1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
/* -*- c++ -*- */
/*
* Copyright 2016 Ettus Research LLC.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gnuradio/io_signature.h>
#include "measurement_sink_f_impl.h"
namespace gr {
namespace usrptest {
measurement_sink_f::sptr
measurement_sink_f::make(int num_samples, int runs)
{
return gnuradio::get_initial_sptr
(new measurement_sink_f_impl(num_samples, runs));
}
/*
* The private constructor
*/
measurement_sink_f_impl::measurement_sink_f_impl(int num_samples, int runs)
: gr::sync_block("measurement_sink_f",
gr::io_signature::make(1, 1, sizeof(float)),
gr::io_signature::make(0, 0, 0)),
d_runs(runs),
d_nsamples(num_samples)
{
d_curr_run = 0; // number of completed measurement runs
d_curr_avg = 0.0f; // accumulated average
d_curr_M2 = 0.0f; // accumulated M2
d_run = false; // true if a measurement is currently recorded
d_curr_sample = 0; // current sample count
}
/*
* Our virtual destructor.
*/
measurement_sink_f_impl::~measurement_sink_f_impl()
{
}
int
measurement_sink_f_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const float *in = (const float *) input_items[0];
if ((d_curr_run < d_runs)&&d_run){ //check if we need to record data
const int max_items = std::min(noutput_items, d_nsamples-d_curr_sample); // calculate number of samples we have to take into account
for (int item=0; item < max_items;++item){
++d_curr_sample;
inc_both(in[item]);
}
if (d_curr_sample == d_nsamples) {
d_avg.push_back(d_curr_avg);
d_stddev.push_back(std::sqrt(d_curr_M2/(float)(d_curr_sample - 1)));
++d_curr_run;
d_run = false;
d_curr_sample = 0;
d_curr_avg = 0.0f;
d_curr_M2 = 0.0f;
}
}
return noutput_items;
}
void
measurement_sink_f_impl::inc_both(const float new_val)
{
float delta = new_val - d_curr_avg;
d_curr_avg = d_curr_avg + delta/(float)(d_curr_sample);
d_curr_M2 = d_curr_M2 + delta*(new_val - d_curr_avg);
}
void
measurement_sink_f_impl::start_run()
{
d_run = true;
}
std::vector<float>
measurement_sink_f_impl::get_avg() const
{
return d_avg;
}
std::vector<float>
measurement_sink_f_impl::get_stddev() const
{
return d_stddev;
}
int
measurement_sink_f_impl::get_run() const
{
return d_curr_run;
}
} /* namespace usrptest */
} /* namespace gr */
|