aboutsummaryrefslogtreecommitdiffstats
path: root/usrp2/extramfifo/nobl_fifo.v
blob: 62229e6c267d1078d96da1105751a4e1f69d3888 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// Since this FIFO uses a ZBT/NoBL SRAM for its storage which is a since port 
// device it can only sustain data throughput at half the RAM clock rate.
// Fair arbitration to ensure this occurs is included in this logic and
// requests for transactions that can not be completed are held off.
// This FIFO requires a an external signal driving read_strobe that assures space for at least 6
// reads since this the theopretical maximum number in flight due to pipeling.

module nobl_fifo
  #(parameter WIDTH=18,RAM_DEPTH=19,FIFO_DEPTH=19)
    (   
	input clk,
	input rst,
	input [WIDTH-1:0] RAM_D_pi,
	output [WIDTH-1:0] RAM_D_po,
	output RAM_D_poe,
	output [RAM_DEPTH-1:0] RAM_A,
	output RAM_WEn,
	output RAM_CENn,
	output RAM_LDn,
	output RAM_OEn,
	output RAM_CE1n,
	input [WIDTH-1:0] write_data,
	input write_strobe,
	output reg space_avail,
	output  [WIDTH-1:0] read_data,
	input read_strobe,                    // Triggers a read, result in approximately 6 cycles.
	output  data_avail,                    // Qulaifys read data available this cycle on read_data.
	output reg [FIFO_DEPTH-1:0] capacity
	);

   //reg [FIFO_DEPTH-1:0] capacity;
   reg [FIFO_DEPTH-1:0] wr_pointer;
   reg [FIFO_DEPTH-1:0] rd_pointer;
   wire [RAM_DEPTH-1:0] address;
   reg 			data_avail_int;  // Internal not empty flag.
   
   assign 	    read = read_strobe && data_avail_int;
   assign 	    write = write_strobe && space_avail;

   // When a read and write collision occur, supress the space_avail flag next cycle
   // and complete write followed by read over 2 cycles. This forces balanced arbitration
   // and makes for a simple logic design.

   always @(posedge clk)
     if (rst)
       begin
	  capacity <= (1 << FIFO_DEPTH) - 1;
	  wr_pointer <= 0;
	  rd_pointer <= 0;
	  space_avail <= 0;
	  data_avail_int <= 0;
       end
     else	  
       begin
	  // No space available if:
	  // Capacity is already zero; Capacity is 1 and write is asserted (lookahead); both read and write are asserted (collision)
	  space_avail <= ~((capacity == 0) || (read&&write) || ((capacity == 1) && write) );
	  // Capacity has 1 cycle delay so look ahead here for corner case of read of last item in FIFO.
	  data_avail_int <= ~((capacity == ((1 << FIFO_DEPTH)-1))  || ((capacity == ((1 << FIFO_DEPTH)-2)) && read)  );
	  wr_pointer <= wr_pointer + write;
	  rd_pointer <= rd_pointer + (~write && read); 
	  capacity <= capacity - write + (~write && read) ;
       end // else: !if(rst)

   assign address = write ? wr_pointer : rd_pointer;
   assign enable = write || read; 


   //
   // Simple NoBL SRAM interface, 4 cycle read latency.
   // Read/Write arbitration via temprary application of empty/full flags.
   //
   nobl_if nobl_if_i1
     (
      .clk(clk),
      .rst(rst),
      .RAM_D_pi(RAM_D_pi),
      .RAM_D_po(RAM_D_po),
      .RAM_D_poe(RAM_D_poe),
      .RAM_A(RAM_A),
      .RAM_WEn(RAM_WEn),
      .RAM_CENn(RAM_CENn),
      .RAM_LDn(RAM_LDn),
      .RAM_OEn(RAM_OEn),
      .RAM_CE1n(RAM_CE1n),
      .address(address),
      .data_out(write_data),
      .data_in(read_data),
      .data_in_valid(data_avail),
      .write(write),
      .enable(enable)
      );

   

endmodule // nobl_fifo