1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
|
#!/usr/bin/env python
#
# Copyright 2018 Ettus Research, a National Instruments Company
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
UHD Phase Alignment: Phase alignment test using the UHD Python API.
"""
import argparse
from builtins import input
from datetime import datetime, timedelta
import itertools as itt
import sys
import time
import logging
import numpy as np
import numpy.random as npr
import uhd
CLOCK_TIMEOUT = 1000 # 1000mS timeout for external clock locking
INIT_DELAY = 0.05 # 50mS initial delay before transmit
CMD_DELAY = 0.05 # set a 50mS delay in commands
NUM_RETRIES = 10 # Number of retries on a given trial before giving up
# TODO: Add support for TX phase alignment
def parse_args():
"""Parse the command line arguments"""
description = """UHD Phase Alignment (Python API)
Currently only supports RX phase alignment
Example usage:
- Setup: 2x X310's (one with dboard in slot A, one in slot B)
uhd_phase_alignment.py --args addr0=ADDR0,addr1=ADDR1 --rate 5e6 --gain 30
--start-freq 1e9 --stop-freq 2e9 --freq-bands 3
--clock-source external --time-source external --sync pps
--subdev "A:0" "A:0" --runs 3 --duration 1.0
Note: when specifying --subdev, put each mboard's subdev in ""
"""
# TODO: Add gain steps!
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
description=description)
# Standard device args
parser.add_argument("--args", default="", type=str,
help="UHD device address args (requires 2 MBoards)")
parser.add_argument("--rate", type=float, default=5e6,
help="specify to perform a rate test (sps)")
parser.add_argument("--gain", type=float, default=10.,
help="specify a gain setting for the device")
parser.add_argument("--channels", default=[0, 1], nargs="+", type=int,
help="which channel(s) to use "
"(specify 0 1 or 0 1 2 3)")
parser.add_argument("--duration", default=0.25, type=float,
help="duration for each capture in seconds")
parser.add_argument("--runs", default=10, type=int,
help="Number of times to retune and measure phase alignment")
# Test configuration
parser.add_argument("--start-freq", type=float, required=True,
help="specify a minimum frequency")
parser.add_argument("--stop-freq", type=float, required=True,
help="specify a maximum frequency")
parser.add_argument("--freq-bands", type=float, required=True,
help="specify the number of frequency bands to test")
parser.add_argument("--start-power", type=float, default=-30,
help="specify a starting output power for the siggen (dBm)")
parser.add_argument("--power-step", type=float, default=0,
help="specify the increase in siggen output power at each step")
parser.add_argument("--tone-offset", type=float, default=1e6,
help="Frequency offset of the input signal (ie. the "
"difference between the device's center frequency "
"and the test tone)")
parser.add_argument("--drift-threshold", type=float, default=2.,
help="Maximum frequency drift (deg) while testing a given frequency")
parser.add_argument("--stddev-threshold", type=float, default=2.,
help="Maximum frequency deviation (deg) over a single receive call")
# Device configuration
parser.add_argument("--clock-source", type=str,
help="clock reference (internal, external, mimo, gpsdo)")
parser.add_argument("--time-source", type=str,
help="PPS source (internal, external, mimo, gpsdo)")
parser.add_argument("--sync", type=str, default="default",
#choices=["default", "pps", "mimo"],
help="Method to synchronize devices)")
parser.add_argument("--subdev", type=str, nargs="+",
help="Subdevice(s) of UHD device where appropriate. Use "
"a space-separated list to set different boards to "
"different specs.")
# Extra, advanced arguments
parser.add_argument("--plot", default=False, action="store_true",
help="Plot results")
parser.add_argument("--save", default=False, action="store_true",
help="Save each set of samples")
parser.add_argument("--easy-tune", type=bool, default=True,
help="Round the target frequency to the nearest MHz")
args = parser.parse_args()
# Do some sanity checking
if args.tone_offset >= (args.rate / 2):
logger.warning("Tone offset may be outside the received bandwidth!")
return args
class LogFormatter(logging.Formatter):
"""Log formatter which prints the timestamp with fractional seconds"""
@staticmethod
def pp_now():
"""Returns a formatted string containing the time of day"""
now = datetime.now()
return "{:%H:%M}:{:05.2f}".format(now, now.second + now.microsecond / 1e6)
def formatTime(self, record, datefmt=None):
converter = self.converter(record.created)
if datefmt:
formatted_date = converter.strftime(datefmt)
else:
formatted_date = LogFormatter.pp_now()
return formatted_date
def setup_ref(usrp, ref, num_mboards):
"""Setup the reference clock"""
if ref == "mimo":
if num_mboards != 2:
logger.error("ref = \"mimo\" implies 2 motherboards; "
"your system has %d boards", num_mboards)
return False
usrp.set_clock_source("mimo", 1)
else:
usrp.set_clock_source(ref)
# Lock onto clock signals for all mboards
if ref != "internal":
logger.debug("Now confirming lock on clock signals...")
end_time = datetime.now() + timedelta(milliseconds=CLOCK_TIMEOUT)
for i in range(num_mboards):
if ref == "mimo" and i == 0:
continue
is_locked = usrp.get_mboard_sensor("ref_locked", i)
while (not is_locked) and (datetime.now() < end_time):
time.sleep(1e-3)
is_locked = usrp.get_mboard_sensor("ref_locked", i)
if not is_locked:
logger.error("Unable to confirm clock signal locked on board %d", i)
return False
return True
def setup_pps(usrp, pps, num_mboards):
"""Setup the PPS source"""
if pps == "mimo":
if num_mboards != 2:
logger.error("ref = \"mimo\" implies 2 motherboards; "
"your system has %d boards", num_mboards)
return False
# make mboard 1 a slave over the MIMO Cable
usrp.set_time_source("mimo", 1)
else:
usrp.set_time_source(pps)
return True
def setup_usrp(args):
"""Create, configure, and return the device
The USRP object that is returned will be synchronized and ready to receive.
"""
usrp = uhd.usrp.MultiUSRP(args.args)
# Always select the subdevice first, the channel mapping affects the other settings
if args.subdev:
assert len(args.subdev) == usrp.get_num_mboards(),\
"Please specify a subdevice spec for each mboard"
for mb_idx in range(usrp.get_num_mboards()):
usrp.set_rx_subdev_spec(uhd.usrp.SubdevSpec(args.subdev[mb_idx]), mb_idx)
else:
logger.warning("No RX subdev specs set! Please ensure that the correct "
"connections are being used.")
logger.info("Using Device: %s", usrp.get_pp_string())
# Set the reference clock
if args.clock_source and not setup_ref(usrp, args.clock_source, usrp.get_num_mboards()):
# If we wanted to set a reference clock and it failed, return
return None
# Set the PPS source
if args.time_source and not setup_pps(usrp, args.time_source, usrp.get_num_mboards()):
# If we wanted to set a PPS source and it failed, return
return None
# At this point, we can assume our device has valid and locked clock and PPS
# Determine channel settings
# TODO: Add support for >2 channels! (TwinRX)
if len(args.channels) != 2:
logger.error("Must select 2 channels! (%s selected)", args.channels)
return None
logger.info("Selected %s RX channels", args.channels if args.channels else "no")
# Set the sample rate
for chan in args.channels:
usrp.set_rx_rate(args.rate, chan)
# Actually synchronize devices
# We already know we have >=2 channels, so don't worry about that
if args.sync in ['default', "pps"]:
logger.info("Setting device timestamp to 0...")
usrp.set_time_unknown_pps(uhd.types.TimeSpec(0.0))
elif args.sync == 'mimo':
# For MIMO, we want to set the time on the master and let it propogate
# through the MIMO cable
usrp.set_time_now(uhd.types.TimeSpec(0.0), 0)
time.sleep(1)
logger.info("Current device timestamp: %.8f",
usrp.get_time_now().get_real_secs())
else:
# This should never happen- argparse choices should handle this
logger.error("Invalid sync option for given configuration: %s", args.sync)
return None
return usrp
def get_band_limits(start_freq, stop_freq, freq_bands):
"""Return an array of length `freq_bands + 1`.
Each element marks the start of a frequency band (Hz).
Bands are equal sized (not log or anything fancy).
The last element is the stop frequency.
ex. get_band_limits(10., 100., 2) => [10., 55., 100.]
"""
return np.linspace(start_freq, stop_freq, freq_bands+1, endpoint=True)
def window(seq, width=2):
"""Returns a sliding window (of `width` elements) over data from the iterable.
s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ...
Itertools example found at https://docs.python.org/release/2.3.5/lib/itertools-example.html
"""
seq_iter = iter(seq)
result = tuple(itt.islice(seq_iter, width))
if len(result) == width:
yield result
for elem in seq_iter:
result = result[1:] + (elem,)
yield result
def generate_time_spec(usrp, time_delta=0.05):
"""Return a TimeSpec for now + `time_delta`"""
return usrp.get_time_now() + uhd.types.TimeSpec(time_delta)
def tune_siggen(freq, power_lvl):
"""Tune the signal generator to output the correct tone"""
# TODO: support actual RTS equipment, or any automated way
input("Please tune the signal generator to {:.3f} MHz and {:.1f} dBm, "
"then press Enter".format(freq / 1e6, power_lvl))
def tune_usrp(usrp, freq, channels, delay=CMD_DELAY):
"""Synchronously set the device's frequency"""
usrp.set_command_time(generate_time_spec(usrp, time_delta=delay))
for chan in channels:
usrp.set_rx_freq(uhd.types.TuneRequest(freq), chan)
def recv_aligned_num_samps(usrp, streamer, num_samps, freq, channels=(0,)):
"""
RX a finite number of samples from the USRP
:param usrp: MultiUSRP object
:param streamer: RX streamer object
:param num_samps: number of samples to RX
:param freq: RX frequency (Hz)
:param channels: list of channels to RX on
:return: numpy array of complex floating-point samples (fc32)
"""
# Allocate a sample buffer
result = np.empty((len(channels), num_samps), dtype=np.complex64)
# Tune to the desired frequency
tune_usrp(usrp, freq, channels)
metadata = uhd.types.RXMetadata()
buffer_samps = streamer.get_max_num_samps() * 10
recv_buffer = np.zeros(
(len(channels), buffer_samps), dtype=np.complex64)
recv_samps = 0
stream_cmd = uhd.types.StreamCMD(uhd.types.StreamMode.start_cont)
stream_cmd.stream_now = False
stream_cmd.time_spec = generate_time_spec(usrp)
stream_cmd.num_samps = num_samps
streamer.issue_stream_cmd(stream_cmd)
logger.debug("Sending stream command for T=%.2f", stream_cmd.time_spec.get_real_secs())
samps = np.array([], dtype=np.complex64)
while recv_samps < num_samps:
samps = streamer.recv(recv_buffer, metadata)
if metadata.error_code != uhd.types.RXMetadataErrorCode.none:
# If we get a timeout, retry MAX_TIMEOUTS times
if metadata.error_code == uhd.types.RXMetadataErrorCode.timeout:
logger.error("%s (%d samps recv'd)", metadata.strerror(), recv_samps)
recv_samps = 0
break
real_samps = min(num_samps - recv_samps, samps)
result[:, recv_samps:recv_samps + real_samps] = recv_buffer[:, 0:real_samps]
recv_samps += real_samps
logger.debug("Stopping stream")
stream_cmd = uhd.types.StreamCMD(uhd.types.StreamMode.stop_cont)
streamer.issue_stream_cmd(stream_cmd)
logger.debug("Flushing stream")
# Flush the remainder of the samples
while samps:
samps = streamer.recv(recv_buffer, metadata)
if recv_samps < num_samps:
logger.warning("Received too few samples, returning an empty array")
return np.array([], dtype=np.complex64)
return result
def plot_samps(samps, alignment):
"""
Show a nice plot of samples and their phase alignment
"""
try:
import pylab as plt
except ImportError:
logger.error("--plot requires pylab.")
return
plt.tick_params(axis="both", labelsize=20)
# Plot the samples
plt.plot(samps[0][1000:2000].real, 'b')
plt.plot(samps[1][1000:2000].real, 'r')
plt.title("Phase Aligned RX", fontsize=44)
plt.legend(["Device A", "Device B"], fontsize=24)
plt.ylabel("Amplitude (real)", fontsize=35)
plt.xlabel("Time (us)", fontsize=35)
plt.show()
# Plot the alignment
logger.info("plotting alignment")
plt.plot(alignment)
plt.title("Phase Difference between Devices", fontsize=40)
plt.ylabel("Phase Delta (radian)", fontsize=30)
plt.xlabel("Time (us)", fontsize=30)
plt.ylim([-np.pi, np.pi])
plt.show()
def check_results(alignment_stats, drift_thresh, stddev_thresh):
"""Print the alignment stats in a nice way
alignment_stats should be a dictionary of the following form:
{test_freq : [list of runs], ...}
... the list of runs takes the form:
[{dictionary of run statistics}, ...]
... the run dictionary has the following keys:
mean, stddev, min, max, test_freq, run_freq
... whose values are all floats
"""
success = True # Whether or not we've exceeded a threshold
msg = ""
for freq, stats_list in alignment_stats.items():
# Try to grab the test frequency for the frequency band
try:
test_freq = stats_list[0].get("test_freq")
except (KeyError, IndexError):
test_freq = 0.
logger.error("Failed to find test frequency for test band %.2fMHz", freq)
msg += "=== Frequency band starting at {:.2f}MHz. ===\n".format(freq/1e6)
msg += "Test Frequency: {:.2f}MHz ===\n".format(test_freq/1e6)
# Allocate a list so we can calulate the drift over a set of runs
mean_list = []
for run_dict in stats_list:
run_freq = run_dict.get("run_freq", 0.)
# Convert mean and stddev to degrees
mean_deg = run_dict.get("mean", 0.) * 180 / np.pi
stddev_deg = run_dict.get("stddev", 0.) * 180 / np.pi
if stddev_deg > stddev_thresh:
success = False
msg += "{:.2f}MHz<-{:.2f}MHz: {:.3f} deg +- {:.3f}\n".format(
test_freq/1e6, run_freq/1e6, mean_deg, stddev_deg
)
mean_list.append(mean_deg)
# Report the largest difference in mean values of runs
# FIXME: This won't work around +-180 deg
max_drift = max(mean_list) - min(mean_list)
if max_drift > drift_thresh:
success = False
msg += "--Maximum drift over runs: {:.2f} degrees\n".format(max_drift)
# Print a newline to separate frequency bands
msg += "\n"
logger.info("Printing statistics!\n%s", msg)
return success
def main():
"""RX samples and write to file"""
args = parse_args()
# Setup a usrp device
usrp = setup_usrp(args)
if usrp is None:
return False
### General test description ###
# 1. Split the frequency range of our device into bands. For each of these
# bands, we'll pick a random frequency within the band to be our test
# frequency.
# 2. Again split the frequency range of our device into bands, this time
# using the number of trials we want to run to split the range. Pick a
# random frequency within each run band. Tune to that run frequency, then
# back to our test frequency.
# 3. Receive synchronized samples, and determine the phase alignment. Report
# statistics based on the alignment.
# 4. Once we've iterated through each test frequency, determine whether or
# not the test passed or failed.
# Determine the frequency bands we need to test
# TODO: allow users to specify test frequencies in args
freq_bands = get_band_limits(args.start_freq, args.stop_freq, args.freq_bands)
# Frequency bands to tune away to
# TODO: make this based on the device's frequency range. This requires
# additional Python API bindings.
run_bands = get_band_limits(args.start_freq, args.stop_freq, args.runs)
nsamps = int(args.duration * args.rate)
st_args = uhd.usrp.StreamArgs("fc32", "sc16")
st_args.channels = args.channels
streamer = usrp.get_rx_stream(st_args)
# Make a big dictionary to store all of the reported statistics
# Keys are the starting test frequency of the band
# Values are lists of dictionaries of statistics
all_alignment_stats = {}
# Test phase alignment in each test frequency band
current_power = args.start_power
for freq_start, freq_stop in window(freq_bands):
# Pick a random center frequency between the start and stop frequencies
tune_freq = npr.uniform(freq_start, freq_stop)
if args.easy_tune:
# Round to the nearest MHz
tune_freq = np.round(tune_freq, -6)
# Request the SigGen tune to our test frequency plus some offset away
# the device's LO
tune_siggen(tune_freq + args.tone_offset, current_power)
# This is where the magic happens!
# Store phase alignment statistics as a list of dictionaries
alignment_stats = []
for tune_away_start, tune_away_stop in window(run_bands):
# Try to get samples
for i in range(NUM_RETRIES):
# Tune to a random frequency in each of the frequency bands...
tune_away_freq = npr.uniform(tune_away_start, tune_away_stop)
tune_usrp(usrp, tune_away_freq, args.channels)
time.sleep(0.5)
logger.info("Receiving samples, take %d, (%.2fMHz -> %.2fMHz)",
i, tune_away_freq/1e6, tune_freq/1e6)
# Then tune back to our desired test frequency, and receive samples
samps = recv_aligned_num_samps(usrp,
streamer,
nsamps,
tune_freq,
args.channels)
if samps.size >= nsamps:
break
else:
streamer = None # Help the garbage collector
time.sleep(1)
streamer = usrp.get_rx_stream(st_args)
# If we have failed to get good samples, put an empty dict in the stats
else:
logger.error("Failed to receive aligned samples!")
alignment_stats.append({})
continue
alignment = np.angle(np.conj(samps[0]) * samps[1])[500:]
if args.plot:
plot_samps(samps, alignment,)
if args.save:
# TODO: add frequency data
date_now = datetime.utcnow()
epoch = datetime(1970, 1, 1)
utc_now = int((date_now - epoch).total_seconds())
np.savez("phaseAligned_{}.npz".format(utc_now), samps)
# Store the phase alignment stats
alignment_stats.append({
"mean": np.mean(alignment),
# Subtract the mean before calculating the stddev so we don't
# have rollover errors
"stddev": np.std(alignment - np.mean(alignment)),
"min": alignment.min(),
"max": alignment.max(),
"test_freq": tune_freq,
"run_freq": tune_away_freq
})
run_means = [run_stats.get("mean", 0.) for run_stats in alignment_stats]
run_stddevs = [run_stats.get("stddev", 0.) for run_stats in alignment_stats]
logger.debug("Test freq %.3fMHz health check: %.1f deg drift, %.2f deg max stddev",
tune_freq/1e6,
max(run_means) - min(run_means), # FIXME: This won't work around +-180 deg
max(run_stddevs)
)
all_alignment_stats[freq_start] = alignment_stats
# Increment the power level for the next run
current_power += args.power_step
return check_results(all_alignment_stats, args.drift_threshold, args.stddev_threshold)
if __name__ == "__main__":
# Setup the logger with our custom timestamp formatting
global logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
console = logging.StreamHandler()
logger.addHandler(console)
formatter = LogFormatter(fmt='[%(asctime)s] [%(levelname)s] %(message)s')
console.setFormatter(formatter)
sys.exit(not main())
|