1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
#
# Copyright 2018 Ettus Research, a National Instruments Company
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
E320 dboard (RF and control) implementation module
"""
import threading
import time
from six import iterkeys, iteritems
from usrp_mpm import lib # Pulls in everything from C++-land
from usrp_mpm.bfrfs import BufferFS
from usrp_mpm.chips import ADF400x
from usrp_mpm.dboard_manager import DboardManagerBase
from usrp_mpm.mpmlog import get_logger
from usrp_mpm.sys_utils.udev import get_eeprom_paths
from usrp_mpm.sys_utils.uio import UIO
from usrp_mpm.periph_manager.e320_periphs import MboardRegsControl
from usrp_mpm.mpmutils import async_exec
###############################################################################
# Main dboard control class
###############################################################################
class Neon(DboardManagerBase):
"""
Holds all dboard specific information and methods of the neon dboard
"""
#########################################################################
# Overridables
#
# See DboardManagerBase for documentation on these fields
#########################################################################
pids = [0xe320]
rx_sensor_callback_map = {
'ad9361_temperature': 'get_catalina_temp_sensor',
'rssi' : 'get_rssi_sensor',
'lo_lock' : 'get_lo_lock_sensor',
}
tx_sensor_callback_map = {
'ad9361_temperature': 'get_catalina_temp_sensor',
}
# Maps the chipselects to the corresponding devices:
spi_chipselect = {"catalina": 0,
"adf4002": 1}
### End of overridables #################################################
# This map describes how the user data is stored in EEPROM. If a dboard rev
# changes the way the EEPROM is used, we add a new entry. If a dboard rev
# is not found in the map, then we go backward until we find a suitable rev
user_eeprom = {
0: {
'label': "e0004000.i2c",
'offset': 1024,
'max_size': 32786 - 1024,
'alignment': 1024,
},
}
default_master_clock_rate = 16e6
MIN_MASTER_CLK_RATE = 220e3
MAX_MASTER_CLK_RATE = 61.44e6
def __init__(self, slot_idx, **kwargs):
super(Neon, self).__init__(slot_idx, **kwargs)
self.log = get_logger("Neon-{}".format(slot_idx))
self.log.trace("Initializing Neon daughterboard, slot index %d",
self.slot_idx)
self.rev = int(self.device_info['rev'])
self.log.trace("This is a rev: {}".format(chr(65 + self.rev)))
# These will get updated during init()
self.master_clock_rate = None
# Predeclare some attributes to make linter happy:
self.catalina = None
self.eeprom_fs = None
self.eeprom_path = None
# Now initialize all peripherals. If that doesn't work, put this class
# into a non-functional state (but don't crash, or we can't talk to it
# any more):
try:
self._init_periphs()
self._periphs_initialized = True
except Exception as ex:
self.log.error("Failed to initialize peripherals: %s",
str(ex))
self._periphs_initialized = False
def _init_periphs(self):
"""
Initialize power and peripherals that don't need user-settings
"""
self.log.debug("Loading C++ drivers...")
# Setup the ADF4002
adf4002_spi = lib.spi.make_spidev(
str(self._spi_nodes['adf4002']),
1000000, # Speed (Hz)
0 # SPI mode
)
self.log.trace("Initializing ADF4002.")
from usrp_mpm.periph_manager.e320 import E320_DEFAULT_INT_CLOCK_FREQ
self.adf4002 = ADF400x(adf4002_spi,
freq=E320_DEFAULT_INT_CLOCK_FREQ,
parent_log=self.log)
# Setup Catalina / the Neon Manager
self._device = lib.dboards.neon_manager(
self._spi_nodes['catalina']
)
self.catalina = self._device.get_radio_ctrl()
self.log.trace("Loaded C++ drivers.")
self._init_cat_api(self.catalina)
self.eeprom_fs, self.eeprom_path = self._init_user_eeprom(
self._get_user_eeprom_info(self.rev)
)
def _init_cat_api(self, cat):
"""
Propagate the C++ Catalina API into Python land.
"""
def export_method(obj, method):
" Export a method object, including docstring "
meth_obj = getattr(obj, method)
def func(*args):
" Functor for storing docstring too "
return meth_obj(*args)
func.__doc__ = meth_obj.__doc__
return func
self.log.trace("Forwarding AD9361 methods to Neon class...")
for method in [
x for x in dir(self.catalina)
if not x.startswith("_") and \
callable(getattr(self.catalina, x))]:
self.log.trace("adding {}".format(method))
setattr(self, method, export_method(cat, method))
def _get_user_eeprom_info(self, rev):
"""
Return an EEPROM access map (from self.user_eeprom) based on the rev.
"""
rev_for_lookup = rev
while rev_for_lookup not in self.user_eeprom:
if rev_for_lookup < 0:
raise RuntimeError("Could not find a user EEPROM map for "
"revision %d!", rev)
rev_for_lookup -= 1
assert rev_for_lookup in self.user_eeprom, \
"Invalid EEPROM lookup rev!"
return self.user_eeprom[rev_for_lookup]
def _init_user_eeprom(self, eeprom_info):
"""
Reads out user-data EEPROM, and intializes a BufferFS object from that.
"""
self.log.trace("Initializing EEPROM user data...")
eeprom_paths = get_eeprom_paths(eeprom_info.get('label'))
self.log.trace("Found the following EEPROM paths: `{}'".format(
eeprom_paths))
eeprom_path = eeprom_paths[self.slot_idx]
self.log.trace("Selected EEPROM path: `{}'".format(eeprom_path))
user_eeprom_offset = eeprom_info.get('offset', 0)
self.log.trace("Selected EEPROM offset: %d", user_eeprom_offset)
user_eeprom_data = open(eeprom_path, 'rb').read()[user_eeprom_offset:]
self.log.trace("Total EEPROM size is: %d bytes", len(user_eeprom_data))
return BufferFS(
user_eeprom_data,
max_size=eeprom_info.get('max_size'),
alignment=eeprom_info.get('alignment', 1024),
log=self.log
), eeprom_path
def init(self, args):
if not self._periphs_initialized:
error_msg = "Cannot run init(), peripherals are not initialized!"
self.log.error(error_msg)
raise RuntimeError(error_msg)
master_clock_rate = \
float(args.get('master_clock_rate',
self.default_master_clock_rate))
assert self.MIN_MASTER_CLK_RATE <= master_clock_rate <= self.MAX_MASTER_CLK_RATE, \
"Invalid master clock rate: {:.02f} MHz".format(
master_clock_rate / 1e6)
master_clock_rate_changed = master_clock_rate != self.master_clock_rate
if master_clock_rate_changed:
self.master_clock_rate = master_clock_rate
self.log.debug("Updating master clock rate to {:.02f} MHz!".format(
self.master_clock_rate / 1e6
))
# Some default chains on -- needed for setup purposes
self.catalina.set_active_chains(True, False, True, False)
self.set_catalina_clock_rate(self.master_clock_rate)
return True
def get_user_eeprom_data(self):
"""
Return a dict of blobs stored in the user data section of the EEPROM.
"""
return {
blob_id: self.eeprom_fs.get_blob(blob_id)
for blob_id in iterkeys(self.eeprom_fs.entries)
}
def set_user_eeprom_data(self, eeprom_data):
"""
Update the local EEPROM with the data from eeprom_data.
The actual writing to EEPROM can take some time, and is thus kicked
into a background task. Don't call set_user_eeprom_data() quickly in
succession. Also, while the background task is running, reading the
EEPROM is unavailable and MPM won't be able to reboot until it's
completed.
However, get_user_eeprom_data() will immediately return the correct
data after this method returns.
"""
for blob_id, blob in iteritems(eeprom_data):
self.eeprom_fs.set_blob(blob_id, blob)
self.log.trace("Writing EEPROM info to `{}'".format(self.eeprom_path))
eeprom_offset = self.user_eeprom[self.rev]['offset']
def _write_to_eeprom_task(path, offset, data, log):
" Writer task: Actually write to file "
# Note: This can be sped up by only writing sectors that actually
# changed. To do so, this function would need to read out the
# current state of the file, do some kind of diff, and then seek()
# to the different sectors. When very large blobs are being
# written, it doesn't actually help all that much, of course,
# because in that case, we'd anyway be changing most of the EEPROM.
with open(path, 'r+b') as eeprom_file:
log.trace("Seeking forward to `{}'".format(offset))
eeprom_file.seek(eeprom_offset)
log.trace("Writing a total of {} bytes.".format(
len(self.eeprom_fs.buffer)))
eeprom_file.write(data)
log.trace("EEPROM write complete.")
thread_id = "eeprom_writer_task_{}".format(self.slot_idx)
if any([x.name == thread_id for x in threading.enumerate()]):
# Should this be fatal?
self.log.warn("Another EEPROM writer thread is already active!")
writer_task = threading.Thread(
target=_write_to_eeprom_task,
args=(
self.eeprom_path,
eeprom_offset,
self.eeprom_fs.buffer,
self.log
),
name=thread_id,
)
writer_task.start()
# Now return and let the copy finish on its own. The thread will detach
# and MPM won't terminate this process until the thread is complete.
# This does not stop anyone from killing this process (and the thread)
# while the EEPROM write is happening, though.
def get_master_clock_rate(self):
" Return master clock rate (== sampling rate) "
return self.master_clock_rate
def update_ref_clock_freq(self, freq):
"""Update the reference clock frequency"""
self.adf4002.set_ref_freq(freq)
##########################################################################
# Sensors
##########################################################################
def get_ad9361_lo_lock(self, which):
"""
Return LO lock status (Boolean!) of AD9361. 'which' must be
either 'tx' or 'rx'
"""
self.mboard_regs_label = "mboard-regs"
self.mboard_regs_control = MboardRegsControl(
self.mboard_regs_label, self.log)
if which == "tx":
locked = self. mboard_regs_control.get_ad9361_tx_lo_lock()
elif which == "rx":
locked = self. mboard_regs_control.get_ad9361_rx_lo_lock()
else:
locked = False
return locked
def get_lo_lock_sensor(self, which):
"""
Get sensor dict with LO lock status
"""
self.log.trace("Reading LO Lock.")
lo_locked = self.get_ad9361_lo_lock(which)
return {
'name': 'ad9361_lock',
'type': 'BOOLEAN',
'unit': 'locked' if lo_locked else 'unlocked',
'value': str(lo_locked).lower(),
}
def get_catalina_temp_sensor(self, _):
"""
Get temperature sensor reading of Catalina.
"""
# Note: the unused argument is channel
self.log.trace("Reading Catalina temperature.")
return {
'name': 'ad9361_temperature',
'type': 'REALNUM',
'unit': 'C',
'value': str(self.catalina.get_temperature())
}
def get_rssi_val(self, which):
"""
Return the current RSSI of `which` chain in Catalina
"""
return self.catalina.get_rssi(which)
def get_rssi_sensor(self, chan):
"""
Return a sensor dictionary containing the current RSSI of `which` chain in Catalina
"""
which = 'RX' + str(chan+1)
return {
'name': 'rssi',
'type': 'REALNUM',
'unit': 'dB',
'value': str(self.get_rssi_val(which)),
}
def set_catalina_clock_rate(self, rate):
"""
Async call to catalina set_clock_rate
"""
self.log.trace("Setting Clock rate to {}".format(rate))
async_exec(lib.ad9361, "set_clock_rate", self.catalina, rate)
return rate
def catalina_tune(self, which, freq):
"""
Async call to catalina tune
"""
self.log.trace("Tuning {} {}".format(which, freq))
async_exec(lib.ad9361, "tune", self.catalina, which, freq)
return self.catalina.get_freq(which)
|