1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
|
#
# Copyright 2018 Ettus Research, a National Instruments Company
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
Rhodium dboard implementation module
"""
from __future__ import print_function
import os
import threading
from six import iterkeys, iteritems
from usrp_mpm import lib # Pulls in everything from C++-land
from usrp_mpm.dboard_manager import DboardManagerBase
from usrp_mpm.dboard_manager.rh_periphs import TCA6408, FPGAtoDbGPIO, FPGAtoLoDist
from usrp_mpm.dboard_manager.rh_init import RhodiumInitManager
from usrp_mpm.dboard_manager.rh_periphs import RhCPLD
from usrp_mpm.dboard_manager.rh_periphs import DboardClockControl
from usrp_mpm.cores import nijesdcore
from usrp_mpm.dboard_manager.adc_rh import AD9695Rh
from usrp_mpm.dboard_manager.dac_rh import DAC37J82Rh
from usrp_mpm.mpmlog import get_logger
from usrp_mpm.sys_utils.uio import open_uio
from usrp_mpm.sys_utils.udev import get_eeprom_paths
from usrp_mpm.bfrfs import BufferFS
from usrp_mpm.sys_utils.dtoverlay import apply_overlay_safe, rm_overlay_safe
###############################################################################
# SPI Helpers
###############################################################################
def create_spidev_iface_lmk(dev_node):
"""
Create a regs iface from a spidev node
"""
return lib.spi.make_spidev_regs_iface(
dev_node,
1000000, # Speed (Hz)
0, # SPI mode
8, # Addr shift
0, # Data shift
1<<23, # Read flag
0 # Write flag
)
def create_spidev_iface_cpld(dev_node):
"""
Create a regs iface from a spidev node (CPLD register protocol)
"""
return lib.spi.make_spidev_regs_iface(
dev_node,
1000000, # Speed (Hz)
0, # SPI mode
17, # Addr shift
0, # Data shift
1<<16, # Read flag
0 # Write flag
)
def create_spidev_iface_cpld_gain_loader(dev_node):
"""
Create a regs iface from a spidev node (CPLD gain table protocol)
"""
return lib.spi.make_spidev_regs_iface(
dev_node,
1000000, # Speed (Hz)
0, # SPI mode
16, # Addr shift
4, # Data shift
0, # Read flag
1<<3 # Write flag
)
def create_spidev_iface_phasedac(dev_node):
"""
Create a regs iface from a spidev node (AD5683)
The data shift for the SPI interface is defined based on the command
operation defined in the AD5683 datasheet.
Each SPI transaction is 24-bit: [23:20] -> command; [19:0] -> data
The 4 LSBs are all don't cares (Xs), regardless of the DAC's resolution.
Therefore, to simplify DAC writes, we compensate for all the don't care
bits with the data shift parameter here (4), thus 16-bit data field.
Special care must be taken when writing to the control register,
since the 6-bit payload is placed in [19:14] of the SPI transaction,
which is equivalent to bits [15:10] of our 16-bit data field.
For futher details, please refer to the AD5683's datasheet.
"""
return lib.spi.make_spidev_regs_iface(
str(dev_node),
1000000, # Speed (Hz)
1, # SPI mode
20, # Addr shift
4, # Data shift
0, # Read flag (phase DAC is write-only)
0, # Write flag
)
def create_spidev_iface_adc(dev_node):
"""
Create a regs iface from a spidev node (AD9695)
"""
return lib.spi.make_spidev_regs_iface(
str(dev_node),
1000000, # Speed (Hz)
0, # SPI mode
8, # Addr shift
0, # Data shift
1<<23, # Read flag
0, # Write flag
)
def create_spidev_iface_dac(dev_node):
"""
Create a regs iface from a spidev node (DAC37J82)
"""
return lib.spi.make_spidev_regs_iface(
str(dev_node),
1000000, # Speed (Hz)
0, # SPI mode
16, # Addr shift
0, # Data shift
1<<23, # Read flag
0, # Write flag
)
###############################################################################
# Main dboard control class
###############################################################################
class Rhodium(DboardManagerBase):
"""
Holds all dboard specific information and methods of the Rhodium dboard
"""
#########################################################################
# Overridables
#
# See DboardManagerBase for documentation on these fields
#########################################################################
pids = [0x152]
#file system path to i2c-adapter/mux
base_i2c_adapter = '/sys/class/i2c-adapter'
# Maps the chipselects to the corresponding devices:
spi_chipselect = {
"cpld" : 0,
"cpld_gain_loader" : 0,
"lmk" : 1,
"phase_dac" : 2,
"adc" : 3,
"dac" : 4}
### End of overridables #################################################
# Class-specific, but constant settings:
spi_factories = {
"cpld": create_spidev_iface_cpld,
"cpld_gain_loader": create_spidev_iface_cpld_gain_loader,
"lmk": create_spidev_iface_lmk,
"phase_dac": create_spidev_iface_phasedac,
"adc": create_spidev_iface_adc,
"dac": create_spidev_iface_dac
}
# Map I2C channel to slot index
i2c_chan_map = {0: 'i2c-9', 1: 'i2c-10'}
user_eeprom = {
2: { # RevC
'label': "e0004000.i2c",
'offset': 1024,
'max_size': 32786 - 1024,
'alignment': 1024,
},
}
default_master_clock_rate = 245.76e6
default_time_source = 'internal'
default_current_jesd_rate = 4915.2e6
# Provide a mapping of direction and pin number to
# pin name and active state (0 = active-low) for
# LO out ports
lo_out_pin_map = {
'RX' : [('RX_OUT0_CTRL', 0),
('RX_OUT1_CTRL', 1),
('RX_OUT2_CTRL', 0),
('RX_OUT3_CTRL', 1)],
'TX' : [('TX_OUT0_CTRL', 0),
('TX_OUT1_CTRL', 1),
('TX_OUT2_CTRL', 0),
('TX_OUT3_CTRL', 1)]}
# Provide mapping of direction to pin name for LO
# in port
lo_in_pin_map = {
'RX' : 'RX_INSWITCH_CTRL',
'TX' : 'TX_INSWITCH_CTRL'}
def __init__(self, slot_idx, **kwargs):
super(Rhodium, self).__init__(slot_idx, **kwargs)
self.log = get_logger("Rhodium-{}".format(slot_idx))
self.log.trace("Initializing Rhodium daughterboard, slot index %d",
self.slot_idx)
self.rev = int(self.device_info['rev'])
self.log.trace("This is a rev: {}".format(chr(65 + self.rev)))
# This is a default ref clock freq, it must be updated before init() is
# called!
self.ref_clock_freq = None
# These will get updated during init()
self.master_clock_rate = None
self.sampling_clock_rate = None
self.current_jesd_rate = None
# Predeclare some attributes to make linter happy:
self.lmk = None
self._port_expander = None
self._lo_dist = None
self.cpld = None
# If _init_args is None, it means that init() hasn't yet been called.
self._init_args = None
# Now initialize all peripherals. If that doesn't work, put this class
# into a non-functional state (but don't crash, or we can't talk to it
# any more):
try:
self._init_periphs()
self._periphs_initialized = True
except Exception as ex:
self.log.error("Failed to initialize peripherals: %s",
str(ex))
self._periphs_initialized = False
def _init_periphs(self):
"""
Initialize power and peripherals that don't need user-settings
"""
def _get_i2c_dev():
" Return the I2C path for this daughterboard "
import pyudev
context = pyudev.Context()
i2c_dev_path = os.path.join(
self.base_i2c_adapter,
self.i2c_chan_map[self.slot_idx]
)
return pyudev.Devices.from_sys_path(context, i2c_dev_path)
def _init_spi_devices():
" Returns abstraction layers to all the SPI devices "
self.log.trace("Loading SPI interfaces...")
return {
key: self.spi_factories[key](self._spi_nodes[key])
for key in self._spi_nodes
}
self._port_expander = TCA6408(_get_i2c_dev())
self._daughterboard_gpio = FPGAtoDbGPIO(self.slot_idx)
# TODO: applying the overlay without checking for the presence of the
# LO dist board will create a kernel error. Fix this when the I2C API
# is implemented by checking if the board is present before applying.
try:
apply_overlay_safe('n321')
self._lo_dist = FPGAtoLoDist(_get_i2c_dev())
except RuntimeError:
self._lo_dist = None
self.log.debug("Turning on Module and RF power supplies")
self._power_on()
self._spi_ifaces = _init_spi_devices()
self.log.debug("Loaded SPI interfaces!")
self.cpld = RhCPLD(self._spi_ifaces['cpld'], self.log)
self.log.debug("Loaded CPLD interfaces!")
# Create DAC interface (analog output is disabled).
self.log.trace("Creating DAC control object...")
self.dac = DAC37J82Rh(self.slot_idx, self._spi_ifaces['dac'], self.log)
# Create ADC interface (JESD204B link is powered down).
self.log.trace("Creating ADC control object...")
self.adc = AD9695Rh(self.slot_idx, self._spi_ifaces['adc'], self.log)
self.log.info("Succesfully loaded all peripherals!")
def _power_on(self):
" Turn on power to daughterboard "
self.log.trace("Powering on slot_idx={}...".format(self.slot_idx))
self._daughterboard_gpio.set(FPGAtoDbGPIO.DB_POWER_ENABLE, 1)
self._daughterboard_gpio.set(FPGAtoDbGPIO.RF_POWER_ENABLE, 1)
# Check each power good signal
def _power_off(self):
" Turn off power to daughterboard "
self.log.trace("Powering off slot_idx={}...".format(self.slot_idx))
self._daughterboard_gpio.set(FPGAtoDbGPIO.DB_POWER_ENABLE, 0)
self._daughterboard_gpio.set(FPGAtoDbGPIO.RF_POWER_ENABLE, 0)
def _init_user_eeprom(self, eeprom_info):
"""
Reads out user-data EEPROM, and intializes a BufferFS object from that.
"""
self.log.trace("Initializing EEPROM user data...")
eeprom_paths = get_eeprom_paths(eeprom_info.get('label'))
self.log.trace("Found the following EEPROM paths: `{}'".format(
eeprom_paths))
eeprom_path = eeprom_paths[self.slot_idx]
self.log.trace("Selected EEPROM path: `{}'".format(eeprom_path))
user_eeprom_offset = eeprom_info.get('offset', 0)
self.log.trace("Selected EEPROM offset: %d", user_eeprom_offset)
user_eeprom_data = open(eeprom_path, 'rb').read()[user_eeprom_offset:]
self.log.trace("Total EEPROM size is: %d bytes", len(user_eeprom_data))
# FIXME verify EEPROM sectors
return BufferFS(
user_eeprom_data,
max_size=eeprom_info.get('max_size'),
alignment=eeprom_info.get('alignment', 1024),
log=self.log
), eeprom_path
def init(self, args):
"""
Execute necessary init dance to bring up dboard
"""
# Sanity checks and input validation:
self.log.info("init() called with args `{}'".format(
",".join(['{}={}'.format(x, args[x]) for x in args])
))
if not self._periphs_initialized:
error_msg = "Cannot run init(), peripherals are not initialized!"
self.log.error(error_msg)
raise RuntimeError(error_msg)
# Check if ref clock freq changed (would require a full init)
ref_clk_freq_changed = False
if 'ref_clk_freq' in args:
new_ref_clock_freq = float(args['ref_clk_freq'])
assert new_ref_clock_freq in (10e6, 20e6, 25e6)
if new_ref_clock_freq != self.ref_clock_freq:
self.ref_clock_freq = new_ref_clock_freq
ref_clk_freq_changed = True
self.log.debug(
"Updating reference clock frequency to {:.02f} MHz!"
.format(self.ref_clock_freq / 1e6)
)
assert self.ref_clock_freq is not None
# Check if master clock freq changed (would require a full init)
new_master_clock_rate = \
float(args.get('master_clock_rate', self.default_master_clock_rate))
assert new_master_clock_rate in (200e6, 245.76e6, 250e6), \
"Invalid master clock rate: {:.02f} MHz".format(new_master_clock_rate / 1e6)
master_clock_rate_changed = new_master_clock_rate != self.master_clock_rate
if master_clock_rate_changed:
self.master_clock_rate = new_master_clock_rate
self.log.debug("Updating master clock rate to {:.02f} MHz!".format(
self.master_clock_rate / 1e6
))
# From the host's perspective (i.e. UHD), master_clock_rate is thought as
# the data rate that the radio NoC block works on (200/245.76/250 MSPS).
# For Rhodium, that rate is different from the RF sampling rate = JESD rate
# (400/491.52/500 MHz). The FPGA has fixed half-band filters that decimate
# and interpolate between the radio block and the JESD core.
# Therefore, the board configuration through MPM relies on the sampling freq.,
# so a sampling_clock_rate value is internally set based on the master_clock_rate
# parameter given by the host.
self.sampling_clock_rate = 2 * self.master_clock_rate
self.log.trace("Updating sampling clock rate to {:.02f} MHz!".format(
self.sampling_clock_rate / 1e6
))
# Track if we're able to do a "fast reinit", which means there were no
# major changes and can skip all slow initialization steps.
fast_reinit = \
not bool(args.get("force_reinit", False)) \
and not master_clock_rate_changed \
and not ref_clk_freq_changed
if fast_reinit:
self.log.debug("Attempting fast re-init with the following settings: "
"master_clock_rate={} MHz ref_clk_freq={} MHz"
.format(self.master_clock_rate / 1e6, self.ref_clock_freq / 1e6))
init_result = True
else:
init_result = RhodiumInitManager(self, self._spi_ifaces).init(args)
if init_result:
self._init_args = args
return init_result
def get_user_eeprom_data(self):
"""
Return a dict of blobs stored in the user data section of the EEPROM.
"""
return {
blob_id: self.eeprom_fs.get_blob(blob_id)
for blob_id in iterkeys(self.eeprom_fs.entries)
}
def set_user_eeprom_data(self, eeprom_data):
"""
Update the local EEPROM with the data from eeprom_data.
The actual writing to EEPROM can take some time, and is thus kicked
into a background task. Don't call set_user_eeprom_data() quickly in
succession. Also, while the background task is running, reading the
EEPROM is unavailable and MPM won't be able to reboot until it's
completed.
However, get_user_eeprom_data() will immediately return the correct
data after this method returns.
"""
for blob_id, blob in iteritems(eeprom_data):
self.eeprom_fs.set_blob(blob_id, blob)
self.log.trace("Writing EEPROM info to `{}'".format(self.eeprom_path))
eeprom_offset = self.user_eeprom[self.rev]['offset']
def _write_to_eeprom_task(path, offset, data, log):
" Writer task: Actually write to file "
# Note: This can be sped up by only writing sectors that actually
# changed. To do so, this function would need to read out the
# current state of the file, do some kind of diff, and then seek()
# to the different sectors. When very large blobs are being
# written, it doesn't actually help all that much, of course,
# because in that case, we'd anyway be changing most of the EEPROM.
with open(path, 'r+b') as eeprom_file:
log.trace("Seeking forward to `{}'".format(offset))
eeprom_file.seek(eeprom_offset)
log.trace("Writing a total of {} bytes.".format(
len(self.eeprom_fs.buffer)))
eeprom_file.write(data)
log.trace("EEPROM write complete.")
thread_id = "eeprom_writer_task_{}".format(self.slot_idx)
if any([x.name == thread_id for x in threading.enumerate()]):
# Should this be fatal?
self.log.warn("Another EEPROM writer thread is already active!")
writer_task = threading.Thread(
target=_write_to_eeprom_task,
args=(
self.eeprom_path,
eeprom_offset,
self.eeprom_fs.buffer,
self.log
),
name=thread_id,
)
writer_task.start()
# Now return and let the copy finish on its own. The thread will detach
# and MPM this process won't terminate until the thread is complete.
# This does not stop anyone from killing this process (and the thread)
# while the EEPROM write is happening, though.
def enable_lo_export(self, direction, enable):
"""
For N321 devices. If enable is true, connect the RX 1:4 splitter to the
daughterboard LO export. If enable is false, connect the splitter to
LO input port 1 instead.
Asserts if there is no LO distribution board attached (e.g. device is
not an N321, or this is the daughterboard in slot B)
"""
assert self._lo_dist is not None
assert direction in ('RX', 'TX')
pin = self.lo_in_pin_map[direction]
pin_val = 0 if enable else 1
self.log.debug("LO Distribution: 1:4 splitter connected to {0} {1}".format(
direction, {True: "DB export", False: "Input 0"}[enable]))
self.log.trace("Net name: {0}, Pin value: {1}".format(pin, pin_val))
self._lo_dist.set(pin, pin_val)
def enable_lo_output(self, direction, port_number, enable):
"""
For N321 devices. If enable is true, connect the RX 1:4 splitter to the
daughterboard LO export. If enable is false, connect the splitter to
LO input port 1 instead.
Asserts if there is no LO distribution board attached (e.g. device is
not an N321, or this is the daughterboard in slot B)
"""
assert self._lo_dist is not None
assert direction in ('RX', 'TX')
assert port_number in (0, 1, 2, 3)
pin_info = self.lo_out_pin_map[direction][port_number]
# enable XNOR active_high = desired pinout value
pin_val = 1 if not (enable ^ pin_info[1]) else 0
self.log.debug("LO Distribution: {0} Out{1} is {2}".format(
direction, port_number, {True: "active", False: "terminated"}[enable]))
self.log.trace("Net name: {0}, Pin value: {1}".format(pin_info[0], pin_val))
self._lo_dist.set(pin_info[0], pin_val)
def is_lo_dist_present(self):
return self._lo_dist is not None
##########################################################################
# Clocking control APIs
##########################################################################
def set_clk_safe_state(self):
"""
Disable all components that could react badly to a sudden change in
clocking. After calling this method, all clocks will be off. Calling
_reinit() will turn them on again.
"""
if self._init_args is None:
# Then we're already in a safe state
return
# Put the ADC and the DAC in a safe state because they receive a LMK's clock.
# The DAC37J82 datasheet only recommends disabling its analog output before
# a clock is provided to the chip.
self.dac.tx_enable(False)
self.adc.power_down_channel(True)
with open_uio(
label="dboard-regs-{}".format(slot_idx),
read_only=False
) as radio_regs:
# Clear the Sample Clock enables and place the MMCM in reset.
db_clk_control = DboardClockControl(radio_regs, self.log)
db_clk_control.reset_mmcm()
# Place the JESD204b core in reset, mainly to reset QPLL/CPLLs.
jesdcore = nijesdcore.NIJESDCore(radio_regs, self.slot_idx,
**RhodiumInitManager.JESD_DEFAULT_ARGS)
jesdcore.reset()
# The reference clock is handled elsewhere since it is a motherboard-
# level clock.
def _reinit(self, master_clock_rate):
"""
This will re-run init(). We store all the settings in _init_args, so we
will bring the device into the same state that it was before, with the
exception of frequency and gain. Those need to be re-set by UHD in order
not to invalidate the UHD caches.
"""
args = self._init_args
args["master_clock_rate"] = master_clock_rate
args["ref_clk_freq"] = self.ref_clock_freq
# If we add API calls to reset the cals, they need to update
# self._init_args
self.master_clock_rate = None # <= This will force a re-init
self.init(args)
# self.master_clock_rate is now OK again
def set_master_clock_rate(self, rate):
"""
Set the master clock rate to rate. Note this will trigger a
re-initialization of the entire clocking, unless rate matches the
current master clock rate.
"""
if rate == self.master_clock_rate:
self.log.debug(
"New master clock rate assignment matches previous assignment. "
"Ignoring set_master_clock_rate() command.")
return self.master_clock_rate
self._reinit(rate)
return rate
def get_master_clock_rate(self):
" Return master clock rate (== sampling rate / 2) "
return self.master_clock_rate
def update_ref_clock_freq(self, freq, **kwargs):
"""
Call this function if the frequency of the reference clock changes
(the 10, 20, 25 MHz one).
If this function is called while the device is in an initialized state,
it will also re-trigger the initialization sequence.
No need to set the device in a safe state because (presumably) the user
has already switched the clock rate externally. All we need to do now
is re-initialize with the new rate.
"""
assert freq in (10e6, 20e6, 25e6), \
"Invalid ref clock frequency: {}".format(freq)
self.log.trace("Changing ref clock frequency to %f MHz", freq/1e6)
self.ref_clock_freq = freq
if self._init_args is not None:
self._reinit(self.master_clock_rate)
##########################################################################
# Debug
##########################################################################
def cpld_peek(self, addr):
"""
Debug for accessing the CPLD via the RPC shell.
"""
self.log.trace("CPLD Signature: 0x{:X}".format(self.cpld.peek(0x00)))
revision_msb = self.cpld.peek16(0x04)
self.log.trace("CPLD Revision: 0x{:X}"
.format(self.cpld.peek16(0x03) | (revision_msb << 16)))
return self.cpld.peek16(addr)
def cpld_poke(self, addr, data):
"""
Debug for accessing the CPLD via the RPC shell.
"""
self.log.trace("CPLD Signature: 0x{:X}".format(self.cpld.peek16(0x00)))
revision_msb = self.cpld.peek16(0x04)
self.log.trace("CPLD Revision: 0x{:X}"
.format(self.cpld.peek16(0x03) | (revision_msb << 16)))
self.cpld.poke16(addr, data)
return self.cpld.peek16(addr)
def lmk_peek(self, addr):
"""
Debug for accessing the LMK via the RPC shell.
"""
lmk_regs = self._spi_ifaces['lmk']
self.log.trace("LMK Chip ID: 0x{:X}".format(lmk_regs.peek8(0x03)))
return lmk_regs.peek8(addr)
def lmk_poke(self, addr, data):
"""
Debug for accessing the LMK via the RPC shell.
"""
lmk_regs = self._spi_ifaces['lmk']
self.log.trace("LMK Chip ID: 0x{:X}".format(lmk_regs.peek8(0x03)))
lmk_regs.poke8(addr, data)
return lmk_regs.peek8(addr)
def pdac_poke(self, addr, data):
"""
Debug for accessing the Phase DAC via the RPC shell.
"""
pdac_regs = self._spi_ifaces['phase_dac']
pdac_regs.poke16(addr, data)
return
def adc_peek(self, addr):
"""
Debug for accessing the ADC via the RPC shell.
"""
adc_regs = self._spi_ifaces['adc']
self.log.trace("ADC Chip ID: 0x{:X}".format(adc_regs.peek8(0x04)))
return adc_regs.peek8(addr)
def adc_poke(self, addr, data):
"""
Debug for accessing the ADC via the RPC shell
"""
adc_regs = self._spi_ifaces['adc']
self.log.trace("ADC Chip ID: 0x{:X}".format(adc_regs.peek8(0x04)))
adc_regs.poke8(addr, data)
return adc_regs.peek8(addr)
def dump_jesd_core(self):
"""
Debug for reading out all JESD core registers via RPC shell
"""
with open_uio(
label="dboard-regs-{}".format(slot_idx),
read_only=False
) as radio_regs:
for i in range(0x2000, 0x2110, 0x10):
print(("0x%04X " % i), end=' ')
for j in range(0, 0x10, 0x4):
print(("%08X" % radio_regs.peek32(i + j)), end=' ')
print("")
|