1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
#
# Copyright 2019 Ettus Research, a National Instruments Company
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
X400 RFDC Control Module
"""
import ast
from collections import OrderedDict
from usrp_mpm import lib # Pulls in everything from C++-land
from usrp_mpm.periph_manager.x4xx_rfdc_regs import RfdcRegsControl
from usrp_mpm.rpc_server import no_rpc
# Map the interpolation/decimation factor to fabric words.
# Keys: is_dac (False -> ADC, True -> DAC) and factor
FABRIC_WORDS_ARRAY = { # [is_dac][factor]
False: {0: 16, 1: 16, 2: 8, 4: 4, 8: 2}, # ADC
True: {0: -1, 1: -1, 2: 16, 4: 8, 8: 4} # DAC
}
RFDC_DEVICE_ID = 0
class X4xxRfdcCtrl:
"""
Control class for the X4xx's RFDC
"""
# Label for RFDC UIO
rfdc_regs_label = "rfdc-regs"
# Describes the mapping of ADC/DAC Tiles and Blocks to DB Slot IDs
# Follows the below structure:
# <slot_idx>
# 'adc': [ (<tile_number>, <block_number>), ... ]
# 'dac': [ (<tile_number>, <block_number>), ... ]
RFDC_DB_MAP = [
{
'adc': [(0, 1), (0, 0)],
'dac': [(0, 0), (0, 1)],
},
{
'adc': [(2, 1), (2, 0)],
'dac': [(1, 0), (1, 1)],
},
]
# Maps all possible master_clock_rate (data clk rate * data SPC) values to the
# corresponding sample rate, expected FPGA decimation, whether to configure
# the SPLL in legacy mode (which uses a different divider), and whether half-band
# resampling is used.
# Using an OrderedDict to use the first rates as a preference for the default
# rate for its corresponding decimation.
master_to_sample_clk = OrderedDict({
# MCR: (SPLL, decimation, legacy mode, half-band resampling)
122.88e6*4: (2.94912e9, 2, False, False), # RF (1M-8G)
122.88e6*2: (2.94912e9, 2, False, True), # RF (1M-8G)
122.88e6*1: (2.94912e9, 8, False, False), # RF (1M-8G)
125e6*4: (3.00000e9, 2, False, False), # RF (1M-8G)
200e6: (3.00000e9, 4, True, False), # RF (Legacy Mode)
})
def __init__(self, get_spll_freq, log):
self.log = log.getChild('RFDC')
self._get_spll_freq = get_spll_freq
self._rfdc_regs = RfdcRegsControl(self.rfdc_regs_label, self.log)
self._rfdc_ctrl = lib.rfdc.rfdc_ctrl()
self._rfdc_ctrl.init(RFDC_DEVICE_ID)
self.set_cal_frozen(1, 0, "both")
self.set_cal_frozen(1, 1, "both")
@no_rpc
def unset_cbs(self):
"""
Removes any stored references to our owning X4xx class instance
"""
self._get_spll_freq = None
###########################################################################
# Public APIs (not available as MPM RPC calls)
###########################################################################
@no_rpc
def set_reset(self, reset=True):
"""
Resets the RFDC FPGA components or takes them out of reset.
"""
if reset:
# Assert RFDC AXI-S, filters and associated gearbox reset.
self._rfdc_regs.set_reset_adc_dac_chains(reset=True)
self._rfdc_regs.log_status()
# Assert Radio clock PLL reset
self._rfdc_regs.set_reset_mmcm(reset=True)
# Resetting the MMCM will automatically disable clock buffers
return
# Take upstream MMCM out of reset
self._rfdc_regs.set_reset_mmcm(reset=False)
# Once the MMCM has locked, enable driving the clocks
# to the rest of the design. Poll lock status for up
# to 1 ms
self._rfdc_regs.wait_for_mmcm_locked(timeout=0.001)
self._rfdc_regs.set_gated_clock_enables(value=True)
# De-assert RF signal chain reset
self._rfdc_regs.set_reset_adc_dac_chains(reset=False)
# Restart tiles in XRFdc
# All ADC Tiles
if not self._rfdc_ctrl.reset_tile(-1, False):
self.log.warning('Error starting up ADC tiles')
# All DAC Tiles
if not self._rfdc_ctrl.reset_tile(-1, True):
self.log.warning('Error starting up DAC tiles')
# Set sample rate for all active tiles
active_converters = set()
for db_idx, db_info in enumerate(self.RFDC_DB_MAP):
db_rfdc_resamp, _ = self._rfdc_regs.get_rfdc_resampling_factor(db_idx)
for converter_type, tile_block_set in db_info.items():
for tile, block in tile_block_set:
is_dac = converter_type != 'adc'
active_converter_tuple = (tile, block, db_rfdc_resamp, is_dac)
active_converters.add(active_converter_tuple)
for tile, block, resampling_factor, is_dac in active_converters:
self._rfdc_ctrl.reset_mixer_settings(tile, block, is_dac)
self._rfdc_ctrl.set_sample_rate(tile, is_dac, self._get_spll_freq())
self._set_interpolation_decimation(tile, block, is_dac, resampling_factor)
self._rfdc_regs.log_status()
# Set RFDC NCO reset event source to analog SYSREF
for tile, block, _, is_dac in active_converters:
self._rfdc_ctrl.set_nco_event_src(tile, block, is_dac)
@no_rpc
def sync(self):
"""
Multi-tile Synchronization on both ADC and DAC
"""
# These numbers are determined from the procedure mentioned in
# PG269 section "Advanced Multi-Tile Synchronization API use".
adc_latency = 1228 # ADC delay in sample clocks
dac_latency = 800 # DAC delay in sample clocks
# Ideally, this would be a set to avoiding duplicate indices,
# but we need to use a list for compatibility with the rfdc_ctrl
# C++ interface (std::vector)
adc_tiles_to_sync = []
dac_tiles_to_sync = []
rfdc_map = self.RFDC_DB_MAP
for db_id in rfdc_map:
for converter_type, tile_block_set in db_id.items():
for tile, _ in tile_block_set:
if converter_type == 'adc':
if tile not in adc_tiles_to_sync:
adc_tiles_to_sync.append(tile)
else: # dac
if tile not in dac_tiles_to_sync:
dac_tiles_to_sync.append(tile)
self._rfdc_ctrl.sync_tiles(adc_tiles_to_sync, False, adc_latency)
self._rfdc_ctrl.sync_tiles(dac_tiles_to_sync, True, dac_latency)
# We expect all sync'd tiles to have equal latencies
# Sets don't add duplicates, so we can use that to look
# for erroneous tiles
adc_tile_latency_set = set()
for tile in adc_tiles_to_sync:
adc_tile_latency_set.add(
self._rfdc_ctrl.get_tile_latency(tile, False))
if len(adc_tile_latency_set) != 1:
raise RuntimeError("ADC tiles failed to sync properly")
dac_tile_latency_set = set()
for tile in dac_tiles_to_sync:
dac_tile_latency_set.add(
self._rfdc_ctrl.get_tile_latency(tile, True))
if len(dac_tile_latency_set) != 1:
raise RuntimeError("DAC tiles failed to sync properly")
@no_rpc
def get_default_mcr(self):
"""
Gets the default master clock rate based on FPGA decimation
"""
fpga_decimation, fpga_halfband = self._rfdc_regs.get_rfdc_resampling_factor(0)
for master_clock_rate in self.master_to_sample_clk:
_, decimation, _, halfband = self.master_to_sample_clk[master_clock_rate]
if decimation == fpga_decimation and fpga_halfband == halfband:
return master_clock_rate
raise RuntimeError('No master clock rate acceptable for current fpga '
'with decimation of {}'.format(fpga_decimation))
@no_rpc
def get_dsp_bw(self):
"""
Return the bandwidth encoded in the RFdc registers.
Note: This is X4xx-specific, not RFdc-specific. But this class owns the
access to RfdcRegsControl, and the bandwidth is strongly related to the
RFdc settings.
"""
return self._rfdc_regs.get_fabric_dsp_info(0)[0]
@no_rpc
def get_rfdc_resampling_factor(self, db_idx):
"""
Returns a tuple resampling_factor, halfbands.
See RfdcRegsControl.get_rfdc_resampling_factor().
"""
return self._rfdc_regs.get_rfdc_resampling_factor(db_idx)
###########################################################################
# Public APIs that get exposed as MPM RPC calls
###########################################################################
def rfdc_set_nco_freq(self, direction, slot_id, channel, freq):
"""
Sets the RFDC NCO Frequency for the specified channel
"""
converters = self._find_converters(slot_id, direction, channel)
assert len(converters) == 1
(tile_id, block_id, is_dac) = converters[0]
if not self._rfdc_ctrl.set_if(tile_id, block_id, is_dac, freq):
raise RuntimeError("Error setting RFDC IF Frequency")
return self._rfdc_ctrl.get_nco_freq(tile_id, block_id, is_dac)
def rfdc_get_nco_freq(self, direction, slot_id, channel):
"""
Gets the RFDC NCO Frequency for the specified channel
"""
converters = self._find_converters(slot_id, direction, channel)
assert len(converters) == 1
(tile_id, block_id, is_dac) = converters[0]
return self._rfdc_ctrl.get_nco_freq(tile_id, block_id, is_dac)
### ADC cal ###############################################################
def set_cal_frozen(self, frozen, slot_id, channel):
"""
Set the freeze state for the ADC cal blocks
Usage:
> set_cal_frozen <frozen> <slot_id> <channel>
<frozen> should be 0 to unfreeze the calibration blocks or 1 to freeze them.
"""
for tile_id, block_id, _ in self._find_converters(slot_id, "rx", channel):
self._rfdc_ctrl.set_cal_frozen(tile_id, block_id, frozen)
def get_cal_frozen(self, slot_id, channel):
"""
Get the freeze states for each ADC cal block in the channel
Usage:
> get_cal_frozen <slot_id> <channel>
"""
return [
1 if self._rfdc_ctrl.get_cal_frozen(tile_id, block_id) else 0
for tile_id, block_id, is_dac in self._find_converters(slot_id, "rx", channel)
]
def set_cal_coefs(self, channel, slot_id, cal_block, coefs):
"""
Manually override calibration block coefficients. You probably don't need to use this.
"""
self.log.trace(
"Setting ADC cal coefficients for channel={} slot_id={} cal_block={}".format(
channel, slot_id, cal_block))
for tile_id, block_id, _ in self._find_converters(slot_id, "rx", channel):
self._rfdc_ctrl.set_adc_cal_coefficients(
tile_id, block_id, cal_block, ast.literal_eval(coefs))
def get_cal_coefs(self, channel, slot_id, cal_block):
"""
Manually retrieve raw coefficients for the ADC calibration blocks.
Usage:
> get_cal_coefs <channel, 0-1> <slot_id, 0-1> <cal_block, 0-3>
e.g.
> get_cal_coefs 0 1 3
Retrieves the coefficients for the TSCB block on channel 0 of DB 1.
Valid values for cal_block are:
0 - OCB1 (Unaffected by cal freeze)
1 - OCB2 (Unaffected by cal freeze)
2 - GCB
3 - TSCB
"""
self.log.trace(
"Getting ADC cal coefficients for channel={} slot_id={} cal_block={}".format(
channel, slot_id, cal_block))
result = []
for tile_id, block_id, _ in self._find_converters(slot_id, "rx", channel):
result.append(self._rfdc_ctrl.get_adc_cal_coefficients(tile_id, block_id, cal_block))
return result
### DAC mux
def set_dac_mux_data(self, i_val, q_val):
"""
Sets the data which is muxed into the DACs when the DAC mux is enabled
Usage:
> set_dac_mux_data <I> <Q>
e.g.
> set_dac_mux_data 123 456
"""
self._rfdc_regs.set_cal_data(i_val, q_val)
def set_dac_mux_enable(self, channel, enable):
"""
Sets whether the DAC mux is enabled for a given channel
Usage:
> set_dac_mux_enable <channel, 0-3> <enable, 1=enabled>
e.g.
> set_dac_mux_enable 1 0
"""
self._rfdc_regs.set_cal_enable(channel, bool(enable))
### ADC thresholds
def setup_threshold(self, slot_id, channel, threshold_idx, mode, delay, under, over):
"""
Configure the given ADC threshold block.
Usage:
> setup_threshold <slot_id> <channel> <threshold_idx> <mode> <delay> <under> <over>
slot_id: Slot ID to configure, 0 or 1
channel: Channel on the slot to configure, 0 or 1
threshold_idx: Threshold block index, 0 or 1
mode: Mode to configure, one of ["sticky_over", "sticky_under", "hysteresis"]
delay: In hysteresis mode, number of samples before clearing flag.
under: 0-16384, ADC codes to set the "under" threshold to
over: 0-16384, ADC codes to set the "over" threshold to
"""
for tile_id, block_id, _ in self._find_converters(slot_id, "rx", channel):
THRESHOLDS = {
0: lib.rfdc.threshold_id_options.THRESHOLD_0,
1: lib.rfdc.threshold_id_options.THRESHOLD_1,
}
MODES = {
"sticky_over": lib.rfdc.threshold_mode_options.TRSHD_STICKY_OVER,
"sticky_under": lib.rfdc.threshold_mode_options.TRSHD_STICKY_UNDER,
"hysteresis": lib.rfdc.threshold_mode_options.TRSHD_HYSTERESIS,
}
if mode not in MODES:
raise RuntimeError(
f"Mode {mode} is not one of the allowable modes {list(MODES.keys())}")
if threshold_idx not in THRESHOLDS:
raise RuntimeError("threshold_idx must be 0 or 1")
delay = int(delay)
under = int(under)
over = int(over)
assert 0 <= under <= 16383
assert 0 <= over <= 16383
self._rfdc_ctrl.set_threshold_settings(
tile_id, block_id,
lib.rfdc.threshold_id_options.THRESHOLD_0,
MODES[mode],
delay,
under,
over)
def get_threshold_status(self, slot_id, channel, threshold_idx):
"""
Read the threshold status bit for the given threshold block from the device.
Usage:
> get_threshold_status <slot_id> <channel> <threshold_idx>
e.g.
> get_threshold_status 0 1 0
"""
return self._rfdc_regs.get_threshold_status(slot_id, channel, threshold_idx) != 0
###########################################################################
# Private helpers (note: x4xx_db_iface calls into those)
###########################################################################
def _set_interpolation_decimation(self, tile, block, is_dac, factor):
"""
Set the provided interpolation/decimation factor to the
specified ADC/DAC tile, block
Only gets called from set_reset_rfdc().
"""
# Map the interpolation/decimation factor to fabric words.
# Keys: is_dac (False -> ADC, True -> DAC) and factor
# Disable FIFO
self._rfdc_ctrl.set_data_fifo_state(tile, is_dac, False)
# Define fabric rate based on given factor.
fab_words = FABRIC_WORDS_ARRAY[is_dac].get(int(factor))
if fab_words == -1:
raise RuntimeError('Unsupported dec/int factor in RFDC')
# Define dec/int constant based on integer factor
if factor == 0:
int_dec = lib.rfdc.interp_decim_options.INTERP_DECIM_OFF
elif factor == 1:
int_dec = lib.rfdc.interp_decim_options.INTERP_DECIM_1X
elif factor == 2:
int_dec = lib.rfdc.interp_decim_options.INTERP_DECIM_2X
elif factor == 4:
int_dec = lib.rfdc.interp_decim_options.INTERP_DECIM_4X
elif factor == 8:
int_dec = lib.rfdc.interp_decim_options.INTERP_DECIM_8X
else:
raise RuntimeError('Unsupported dec/int factor in RFDC')
# Update tile, block settings...
self.log.debug(
"Setting %s for %s tile %d, block %d to %dx",
('interpolation' if is_dac else 'decimation'),
'DAC' if is_dac else 'ADC', tile, block, factor)
if is_dac:
# Set interpolation
self._rfdc_ctrl.set_interpolation_factor(tile, block, int_dec)
self.log.trace(
" interpolation: %s",
self._rfdc_ctrl.get_interpolation_factor(tile, block).name)
# Set fabric write rate
self._rfdc_ctrl.set_data_write_rate(tile, block, fab_words)
self.log.trace(
" Read words: %d",
self._rfdc_ctrl.get_data_write_rate(tile, block, True))
else: # ADC
# Set decimation
self._rfdc_ctrl.set_decimation_factor(tile, block, int_dec)
self.log.trace(
" Decimation: %s",
self._rfdc_ctrl.get_decimation_factor(tile, block).name)
# Set fabric read rate
self._rfdc_ctrl.set_data_read_rate(tile, block, fab_words)
self.log.trace(
" Read words: %d",
self._rfdc_ctrl.get_data_read_rate(tile, block, False))
# Clear interrupts
self._rfdc_ctrl.clear_data_fifo_interrupts(tile, block, is_dac)
# Enable FIFO
self._rfdc_ctrl.set_data_fifo_state(tile, is_dac, True)
def _find_converters(self, slot, direction, channel):
"""
Returns a list of (tile_id, block_id, is_dac) tuples describing
the data converters associated with a given channel and direction.
"""
if direction not in ('rx', 'tx', 'both'):
self.log.error('Invalid direction "{}". Cannot find '
'associated data converters'.format(direction))
raise RuntimeError('Invalid direction "{}". Cannot find '
'associated data converters'.format(direction))
if str(channel) not in ('0', '1', 'both'):
self.log.error('Invalid channel "{}". Cannot find '
'associated data converters'.format(channel))
raise RuntimeError('Invalid channel "{}". Cannot find '
'associated data converters'.format(channel))
data_converters = []
rfdc_map = self.RFDC_DB_MAP[slot]
if direction in ('rx', 'both'):
if str(channel) == '0' or str(channel) == 'both':
(tile_id, block_id) = rfdc_map['adc'][0]
data_converters.append((tile_id, block_id, False))
if str(channel) == '1' or str(channel) == 'both':
(tile_id, block_id) = rfdc_map['adc'][1]
data_converters.append((tile_id, block_id, False))
if direction in ('tx', 'both'):
if str(channel) == '0' or str(channel) == 'both':
(tile_id, block_id) = rfdc_map['dac'][0]
data_converters.append((tile_id, block_id, True))
if str(channel) == '1' or str(channel) == 'both':
(tile_id, block_id) = rfdc_map['dac'][1]
data_converters.append((tile_id, block_id, True))
return data_converters
|