1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
#
# Copyright 2020 Ettus Research, a National Instruments Brand
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
usrp simulation module
This module is used to emulate simulated devices. You can build mpm in this
configuration by using the cmake flag -DMPM_DEVICE=sim
"""
from pyroute2 import IPRoute
from usrp_mpm.xports import XportMgrUDP
from usrp_mpm.mpmlog import get_logger
from usrp_mpm.rpc_server import no_claim
from usrp_mpm.periph_manager import PeriphManagerBase
from usrp_mpm.simulator.sim_dboard_catalina import SimulatedCatalinaDboard
from usrp_mpm.simulator.chdr_endpoint import ChdrEndpoint
from usrp_mpm.simulator.config import Config
CLOCK_SOURCE_INTERNAL = "internal"
E320_DBOARD_SLOT_IDX = 0
class SimXportMgrUDP(XportMgrUDP):
"""This is an adaptor class for the normal XportMgrUDP
In radios, the interface names are hardcoded. Since we are on a
desktop computer, we generate the names at runtime.
"""
def __init__(self, log, args, eth_dispatcher_cls):
with IPRoute() as ipr:
self.iface_config = {
link.get_attr('IFLA_IFNAME'): {
'label': link.get_attr('IFLA_IFNAME'),
'type': 'forward'
} for link in ipr.get_links()
}
super().__init__(log, args, eth_dispatcher_cls)
class SimEthDispatcher:
"""This is the hardware specific part of the normal XportMgrUDP
that we have to simulate. We get the ipv4 addr with IPRoute
instead of registers
"""
DEFAULT_VITA_PORT = (49153, 49154)
LOG = None
def __init__(self, if_name):
self.log = get_logger(if_name)
self.if_name = if_name
def set_ipv4_addr(self, addr):
"""This doesn't actually change the ipv4 address, it just
checks to make sure the requested address is already our
address, and complains otherwise.
"""
with IPRoute() as ipr:
valid_iface_idx = ipr.link_lookup(ifname=self.if_name)[0]
link_info = ipr.get_links(valid_iface_idx)[0]
real_addr = link_info.get_attr('IFLA_ADDRESS')
if addr != real_addr:
self.log.warning("Cannot change ip address on simulator! Requested: {}, Actual: {}"
.format(addr, real_addr))
class sim(PeriphManagerBase):
"""This is a periph manager that is designed to run on a regular
computer rather than the arm core on an SDR
"""
#########################################################################
# Overridables
#########################################################################
description = "E320-Series Device - SIMULATED"
pids = {0xE320: 'e320'}
mboard_info = {"type": "e3xx", "product": "e320"}
mboard_max_rev = 7 # RevC
mboard_sensor_callback_map = {}
###########################################################################
# Ctor and device initialization tasks
###########################################################################
def __init__(self, args):
super().__init__()
if 'config' in args:
config_path = args['config']
self.log.info("Loading config from {}".format(config_path))
self.config = Config.from_path(config_path)
else:
self.log.warn("No config specified, using default")
self.config = Config.default()
self.device_id = 1
self.chdr_endpoint = ChdrEndpoint(self.log, self.config)
# Unlike the real hardware drivers, if there is an exception here,
# we just crash. No use missing an error when testing.
self._init_peripherals(args)
self.init_dboards(args)
if not args.get('skip_boot_init', False):
self.init(args)
def _simulator_sample_rate(self, freq):
self.log.debug("Setting Simulator Sample Rate to {}".format(freq))
self.chdr_endpoint.set_sample_rate(freq)
@classmethod
def generate_device_info(cls, eeprom_md, mboard_info, dboard_infos):
"""
Hard-code our product map
"""
# Add the default PeriphManagerBase information first
device_info = super().generate_device_info(
eeprom_md, mboard_info, dboard_infos)
# Then add device-specific information
mb_pid = eeprom_md.get('pid')
device_info['product'] = cls.pids.get(mb_pid, 'unknown')
return device_info
def _read_mboard_eeprom(self):
"""
Read out a simulated mboard eeprom and saves it to the appropriate member variable
"""
self._eeprom_head = sim._generate_eeprom_head()
self.log.trace("Found EEPROM metadata: '{}'"
.format(str(self._eeprom_head)))
return (self._eeprom_head, None)
@staticmethod
def _generate_eeprom_head(serial=b'3196D2A', rev=2, rev_compat=2):
return {'pid': 0xE320,
'rev': rev,
'rev_compat': rev_compat,
'serial': serial}
def _init_peripherals(self, args):
"""
Turn on all peripherals. This may throw an error on failure, so make
sure to catch it.
Peripherals are initialized in the order of least likely to fail, to most
likely.
"""
# Sanity checks
assert self.mboard_info.get('product') in self.pids.values(), \
"Device product could not be determined!"
# Init peripherals
# Init CHDR transports
self._xport_mgrs = {
'udp': SimXportMgrUDP(self.log, args, SimEthDispatcher)
}
# Init complete.
self.log.debug("Device info: {}".format(self.device_info))
def _init_dboards(self, dboard_infos, override_dboard_pids, default_args):
self.dboards.append(SimulatedCatalinaDboard(
E320_DBOARD_SLOT_IDX, self._simulator_sample_rate))
self.log.info("Found %d daughterboard(s).", len(self.dboards))
###########################################################################
# Device info
###########################################################################
def get_device_info_dyn(self):
"""
Append the device info with current IP addresses.
"""
if not self._device_initialized:
return {}
device_info = self._xport_mgrs['udp'].get_xport_info()
self.log.warn("get_device_info_dyn() - FPGA functionality not implemented yet")
return device_info
def set_device_id(self, device_id):
"""
Sets the device ID for this motherboard.
The device ID is used to identify the RFNoC components associated with
this motherboard.
"""
self.device_id = device_id
self.chdr_endpoint.set_device_id(device_id)
def get_device_id(self):
"""
Gets the device ID for this motherboard.
The device ID is used to identify the RFNoC components associated with
this motherboard.
"""
return self.device_id
@no_claim
def get_proto_ver(self):
"""
Return RFNoC protocol version
"""
return 0x100
@no_claim
def get_chdr_width(self):
"""
Return RFNoC CHDR width
"""
return 64
###########################################################################
# Transport API
###########################################################################
def get_chdr_link_types(self):
"""
This will only ever return a single item (udp).
"""
return ["udp"]
def get_chdr_link_options(self, xport_type):
"""
Returns a list of dictionaries. Every dictionary contains information
about one way to connect to this device in order to initiate CHDR
traffic.
The interpretation of the return value is very highly dependant on the
transport type (xport_type).
For UDP, the every entry of the list has the following keys:
- ipv4 (IP Address)
- port (UDP port)
- link_rate (bps of the link, e.g. 10e9 for 10GigE)
"""
if xport_type not in self._xport_mgrs:
self.log.warning("Can't get link options for unknown link type: '{}'."
.format(xport_type))
return []
return self._xport_mgrs[xport_type].get_chdr_link_options()
#######################################################################
# Timekeeper API
#######################################################################
def get_num_timekeepers(self):
"""
Return the number of timekeepers
"""
return 1
def set_timekeeper_time(self, tk_idx, ticks, next_pps):
"""
Set the time in ticks
Arguments:
tk_idx: Index of timekeeper
ticks: Time in ticks
next_pps: If True, set time at next PPS. Otherwise, set time now.
"""
self.log.debug("Setting timekeeper time (tx_idx:{}, ticks: {}, next_pps: {})"
.format(tk_idx, ticks, next_pps))
def get_timekeeper_time(self, tk_idx, last_pps):
"""
Get the time in ticks
Arguments:
tk_idx: Index of timekeeper
next_pps: If True, get time at last PPS. Otherwise, get time now.
"""
return 0
def set_tick_period(self, tk_idx, period_ns):
"""
Set the time per tick in nanoseconds (tick period)
Arguments:
tk_idx: Index of timekeeper
period_ns: Period in nanoseconds
"""
self.log.debug("Setting tick period (tk_idx: {}, period_ns: {})"
.format(tk_idx, period_ns))
def get_clocks(self):
"""
Gets the RFNoC-related clocks present in the FPGA design
"""
return [
{
'name': 'radio_clk',
'freq': str(122.88e6),
'mutable': 'true'
},
{
'name': 'bus_clk',
'freq': str(200e6),
},
{
'name': 'ctrl_clk',
'freq': str(40e6),
}
]
def get_time_sources(self):
" Returns list of valid time sources "
return (CLOCK_SOURCE_INTERNAL,)
def get_clock_sources(self):
" Lists all available clock sources. "
return (CLOCK_SOURCE_INTERNAL,)
def get_clock_source(self):
" Returns the current Clock Source "
return CLOCK_SOURCE_INTERNAL
def set_clock_source(self, source):
" No-op which sets the clock source on a real radio "
self.log.debug("Setting clock source to {}".format(source))
def set_channel_mode(self, channel_mode):
" No-op which sets the channel mode on a real radio "
self.log.debug("Using channel mode {}".format(channel_mode))
|