1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
|
#
# Copyright 2017 Ettus Research, a National Instruments Company
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
Magnesium dboard implementation module
"""
from __future__ import print_function
import os
import time
import threading
import math
import re
from six import iterkeys, iteritems
from usrp_mpm import lib # Pulls in everything from C++-land
from usrp_mpm.dboard_manager import DboardManagerBase
from usrp_mpm.dboard_manager.lmk_mg import LMK04828Mg
from usrp_mpm.dboard_manager.mg_periphs import TCA6408, MgCPLD
from usrp_mpm.dboard_manager.mg_periphs import DboardClockControl
from usrp_mpm.cores import nijesdcore
from usrp_mpm.mpmlog import get_logger
from usrp_mpm.sys_utils.uio import open_uio
from usrp_mpm.sys_utils.udev import get_eeprom_paths
from usrp_mpm.cores import ClockSynchronizer
from usrp_mpm.bfrfs import BufferFS
INIT_CALIBRATION_TABLE = {"TX_BB_FILTER" : 0x0001,
"ADC_TUNER" : 0x0002,
"TIA_3DB_CORNER" : 0x0004,
"DC_OFFSET" : 0x0008,
"TX_ATTENUATION_DELAY" : 0x0010,
"RX_GAIN_DELAY" : 0x0020,
"FLASH_CAL" : 0x0040,
"PATH_DELAY" : 0x0080,
"TX_LO_LEAKAGE_INTERNAL" : 0x0100,
"TX_LO_LEAKAGE_EXTERNAL" : 0x0200,
"TX_QEC_INIT" : 0x0400,
"LOOPBACK_RX_LO_DELAY" : 0x0800,
"LOOPBACK_RX_RX_QEC_INIT" : 0x1000,
"RX_LO_DELAY" : 0x2000,
"RX_QEC_INIT" : 0x4000,
"BASIC" : 0x4F,
"OFF" : 0x00,
"DEFAULT" : 0x4DFF,
"ALL" : 0x7DFF,
}
TRACKING_CALIBRATION_TABLE = {"TRACK_RX1_QEC" : 0x01,
"TRACK_RX2_QEC" : 0x02,
"TRACK_ORX1_QEC" : 0x04,
"TRACK_ORX2_QEC" : 0x08,
"TRACK_TX1_LOL" : 0x10,
"TRACK_TX2_LOL" : 0x20,
"TRACK_TX1_QEC" : 0x40,
"TRACK_TX2_QEC" : 0x80,
"OFF" : 0x00,
"RX_QEC" : 0x03,
"TX_QEC" : 0xC0,
"TX_LOL" : 0x30,
"DEFAULT" : 0xC3,
"ALL" : 0xF3,
}
def create_spidev_iface_lmk(dev_node):
"""
Create a regs iface from a spidev node
"""
return lib.spi.make_spidev_regs_iface(
str(dev_node),
1000000, # Speed (Hz)
3, # SPI mode
8, # Addr shift
0, # Data shift
1<<23, # Read flag
0, # Write flag
)
def create_spidev_iface_cpld(dev_node):
"""
Create a regs iface from a spidev node
"""
return lib.spi.make_spidev_regs_iface(
str(dev_node),
1000000, # Speed (Hz)
0, # SPI mode
16, # Addr shift
0, # Data shift
1<<23, # Read flag
0, # Write flag
)
def create_spidev_iface_phasedac(dev_node):
"""
Create a regs iface from a spidev node (ADS5681)
"""
return lib.spi.make_spidev_regs_iface(
str(dev_node),
1000000, # Speed (Hz)
1, # SPI mode
16, # Addr shift
0, # Data shift
0, # Read flag (phase DAC is write-only)
0, # Write flag
)
###############################################################################
# Peripherals
###############################################################################
###############################################################################
# Main dboard control class
###############################################################################
class Magnesium(DboardManagerBase):
"""
Holds all dboard specific information and methods of the magnesium dboard
"""
#########################################################################
# Overridables
#
# See DboardManagerBase for documentation on these fields
#########################################################################
pids = [0x150]
rx_sensor_callback_map = {
'lowband_lo_locked': 'get_lowband_tx_lo_locked_sensor',
'ad9371_lo_locked': 'get_ad9371_tx_lo_locked_sensor',
}
tx_sensor_callback_map = {
'lowband_lo_locked': 'get_lowband_rx_lo_locked_sensor',
'ad9371_lo_locked': 'get_ad9371_rx_lo_locked_sensor',
}
# Maps the chipselects to the corresponding devices:
spi_chipselect = {"cpld": 0, "lmk": 1, "mykonos": 2, "phase_dac": 3}
### End of overridables #################################################
# Class-specific, but constant settings:
spi_factories = {
"cpld": create_spidev_iface_cpld,
"lmk": create_spidev_iface_lmk,
"phase_dac": create_spidev_iface_phasedac,
}
#file system path to i2c-adapter/mux
base_i2c_adapter = '/sys/class/i2c-adapter'
# Map I2C channel to slot index
i2c_chan_map = {0: 'i2c-9', 1: 'i2c-10'}
# This map describes how the user data is stored in EEPROM. If a dboard rev
# changes the way the EEPROM is used, we add a new entry. If a dboard rev
# is not found in the map, then we go backward until we find a suitable rev
user_eeprom = {
2: { # RevC
'label': "e0004000.i2c",
'offset': 1024,
'max_size': 32786 - 1024,
'alignment': 1024,
},
}
# DAC is initialized to midscale automatically on power-on: 16-bit DAC, so midpoint
# is at 2^15 = 32768. However, the linearity of the DAC is best just below that
# point, so we set it to the (carefully calculated) alternate value instead.
INIT_PHASE_DAC_WORD = 31000 # Intentionally decimal
default_master_clock_rate = 125e6
default_current_jesd_rate = 2500e6
def __init__(self, slot_idx, **kwargs):
super(Magnesium, self).__init__(slot_idx, **kwargs)
self.log = get_logger("Magnesium-{}".format(slot_idx))
self.log.trace("Initializing Magnesium daughterboard, slot index %d",
self.slot_idx)
self.rev = int(self.device_info['rev'])
self.log.trace("This is a rev: {}".format(chr(65 + self.rev)))
# This is a default ref clock freq, it must be updated before init() is
# called!
self.ref_clock_freq = None
# These will get updated during init()
self.master_clock_rate = None
self.current_jesd_rate = None
# Predeclare some attributes to make linter happy:
self.lmk = None
self._port_expander = None
self.mykonos = None
self.eeprom_fs = None
self.eeprom_path = None
self.cpld = None
self._init_cals_mask = 0
self._tracking_cals_mask = 0
self._init_cals_timeout = 0
# Now initialize all peripherals. If that doesn't work, put this class
# into a non-functional state (but don't crash, or we can't talk to it
# any more):
try:
self._init_periphs()
self._periphs_initialized = True
except Exception as ex:
self.log.error("Failed to initialize peripherals: %s",
str(ex))
self._periphs_initialized = False
def _init_periphs(self):
"""
Initialize power and peripherals that don't need user-settings
"""
self._port_expander = TCA6408(self._get_i2c_dev(self.slot_idx))
self._power_on()
self.log.debug("Loading C++ drivers...")
# The Mykonos TX DeFramer lane crossbar requires configuration on a per-slot
# basis due to motherboard MGT lane swapping.
# The RX framer lane crossbar configuration
# is identical for both slots and is hard-coded within the Mykonos API.
deserializer_lane_xbar = 0xD2 if self.slot_idx == 0 else 0x72
self._device = lib.dboards.magnesium_manager(
self._spi_nodes['mykonos'],
deserializer_lane_xbar
)
self.mykonos = self._device.get_radio_ctrl()
self.spi_lock = self._device.get_spi_lock()
self.log.trace("Loaded C++ drivers.")
self._init_myk_api(self.mykonos)
self.eeprom_fs, self.eeprom_path = self._init_user_eeprom(
self._get_user_eeprom_info(self.rev)
)
self.log.trace("Loading SPI devices...")
self._spi_ifaces = {
key: self.spi_factories[key](self._spi_nodes[key])
for key in self.spi_factories
}
self.cpld = MgCPLD(self._spi_ifaces['cpld'], self.log)
self.device_info['cpld_rev'] = \
str(self.cpld.major_rev) + '.' + str(self.cpld.minor_rev)
def _power_on(self):
" Turn on power to daughterboard "
self.log.trace("Powering on slot_idx={}...".format(self.slot_idx))
self._port_expander.set("PWR-EN-3.6V")
self._port_expander.set("PWR-EN-1.5V")
self._port_expander.set("PWR-EN-5.5V")
self._port_expander.set("LED")
def _power_off(self):
" Turn off power to daughterboard "
self.log.trace("Powering off slot_idx={}...".format(self.slot_idx))
self._port_expander.reset("PWR-EN-3.6V")
self._port_expander.reset("PWR-EN-1.5V")
self._port_expander.reset("PWR-EN-5.5V")
self._port_expander.reset("LED")
def _get_i2c_dev(self, slot_idx):
" Return the I2C path for this daughterboard "
import pyudev
context = pyudev.Context()
i2c_dev_path = os.path.join(
self.base_i2c_adapter,
self.i2c_chan_map[slot_idx]
)
return pyudev.Devices.from_sys_path(context, i2c_dev_path)
def _init_myk_api(self, myk):
"""
Propagate the C++ Mykonos API into Python land.
"""
def export_method(obj, method):
" Export a method object, including docstring "
meth_obj = getattr(obj, method)
def func(*args):
" Functor for storing docstring too "
return meth_obj(*args)
func.__doc__ = meth_obj.__doc__
return func
self.log.trace("Forwarding AD9371 methods to Magnesium class...")
for method in [
x for x in dir(self.mykonos)
if not x.startswith("_") and \
callable(getattr(self.mykonos, x))]:
self.log.trace("adding {}".format(method))
setattr(self, method, export_method(myk, method))
def _get_user_eeprom_info(self, rev):
"""
Return an EEPROM access map (from self.user_eeprom) based on the rev.
"""
rev_for_lookup = rev
while rev_for_lookup not in self.user_eeprom:
if rev_for_lookup < 0:
raise RuntimeError("Could not find a user EEPROM map for "
"revision %d!", rev)
rev_for_lookup -= 1
assert rev_for_lookup in self.user_eeprom, \
"Invalid EEPROM lookup rev!"
return self.user_eeprom[rev_for_lookup]
def _init_user_eeprom(self, eeprom_info):
"""
Reads out user-data EEPROM, and intializes a BufferFS object from that.
"""
self.log.trace("Initializing EEPROM user data...")
eeprom_paths = get_eeprom_paths(eeprom_info.get('label'))
self.log.trace("Found the following EEPROM paths: `{}'".format(
eeprom_paths))
eeprom_path = eeprom_paths[self.slot_idx]
self.log.trace("Selected EEPROM path: `{}'".format(eeprom_path))
user_eeprom_offset = eeprom_info.get('offset', 0)
self.log.trace("Selected EEPROM offset: %d", user_eeprom_offset)
user_eeprom_data = open(eeprom_path, 'rb').read()[user_eeprom_offset:]
self.log.trace("Total EEPROM size is: %d bytes", len(user_eeprom_data))
# FIXME verify EEPROM sectors
return BufferFS(
user_eeprom_data,
max_size=eeprom_info.get('max_size'),
alignment=eeprom_info.get('alignment', 1024),
log=self.log
), eeprom_path
def init(self, args):
"""
Execute necessary init dance to bring up dboard
"""
def _init_lmk(lmk_spi, ref_clk_freq, master_clk_rate,
pdac_spi, init_phase_dac_word):
"""
Sets the phase DAC to initial value, and then brings up the LMK
according to the selected ref clock frequency.
Will throw if something fails.
"""
self.log.trace("Initializing Phase DAC to d{}.".format(
init_phase_dac_word
))
pdac_spi.poke16(0x0, init_phase_dac_word)
return LMK04828Mg(
lmk_spi,
self.spi_lock,
ref_clk_freq,
master_clk_rate,
self.log
)
def _get_clock_synchronizer():
" Return a clock synchronizer object "
# Future Work: target_value needs to be tweaked to support
# heterogeneous rate sync.
target_value = {
122.88e6: 128e-9,
125e6: 128e-9,
153.6e6: 122e-9
}[self.master_clock_rate]
return ClockSynchronizer(
dboard_ctrl_regs,
self.lmk,
self._spi_ifaces['phase_dac'],
0, # register offset value. future work.
self.master_clock_rate,
self.ref_clock_freq,
860E-15, # fine phase shift. TODO don't hardcode. This should live in the EEPROM
self.INIT_PHASE_DAC_WORD,
[target_value,], # target_values
0x0, # spi_addr TODO: make this a constant and replace in _sync_db_clock as well
self.slot_idx
)
def _sync_db_clock(synchronizer):
" Synchronizes the DB clock to the common reference "
synchronizer.check_core()
synchronizer.run_sync(measurement_only=False)
offset_error = synchronizer.run_sync(measurement_only=True)
if offset_error > 100e-12:
self.log.error("Clock synchronizer measured an offset of {:.1f} ps!".format(
offset_error*1e12
))
raise RuntimeError("Clock synchronizer measured an offset of {:.1f} ps!".format(
offset_error*1e12
))
else:
self.log.debug("Residual DAC offset error: {:.1f} ps.".format(
offset_error*1e12
))
self.log.info("Sample Clock Synchronization Complete!")
## Go, go, go!
# Sanity checks and input validation:
self.log.info("init() called with args `{}'".format(
",".join(['{}={}'.format(x, args[x]) for x in args])
))
if not self._periphs_initialized:
error_msg = "Cannot run init(), peripherals are not initialized!"
self.log.error(error_msg)
raise RuntimeError(error_msg)
if 'ref_clk_freq' in args:
self.ref_clock_freq = float(args['ref_clk_freq'])
assert self.ref_clock_freq in (10e6, 20e6, 25e6)
assert self.ref_clock_freq is not None
master_clock_rate = \
float(args.get('master_clock_rate',
self.default_master_clock_rate))
assert master_clock_rate in (122.88e6, 125e6, 153.6e6), \
"Invalid master clock rate: {:.02f} MHz".format(
master_clock_rate / 1e6)
master_clock_rate_changed = master_clock_rate != self.master_clock_rate
if master_clock_rate_changed:
self.master_clock_rate = master_clock_rate
self.log.debug("Updating master clock rate to {:.02f} MHz!".format(
self.master_clock_rate / 1e6
))
# Init some more periphs:
# The following peripherals are only used during init, so we don't want
# to hang on to them for the full lifetime of the Magnesium class. This
# helps us close file descriptors associated with the UIO objects.
with open_uio(
label="dboard-regs-{}".format(self.slot_idx),
read_only=False
) as dboard_ctrl_regs:
self.log.trace("Creating jesdcore object...")
jesdcore = nijesdcore.NIMgJESDCore(dboard_ctrl_regs, self.slot_idx)
# Now get cracking with the actual init sequence:
self.log.trace("Creating dboard clock control object...")
db_clk_control = DboardClockControl(dboard_ctrl_regs, self.log)
self.log.debug("Reset Dboard Clocking and JESD204B interfaces...")
db_clk_control.reset_mmcm()
jesdcore.reset()
self.log.trace("Initializing LMK...")
self.lmk = _init_lmk(
self._spi_ifaces['lmk'],
self.ref_clock_freq,
self.master_clock_rate,
self._spi_ifaces['phase_dac'],
self.INIT_PHASE_DAC_WORD,
)
db_clk_control.enable_mmcm()
self.log.info("Sample Clocks and Phase DAC Configured Successfully!")
# Synchronize DB Clocks
_sync_db_clock(_get_clock_synchronizer())
# Clocks and PPS are now fully active!
self.mykonos.set_master_clock_rate(self.master_clock_rate)
self.init_jesd(jesdcore, args)
jesdcore = None # Help with garbage collection
# That's all that requires access to the dboard regs!
self.mykonos.start_radio()
return True
def _parse_and_convert_cal_args(self, table, cal_args):
"""Parse calibration string and convert it to a number
Arguments:
table {dictionary} -- a look up table that map a type of calibration
to its bit mask.(defined in AD9375-UG992)
cal_args {string} -- string arguments from user in form of "CAL1|CAL2|CAL3"
or "CAL1 CAL2 CAL3" or "CAL1;CAL2;CAL3"
Returns:
int -- calibration value bit mask.
"""
value = 0
try:
return int(cal_args, 0)
except ValueError:
pass
for key in re.split(r'[;|\s]\s*', cal_args):
value_tmp = table.get(key.upper())
if (value_tmp) != None:
value |= value_tmp
else:
self.log.warning(
"Calibration key `%s' is not in calibration table. "
"Ignoring this key.",
key.upper()
)
return value
def init_rf_cal(self, args):
" Setup RF CAL "
self.log.info("Setting up RF CAL...")
try:
self._init_cals_mask = \
self._parse_and_convert_cal_args(
INIT_CALIBRATION_TABLE,
args.get('init_cals', 'DEFAULT')
)
self._tracking_cals_mask = \
self._parse_and_convert_cal_args(
TRACKING_CALIBRATION_TABLE,
args.get('tracking_cals', 'DEFAULT')
)
self._init_cals_timeout = int(
args.get('init_cals_timeout',
str(self.mykonos.DEFAULT_INIT_CALS_TIMEOUT))
, 0
)
except ValueError as ex:
self.log.warning("init() args missing or error using default \
value seeing following exception print out.")
self.log.warning("{}".format(ex))
self._init_cals_mask = self._parse_and_convert_cal_args(
INIT_CALIBRATION_TABLE, 'DEFAULT')
self._tracking_cals_mask = self._parse_and_convert_cal_args(
TRACKING_CALIBRATION_TABLE, 'DEFAULT')
self._init_cals_timeout = self.mykonos.DEFAULT_INIT_CALS_TIMEOUT
self.log.debug("args[init_cals]=0x{:02X}"
.format(self._init_cals_mask))
self.log.debug("args[tracking_cals]=0x{:02X}"
.format(self._tracking_cals_mask))
self.mykonos.setup_cal(self._init_cals_mask,
self._tracking_cals_mask,
self._init_cals_timeout)
def init_lo_source(self, args):
"""Set all LO
This function will initialize all LO to user specified sources.
If there's no source is specified, the default one will be used.
Arguments:
args {string:string} -- device arguments.
"""
self.log.info("Setting up LO source..")
rx_lo_source = args.get("rx_lo_source", "internal")
tx_lo_source = args.get("tx_lo_source", "internal")
self.mykonos.set_lo_source("RX", rx_lo_source)
self.mykonos.set_lo_source("TX", tx_lo_source)
self.log.debug("RX LO source is set at {}".format(self.mykonos.get_lo_source("RX")))
self.log.debug("TX LO source is set at {}".format(self.mykonos.get_lo_source("TX")))
def init_jesd(self, jesdcore, args):
"""
Bring up the JESD link between Mykonos and the N310.
All clocks must be set up and stable before starting this routine.
"""
jesdcore.check_core()
# JESD Lane Rate only depends on the master_clock_rate selection, since all
# other link parameters (LMFS,N) remain constant.
L = 4
M = 4
F = 2
S = 1
N = 16
new_rate = self.master_clock_rate * M * N * (10.0/8) / L / S
self.log.trace("Calculated JESD204b lane rate is {} Gbps".format(new_rate/1e9))
self.set_jesd_rate(jesdcore, new_rate)
self.log.trace("Pulsing Mykonos Hard Reset...")
self.cpld.reset_mykonos()
self.log.trace("Initializing Mykonos...")
self.init_lo_source(args)
self.mykonos.begin_initialization()
# Multi-chip Sync requires two SYSREF pulses at least 17us apart.
jesdcore.send_sysref_pulse()
time.sleep(0.001) # 17us... ish.
jesdcore.send_sysref_pulse()
self.mykonos.finish_initialization()
# TODO:can we call this after JESD?
self.init_rf_cal(args)
self.log.trace("Starting JESD204b Link Initialization...")
# Generally, enable the source before the sink. Start with the DAC side.
self.log.trace("Starting FPGA framer...")
jesdcore.init_framer()
self.log.trace("Starting Mykonos deframer...")
self.mykonos.start_jesd_rx()
# Now for the ADC link. Note that the Mykonos framer will not start issuing CGS
# characters until SYSREF is received by the framer. Therefore we enable the
# framer in Mykonos and the FPGA, send a SYSREF pulse to everyone, and then
# start the deframer in the FPGA.
self.log.trace("Starting Mykonos framer...")
self.mykonos.start_jesd_tx()
jesdcore.enable_lmfc(True)
jesdcore.send_sysref_pulse()
# Allow a bit of time for SYSREF to reach Mykonos and then CGS to appear. In
# several experiments this time requirement was only in the 100s of nanoseconds.
time.sleep(0.001)
self.log.trace("Starting FPGA deframer...")
jesdcore.init_deframer()
# Allow a bit of time for CGS/ILA to complete.
time.sleep(0.100)
error_flag = False
if not jesdcore.get_framer_status():
self.log.error("JESD204b FPGA Core Framer is not synced!")
error_flag = True
if not self.check_mykonos_deframer_status():
self.log.error("Mykonos JESD204b Deframer is not synced!")
error_flag = True
if not jesdcore.get_deframer_status():
self.log.error("JESD204b FPGA Core Deframer is not synced!")
error_flag = True
if not self.check_mykonos_framer_status():
self.log.error("Mykonos JESD204b Framer is not synced!")
error_flag = True
if (self.mykonos.get_multichip_sync_status() & 0xB) != 0xB:
self.log.error("Mykonos Multi-chip Sync failed!")
error_flag = True
if error_flag:
raise RuntimeError('JESD204B Link Initialization Failed. See MPM logs for details.')
self.log.info("JESD204B Link Initialization & Training Complete")
def check_mykonos_framer_status(self):
" Return True if Mykonos Framer is in good state "
rb = self.mykonos.get_framer_status()
self.log.trace("Mykonos Framer Status Register: 0x{:04X}".format(rb & 0xFF))
tx_state = {0: 'CGS',
1: 'ILAS',
2: 'ADC Data'}[rb & 0b11]
ilas_state = {0: 'CGS',
1: '1st Multframe',
2: '2nd Multframe',
3: '3rd Multframe',
4: '4th Multframe',
5: 'Last Multframe',
6: 'invalid state',
7: 'ILAS Complete'}[(rb & 0b11100) >> 2]
sysref_rx = (rb & (0b1 << 5)) > 0
fifo_ptr_delta_changed = (rb & (0b1 << 6)) > 0
sysref_phase_error = (rb & (0b1 << 7)) > 0
# According to emails with ADI, fifo_ptr_delta_changed may be buggy.
# Deterministic latency is still achieved even when this bit is toggled, so
# ADI's recommendation is to ignore it. The expected state of this bit 0, but
# occasionally it toggles to 1. It is unclear why exactly this happens.
success = ((tx_state == 'ADC Data') &
(ilas_state == 'ILAS Complete') &
sysref_rx &
(not sysref_phase_error))
logger = self.log.trace if success else self.log.warning
logger("Mykonos Framer, TX State: %s", tx_state)
logger("Mykonos Framer, ILAS State: %s", ilas_state)
logger("Mykonos Framer, SYSREF Received: {}".format(sysref_rx))
logger("Mykonos Framer, FIFO Ptr Delta Change: {} (ignored, possibly buggy)".format(fifo_ptr_delta_changed))
logger("Mykonos Framer, SYSREF Phase Error: {}".format(sysref_phase_error))
return success
def check_mykonos_deframer_status(self):
" Return True if Mykonos Deframer is in good state "
rb = self.mykonos.get_deframer_status()
self.log.trace("Mykonos Deframer Status Register: 0x{:04X}".format(rb & 0xFF))
frame_symbol_error = (rb & (0b1 << 0)) > 0
ilas_multifrm_error = (rb & (0b1 << 1)) > 0
ilas_framing_error = (rb & (0b1 << 2)) > 0
ilas_checksum_valid = (rb & (0b1 << 3)) > 0
prbs_error = (rb & (0b1 << 4)) > 0
sysref_received = (rb & (0b1 << 5)) > 0
deframer_irq = (rb & (0b1 << 6)) > 0
success = ((not frame_symbol_error) &
(not ilas_multifrm_error) &
(not ilas_framing_error) &
ilas_checksum_valid &
(not prbs_error) &
sysref_received &
(not deframer_irq))
logger = self.log.trace if success else self.log.warning
logger("Mykonos Deframer, Frame Symbol Error: {}".format(frame_symbol_error))
logger("Mykonos Deframer, ILAS Multiframe Error: {}".format(ilas_multifrm_error))
logger("Mykonos Deframer, ILAS Frame Error: {}".format(ilas_framing_error))
logger("Mykonos Deframer, ILAS Checksum Valid: {}".format(ilas_checksum_valid))
logger("Mykonos Deframer, PRBS Error: {}".format(prbs_error))
logger("Mykonos Deframer, SYSREF Received: {}".format(sysref_received))
logger("Mykonos Deframer, Deframer IRQ Received: {}".format(deframer_irq))
return success
def set_jesd_rate(self, jesdcore, new_rate, force=False):
"""
Make the QPLL and GTX changes required to change the JESD204B core rate.
"""
# The core is directly compiled for 125 MHz sample rate, which
# corresponds to a lane rate of 2.5 Gbps. The same QPLL and GTX settings apply
# for the 122.88 MHz sample rate.
#
# The higher LTE rate, 153.6 MHz, requires changes to the default configuration
# of the MGT components. This function performs the required changes in the
# following order (as recommended by UG476).
#
# 1) Modify any QPLL settings.
# 2) Perform the QPLL reset routine by pulsing reset then waiting for lock.
# 3) Modify any GTX settings.
# 4) Perform the GTX reset routine by pulsing reset and waiting for reset done.
assert new_rate in (2457.6e6, 2500e6, 3072e6)
# On first run, we have no idea how the FPGA is configured... so let's force an
# update to our rate.
force = force or (self.current_jesd_rate is None)
skip_drp = False
if not force:
# Current New Skip?
skip_drp = {2457.6e6 : {2457.6e6: True, 2500.0e6: True, 3072.0e6:False},
2500.0e6 : {2457.6e6: True, 2500.0e6: True, 3072.0e6:False},
3072.0e6 : {2457.6e6: False, 2500.0e6: False, 3072.0e6:True}}[self.current_jesd_rate][new_rate]
if skip_drp:
self.log.trace("Current lane rate is compatible with the new rate. Skipping "
"reconfiguration.")
# These are the only registers in the QPLL and GTX that change based on the
# selected line rate. The MGT wizard IP was generated for each of the rates and
# reference clock frequencies and then diffed to create this table.
QPLL_CFG = {2457.6e6: 0x680181, 2500e6: 0x680181, 3072e6: 0x06801C1}[new_rate]
QPLL_FBDIV = {2457.6e6: 0x120, 2500e6: 0x120, 3072e6: 0x80}[new_rate]
MGT_PMA_RSV = {2457.6e6: 0x1E7080, 2500e6: 0x1E7080, 3072e6: 0x18480}[new_rate]
MGT_RX_CLK25_DIV = {2457.6e6: 5, 2500e6: 5, 3072e6: 7}[new_rate]
MGT_TX_CLK25_DIV = {2457.6e6: 5, 2500e6: 5, 3072e6: 7}[new_rate]
MGT_RXOUT_DIV = {2457.6e6: 4, 2500e6: 4, 3072e6: 2}[new_rate]
MGT_TXOUT_DIV = {2457.6e6: 4, 2500e6: 4, 3072e6: 2}[new_rate]
MGT_RXCDR_CFG = {2457.6e6:0x03000023ff10100020, 2500e6:0x03000023ff10100020, 3072e6:0x03000023ff10200020}[new_rate]
# 1-2) Do the QPLL first
if not skip_drp:
self.log.trace("Changing QPLL settings to support {} Gbps".format(new_rate/1e9))
jesdcore.set_drp_target('qpll', 0)
# QPLL_CONFIG is spread across two regs: 0x32 (dedicated) and 0x33 (shared)
reg_x32 = QPLL_CFG & 0xFFFF # [16:0] -> [16:0]
reg_x33 = jesdcore.drp_access(rd=True, addr=0x33)
reg_x33 = (reg_x33 & 0xF800) | ((QPLL_CFG >> 16) & 0x7FF) # [26:16] -> [11:0]
jesdcore.drp_access(rd=False, addr=0x32, wr_data=reg_x32)
jesdcore.drp_access(rd=False, addr=0x33, wr_data=reg_x33)
# QPLL_FBDIV is shared with other settings in reg 0x36
reg_x36 = jesdcore.drp_access(rd=True, addr=0x36)
reg_x36 = (reg_x36 & 0xFC00) | (QPLL_FBDIV & 0x3FF) # in bits [9:0]
jesdcore.drp_access(rd=False, addr=0x36, wr_data=reg_x36)
# Run the QPLL reset sequence and prep the MGTs for modification.
jesdcore.init()
# 3-4) And the 4 MGTs second
if not skip_drp:
self.log.trace("Changing MGT settings to support {} Gbps"
.format(new_rate/1e9))
for lane in range(4):
jesdcore.set_drp_target('mgt', lane)
# MGT_PMA_RSV is split over 0x99 (LSBs) and 0x9A
reg_x99 = MGT_PMA_RSV & 0xFFFF
reg_x9a = (MGT_PMA_RSV >> 16) & 0xFFFF
jesdcore.drp_access(rd=False, addr=0x99, wr_data=reg_x99)
jesdcore.drp_access(rd=False, addr=0x9A, wr_data=reg_x9a)
# MGT_RX_CLK25_DIV is embedded with others in 0x11. The
# encoding for the DRP register value is one less than the
# desired value.
reg_x11 = jesdcore.drp_access(rd=True, addr=0x11)
reg_x11 = (reg_x11 & 0xF83F) | \
((MGT_RX_CLK25_DIV-1 & 0x1F) << 6) # [10:6]
jesdcore.drp_access(rd=False, addr=0x11, wr_data=reg_x11)
# MGT_TX_CLK25_DIV is embedded with others in 0x6A. The
# encoding for the DRP register value is one less than the
# desired value.
reg_x6a = jesdcore.drp_access(rd=True, addr=0x6A)
reg_x6a = (reg_x6a & 0xFFE0) | (MGT_TX_CLK25_DIV-1 & 0x1F) # [4:0]
jesdcore.drp_access(rd=False, addr=0x6A, wr_data=reg_x6a)
# MGT_RXCDR_CFG is split over 0xA8 (LSBs) through 0xAD
for reg_num, reg_addr in enumerate(range(0xA8, 0xAE)):
reg_data = (MGT_RXCDR_CFG >> 16*reg_num) & 0xFFFF
jesdcore.drp_access(rd=False, addr=reg_addr, wr_data=reg_data)
# MGT_RXOUT_DIV and MGT_TXOUT_DIV are embedded together in
# 0x88. The encoding for the DRP register value is
# drp_val=log2(attribute)
reg_x88 = (int(math.log(MGT_RXOUT_DIV, 2)) & 0x7) | \
((int(math.log(MGT_TXOUT_DIV, 2)) & 0x7) << 4) # RX=[2:0] TX=[6:4]
jesdcore.drp_access(rd=False, addr=0x88, wr_data=reg_x88)
self.log.trace("GTX settings changed to support {} Gbps"
.format(new_rate/1e9))
jesdcore.disable_drp_target()
self.log.trace("JESD204b Lane Rate set to {} Gbps!"
.format(new_rate/1e9))
self.current_jesd_rate = new_rate
return
def get_user_eeprom_data(self):
"""
Return a dict of blobs stored in the user data section of the EEPROM.
"""
return {
blob_id: self.eeprom_fs.get_blob(blob_id)
for blob_id in iterkeys(self.eeprom_fs.entries)
}
def set_user_eeprom_data(self, eeprom_data):
"""
Update the local EEPROM with the data from eeprom_data.
The actual writing to EEPROM can take some time, and is thus kicked
into a background task. Don't call set_user_eeprom_data() quickly in
succession. Also, while the background task is running, reading the
EEPROM is unavailable and MPM won't be able to reboot until it's
completed.
However, get_user_eeprom_data() will immediately return the correct
data after this method returns.
"""
for blob_id, blob in iteritems(eeprom_data):
self.eeprom_fs.set_blob(blob_id, blob)
self.log.trace("Writing EEPROM info to `{}'".format(self.eeprom_path))
eeprom_offset = self.user_eeprom[self.rev]['offset']
def _write_to_eeprom_task(path, offset, data, log):
" Writer task: Actually write to file "
# Note: This can be sped up by only writing sectors that actually
# changed. To do so, this function would need to read out the
# current state of the file, do some kind of diff, and then seek()
# to the different sectors. When very large blobs are being
# written, it doesn't actually help all that much, of course,
# because in that case, we'd anyway be changing most of the EEPROM.
with open(path, 'r+b') as eeprom_file:
log.trace("Seeking forward to `{}'".format(offset))
eeprom_file.seek(eeprom_offset)
log.trace("Writing a total of {} bytes.".format(
len(self.eeprom_fs.buffer)))
eeprom_file.write(data)
log.trace("EEPROM write complete.")
thread_id = "eeprom_writer_task_{}".format(self.slot_idx)
if any([x.name == thread_id for x in threading.enumerate()]):
# Should this be fatal?
self.log.warn("Another EEPROM writer thread is already active!")
writer_task = threading.Thread(
target=_write_to_eeprom_task,
args=(
self.eeprom_path,
eeprom_offset,
self.eeprom_fs.buffer,
self.log
),
name=thread_id,
)
writer_task.start()
# Now return and let the copy finish on its own. The thread will detach
# and MPM won't terminate this process until the thread is complete.
# This does not stop anyone from killing this process (and the thread)
# while the EEPROM write is happening, though.
def get_master_clock_rate(self):
" Return master clock rate (== sampling rate) "
return self.master_clock_rate
def update_ref_clock_freq(self, freq):
"""
Call this function if the frequency of the reference clock changes (the
10, 20, 25 MHz one). Note: Won't actually re-run any settings.
"""
assert freq in (10e6, 20e6, 25e6), \
"Invalid ref clock frequency: {}".format(freq)
self.log.trace("Changing ref clock frequency to %f MHz", freq/1e6)
self.ref_clock_freq = freq
##########################################################################
# Sensors
##########################################################################
def get_ref_lock(self):
"""
Returns True if the LMK reference is locked.
Note: This does not return a sensor dict. The sensor API call is
in the motherboard class.
"""
if self.lmk is None:
self.log.trace("LMK object not yet initialized, defaulting to " \
"no ref locked!")
return False
lmk_lock_status = self.lmk.check_plls_locked()
self.log.trace("LMK lock status is: {}".format(lmk_lock_status))
return lmk_lock_status
def get_lowband_lo_lock(self, which):
"""
Return LO lock status (Boolean!) of the lowband LOs. 'which' must be
either 'tx' or 'rx'
"""
assert which.lower() in ('tx', 'rx')
return self.cpld.get_lo_lock_status(which.upper())
def get_ad9371_lo_lock(self, which):
"""
Return LO lock status (Boolean!) of the lowband LOs. 'which' must be
either 'tx' or 'rx'
"""
return self.mykonos.get_lo_locked(which.upper())
def get_lowband_tx_lo_locked_sensor(self, chan):
" TX lowband LO lock sensor "
self.log.trace("Querying TX lowband LO lock status for chan %d...",
chan)
lock_status = self.get_lowband_lo_lock('tx')
return {
'name': 'lowband_lo_locked',
'type': 'BOOLEAN',
'unit': 'locked' if lock_status else 'unlocked',
'value': str(lock_status).lower(),
}
def get_lowband_rx_lo_locked_sensor(self, chan):
" RX lowband LO lock sensor "
self.log.trace("Querying RX lowband LO lock status for chan %d...",
chan)
lock_status = self.get_lowband_lo_lock('rx')
return {
'name': 'lowband_lo_locked',
'type': 'BOOLEAN',
'unit': 'locked' if lock_status else 'unlocked',
'value': str(lock_status).lower(),
}
def get_ad9371_tx_lo_locked_sensor(self, chan):
" TX ad9371 LO lock sensor "
self.log.trace("Querying TX AD9371 LO lock status for chan %d...", chan)
lock_status = self.get_ad9371_lo_lock('tx')
return {
'name': 'ad9371_lo_locked',
'type': 'BOOLEAN',
'unit': 'locked' if lock_status else 'unlocked',
'value': str(lock_status).lower(),
}
def get_ad9371_rx_lo_locked_sensor(self, chan):
" RX ad9371 LO lock sensor "
self.log.trace("Querying RX AD9371 LO lock status for chan %d...", chan)
lock_status = self.get_ad9371_lo_lock('tx')
return {
'name': 'ad9371_lo_locked',
'type': 'BOOLEAN',
'unit': 'locked' if lock_status else 'unlocked',
'value': str(lock_status).lower(),
}
##########################################################################
# Debug
##########################################################################
def cpld_peek(self, addr):
"""
Debug for accessing the CPLD via the RPC shell.
"""
return self.cpld.peek16(addr)
def cpld_poke(self, addr, data):
"""
Debug for accessing the CPLD via the RPC shell.
"""
self.cpld.poke16(addr, data)
return self.cpld.peek16(addr)
def dump_jesd_core(self):
" Debug method to dump all JESD core regs "
with open_uio(
label="dboard-regs-{}".format(self.slot_idx),
read_only=False
) as dboard_ctrl_regs:
for i in range(0x2000, 0x2110, 0x10):
print(("0x%04X " % i), end=' ')
for j in range(0, 0x10, 0x4):
print(("%08X" % dboard_ctrl_regs.peek32(i + j)), end=' ')
print("")
def dbcore_peek(self, addr):
"""
Debug for accessing the DB Core registers via the RPC shell.
"""
with open_uio(
label="dboard-regs-{}".format(self.slot_idx),
read_only=False
) as dboard_ctrl_regs:
rd_data = dboard_ctrl_regs.peek32(addr)
self.log.trace("DB Core Register 0x{:04X} response: 0x{:08X}".format(addr, rd_data))
return rd_data
def dbcore_poke(self, addr, data):
"""
Debug for accessing the DB Core registers via the RPC shell.
"""
with open_uio(
label="dboard-regs-{}".format(self.slot_idx),
read_only=False
) as dboard_ctrl_regs:
self.log.trace("Writing DB Core Register 0x{:04X} with 0x{:08X}...".format(addr, data))
dboard_ctrl_regs.poke32(addr, data)
|