1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
//////////////////////////////////////////////////////////////////////
//// ////
//// uart_regs.v ////
//// ////
//// ////
//// This file is part of the "UART 16550 compatible" project ////
//// http://www.opencores.org/cores/uart16550/ ////
//// ////
//// Documentation related to this project: ////
//// - http://www.opencores.org/cores/uart16550/ ////
//// ////
//// Projects compatibility: ////
//// - WISHBONE ////
//// RS232 Protocol ////
//// 16550D uart (mostly supported) ////
//// ////
//// Overview (main Features): ////
//// Registers of the uart 16550 core ////
//// ////
//// Known problems (limits): ////
//// Inserts 1 wait state in all WISHBONE transfers ////
//// ////
//// To Do: ////
//// Nothing or verification. ////
//// ////
//// Author(s): ////
//// - gorban@opencores.org ////
//// - Jacob Gorban ////
//// ////
//// Created: 2001/05/12 ////
//// Last Updated: (See log for the revision history ////
//// ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 Jacob Gorban, gorban@opencores.org ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: uart_regs.v,v $
// Revision 1.10 2001/06/23 11:21:48 gorban
// DL made 16-bit long. Fixed transmission/reception bugs.
//
// Revision 1.9 2001/05/31 20:08:01 gorban
// FIFO changes and other corrections.
//
// Revision 1.8 2001/05/29 20:05:04 gorban
// Fixed some bugs and synthesis problems.
//
// Revision 1.7 2001/05/27 17:37:49 gorban
// Fixed many bugs. Updated spec. Changed FIFO files structure. See CHANGES.txt file.
//
// Revision 1.6 2001/05/21 19:12:02 gorban
// Corrected some Linter messages.
//
// Revision 1.5 2001/05/17 18:34:18 gorban
// First 'stable' release. Should be sythesizable now. Also added new header.
//
// Revision 1.0 2001-05-17 21:27:11+02 jacob
// Initial revision
//
//
`include "timescale.v"
`include "uart_defines.v"
`define UART_DL1 7:0
`define UART_DL2 15:8
module uart_regs (clk,
wb_rst_i, wb_addr_i, wb_dat_i, wb_dat_o, wb_we_i, wb_re_i,
// additional signals
modem_inputs,
stx_pad_o, srx_pad_i,
enable,
rts_pad_o, dtr_pad_o, int_o
);
input clk;
input wb_rst_i;
input [`UART_ADDR_WIDTH-1:0] wb_addr_i;
input [7:0] wb_dat_i;
output [7:0] wb_dat_o;
input wb_we_i;
input wb_re_i;
output stx_pad_o;
input srx_pad_i;
input [3:0] modem_inputs;
output enable;
output rts_pad_o;
output dtr_pad_o;
output int_o;
wire [3:0] modem_inputs;
reg enable;
wire stx_pad_o; // received from transmitter module
wire srx_pad_i;
reg [7:0] wb_dat_o;
wire [`UART_ADDR_WIDTH-1:0] wb_addr_i;
wire [7:0] wb_dat_i;
reg [3:0] ier;
reg [3:0] iir;
reg [1:0] fcr; /// bits 7 and 6 of fcr. Other bits are ignored
reg [4:0] mcr;
reg [7:0] lcr;
reg [7:0] lsr;
reg [7:0] msr;
reg [15:0] dl; // 32-bit divisor latch
reg start_dlc; // activate dlc on writing to UART_DL1
reg lsr_mask;
reg msi_reset; // reset MSR 4 lower bits indicator
reg threi_clear; // THRE interrupt clear flag
reg [15:0] dlc; // 32-bit divisor latch counter
reg int_o;
reg [3:0] trigger_level; // trigger level of the receiver FIFO
reg rx_reset;
reg tx_reset;
wire dlab; // divisor latch access bit
wire cts_pad_i, dsr_pad_i, ri_pad_i, dcd_pad_i; // modem status bits
wire loopback; // loopback bit (MCR bit 4)
wire cts, dsr, ri, dcd; // effective signals (considering loopback)
wire rts_pad_o, dtr_pad_o; // modem control outputs
//
// ASSINGS
//
assign {cts_pad_i, dsr_pad_i, ri_pad_i, dcd_pad_i} = modem_inputs;
assign {cts, dsr, ri, dcd} = loopback ? {mcr[`UART_MC_RTS],mcr[`UART_MC_DTR],mcr[`UART_MC_OUT1],mcr[`UART_MC_OUT2]}
: ~{cts_pad_i,dsr_pad_i,ri_pad_i,dcd_pad_i};
assign dlab = lcr[`UART_LC_DL];
assign loopback = mcr[4];
// assign modem outputs
assign rts_pad_o = mcr[`UART_MC_RTS];
assign dtr_pad_o = mcr[`UART_MC_DTR];
// Interrupt signals
reg rls_int; // receiver line status interrupt
reg rda_int; // receiver data available interrupt
reg ti_int; // timeout indicator interrupt
reg thre_int; // transmitter holding register empty interrupt
reg ms_int; // modem status interrupt
// FIFO signals
reg tf_push;
reg rf_pop;
wire [`UART_FIFO_REC_WIDTH-1:0] rf_data_out;
wire rf_error_bit; // an error (parity or framing) is inside the fifo
wire [`UART_FIFO_COUNTER_W-1:0] rf_count;
wire [`UART_FIFO_COUNTER_W-1:0] tf_count;
wire [2:0] state;
wire [5:0] counter_t;
wire [3:0] counter_b;
wire rx_lsr_mask;
// Transmitter Instance
uart_transmitter transmitter(clk, wb_rst_i, lcr, tf_push, wb_dat_i, enable, stx_pad_o, state, tf_count, tx_reset);
// Receiver Instance
uart_receiver receiver(clk, wb_rst_i, lcr, rf_pop, srx_pad_i, enable, rda_int,
counter_t, counter_b, rf_count, rf_data_out, rf_error_bit, rf_overrun, rx_reset, rx_lsr_mask);
/*
always @(posedge clk or posedge wb_rst_i) // synchrounous reading
begin
if (wb_rst_i)
begin
wb_dat_o <= #1 8'b0;
end
else
if (wb_re_i) //if (we're not writing)
case (wb_addr_i)
`UART_REG_RB : if (dlab) // Receiver FIFO or DL byte 1
wb_dat_o <= #1 dl[`UART_DL1];
else
wb_dat_o <= #1 rf_data_out[9:2];
`UART_REG_IE : wb_dat_o <= #1 dlab ? dl[`UART_DL2] : ier;
`UART_REG_II : wb_dat_o <= #1 {4'b1100,iir};
`UART_REG_LC : wb_dat_o <= #1 lcr;
`UART_REG_LS : wb_dat_o <= #1 lsr;
`UART_REG_MS : wb_dat_o <= #1 msr;
default: wb_dat_o <= #1 8'b0; // ??
endcase
else
wb_dat_o <= #1 8'b0;
end
*/
always @(wb_addr_i or dlab or dl or rf_data_out or ier or iir or lcr or lsr or msr)
begin
case (wb_addr_i)
`UART_REG_RB : if (dlab) // Receiver FIFO or DL byte 1
wb_dat_o <= dl[`UART_DL1];
else
wb_dat_o <= rf_data_out[9:2];
`UART_REG_IE : wb_dat_o <= dlab ? dl[`UART_DL2] : ier;
`UART_REG_II : wb_dat_o <= {4'b1100,iir};
`UART_REG_LC : wb_dat_o <= lcr;
`UART_REG_LS : wb_dat_o <= lsr;
`UART_REG_MS : wb_dat_o <= msr;
default: wb_dat_o <= 8'b0; // ??
endcase
end
// rf_pop signal handling
always @(posedge clk or posedge wb_rst_i)
begin
if (wb_rst_i)
rf_pop <= #1 0;
else
if (rf_pop) // restore the signal to 0 after one clock cycle
rf_pop <= #1 0;
else
if (wb_re_i && wb_addr_i == `UART_REG_RB && !dlab)
rf_pop <= #1 1; // advance read pointer
end
// lsr_mask signal handling
always @(posedge clk or posedge wb_rst_i)
begin
if (wb_rst_i)
lsr_mask <= #1 0;
else
if (lsr_mask)
lsr_mask <= #1 0;
else
if (wb_re_i && wb_addr_i == `UART_REG_LS && !dlab)
lsr_mask <= #1 1; // reset bits in the Line Status Register
end
assign rx_lsr_mask = lsr_mask;
// msi_reset signal handling
always @(posedge clk or posedge wb_rst_i)
begin
if (wb_rst_i)
msi_reset <= #1 0;
else
if (msi_reset)
msi_reset <= #1 0;
else
if (wb_re_i && wb_addr_i == `UART_REG_MS)
msi_reset <= #1 1; // reset bits in Modem Status Register
end
// threi_clear signal handling
always @(posedge clk or posedge wb_rst_i)
begin
if (wb_rst_i)
threi_clear <= #1 0;
else
if (threi_clear && !lsr[`UART_LS_TFE] && (tf_count==0)) // reset clear flag when tx fifo clears
threi_clear <= #1 0;
else
if (wb_re_i && wb_addr_i == `UART_REG_II)
threi_clear <= #1 1; // reset bits in Modem Status Register
end
//
// WRITES AND RESETS //
//
// Line Control Register
always @(posedge clk or posedge wb_rst_i)
if (wb_rst_i)
lcr <= #1 8'b00000011; // 8n1 setting
else
if (wb_we_i && wb_addr_i==`UART_REG_LC)
lcr <= #1 wb_dat_i;
// Interrupt Enable Register or UART_DL2
always @(posedge clk or posedge wb_rst_i)
if (wb_rst_i)
begin
ier <= #1 4'b0000; // no interrupts after reset
dl[`UART_DL2] <= #1 8'b0;
end
else
if (wb_we_i && wb_addr_i==`UART_REG_IE)
if (dlab)
begin
dl[`UART_DL2] <= #1 wb_dat_i;
end
else
ier <= #1 wb_dat_i[3:0]; // ier uses only 4 lsb
// FIFO Control Register and rx_reset, tx_reset signals
always @(posedge clk or posedge wb_rst_i)
if (wb_rst_i) begin
fcr <= #1 2'b11;
rx_reset <= #1 0;
tx_reset <= #1 0;
end else
if (wb_we_i && wb_addr_i==`UART_REG_FC) begin
fcr <= #1 wb_dat_i[7:6];
rx_reset <= #1 wb_dat_i[1];
tx_reset <= #1 wb_dat_i[2];
end else begin // clear rx_reset, tx_reset signals when not written to
rx_reset <= #1 0;
tx_reset <= #1 0;
end
// Modem Control Register
always @(posedge clk or posedge wb_rst_i)
if (wb_rst_i)
mcr <= #1 5'b0;
else
if (wb_we_i && wb_addr_i==`UART_REG_MC)
mcr <= #1 wb_dat_i[4:0];
// TX_FIFO or UART_DL1
always @(posedge clk or posedge wb_rst_i)
if (wb_rst_i)
begin
dl[`UART_DL1] <= #1 8'b0;
tf_push <= #1 1'b0;
start_dlc <= #1 1'b0;
end
else
if (wb_we_i && wb_addr_i==`UART_REG_TR)
if (dlab)
begin
dl[`UART_DL1] <= #1 wb_dat_i;
start_dlc <= #1 1'b1; // enable DL counter
tf_push <= #1 1'b0;
end
else
begin
tf_push <= #1 1'b1;
start_dlc <= #1 1'b0;
end
else
begin
start_dlc <= #1 1'b0;
tf_push <= #1 1'b0;
end
// Receiver FIFO trigger level selection logic (asynchronous mux)
always @(fcr[`UART_FC_TL])
case (fcr[`UART_FC_TL])
2'b00 : trigger_level = 1;
2'b01 : trigger_level = 4;
2'b10 : trigger_level = 8;
2'b11 : trigger_level = 14;
endcase
//
// STATUS REGISTERS //
//
// Modem Status Register
always @(posedge clk or posedge wb_rst_i)
begin
if (wb_rst_i)
msr <= #1 0;
else begin
msr[`UART_MS_DDCD:`UART_MS_DCTS] <= #1 msi_reset ? 4'b0 :
msr[`UART_MS_DDCD:`UART_MS_DCTS] | ({dcd, ri, dsr, cts} ^ msr[`UART_MS_CDCD:`UART_MS_CCTS]);
msr[`UART_MS_CDCD:`UART_MS_CCTS] <= #1 {dcd, ri, dsr, cts};
end
end
// Line Status Register
always @(posedge clk or posedge wb_rst_i)
begin
if (wb_rst_i)
lsr <= #1 8'b01100000;
else
if (lsr_mask)
lsr <= #1 lsr & 8'b00000001;
else
begin
lsr[0] <= #1 (rf_count!=4'b0); // data in receiver fifo available
lsr[1] <= #1 rf_overrun; // Receiver overrun error
lsr[2] <= #1 rf_data_out[1]; // parity error bit
lsr[3] <= #1 rf_data_out[0]; // framing error bit
lsr[4] <= #1 (counter_b==4'b0); // break counter reached 0
lsr[5] <= #1 (tf_count==5'b0); // transmitter fifo is empty
lsr[6] <= #1 (tf_count==5'b0 && (state == /*`S_IDLE */ 0)); // transmitter empty
lsr[7] <= #1 rf_error_bit;
end
end
// Enable signal generation logic
always @(posedge clk or posedge wb_rst_i)
begin
if (wb_rst_i)
begin
dlc <= #1 0;
enable <= #1 1'b0;
end
else
begin
if (start_dlc)
begin
enable <= #1 1'b0;
dlc <= #1 dl;
end
else
begin
if (dl!=0)
begin
if ( (dlc-1)==0 )
begin
enable <= #1 1'b1;
dlc <= #1 dl;
end
else
begin
enable <= #1 1'b0;
dlc <= #1 dlc - 1;
end
end
else
begin
dlc <= #1 0;
enable <= #1 1'b0;
end
end
end
end
//
// INTERRUPT LOGIC
//
always @(posedge clk or posedge wb_rst_i)
begin
if (wb_rst_i)
begin
rls_int <= #1 1'b0;
rda_int <= #1 1'b0;
ti_int <= #1 1'b0;
thre_int <= #1 1'b0;
ms_int <= #1 1'b0;
end
else
begin
rls_int <= #1 ier[`UART_IE_RLS] && (lsr[`UART_LS_OE] || lsr[`UART_LS_PE] || lsr[`UART_LS_FE] || lsr[`UART_LS_BI]);
rda_int <= #1 ier[`UART_IE_RDA] && (rf_count >= {1'b0,trigger_level});
thre_int <= #1 threi_clear ? 0 : ier[`UART_IE_THRE] && lsr[`UART_LS_TFE];
ms_int <= #1 ier[`UART_IE_MS] && (| msr[3:0]);
ti_int <= #1 ier[`UART_IE_RDA] && (counter_t == 6'b0);
end
end
always @(posedge clk or posedge wb_rst_i)
begin
if (wb_rst_i)
int_o <= #1 1'b0;
else
if (| {rls_int,rda_int,thre_int,ms_int,ti_int})
int_o <= #1 1'b1;
else
int_o <= #1 1'b0;
end
// Interrupt Identification register
always @(posedge clk or posedge wb_rst_i)
begin
if (wb_rst_i)
iir <= #1 1;
else
if (rls_int) // interrupt occured and is enabled (not masked)
begin
iir[`UART_II_II] <= #1 `UART_II_RLS; // set identification register to correct value
iir[`UART_II_IP] <= #1 1'b0; // and clear the IIR bit 0 (interrupt pending)
end
else
if (rda_int)
begin
iir[`UART_II_II] <= #1 `UART_II_RDA;
iir[`UART_II_IP] <= #1 1'b0;
end
else
if (ti_int)
begin
iir[`UART_II_II] <= #1 `UART_II_TI;
iir[`UART_II_IP] <= #1 1'b0;
end
else
if (thre_int)
begin
iir[`UART_II_II] <= #1 `UART_II_THRE;
iir[`UART_II_IP] <= #1 1'b0;
end
else
if (ms_int)
begin
iir[`UART_II_II] <= #1 `UART_II_MS;
iir[`UART_II_IP] <= #1 1'b0;
end
else // no interrupt is pending
begin
iir[`UART_II_IP] <= #1 1'b1;
end
end
endmodule
|