //just to assert FIFOADR one cycle before SLWR
state <= STATE_DATA_RX;
STATE_CTRL_RX_ADR:
state <= STATE_CTRL_RX;
STATE_DATA_RX:
begin
if(data_rx_src_rdy && data_rx_dst_rdy && (transfer_count != data_transfer_size))
transfer_count <= transfer_count + 1;
else
state <= STATE_IDLE;
last_data_bus_hog <= BUS_HOG_RX;
end
STATE_PKTEND_ADR:
begin
state <= STATE_PKTEND;
end
STATE_PKTEND:
begin
state <= STATE_IDLE;
pktend_latch <= 0;
end
STATE_DATA_TX:
begin
if(data_tx_dst_rdy && data_tx_src_rdy && (transfer_count != data_transfer_size))
transfer_count <= transfer_count + 1;
else
state <= STATE_IDLE;
last_data_bus_hog <= BUS_HOG_TX;
end
STATE_CTRL_RX:
begin
if(ctrl_rx_src_rdy && ctrl_rx_dst_rdy)
transfer_count <= transfer_count + 1;
else
state <= STATE_IDLE;
end
STATE_CTRL_TX:
begin
if(ctrl_tx_dst_rdy && ctrl_tx_src_rdy)
transfer_count <= transfer_count + 1;
else
state <= STATE_IDLE;
end
endcase
end
// ///////////////////////////////////////////////////////////////////
// fifo signal assignments and enables
//enable fifos
assign data_rx_dst_rdy = (state == STATE_DATA_RX) && ~FX2_DF;
assign data_tx_src_rdy = (state == STATE_DATA_TX) && ~FX2_DE;
assign ctrl_rx_dst_rdy = (state == STATE_CTRL_RX) && ~FX2_CF;
assign ctrl_tx_src_rdy = (state == STATE_CTRL_TX) && ~FX2_CE;
//tx framing (this is super suspect)
//eop should be used only to set the EOP bit going into FIFOs
wire eop_data, eop_ctrl;
assign sop = (transfer_count == 0);
assign eop_data = (transfer_count == (data_transfer_size-1));
assign eop_ctrl = (transfer_count == (ctrl_transfer_size-1));
assign eop = (state == STATE_DATA_TX) ? eop_data : eop_ctrl;
// ////////////////////////////////////////////////////////////////////
// set GPIF pins
//set fifoadr to the appropriate endpoint
// {0,0}: EP2, data TX from host
// {0,1}: EP4, ctrl TX from host
// {1,0}: EP6, data RX to host
// {1,1}: EP8, ctrl RX to host
assign fifoadr = {(state == STATE_DATA_RX) | (state == STATE_CTRL_RX) | (state == STATE_DATA_RX_ADR) | (state == STATE_CTRL_RX_ADR) | (state == STATE_PKTEND) | (state == STATE_PKTEND_ADR),
(state == STATE_CTRL_RX) | (state == STATE_CTRL_RX_ADR) | (state == STATE_CTRL_TX) | (state == STATE_CTRL_TX_SLOE)};
//set sloe, slwr, slrd (all active low)
//SLOE gets asserted when we want data from the FX2; i.e., TX mode
assign sloe = ~{(state == STATE_DATA_TX) | (state == STATE_CTRL_TX) | (state == STATE_DATA_TX_SLOE) | (state == STATE_CTRL_TX_SLOE)};
//"read" and "write" here are from the master's point of view;
//so "read" means "transmit" and "write" means "receive"
assign slwr = ~{(data_rx_src_rdy && data_rx_dst_rdy) || (ctrl_rx_src_rdy && ctrl_rx_dst_rdy)};
assign slrd = ~{(data_tx_src_rdy && data_tx_dst_rdy) || (ctrl_tx_src_rdy && ctrl_tx_dst_rdy)};
wire pktend_ctrl, pktend_data;
assign pktend_ctrl = ((~ctrl_rx_src_rdy | gpif_d_out_ctrl[17]) & (state == STATE_CTRL_RX));
assign pktend_data = (state == STATE_PKTEND);
assign pktend = ~(pktend_ctrl | pktend_data);
//mux between ctrl/data RX data out based on endpoint selection
assign gpif_d_out = fifoadr[0] ? gpif_d_out_ctrl : gpif_d_out_data;
// GPIF output data lines, tristate
assign gpif_d = sloe ? gpif_d_out : 16'bz;
// ////////////////////////////////////////////////////////////////////
// TX Data Path
wire [18:0] tx19_data;
wire tx19_src_rdy, tx19_dst_rdy;
wire [35:0] tx36_data;
wire tx36_src_rdy, tx36_dst_rdy;
wire [17:0] data_tx_int;
wire tx_src_rdy_int, tx_dst_rdy_int;
wire [15:0] wr_fifo_space;
always @(posedge gpif_clk)
tx_data_enough_space <= wr_fifo_space >= 256;
fifo_cascade #(.WIDTH(18), .SIZE(12)) wr_fifo
(.clk(gpif_clk), .reset(gpif_rst), .clear(clear_tx),
.datain({eop,sop,gpif_d}), .src_rdy_i(data_tx_src_rdy), .dst_rdy_o(data_tx_dst_rdy), .space(wr_fifo_space),
.dataout(data_tx_int), .src_rdy_o(tx_src_rdy_int), .dst_rdy_i(tx_dst_rdy_int), .occupied());
fifo_2clock_cascade #(.WIDTH(18), .SIZE(4)) wr_fifo_2clk
(.wclk(gpif_clk), .datain(data_tx_int), .src_rdy_i(tx_src_rdy_int), .dst_rdy_o(tx_dst_rdy_int), .space(),
.rclk(fifo_clk), .dataout(tx19_data[17:0]), .src_rdy_o(tx19_src_rdy), .dst_rdy_i(tx19_dst_rdy), .occupied(),
.arst(fifo_rst));
assign tx19_data[18] = 1'b0;
// join vita packets which are longer than one frame, drop frame padding
wire [18:0] refr_data;
wire refr_src_rdy, refr_dst_rdy;
wire refr_state;
wire refr_eof;
wire [15:0] refr_len;
packet_reframer tx_packet_reframer
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_tx),
.data_i(tx19_data), .src_rdy_i(tx19_src_rdy), .dst_rdy_o(tx19_dst_rdy),
.data_o(refr_data), .src_rdy_o(refr_src_rdy), .dst_rdy_i(refr_dst_rdy),
.state(refr_state), .eof_out(refr_eof), .length(refr_len));
fifo19_to_fifo36 #(.LE(1)) f19_to_f36
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_tx),
.f19_datain(refr_data), .f19_src_rdy_i(refr_src_rdy), .f19_dst_rdy_o(refr_dst_rdy),
.f36_dataout(tx36_data), .f36_src_rdy_o(tx36_src_rdy), .f36_dst_rdy_i(tx36_dst_rdy));
fifo_cascade #(.WIDTH(36), .SIZE(TXFIFOSIZE)) tx_fifo36
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_tx),
.datain(tx36_data), .src_rdy_i(tx36_src_rdy), .dst_rdy_o(tx36_dst_rdy),
.dataout(tx_data_o), .src_rdy_o(tx_src_rdy_o), .dst_rdy_i(tx_dst_rdy_i));
// ////////////////////////////////////////////
// RX Data Path
wire [35:0] rx36_data;
wire rx36_src_rdy, rx36_dst_rdy;
wire [18:0] rx19_data;
wire rx19_src_rdy, rx19_dst_rdy;
wire [15:0] rxfifospace;
//deep 36 bit wide input fifo buffers from DSP
fifo_cascade #(.WIDTH(36), .SIZE(8)) rx_fifo36
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_rx),
.datain(rx_data_i), .src_rdy_i(rx_src_rdy_i), .dst_rdy_o(rx_dst_rdy_o),
.dataout(rx36_data), .src_rdy_o(rx36_src_rdy), .dst_rdy_i(rx36_dst_rdy));
//convert to fifo19
fifo36_to_fifo19 #(.LE(1)) f36_to_f19
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_rx),
.f36_datain(rx36_data), .f36_src_rdy_i(rx36_src_rdy), .f36_dst_rdy_o(rx36_dst_rdy),
.f19_dataout(rx19_data), .f19_src_rdy_o(rx19_src_rdy), .f19_dst_rdy_i(rx19_dst_rdy) );
wire [18:0] data_rx_int;
wire rx_src_rdy_int, rx_dst_rdy_int;
//clock domain crossing fifo for RX data
fifo_2clock_cascade #(.WIDTH(19), .SIZE(4)) rd_fifo_2clk
(.wclk(fifo_clk), .datain(rx19_data), .src_rdy_i(rx19_src_rdy), .dst_rdy_o(rx19_dst_rdy), .space(),
.rclk(~gpif_clk), .dataout(data_rx_int), .src_rdy_o(rx_src_rdy_int), .dst_rdy_i(rx_dst_rdy_int), .occupied(),
.arst(fifo_rst));
//rd_fifo buffers writes to the 2clock fifo above
fifo_cascade #(.WIDTH(19), .SIZE(RXFIFOSIZE)) rd_fifo
(.clk(~gpif_clk), .reset(gpif_rst), .clear(clear_rx),
.datain(data_rx_int), .src_rdy_i(rx_src_rdy_int), .dst_rdy_o(rx_dst_rdy_int), .space(rxfifospace),
.dataout(gpif_d_out_data), .src_rdy_o(data_rx_src_rdy), .dst_rdy_i(data_rx_dst_rdy), .occupied());
// ////////////////////////////////////////////////////////////////////
// FIFO to Wishbone interface
wire [18:0] resp_data, resp_int;
wire resp_src_rdy, resp_dst_rdy;
wire resp_src_rdy_int, resp_dst_rdy_int;
wire [18:0] tx_err19_data;
wire tx_err19_src_rdy, tx_err19_dst_rdy;
wire [18:0] ctrl_data;
wire ctrl_src_rdy, ctrl_dst_rdy;
fifo_to_wb fifo_to_wb
(.clk(fifo_clk), .reset(fifo_rst), .clear(0),
.data_i(ctrl_data), .src_rdy_i(ctrl_src_rdy), .dst_rdy_o(ctrl_dst_rdy),
.data_o(resp_int), .src_rdy_o(resp_src_rdy_int), .dst_rdy_i(resp_dst_rdy_int),
.wb_adr_o(wb_adr_o), .wb_dat_mosi(wb_dat_mosi), .wb_dat_miso(wb_dat_miso), .wb_sel_o(wb_sel_o),
.wb_cyc_o(wb_cyc_o), .wb_stb_o(wb_stb_o), .wb_we_o(wb_we_o), .wb_ack_i(wb_ack_i),
.triggers(triggers),
.debug0(), .debug1());
// ////////////////////////////////////////////////////////////////////
// TX CTRL PATH (ctrl commands into Wishbone)
//how does this use fifo_clk instead of wb_clk
//answer: on b100 fifo clk IS wb clk
fifo_2clock_cascade #(.WIDTH(19), .SIZE(4)) ctrl_fifo_2clk
(.wclk(gpif_clk), .datain({1'b0,eop,sop,gpif_d}),
.src_rdy_i(ctrl_tx_src_rdy), .dst_rdy_o(ctrl_tx_dst_rdy), .space(),
.rclk(fifo_clk), .dataout(ctrl_data),
.src_rdy_o(ctrl_src_rdy), .dst_rdy_i(ctrl_dst_rdy), .occupied(),
.arst(fifo_rst));
// ////////////////////////////////////////////////////////////////////
// RX CTRL PATH (async packets, ctrl response data)
//tx_err_data_i is the 36wide tx async err data clocked on fifo_clk
fifo36_to_fifo19 #(.LE(1)) f36_to_f19_txerr
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_rx),
.f36_datain(tx_err_data_i), .f36_src_rdy_i(tx_err_src_rdy_i), .f36_dst_rdy_o(tx_err_dst_rdy_o),
.f19_dataout(tx_err19_data), .f19_src_rdy_o(tx_err19_src_rdy), .f19_dst_rdy_i(tx_err19_dst_rdy) );
//mux FIFO-to-WB along with async tx err pkts into one ctrl resp fifo
//how is this clocked on wb_clk?
fifo19_mux #(.prio(0)) mux_err_stream
(.clk(wb_clk), .reset(wb_rst), .clear(clear_rx),
.data0_i(resp_int), .src0_rdy_i(resp_src_rdy_int), .dst0_rdy_o(resp_dst_rdy_int),
.data1_i(tx_err19_data), .src1_rdy_i(tx_err19_src_rdy), .dst1_rdy_o(tx_err19_dst_rdy),
.data_o(resp_data), .src_rdy_o(resp_src_rdy), .dst_rdy_i(resp_dst_rdy));
//clock domain crossing cascade fifo for mux_err_stream to get from wb_clk to gpif_clk
//the output of this fifo is CTRL DATA PENDING FOR GPIF
fifo_2clock_cascade #(.WIDTH(18), .SIZE(4)) resp_fifo_2clk
(.wclk(wb_clk), .datain(resp_data[17:0]), .src_rdy_i(resp_src_rdy), .dst_rdy_o(resp_dst_rdy), .space(),
.rclk(~gpif_clk), .dataout(gpif_d_out_ctrl),
.src_rdy_o(ctrl_rx_src_rdy), .dst_rdy_i(ctrl_rx_dst_rdy), .occupied(),
.arst(wb_rst));
// ////////////////////////////////////////////////////////////////////
// Debug support, timed and loopback
// RX side muxes test data into the same stream
///////////////////////////////////////////////////////////////////////
// debug lines
wire [31:0] debug_rd, debug_wr, debug_split0, debug_split1;
wire [35:0] timedrx_data, loopbackrx_data, testrx_data;
wire [35:0] timedtx_data, loopbacktx_data, testtx_data;
wire timedrx_src_rdy, timedrx_dst_rdy, loopbackrx_src_rdy, loopbackrx_dst_rdy,
testrx_src_rdy, testrx_dst_rdy;
wire timedtx_src_rdy, timedtx_dst_rdy, loopbacktx_src_rdy, loopbacktx_dst_rdy,
testtx_src_rdy, testtx_dst_rdy;
wire timedrx_src_rdy_int, timedrx_dst_rdy_int, timedtx_src_rdy_int, timedtx_dst_rdy_int;
wire [31:0] total, crc_err, seq_err, len_err;
wire sel_testtx = test_ctrl[0];
wire sel_loopbacktx = test_ctrl[1];
wire pkt_src_enable = test_ctrl[2];
wire pkt_sink_enable = test_ctrl[3];
/*
fifo36_mux rx_test_mux_lvl_1
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_rx),
.data0_i(timedrx_data), .src0_rdy_i(timedrx_src_rdy), .dst0_rdy_o(timedrx_dst_rdy),
.data1_i(loopbackrx_data), .src1_rdy_i(loopbackrx_src_rdy), .dst1_rdy_o(loopbackrx_dst_rdy),
.data_o(testrx_data), .src_rdy_o(testrx_src_rdy), .dst_rdy_i(testrx_dst_rdy));
fifo36_mux rx_test_mux_lvl_2
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_rx),
.data0_i(testrx_data), .src0_rdy_i(testrx_src_rdy), .dst0_rdy_o(testrx_dst_rdy),
.data1_i(rx_data_i), .src1_rdy_i(rx_src_rdy_i), .dst1_rdy_o(rx_dst_rdy_o),
.data_o(rx_data), .src_rdy_o(rx_src_rdy), .dst_rdy_i(rx_dst_rdy));
fifo_short #(.WIDTH(36)) loopback_fifo
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_tx | clear_rx),
.datain(loopbacktx_data), .src_rdy_i(loopbacktx_src_rdy), .dst_rdy_o(loopbacktx_dst_rdy),
.dataout(loopbackrx_data), .src_rdy_o(loopbackrx_src_rdy), .dst_rdy_i(loopbackrx_dst_rdy));
// Crossbar used as a demux for switching TX stream to main DSP or to test logic
crossbar36 tx_crossbar_lvl_1
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_tx),
.cross(sel_testtx),
.data0_i(tx_data), .src0_rdy_i(tx_src_rdy), .dst0_rdy_o(tx_dst_rdy),
.data1_i(tx_data), .src1_rdy_i(1'b0), .dst1_rdy_o(), // No 2nd input
.data0_o(tx_data_o), .src0_rdy_o(tx_src_rdy_o), .dst0_rdy_i(tx_dst_rdy_i),
.data1_o(testtx_data), .src1_rdy_o(testtx_src_rdy), .dst1_rdy_i(testtx_dst_rdy) );
crossbar36 tx_crossbar_lvl_2
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_tx),
.cross(sel_loopbacktx),
.data0_i(testtx_data), .src0_rdy_i(testtx_src_rdy), .dst0_rdy_o(testtx_dst_rdy),
.data1_i(testtx_data), .src1_rdy_i(1'b0), .dst1_rdy_o(), // No 2nd input
.data0_o(timedtx_data), .src0_rdy_o(timedtx_src_rdy), .dst0_rdy_i(timedtx_dst_rdy),
.data1_o(loopbacktx_data), .src1_rdy_o(loopbacktx_src_rdy), .dst1_rdy_i(loopbacktx_dst_rdy) );
// Fixed rate TX traffic consumer
fifo_pacer tx_pacer
(.clk(fifo_clk), .reset(fifo_rst), .rate(test_rate), .enable(pkt_sink_enable),
.src1_rdy_i(timedtx_src_rdy), .dst1_rdy_o(timedtx_dst_rdy),
.src2_rdy_o(timedtx_src_rdy_int), .dst2_rdy_i(timedtx_dst_rdy_int),
.underrun(tx_underrun), .overrun());
packet_verifier32 pktver32
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_tx),
.data_i(timedtx_data), .src_rdy_i(timedtx_src_rdy_int), .dst_rdy_o(timedtx_dst_rdy_int),
.total(total), .crc_err(crc_err), .seq_err(seq_err), .len_err(len_err));
// Fixed rate RX traffic generator
vita_pkt_gen pktgen
(.clk(fifo_clk), .reset(fifo_rst), .clear(clear_rx),
.len(test_len),
.data_o(timedrx_data), .src_rdy_o(timedrx_src_rdy_int), .dst_rdy_i(timedrx_dst_rdy_int));
fifo_pacer rx_pacer
(.clk(fifo_clk), .reset(fifo_rst), .rate(test_rate), .enable(pkt_src_enable),
.src1_rdy_i(timedrx_src_rdy_int), .dst1_rdy_o(timedrx_dst_rdy_int),
.src2_rdy_o(timedrx_src_rdy), .dst2_rdy_i(timedrx_dst_rdy),
.underrun(), .overrun(rx_overrun));
*/
// ////////////////////////////////////////////
// DEBUG
assign debug0 = { pktend_latch, data_rx_src_rdy, gpif_ctl[3:0], sloe, slrd, slwr, pktend, fifoadr[1:0], state[3:0], gpif_d[15:0]};
//assign debug0 = { data_tx_src_rdy, data_tx_dst_rdy, tx_src_rdy_int, tx_dst_rdy_int,
// tx19_src_rdy, tx19_dst_rdy, refr_src_rdy, refr_dst_rdy,
// tx36_src_rdy, tx36_dst_rdy,
// gpif_ctl[3:0], fifoadr[1:0],
// wr_fifo_space[15:0]};
assign debug1 = { 16'b0, transfer_count[7:0], ctrl_rx_src_rdy, ctrl_tx_dst_rdy, data_rx_src_rdy,
data_tx_dst_rdy, ctrl_tx_src_rdy, ctrl_rx_dst_rdy, data_tx_src_rdy, data_rx_dst_rdy};
endmodule // slave_fifo
|