1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
// Since this FIFO uses a ZBT/NoBL SRAM for its storage which is a since port
// device it can only sustain data throughput at half the RAM clock rate.
// Fair arbitration to ensure this occurs is included in this logic and
// requests for transactions that can not be completed are held off by (re)using the
// "full" and "empty" flags.
module nobl_fifo
#(parameter WIDTH=18,DEPTH=19)
(
input clk,
input rst,
input [WIDTH-1:0] RAM_D_pi,
output [WIDTH-1:0] RAM_D_po,
output RAM_D_poe,
output [DEPTH-1:0] RAM_A,
output RAM_WEn,
output RAM_CENn,
output RAM_LDn,
output RAM_OEn,
output RAM_CE1n,
input [WIDTH-1:0] write_data,
input write_strobe,
output reg space_avail,
output reg [WIDTH-1:0] read_data,
input read_strobe,
output reg data_avail,
input upstream_full // (Connect to almost full flag upstream)
);
reg [DEPTH-1:0] capacity;
reg [DEPTH-1:0] wr_pointer;
reg [DEPTH-1:0] rd_pointer;
wire [DEPTH-1:0] address;
reg supress;
reg data_avail_int; // Data available with high latency from ext FIFO flag
wire [WIDTH-1:0] data_in;
wire data_in_valid;
reg [WIDTH-1:0] read_data_pending;
reg pending_avail;
wire read_strobe_int;
assign read = read_strobe_int && data_avail_int;
assign write = write_strobe && space_avail;
// When a read and write collision occur, supress the availability flags next cycle
// and complete write followed by read over 2 cycles. This forces balanced arbitration
// and makes for a simple logic design.
always @(posedge clk)
if (rst)
begin
capacity <= 1 << (DEPTH-1);
wr_pointer <= 0;
rd_pointer <= 0;
space_avail <= 0;
data_avail_int <= 0;
supress <= 0;
end
else
begin
space_avail <= ~((capacity == 0) || (read&&write) || (capacity == 1 && write) );
// Capacity has 1 cycle delay so look ahead here for corner case of read of last item in FIFO.
data_avail_int <= ~((capacity == (1 << (DEPTH-1))) || (read&&write) || (capacity == ((1 << (DEPTH-1))-1) && read) );
supress <= read && write;
wr_pointer <= wr_pointer + write;
rd_pointer <= rd_pointer + ((~write && read) || supress);
capacity <= capacity - write + ((~write && read) || supress); // REVISIT
end // else: !if(rst)
assign address = write ? wr_pointer : rd_pointer;
assign enable = write || read || supress;
//
// Need to have first item in external FIFO moved into local registers for single cycle latency and throughput on read.
// 2 local registers are provided so that a read every other clock cycle can be sustained.
// No fowarding logic is provided to bypass the external FIFO as latency is of no concern.
//
always @(posedge clk)
if (rst)
begin
read_data <= 0;
data_avail <= 0;
read_data_pending <= 0;
pending_avail <= 0;
end
else
begin
case({read_strobe,data_in_valid})
// No read externally, no new data arriving from external FIFO
2'b00: begin
case({data_avail,pending_avail})
// Start Data empty, Pending empty.
//
// End Data full, Pending empty
2'b00: begin
read_data <= read_data;
data_avail <= data_avail;
read_data_pending <= read_data_pending ;
pending_avail <= pending_avail;
end
// Start Data empty, Pending full.
// Data <= Pending,
// End Data full, Penidng empty.
2'b01: begin
read_data <= read_data_pending;
data_avail <= 1'b1;
read_data_pending <= read_data_pending ;
pending_avail <= 1'b0;
end
// Start Data full, Pending empty.
//
// End Data full, Pending empty
2'b10: begin
read_data <= read_data;
data_avail <= data_avail;
read_data_pending <= read_data_pending ;
pending_avail <= pending_avail;
end
// Start Data full, Pending full.
//
// End Data full, Pending full.
2'b11: begin
read_data <= read_data;
data_avail <= data_avail;
read_data_pending <= read_data_pending ;
pending_avail <= pending_avail;
end
endcase
end
// No read externally, new data arriving from external FIFO
2'b01: begin
case({data_avail,pending_avail})
// Start Data empty, Pending empty.
// Data <= FIFO
// End Data full, Pending empty
2'b00: begin
read_data <= data_in;
data_avail <= 1'b1;
read_data_pending <= read_data_pending ;
pending_avail <= 1'b0;
end
// Start Data empty, Pending full.
// Data <= Pending, Pending <= FIFO
// End Data full, Penidng full.
2'b01: begin
read_data <= read_data_pending;
data_avail <= 1'b1;
read_data_pending <= data_in ;
pending_avail <= 1'b1;
end
// Start Data full, Pending empty.
// Pending <= FIFO
// End Data full, Pending full
2'b10: begin
read_data <= read_data;
data_avail <= 1'b1;
read_data_pending <= data_in ;
pending_avail <= 1'b1;
end
// Data full, Pending full.
// *ILLEGAL STATE*
2'b11: begin
end
endcase
end
// Read externally, no new data arriving from external FIFO
2'b10: begin
case({data_avail,pending_avail})
// Start Data empty, Pending empty.
// *ILLEGAL STATE*
2'b00: begin
end
// Start Data empty, Pending full.
// *ILLEGAL STATE*
2'b01: begin
end
// Start Data full, Pending empty.
// Out <= Data
// End Data empty, Pending empty.
2'b10: begin
read_data <= read_data;
data_avail <= 1'b0;
read_data_pending <= read_data_pending ;
pending_avail <= 1'b0;
end
// Start Data full, Pending full.
// Out <= Data,
// End Data full, Pending empty
2'b11: begin
read_data <= read_data_pending;
data_avail <= 1'b1;
read_data_pending <= read_data_pending ;
pending_avail <= 1'b0;
end
endcase
end
// Read externally, new data arriving from external FIFO
2'b11: begin
case({data_avail,pending_avail})
// Start Data empty, Pending empty.
// *ILLEGAL STATE*
2'b00: begin
end
// Start Data empty, Pending full.
// *ILLEGAL STATE*
2'b01: begin
end
// Start Data full, Pending empty.
// Out <= Data, Data <= FIFO
// End Data full, Pending empty.
2'b10: begin
read_data <= data_in;
data_avail <= 1'b1;
read_data_pending <= read_data_pending ;
pending_avail <= 1'b0;
end
// Start Data full, Pending full.
// Out <= Data, Data <= Pending, Pending <= FIFO
// End Data full, Pending full
2'b11: begin
read_data <= read_data_pending;
data_avail <= 1'b1;
read_data_pending <= data_in ;
pending_avail <= 1'b1;
end
endcase
end
endcase
end
// Start an external FIFO read as soon as a read of the buffer reg is strobed to minimise refill latency.
// If the buffer reg or the pending buffer reg is already empty also pre-emptively start a read.
// However there must be something in the main external FIFO to read for this to occur!.
// Pay special attention to upstream devices signalling full due to the number of potential in-flight reads\ that need
// to be stalled and stored somewhere.
// This means that there can be 3 outstanding reads to the ext FIFO active at any time helping to hide latency.
assign read_strobe_int = (read_strobe && data_avail && ~pending_avail && ~upstream_full) || (~data_avail && ~pending_avail && ~upstream_full);
//
// Simple NoBL SRAM interface, 4 cycle read latency.
// Read/Write arbitration via temprary application of empty/full flags.
//
nobl_if nobl_if_i1
(
.clk(clk),
.rst(rst),
.RAM_D_pi(RAM_D_pi),
.RAM_D_po(RAM_D_po),
.RAM_D_poe(RAM_D_poe),
.RAM_A(RAM_A),
.RAM_WEn(RAM_WEn),
.RAM_CENn(RAM_CENn),
.RAM_LDn(RAM_LDn),
.RAM_OEn(RAM_OEn),
.RAM_CE1n(RAM_CE1n),
.address(address),
.data_out(write_data),
.data_in(data_in),
.data_in_valid(data_in_valid),
.write(write),
.enable(enable)
);
endmodule // nobl_fifo
|