1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
|
/**
*\file mykonos.c
*
*\brief Contains Mykonos APIs for transceiver configuration and control
*
* Mykonos API version: 1.3.1.3534
*/
/**
* \mainpage Overview
*
* This document is intended for use by software engineering professionals and
* includes detailed information regarding the data types and function calls
* which comprise the Mykonos ANSI C API.
* References to "Mykonos" in the API refer to the Analog Devices development name for the AD9371 family of devices.
*
*/
/**
* \page Disclaimer Legal Disclaimer
* WARRANTY DISCLAIMER: THE SOFTWARE AND ANY RELATED INFORMATION AND/OR ADVICE IS PROVIDED ON AN
* �AS IS� BASIS, WITHOUT REPRESENTATIONS, GUARANTEES OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED,
* ORAL OR WRITTEN, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT.
*/
/**
* \page Use Suggested Use
* The purpose of this API library is to add abstraction for the low level
* SPI control and calculations necessary to control the Mykonos family of transceiver devices
*
* Add the included source code as required to your baseband processor software build. Please reference the integration document
* as well for further instructions.
*/
#include <stdint.h>
#include <stddef.h>
#include "common.h"
#include "mykonos.h"
#include "mykonos_gpio.h"
#include "mykonos_macros.h"
#include "mykonos_user.h"
/* Private helper functions local to this file */
static mykonosErr_t MYKONOS_calculateScaledDeviceClk_kHz(mykonosDevice_t *device, uint32_t *scaledRefClk_kHz, uint8_t *deviceClkDiv);
static mykonosErr_t MYKONOS_calculateDigitalClocks(mykonosDevice_t *device, uint32_t *hsDigClk_kHz, uint32_t *hsDigClkDiv4or5_kHz);
static mykonosErr_t enableDpdTracking(mykonosDevice_t *device, uint8_t tx1Enable, uint8_t tx2Enable);
static mykonosErr_t enableClgcTracking(mykonosDevice_t *device, uint8_t tx1Enable, uint8_t tx2Enable);
/**
* \brief Verifies the Tx profile members are valid (in range) in the init structure
*
* If the Tx profile IQ data rate = 0, it is assumed that the Tx profile is
* not used. If Tx IQ data rate > 0, and Tx profile members are out of range,
*
* \pre This function is private and is not called directly by the user.
*
* <B>Dependencies</B>
* - device->tx->txProfile
*
* \param device Structure pointer to Mykonos device data structure
* \param txProfile txProfile settings to be verified
* \param txHsDigClk_kHz Return value of the calculated HS Dig Clock required by the Tx profile
*
* \retval MYKONOS_ERR_TXPROFILE_IQRATE Profile IQ rate out of range
* \retval MYKONOS_ERR_TXPROFILE_RFBW Tx Profile RF bandwidth out of range
* \retval MYKONOS_ERR_TXPROFILE_FILTER_INTERPOLATION Filter interpolation not valid
* \retval MYKONOS_ERR_TXPROFILE_FIR_INT FIR filter not valid
* \retval MYKONOS_ERR_OK All profile members are valid
*/
static mykonosErr_t mykVerifyTxProfile(mykonosDevice_t *device, mykonosTxProfile_t *txProfile, uint32_t *txHsDigClk_kHz)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
*txHsDigClk_kHz = 0;
/********************************/
/* Check for a valid Tx profile */
/********************************/
if ((txProfile->iqRate_kHz < MIN_TX_IQRATE_KHZ) || (txProfile->iqRate_kHz > MAX_TX_IQRATE_KHZ))
{
return MYKONOS_ERR_TXPROFILE_IQRATE;
}
if ((txProfile->rfBandwidth_Hz < MIN_TX_RFBW_HZ) || (txProfile->rfBandwidth_Hz > MAX_TX_RFBW_HZ))
{
return MYKONOS_ERR_TXPROFILE_RFBW;
}
if ((txProfile->thb1Interpolation != 1) && (txProfile->thb1Interpolation != 2))
{
return MYKONOS_ERR_TXPROFILE_FILTER_INTERPOLATION;
}
if ((txProfile->thb2Interpolation != 1) && (txProfile->thb2Interpolation != 2))
{
return MYKONOS_ERR_TXPROFILE_FILTER_INTERPOLATION;
}
if ((txProfile->txFirInterpolation != 1) && (txProfile->txFirInterpolation != 2) && (txProfile->txFirInterpolation != 4))
{
return MYKONOS_ERR_TXPROFILE_FILTER_INTERPOLATION;
}
if ((txProfile->txFir->coefs == NULL) && (txProfile->txFirInterpolation != 1))
{
return MYKONOS_ERR_TXPROFILE_FIR_COEFS;
}
if ((txProfile->dacDiv != DACDIV_2) && (txProfile->dacDiv != DACDIV_2p5) && (txProfile->dacDiv != DACDIV_4))
{
return MYKONOS_ERR_TXPROFILE_DACDIV;
}
*txHsDigClk_kHz = (txProfile->iqRate_kHz * txProfile->txFirInterpolation * txProfile->thb1Interpolation * txProfile->thb2Interpolation * txProfile->dacDiv);
device->profilesValid |= TX_PROFILE_VALID;
return retVal;
}
/**
* \brief Verifies the Rx profile members are valid (in range) and calculates HS Dig Clock require for the Rx Profile
*
* Private helper function to verify the Rx profile members are valid (in range)
* and calculates HS Dig Clock require for the Rx Profile
* If the Rx profile IQ data rate = 0, it is assumed that the Rx profile is
* not used. If Rx IQ data rate > 0, and Rx profile members are out of range.
*
* \pre This function is private and is not called directly by the user.
*
* <B>Dependencies</B>
* - device->rx->rxProfile
*
* \param device Structure pointer to Talise device data structure
* \param rxChannel receiver channel to be checked
* \param rxProfile rxProfile settings to be verified
* \param rxHsDigClk_kHz Return value of the calculated HS Dig Clock required by the Rx profile
*
* \retval MYKONOS_ERR_RXPROFILE_RXCHANNEL Rx channel is not valid.
* \retval MYKONOS_ERR_RXPROFILE_IQRATE out of range IQ rate
* \retval MYKONOS_ERR_RXPROFILE_RFBW out of range RF bandwidth
* \retval MYKONOS_ERR_RXPROFILE_FILTER_DECIMATION not valid filter decimation setting
* \retval MYKONOS_ERR_RXPROFILE_FIR_COEFS FIR filter not valid
* \retval MYKONOS_ERR_RXPROFILE_ADCDIV not valid ADC divider
* \retval MYKONOS_ERR_OK all profile members are valid
*/
static mykonosErr_t mykVerifyRxProfile(mykonosDevice_t *device, mykonosRxProfType_t rxChannel, mykonosRxProfile_t *rxProfile, uint32_t *rxHsDigClk_kHz)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint32_t minBwHz = 0;
uint32_t maxBwHz = 0;
*rxHsDigClk_kHz = 0;
switch (rxChannel)
{
case MYK_RX_PROFILE:
minBwHz = MIN_RX_RFBW_HZ;
maxBwHz = MAX_RX_RFBW_HZ;
break;
case MYK_OBS_PROFILE:
minBwHz = MIN_ORX_RFBW_HZ;
maxBwHz = MAX_ORX_RFBW_HZ;
break;
case MYK_SNIFFER_PROFILE:
minBwHz = MIN_SNIFFER_RFBW_HZ;
maxBwHz = MAX_SNIFFER_RFBW_HZ;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RXPROFILE_RXCHANNEL,
getMykonosErrorMessage(MYKONOS_ERR_RXPROFILE_RXCHANNEL));
return MYKONOS_ERR_RXPROFILE_RXCHANNEL;
}
/********************************/
/* Check for a valid Rx profile */
/********************************/
if ((rxProfile->iqRate_kHz < MIN_RX_IQRATE_KHZ) || (rxProfile->iqRate_kHz > MAX_RX_IQRATE_KHZ))
{
return MYKONOS_ERR_RXPROFILE_IQRATE;
}
/* check for Rx/Obs or Sniffer BW */
if ((rxProfile->rfBandwidth_Hz < minBwHz) || (rxProfile->rfBandwidth_Hz > maxBwHz))
{
return MYKONOS_ERR_RXPROFILE_RFBW;
}
if ((rxProfile->rhb1Decimation != 1) && (rxProfile->rhb1Decimation != 2))
{
return MYKONOS_ERR_RXPROFILE_FILTER_DECIMATION;
}
if ((rxProfile->rxDec5Decimation != 4) && (rxProfile->rxDec5Decimation != 5))
{
return MYKONOS_ERR_RXPROFILE_FILTER_DECIMATION;
}
if ((rxProfile->rxFirDecimation != 1) && (rxProfile->rxFirDecimation != 2) && (rxProfile->rxFirDecimation != 4))
{
return MYKONOS_ERR_RXPROFILE_FILTER_DECIMATION;
}
if ((rxProfile->rxFir->coefs == NULL) && (rxProfile->rxFirDecimation != 1))
{
return MYKONOS_ERR_RXPROFILE_FIR_COEFS;
}
if ((rxProfile->adcDiv != 1) && (rxProfile->adcDiv != 2))
{
return MYKONOS_ERR_RXPROFILE_ADCDIV;
}
*rxHsDigClk_kHz = (rxProfile->iqRate_kHz * rxProfile->rxFirDecimation * rxProfile->rhb1Decimation * rxProfile->rxDec5Decimation * rxProfile->adcDiv);
switch (rxChannel)
{
case MYK_RX_PROFILE:
device->profilesValid |= RX_PROFILE_VALID;
break;
case MYK_OBS_PROFILE:
device->profilesValid |= ORX_PROFILE_VALID;
break;
case MYK_SNIFFER_PROFILE:
device->profilesValid |= SNIFF_PROFILE_VALID;
break;
}
return retVal;
}
/**
* \brief Performs a hard reset on the MYKONOS DUT (Toggles RESETB pin on device)
*
* Toggles the Mykonos devices RESETB pin. Only resets the device with
* the SPI chip select indicated in the device->spiSettings structure.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to Mykonos device data structure containing settings
*
* \return Returns enum mykonosErr_t, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_resetDevice(mykonosDevice_t *device)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_resetDevice()\n");
#endif
/* toggle RESETB on device with matching spi chip select index */
CMB_hardReset(device->spiSettings->chipSelectIndex);
return MYKONOS_ERR_OK;
}
/**
* \brief Reads back the silicon revision for the Mykonos Device
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to Mykonos device data structure containing settings
* \param revision Return value of the Mykonos silicon revision
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getDeviceRev(mykonosDevice_t *device, uint8_t *revision)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getDeviceRev()\n");
#endif
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_PRODUCT_ID, revision, 0x07, 0);
return MYKONOS_ERR_OK;
}
/**
* \brief Reads back the Product ID for the Mykonos Device
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to Mykonos device data structure containing settings
* \param productId Return value of the Mykonos product Id
*
* \retval MYKONOS_ERR_GETPRODUCTID__NULL_PARAM recovery action for bad parameter check
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getProductId(mykonosDevice_t *device, uint8_t *productId)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getProductId()\n");
#endif
if (productId == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETPRODUCTID_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETPRODUCTID_NULL_PARAM));
return MYKONOS_ERR_GETPRODUCTID_NULL_PARAM;
}
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_PRODUCT_ID, productId, 0xF8, 3);
return retVal;
}
/**
* \brief Get API version number
*
* This function reads back the version number of the API
*
* \param device Pointer to the Mykonos data structure
* \param siVer A pointer to the current silicon version number.
* \param majorVer A pointer to the current major version number.
* \param minorVer A pointer to the current minor version number.
* \param buildVer A pointer to the current build version number.
*
* \retval MYKONOS_ERR_GET_API_VERSION_NULL_PARAM Null parameter passed to the function.
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getApiVersion(mykonosDevice_t *device, uint32_t *siVer, uint32_t *majorVer, uint32_t *minorVer, uint32_t *buildVer)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getApiVersion()\n");
#endif
if ((siVer == NULL) || (majorVer == NULL) || (minorVer == NULL) || (buildVer == NULL))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GET_API_VERSION_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_GET_API_VERSION_NULL_PARAM));
return MYKONOS_ERR_GET_API_VERSION_NULL_PARAM;
}
*siVer = (uint32_t)MYKONOS_CURRENT_SI_VERSION;
*majorVer = (uint32_t)MYKONOS_CURRENT_MAJOR_VERSION;
*minorVer = (uint32_t)MYKONOS_CURRENT_MINOR_VERSION;
*buildVer = (uint32_t)MYKONOS_CURRENT_BUILD_VERSION;
return retVal;
}
/**
* \brief Sets the Mykonos device SPI settings (3wire/4wire, MSBFirst, etc).
*
* This function will use the settings in the device->spiSettings structure
* to set SPI stream mode, address auto increment direction, MSBFirst/LSBfirst,
* and 3wire/4wire mode. The Mykonos device always uses SPI MODE 0 (CPHA=0, CPOL=0).
* This function will update your device->spiSettings to set CHPA=0 and CPOL=0 and
* longInstructionWord =1 to use a 16bit instruction word.
*
* <B>Dependencies</B>
* - writes device->spiSettings->CPHA = 0
* - writes device->spiSettings->CPOL = 0
* - writes device->spiSettings->longInstructionWord = 1
*
* - device->spiSettings->MSBFirst
* - device->spiSettings->enSpiStreaming
* - device->spiSettings->autoIncAddrUp
* - device->spiSettings->fourWireMode
*
* \param device Pointer to Mykonos device data structure containing settings
*
* \return Returns enum mykonosErr_t, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_setSpiSettings(mykonosDevice_t *device)
{
//device->spiSettings->enSpiStreaming
uint8_t spiReg = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setSpiSettings()\n");
#endif
device->spiSettings->CPHA = 0;
device->spiSettings->CPOL = 0;
device->spiSettings->longInstructionWord = 1;
if (device->spiSettings->MSBFirst == 0)
{
spiReg |= 0x42; /* SPI bit is 1=LSB first */
}
if (device->spiSettings->autoIncAddrUp > 0)
{
spiReg |= 0x24;
}
if (device->spiSettings->fourWireMode > 0)
{
spiReg |= 0x18;
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CONFIGURATION_CONTROL_0, spiReg);
if (device->spiSettings->enSpiStreaming > 0)
{
/* Allow SPI streaming mode: SPI message ends when chip select deasserts */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_SPI_CONFIGURATION_CONTROL_1, 0x00);
}
else
{
/* Force single instruction mode */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_SPI_CONFIGURATION_CONTROL_1, 0x80);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Verifies the integrity of the Mykonos device data structure.
*
* The Mykonos device data structure has many pointers to other structures. The
* main purpose of this function to verify that the necessary pointers within the
* device data structure have non zero pointers. The focus is on the Rx/Tx/ObsRx
* profiles and FIR filters where if a channel is disabled, it may be valid for
* some pointers to be NULL. This function updates device->profileValid to remember
* which profile pointers are valid.
* profileValid[3:0] = {SnifferProfileValid, ObsRxProfileValid, RxProfileValid, TxProfileValid};
*
* <B>Dependencies</B>
* - device (all variables)
*
* \param device Pointer to Mykonos device data structure containing settings
*
* \return Returns enum mykonosErr_t, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_verifyDeviceDataStructure(mykonosDevice_t *device)
{
if (device == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, 0, MYKONOS_ERR_CHECKDEVSTRUCT_NULLDEVPOINTER, getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_NULLDEVPOINTER));
return MYKONOS_ERR_CHECKDEVSTRUCT_NULLDEVPOINTER;
}
device->profilesValid = 0; /* Reset */
if (device->spiSettings == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, 0, MYKONOS_ERR_CHECKDEVSTRUCT_SPI, getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_SPI));
return MYKONOS_ERR_CHECKDEVSTRUCT_SPI;
}
/* place this writeToLog after verifying the spiSettings structure is not NULL */
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_verifyDeviceDataStructure()\n");
#endif
/**************************************************************************
* Check Rx stucture pointers
**************************************************************************
*/
if (device->rx == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECKDEVSTRUCT_RX, getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_RX));
return MYKONOS_ERR_CHECKDEVSTRUCT_RX;
}
else
{
if (device->rx->rxChannels == RXOFF)
{/* If no Rx channel enabled, ok to have null pointers for rx gain control, framer, and Rx profile/Rx FIR Filter */
}
else
{
if ((device->rx->framer == NULL) || (device->rx->rxGainCtrl == NULL) || (device->rx->rxProfile == NULL))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECKDEVSTRUCT_RXSUB,
getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_RXSUB));
return MYKONOS_ERR_CHECKDEVSTRUCT_RXSUB;
}
if ((device->rx->rxProfile->rxFir == NULL) && (device->rx->rxProfile->rxFirDecimation != 1))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECKDEVSTRUCT_RXFIR,
getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_RXFIR));
return MYKONOS_ERR_CHECKDEVSTRUCT_RXFIR;
}
}
}
/**************************************************************************
* Check Tx stucture pointers
**************************************************************************
*/
if (device->tx == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECKDEVSTRUCT_TX, getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_TX));
return MYKONOS_ERR_CHECKDEVSTRUCT_TX;
}
else
{
if (device->tx->txChannels == TXOFF)
{/* If no Tx channel enabled, ok to have null pointers for deframer, and Tx profile/Tx FIR filter */
}
else
{
if ((device->tx->deframer == NULL) || (device->tx->txProfile == NULL))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECKDEVSTRUCT_TXSUB,
getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_TXSUB));
return MYKONOS_ERR_CHECKDEVSTRUCT_TXSUB;
}
if ((device->tx->txProfile->txFir == NULL) && (device->tx->txProfile->txFirInterpolation != 1))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECKDEVSTRUCT_TXFIR,
getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_TXFIR));
return MYKONOS_ERR_CHECKDEVSTRUCT_TXFIR;
}
}
}
/**************************************************************************
* Check ObsRx stucture pointers
**************************************************************************
*/
if (device->obsRx == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECKDEVSTRUCT_OBSRX,
getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_OBSRX));
return MYKONOS_ERR_CHECKDEVSTRUCT_OBSRX;
}
else
{
if (device->obsRx->obsRxChannelsEnable == MYK_OBS_RXOFF)
{/* If no ObsRx channel enabled, ok to have null pointers for ObsRx gain control, framer, and ObsRx profile/FIR Filter */
}
else
{
if ((device->obsRx->framer == NULL))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECKDEVSTRUCT_OBSRXFRAMER,
getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_OBSRXFRAMER));
return MYKONOS_ERR_CHECKDEVSTRUCT_OBSRXFRAMER;
}
if (device->obsRx->snifferProfile != NULL)
{
if (device->obsRx->snifferGainCtrl == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECKDEVSTRUCT_SNIFFERGAINCTRL,
getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_SNIFFERGAINCTRL));
return MYKONOS_ERR_CHECKDEVSTRUCT_SNIFFERGAINCTRL;
}
if ((device->obsRx->snifferProfile->rxFir == NULL) && (device->obsRx->snifferProfile->rxFirDecimation != 1))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECKDEVSTRUCT_SNIFFERFIR,
getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_SNIFFERFIR));
return MYKONOS_ERR_CHECKDEVSTRUCT_SNIFFERFIR;
}
}
if (device->obsRx->orxProfile != NULL)
{
if (device->obsRx->orxGainCtrl == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECKDEVSTRUCT_ORXGAINCTRL,
getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_ORXGAINCTRL));
return MYKONOS_ERR_CHECKDEVSTRUCT_ORXGAINCTRL;
}
if ((device->obsRx->orxProfile->rxFir == NULL) && (device->obsRx->orxProfile->rxFirDecimation != 1))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECKDEVSTRUCT_ORXFIR,
getMykonosErrorMessage(MYKONOS_ERR_CHECKDEVSTRUCT_ORXFIR));
return MYKONOS_ERR_CHECKDEVSTRUCT_ORXFIR;
}
}
}
}
return MYKONOS_ERR_OK;
}
/**
* \brief Initializes the Mykonos device based on the desired device settings.
*
* This function initializes the mykonos device, setting up the CLKPLL, digital clocks,
* JESD204b settings, FIR Filters, digital filtering. It does not load the ARM
* or perform any of the ARM init calibrations. It also sets the Rx Manual gain indexes and
* TxAttenuation settings to the initial values found in the device data structure. It leaves the
* Mykonos in a state ready for multichip sync (which can bring up the JESD204 links), the
* ARM to be loaded, and the init calibartions run.
*
* <B>Dependencies</B>
* - device (all variables)
*
* \param device Pointer to Mykonos device data structure containing settings
*
* \return Returns enum mykonosErr_t, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_initialize(mykonosDevice_t *device)
{
uint8_t txChannelSettings = 0;
uint8_t rxChannelSettings = 0;
uint8_t orxChannelSettings = 0;
uint8_t sniffChannelSettings = 0;
uint8_t adcDacClockRateSelect = 0;
uint8_t enableDpd = 0;
uint8_t obsRxRealIf = 0;
uint8_t enRxHighRejDec5 = 0;
uint8_t rxRealIfData = 0;
uint8_t txSyncb = 0x00;
uint8_t rxSyncb = 0x00;
uint8_t orxSyncb = 0x00;
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_initialize()\n");
#endif
retVal = MYKONOS_verifyDeviceDataStructure(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Verify Rx/Tx and ObsRx profiles are valid combinations */
retVal = MYKONOS_verifyProfiles(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Set 3 or 4-wire SPI mode, MSBFirst/LSBfirst in device, pushes CPOL=0, CPHA=0, longInstWord=1 into device->spiSettings */
retVal = MYKONOS_setSpiSettings(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Increase SPI_DO drive strength */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DIGITAL_IO_CONTROL, 0x10);
/* Enable Reference clock - Set REFCLK pad common mode voltage */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_REF_PAD_CONFIG2, 0x07);
/* Set Mykonos IO pin settings, GPIO direction, enable relevant LVDS pads */
/* Enable SYSREF LVDS input pad + 100ohm internal termination */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_SYSREF_PAD_CONFIG, 0x12); //Enable SYSREF input buffer
if (device->tx > 0 && device->tx->txProfile > 0)
{
/* Check for LVDS/CMOS mode */
if (device->tx->deframer->txSyncbMode > 0)
{
txSyncb = 0xF0;
}
else
{
txSyncb = 0x02;
}
/* Enable SYNCOUTB output buffer */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX1_SYNC_PAD_CONFIG, txSyncb);
}
/* Look at each framer and enable the RXSYNCB used for each framer.
* It is possible that they use the same RXSYNCB pin */
if (device->rx > 0 && device->rx->framer > 0)
{
/* Check for LVDS/CMOS mode */
if (device->rx->framer->rxSyncbMode > 0)
{
rxSyncb = 0x00;
}
else
{
rxSyncb = 0x12;
}
if (device->rx->framer->obsRxSyncbSelect == 0)
{
/* Enable SYNCINB0 LVDS/CMOS input buffer */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX1_SYNC_CONFIG, rxSyncb);
}
else
{
/* Enable SYNCINB1 LVDS/CMOS input buffer */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX2_SYNC_CONFIG, rxSyncb);
}
}
if (device->obsRx > 0 && device->obsRx->framer > 0)
{
/* Check for LVDS/CMOS mode */
if (device->obsRx->framer->rxSyncbMode > 0)
{
orxSyncb = 0x00;
}
else
{
orxSyncb = 0x12;
}
if (device->obsRx->framer->obsRxSyncbSelect == 0)
{
/* Check for rxSyncb and orxSyncb when using the same RXSYNCB */
if ((orxSyncb != rxSyncb) && (device->rx->framer->obsRxSyncbSelect == 0))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_RXSYNCB_ORXSYNCB_MODE,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_RXSYNCB_ORXSYNCB_MODE));
return MYKONOS_ERR_INIT_INV_RXSYNCB_ORXSYNCB_MODE;
}
/* Enable SYNCINB0 LVDS input buffer */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX1_SYNC_CONFIG, orxSyncb);
}
else
{
/* Check for rxSyncb and orxSyncb when using the same ORXSYNCB */
if ((orxSyncb != rxSyncb) && (device->rx->framer->obsRxSyncbSelect == 1))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_RXSYNCB_ORXSYNCB_MODE,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_RXSYNCB_ORXSYNCB_MODE));
return MYKONOS_ERR_INIT_INV_RXSYNCB_ORXSYNCB_MODE;
}
/* Enable SYNCINB1 LVDS input buffer */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX2_SYNC_CONFIG, orxSyncb);
}
}
/* Set number of device clock cycles per microsecond [round(freq/2) - 1] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_REFERENCE_CLOCK_CYCLES, (uint8_t)((((device->clocks->deviceClock_kHz / 1000) + 1) >> 1) - 1));
/* Set profile specific digital clock dividers */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CONFIGURATION_CONTROL_1, 0x04); /* Negate Rx2 so phase matches Rx1 */
if (device->profilesValid & TX_PROFILE_VALID)
{
txChannelSettings = ((device->tx->txChannels & 0x3) << 6);
switch (device->tx->txProfile->thb2Interpolation)
{
case 1:
break; /* keep bit as 0 in bitfield */
case 2:
txChannelSettings |= 0x20;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_TXHB2_INTERPOLATION,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_TXHB2_INTERPOLATION));
return MYKONOS_ERR_INIT_INV_TXHB2_INTERPOLATION;
}
switch (device->tx->txProfile->thb1Interpolation)
{
case 1:
break; /* keep bit as 0 in bitfield */
case 2:
txChannelSettings |= 0x10;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_TXHB1_INTERPOLATION,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_TXHB1_INTERPOLATION));
return MYKONOS_ERR_INIT_INV_TXHB1_INTERPOLATION;
}
if (device->tx->txProfile->txFir == 0)
{
/* If invalid pointer to FIR filter, Bypass programmable FIR, keep txChannelSettings[1:0] == 0 */
}
else
{
switch (device->tx->txProfile->txFirInterpolation)
{
case 1:
txChannelSettings |= 0x01;
break;
case 2:
txChannelSettings |= 0x02;
break;
case 4:
txChannelSettings |= 0x03;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_TXFIR_INTERPOLATION,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_TXFIR_INTERPOLATION));
return MYKONOS_ERR_INIT_INV_TXFIR_INTERPOLATION;
}
}
switch (device->tx->txProfile->dacDiv)
{
case DACDIV_2:
break; /* Keep bit [1]=0 */
case DACDIV_2p5:
break; /* Keep bit [1]=0, div 2.5 is set when Rx DEC5 filter enabled*/
case DACDIV_4:
adcDacClockRateSelect |= 2;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_DACDIV, getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_DACDIV));
return MYKONOS_ERR_INIT_INV_DACDIV;
}
}
if (device->profilesValid & RX_PROFILE_VALID)
{
rxChannelSettings = ((device->rx->rxChannels & 0x3) << 6);
switch (device->rx->rxProfile->rxDec5Decimation)
{
case 4:
break; /* keep bit as 0 in bitfield */
case 5:
rxChannelSettings |= 0x04;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_RXDEC5_DECIMATION,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_RXDEC5_DECIMATION));
return MYKONOS_ERR_INIT_INV_RXDEC5_DECIMATION;
}
switch (device->rx->rxProfile->rhb1Decimation)
{
case 1:
break; /* keep bit as 0 in bitfield */
case 2:
rxChannelSettings |= 0x10;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_RXHB1_DECIMATION,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_RXHB1_DECIMATION));
return MYKONOS_ERR_INIT_INV_RXHB1_DECIMATION;
}
if (device->rx->rxProfile->rxFir == 0)
{
/* If invalid pointer to FIR filter, Bypass programmable FIR, keep rxChannelSettings[1:0] == 0 */
}
else
{
switch (device->rx->rxProfile->rxFirDecimation)
{
case 1:
rxChannelSettings |= 0x01;
break;
case 2:
rxChannelSettings |= 0x02;
break;
case 4:
rxChannelSettings |= 0x03;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_RXFIR_DECIMATION,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_RXFIR_DECIMATION));
return MYKONOS_ERR_INIT_INV_RXFIR_DECIMATION;
}
}
switch (device->rx->rxProfile->adcDiv)
{
case 1:
adcDacClockRateSelect |= 0;
break;
case 2:
adcDacClockRateSelect |= 1;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_ADCDIV, getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_ADCDIV));
return MYKONOS_ERR_INIT_INV_ADCDIV;
}
rxRealIfData = (device->rx->realIfData > 0) ? 1 : 0;
enRxHighRejDec5 = (device->rx->rxProfile->enHighRejDec5 > 0) ? 1 : 0;
}
else if (device->profilesValid & ORX_PROFILE_VALID)
{
/* if Rx profile not valid, but ORX profile valid, set RX ADC divider and dec5 to match orx profile setting */
/* ARM clock is derived from Rx clocking, so Rx ADC div needs to be set */
switch (device->obsRx->orxProfile->rxDec5Decimation)
{
case 4:
break; /* keep bit as 0 in bitfield */
case 5:
rxChannelSettings |= 0x04;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_RXDEC5_DECIMATION,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_RXDEC5_DECIMATION));
return MYKONOS_ERR_INIT_INV_RXDEC5_DECIMATION;
}
switch (device->obsRx->orxProfile->adcDiv)
{
case 1:
adcDacClockRateSelect |= 0;
break;
case 2:
adcDacClockRateSelect |= 1;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_ADCDIV, getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_ADCDIV));
return MYKONOS_ERR_INIT_INV_ADCDIV;
}
}
else if (device->profilesValid & SNIFF_PROFILE_VALID)
{
/* if Rx profile not valid, and ORX profile not valid, set RX ADC divider and dec5 to match sniffer profile setting */
/* ARM clock is derived from Rx clocking, so Rx ADC div needs to be set */
switch (device->obsRx->snifferProfile->rxDec5Decimation)
{
case 4:
break; /* keep bit as 0 in bitfield */
case 5:
rxChannelSettings |= 0x04;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_RXDEC5_DECIMATION,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_RXDEC5_DECIMATION));
return MYKONOS_ERR_INIT_INV_RXDEC5_DECIMATION;
}
switch (device->obsRx->snifferProfile->adcDiv)
{
case 1:
adcDacClockRateSelect |= 0;
break;
case 2:
adcDacClockRateSelect |= 1;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_ADCDIV, getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_ADCDIV));
return MYKONOS_ERR_INIT_INV_ADCDIV;
}
}
/* determine ObsRx ADC Div setting */
if (device->profilesValid & ORX_PROFILE_VALID)
{
switch (device->obsRx->orxProfile->adcDiv)
{
case 1:
break; /* Keep bit[4]=0 */
case 2:
adcDacClockRateSelect |= 0x10;
break; /* Set bit[4]=1 */
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_OBSRX_ADCDIV,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_OBSRX_ADCDIV));
return MYKONOS_ERR_INIT_INV_OBSRX_ADCDIV;
}
}
else if (device->profilesValid & SNIFF_PROFILE_VALID)
{
switch (device->obsRx->snifferProfile->adcDiv)
{
case 1:
break; /* Keep bit[4]=0 */
case 2:
adcDacClockRateSelect |= 0x10;
break; /* Set bit[4]=1 */
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_OBSRX_ADCDIV,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_OBSRX_ADCDIV));
return MYKONOS_ERR_INIT_INV_OBSRX_ADCDIV;
}
}
else if (device->profilesValid & RX_PROFILE_VALID)
{ /* if OBSRX profiles are not valid, set obsRx ADC div to match Rx ADC divider */
switch (device->rx->rxProfile->adcDiv)
{
case 1:
break; /* Keep bit[4]=0 */
case 2:
adcDacClockRateSelect |= 0x10;
break; /* Set bit[4]=1 */
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_OBSRX_ADCDIV,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_OBSRX_ADCDIV));
return MYKONOS_ERR_INIT_INV_OBSRX_ADCDIV;
}
}
/* Determine ORx and Sniffer channel settings */
if (device->obsRx > 0)
{
/* verify pointers in data structure are valid (non-zero) */
if (device->profilesValid & (ORX_PROFILE_VALID | SNIFF_PROFILE_VALID))
{
if (device->obsRx->realIfData > 0)
{
obsRxRealIf = 1;
}
}
/* TODO: verify that the decimation matches the given IQ rate in the data structure */
/* Set Sniffer profile (digital filter enables) if sniffer profile enabled (valid pointer) */
if (device->profilesValid & SNIFF_PROFILE_VALID)
{
sniffChannelSettings = 0;
switch (device->obsRx->snifferProfile->rhb1Decimation)
{
case 1:
break;
case 2:
sniffChannelSettings |= 0x10;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_SNIFFER_RHB1,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_SNIFFER_RHB1));
return MYKONOS_ERR_INIT_INV_SNIFFER_RHB1;
}
if (device->obsRx->snifferProfile->rxFir > 0)
{
switch (device->obsRx->snifferProfile->rxFirDecimation)
{
case 1:
sniffChannelSettings |= 0x01;
break;
case 2:
sniffChannelSettings |= 0x02;
break;
case 4:
sniffChannelSettings |= 0x03;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_SNIFFER_RFIR_DEC,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_SNIFFER_RFIR_DEC));
return MYKONOS_ERR_INIT_INV_SNIFFER_RFIR_DEC;
}
}
}
/* Set ORx profile (digital filter enables) if ORx profile enabled (valid pointer) */
if (device->profilesValid & ORX_PROFILE_VALID)
{
orxChannelSettings = 0;
switch (device->obsRx->orxProfile->rhb1Decimation)
{
case 1:
break;
case 2:
orxChannelSettings |= 0x10;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_ORX_RHB1,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_ORX_RHB1));
return MYKONOS_ERR_INIT_INV_ORX_RHB1;
}
if (device->obsRx->orxProfile->rxFir > 0)
{/* if pointer to orx rxFIR is valid */
switch (device->obsRx->orxProfile->rxFirDecimation)
{
case 1:
orxChannelSettings |= 0x01;
break;
case 2:
orxChannelSettings |= 0x02;
break;
case 4:
orxChannelSettings |= 0x03;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_ORX_RFIR_DEC,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_ORX_RFIR_DEC));
return MYKONOS_ERR_INIT_INV_ORX_RFIR_DEC;
}
}
}
}
/************************************************************************
* Set channel config settings for Rx/Tx/oRx and Sniffer channels
***********************************************************************
*/
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CONFIGURATION_CONTROL_2, txChannelSettings);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CONFIGURATION_CONTROL_4, rxChannelSettings);
/* Set option to use new high rejection DEC5 filters in main Rx1/Rx2 path. */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CONFIGURATION_CONTROL_5, ((rxRealIfData << 2) | (enRxHighRejDec5 ? 3 : 0)));
if (rxRealIfData > 0)
{
/* Set Rx1 NCO frequency */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX_NCO_CH1_FTW_BYTE_3, 0x40);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX_NCO_CH1_FTW_BYTE_2, 0x00);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX_NCO_CH1_FTW_BYTE_1, 0x01);
/* Set Rx2 NCO frequency */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX_NCO_CH2_FTW_BYTE_3, 0x40);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX_NCO_CH2_FTW_BYTE_2, 0x00);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX_NCO_CH2_FTW_BYTE_1, 0x01);
/* Enable NCO for Rx1 and Rx2 to shift data from zero IF to real IF */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_RX_NCO_CONTROL, 3, 0x03, 0);
}
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_DPD_SNIFFER_CONFIGURATION_CONTROL_2, obsRxRealIf, 0x40, 6);
/* if sniffer profile disabled, Sniffer config reg is set to default = 0x80 */
sniffChannelSettings |= 0x80; /* use PFIR coef set B = bit[7]=1*/
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_SNIFFER_CONFIGURATION_CONTROL, sniffChannelSettings);
/* if orx profile not valid, SPI reg for orx config is set to default = 0x00 */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DPD_CONFIGURATION_CONTROL, orxChannelSettings);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_LOOPBACK_CONFIGURATION_CONTROL, orxChannelSettings);
/* Set ADC divider, DAC divider, and ObsRx/sniffer dividers */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_1, adcDacClockRateSelect, 0x13, 0);
/* Disable ORx digital DC offset - bad default SPI setting for ObsRx DC offset */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DIGITAL_DC_OFFSET_CH3_DPD_M_SHIFT, 0x60);
/* Necessary write for ARM init cals to work */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_SNIFF_RXLOGEN_BYTE1, 0x0E);
/* Increase Sniffer LNA gain */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_SNRX_LNA_BIAS_C, 0x0F);
/* Set the CLKPLL with the frequency from the device data structure */
retVal = MYKONOS_initDigitalClocks(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Wait for CLKPLL CP Cal done and CLKPLL Lock or throw error message */
CMB_wait_ms(500);
retVal = MYKONOS_waitForEvent(device, CLKPLLCP, 1000000);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = MYKONOS_waitForEvent(device, CLKPLL_LOCK, 1000000);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Enable digital clocks - this is gated by the CLKPLL being locked */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_0, 0x14);
/* Set the Tx PFIR synchronization clock */
retVal = MYKONOS_setTxPfirSyncClk(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Set the Rx PFIR synchronization clock */
retVal = MYKONOS_setRxPfirSyncClk(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
if (device->profilesValid & TX_PROFILE_VALID)
{
/* Set pre TxPFIR Half band filter interpolation */
if (device->tx->txProfile->txInputHbInterpolation == 1)
{
/* disable TX input half band ([3:2]=00) - but allow DPD to still be enabled for tx profiles with wide BW [1] */
enableDpd = (device->tx->txProfile->enableDpdDataPath > 0) ? 1 : 0;
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_FILTER_CONFIGURATION, enableDpd, 0x0E, 1);
}
else if (device->tx->txProfile->txInputHbInterpolation == 2)
{
if (device->tx->txProfile->iqRate_kHz > 160000)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_TXINPUTHB0_INV_RATE,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_TXINPUTHB0_INV_RATE));
return MYKONOS_ERR_INIT_INV_TXINPUTHB0_INV_RATE;
}
/* enable TX input half band[2]=1, and Enable DPD[1]=1*/
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_FILTER_CONFIGURATION, 3, 0x0E, 1);
}
else if (device->tx->txProfile->txInputHbInterpolation == 4)
{
if (device->tx->txProfile->iqRate_kHz > 80000)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_TXINPUTHB_INV_RATE,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_TXINPUTHB_INV_RATE));
return MYKONOS_ERR_INIT_INV_TXINPUTHB_INV_RATE;
}
/* enable TX input HB0[3]=1 and Tx input HB[2]=1, and Enable DPD[1]=1*/
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_FILTER_CONFIGURATION, 7, 0x0E, 1);
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INIT_INV_TXINPUTHB_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INIT_INV_TXINPUTHB_PARM));
return MYKONOS_ERR_INIT_INV_TXINPUTHB_PARM;
}
/* Enable SPI Tx Atten mode */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_TPC_CONFIG, 0x01, 0x03, 0);
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_TPC_CONFIG, 0x01, 0x0C, 2);
/* Set Tx1 Atten step size */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_INCR_DECR_WORD, device->tx->txAttenStepSize, 0x60, 5);
/* Set Tx2 Atten step size */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_TPC_CONFIG, device->tx->txAttenStepSize, 0x60, 5);
}
else
{
/* Power down DACs */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_PD_OVERIDE_7_0, 3, 0x0C, 2);
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_PD_OVERRIDE_CONTROL_7_0, 3, 0x0C, 2);
}
/* Set RxFE LO Common mode */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RXFE1_LOCM, 0xF0);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RXFE2_LOCM, 0xF0);
/* Set Rxloopback LO Common mode */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RXLOOPBACK1_CNTRL_1, 0xFF);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RXLOOPBACK2_CNTRL_1, 0xFF);
/* Setup MGC or AGC Rx gain control */
retVal = MYKONOS_setupRxAgc(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Default Rx to use manual gain control until AGC enabled by user */
MYKONOS_setRxGainControlMode(device, MGC);
retVal = MYKONOS_setupObsRxAgc(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Default ObsRx to use manual gain control until AGC enabled by user */
MYKONOS_setObsRxGainControlMode(device, MGC);
/* Disable GPIO select bits by setting to b11 */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_CONFIGURATION_CONTROL_1, 3, 0x30, 4);
/* Extra settings for ARM calibrations */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DIGITAL_DC_OFFSET_SHIFT, 0x11);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX_LOOPBACK1_CNTRL_4, 0x04);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX_LOOPBACK2_CNTRL_4, 0x04);
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_CFG_2, 0x20, 0x20, 0);
/* Extra settings for ADC initialisation */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX_ADC_FLASH_DELAY, 0x28);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX_ADC_FLASH_CTRL, 0x0E);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ORX_ADC_FLASH_DELAY, 0x28);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ORX_ADC_FLASH_CTRL, 0x0E);
/* Move to Alert ENSM state */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ENSM_CONFIG_7_0, 0x05);
return MYKONOS_ERR_OK;
}
/**
* \brief Verifies the init structure profiles are valid combinations
*
* This function checks that the Rx/Tx/ORx/Sniffer profiles have valid clock rates in
* order to operate together. Rx/Tx and ORx/Sniffer share a common high speed digital
* clock. If an invalid combination of profiles is detected, an error will be
* returned. If a profile in the init structure is unused, the user should zero
* out all members of that particular profile structure. If a Rx/Tx/ORx/Sniffer profile
* has an IQ rate = 0, it is assumed that the profile is disabled.
*
* \pre This function is private and is not called directly by the user.
*
* This function uses mykVerifyTxProfile() and mykVerifyRxProfile() as helper functions.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Structure pointer to Mykonos device data structure
*
* \retval MYKONOS_ERR_PROFILES_HSDIGCLK profiles loaded are not valid
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_verifyProfiles(mykonosDevice_t *device)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint32_t rxHsDigClk_kHz = 0;
uint32_t orxHsDigClk_kHz = 0;
uint32_t snifferHsDigClk_kHz = 0;
uint32_t txHsDigClk_kHz = 0;
mykonosRxProfile_t *rxProfile = NULL;
mykonosTxProfile_t *txProfile = NULL;
mykonosRxProfile_t *orxProfile = NULL;
mykonosRxProfile_t *snifferProfile = NULL;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_verifyProfiles()\n");
#endif
device->profilesValid = 0;
/* Check all loaded profiles */
if (device->tx->txChannels != TXOFF)
{
txProfile = device->tx->txProfile;
retVal = mykVerifyTxProfile(device, txProfile, &txHsDigClk_kHz);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}
if (device->rx->rxChannels != RXOFF)
{
rxProfile = device->rx->rxProfile;
retVal = mykVerifyRxProfile(device, MYK_RX_PROFILE, rxProfile, &rxHsDigClk_kHz);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}
if (device->obsRx->obsRxChannelsEnable != MYK_OBS_RXOFF)
{
if (device->obsRx->obsRxChannelsEnable & MYK_ORX1_ORX2)
{
orxProfile = device->obsRx->orxProfile;
retVal = mykVerifyRxProfile(device, MYK_OBS_PROFILE, orxProfile, &orxHsDigClk_kHz);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}
if (device->obsRx->obsRxChannelsEnable & MYK_SNRXA_B_C)
{
snifferProfile = device->obsRx->snifferProfile;
retVal = mykVerifyRxProfile(device, MYK_SNIFFER_PROFILE, snifferProfile, &snifferHsDigClk_kHz);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}
}
return retVal;
}
/**
* \brief Write indirect registers (Programmable FIRs, Rx gain tables, JESD204B settings). Must be done after Multi Chip Sync
*
* The BBP should never need to call this function. It is called automatically by the initArm function.
* This function is a continuation of the MYKONOS_initialize() function. This part of initialization must be done after
* the BBP has completed Multi chip Sync. These registers include FIR filters, Rx gain tables, and JESD204B framer/deframer
* config registers.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the Mykonos device data structure containing settings
* an error.
* \return Returns enum mykonosErr_t, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_initSubRegisterTables(mykonosDevice_t *device)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
/* ------------------------------------------------------------------------------------------- */
/* Program submap register tables after digital clocks are up and running and Multi Chip Sync */
/* has been completed by BBP */
if (device->profilesValid & TX_PROFILE_VALID)
{
if (device->tx->txProfile->txFir > 0)
{
retVal = MYKONOS_programFir(device, TX1TX2_FIR, device->tx->txProfile->txFir);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}
}
if (device->profilesValid & RX_PROFILE_VALID)
{
if (device->rx->rxProfile->rxFir > 0)
{
retVal = MYKONOS_programFir(device, RX1RX2_FIR, device->rx->rxProfile->rxFir);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Load Rx gain table */
retVal = MYKONOS_programRxGainTable(device, &RxGainTable[0][0], (sizeof(RxGainTable) >> 2), RX1_RX2_GT);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = MYKONOS_setRx1ManualGain(device, device->rx->rxGainCtrl->rx1GainIndex);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = MYKONOS_setRx2ManualGain(device, device->rx->rxGainCtrl->rx2GainIndex);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Enable Digital gain for Rx and ObsRx gain tables */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DIGITAL_GAIN_CONFIG, 0x80);
}
}
if (device->profilesValid & SNIFF_PROFILE_VALID)
{
if (device->obsRx->snifferProfile->rxFir > 0)
{
retVal = MYKONOS_programFir(device, OBSRX_B_FIR, device->obsRx->snifferProfile->rxFir);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Load Sniffer Rx gain table */
retVal = MYKONOS_programRxGainTable(device, &SnRxGainTable[0][0], (sizeof(SnRxGainTable) >> 2), SNRX_GT);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = MYKONOS_setObsRxManualGain(device, OBS_SNIFFER_A, device->obsRx->snifferGainCtrl->gainIndex);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}
}
if (device->profilesValid & ORX_PROFILE_VALID)
{
if (device->obsRx->orxProfile->rxFir > 0)
{/* if pointer to orx rxFIR is valid */
retVal = MYKONOS_programFir(device, OBSRX_A_FIR, device->obsRx->orxProfile->rxFir);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Load ORx gain table */
retVal = MYKONOS_programRxGainTable(device, &ORxGainTable[0][0], (sizeof(ORxGainTable) >> 2), ORX_GT);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = MYKONOS_setObsRxManualGain(device, OBS_RX1_TXLO, device->obsRx->orxGainCtrl->orx1GainIndex);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = MYKONOS_setObsRxManualGain(device, OBS_RX2_TXLO, device->obsRx->orxGainCtrl->orx2GainIndex);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}
}
/* Load Loopback Gain Table for ARM calibrations */
{
uint8_t loopBackGainTable[6][4] = {
/* Order: {FE table, External Ctl, Digital Gain/Atten, Enable Atten} */
{0, 0, 0, 0}, /* Gain index 255 */
{7, 0, 0, 0}, /* Gain index 254 */
{13, 0, 1, 1}, /* Gain index 253 */
{18, 0, 3, 1}, /* Gain index 252 */
{23, 0, 3, 1}, /* Gain index 251 */
{28, 0, 0, 0} /* Gain index 250 */
};
retVal = MYKONOS_programRxGainTable(device, &loopBackGainTable[0][0], (sizeof(loopBackGainTable) >> 2), LOOPBACK_GT);
}
/* Enable Digital gain for ORx/Sniffer/Loopback gain table */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DPD_SNIFFER_DIGITAL_GAIN_CONFIG, 0x80);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RCAL_CONTROL, 0x07);/* Set RCAL code to nominal */
/* If Valid Rx Profile or valid ObsRx profile, setup serializers */
if ((device->profilesValid & RX_PROFILE_VALID) || (device->profilesValid & (ORX_PROFILE_VALID | SNIFF_PROFILE_VALID)))
{
retVal = MYKONOS_setupSerializers(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}
if ((device->rx->rxChannels != RXOFF) && (device->profilesValid & RX_PROFILE_VALID))
{
retVal = MYKONOS_setupJesd204bFramer(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}
if ((device->obsRx->obsRxChannelsEnable != MYK_OBS_RXOFF) && (device->profilesValid & (ORX_PROFILE_VALID | SNIFF_PROFILE_VALID)))
{
retVal = MYKONOS_setupJesd204bObsRxFramer(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}
if ((device->tx->txChannels != TXOFF) && (device->profilesValid & TX_PROFILE_VALID))
{
retVal = MYKONOS_setupDeserializers(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = MYKONOS_setupJesd204bDeframer(device);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = MYKONOS_setTx1Attenuation(device, device->tx->tx1Atten_mdB);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = MYKONOS_setTx2Attenuation(device, device->tx->tx2Atten_mdB);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}
return MYKONOS_ERR_OK;
}
/**
* \brief Performs a blocking wait for a Mykonos calibration or Pll Lock
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the Mykonos device data structure containing settings
* \param waitEvent the enum value of the event to wait for
* \param timeout_us If timeout_us time has passed, function will return with
* an error.
* \return Returns enum mykonosErr_t, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_waitForEvent(mykonosDevice_t *device, waitEvent_t waitEvent, uint32_t timeout_us)
{
uint16_t spiAddr = 0;
uint8_t spiBit = 0;
uint8_t doneBitLevel = 0;
uint8_t data = 0;
mykonosErr_t errCode = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_waitForEvent()\n");
#endif
switch (waitEvent)
{
case CALPLL_LOCK:/* wait for x17F[7]=1 */
spiAddr = MYKONOS_ADDR_CALPLL_SDM_CONTROL;
spiBit = 7;
doneBitLevel = 1;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_CALPLL_LOCK;
break;
case CLKPLLCP: /* wait for x154[5]=1 */
spiAddr = MYKONOS_ADDR_CLK_SYNTH_CAL_STAT;
spiBit = 5;
doneBitLevel = 1;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_CLKPLLCP;
break;
case CLKPLL_LOCK: /* wait for x157[0]=1 */
spiAddr = MYKONOS_ADDR_CLK_SYNTH_VCO_BAND_BYTE1;
spiBit = 0;
doneBitLevel = 1;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_CLKPLL_LOCK;
break;
case RF_RXPLLCP:/* wait for x254[5]=1 */
spiAddr = MYKONOS_ADDR_RXSYNTH_CP_CAL_STAT;
spiBit = 5;
doneBitLevel = 1;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RXPLLCP;
break;
case RF_RXPLL_LOCK: /* wait for x257[0]=1 */
spiAddr = MYKONOS_ADDR_RXSYNTH_VCO_BAND_BYTE1;
spiBit = 0;
doneBitLevel = 1;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RXPLL_LOCK;
break;
case RF_TXPLLCP: /* wait for x2C4[5]=1 */
spiAddr = MYKONOS_ADDR_TXSYNTH_CP_CAL_STAT;
spiBit = 5;
doneBitLevel = 1;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_TXPLLCP;
break;
case RF_TXPLL_LOCK: /* wait for x2C7[0]=1 */
spiAddr = MYKONOS_ADDR_TXSYNTH_VCO_BAND_BYTE1;
spiBit = 0;
doneBitLevel = 1;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_TXPLL_LOCK;
break;
case RF_SNIFFERPLLCP: /* wait for x354[7]=1 */
spiAddr = MYKONOS_ADDR_SNIFF_RXSYNTH_CP_CAL_STAT;
spiBit = 5;
doneBitLevel = 1;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_SNIFFPLLCP;
break;
case RF_SNIFFERPLL_LOCK: /* wait for x357[0]=1 */
spiAddr = MYKONOS_ADDR_SNIFF_RXSYNTH_VCO_BAND_BYTE1;
spiBit = 0;
doneBitLevel = 1;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_SNIFFPLL_LOCK;
break;
case RXBBF_CALDONE: /* wait for x1B2[5]=0 */
spiAddr = MYKONOS_ADDR_CALIBRATION_CONTROL;
spiBit = 5;
doneBitLevel = 0;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RXBBFCALDONE;
break;
case TXBBF_CALDONE:/* wait for x1B2[0]=0 */
spiAddr = MYKONOS_ADDR_CALIBRATION_CONTROL;
spiBit = 0;
doneBitLevel = 0;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_TXBBFCALDONE;
break;
case RX_RFDC_CALDONE: /* wait for x1B2[1]=0 */
spiAddr = MYKONOS_ADDR_CALIBRATION_CONTROL;
spiBit = 1;
doneBitLevel = 0;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RFDCCALDONE;
break;
case RX_ADCTUNER_CALDONE:/* wait for x1B2[7]=0 */
spiAddr = MYKONOS_ADDR_CALIBRATION_CONTROL;
spiBit = 7;
doneBitLevel = 0;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_ADCTUNECALDONE;
break;
case RX1_ADCPROFILE:/* wait for x5DD[5]=0 */
spiAddr = MYKONOS_ADDR_RX_ADC1_PRFL;
spiBit = 5;
doneBitLevel = 0;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RX1ADCPROFILE;
break;
case RX2_ADCPROFILE:/* wait for x5DE[5]=0 */
spiAddr = MYKONOS_ADDR_RX_ADC2_PRFL;
spiBit = 5;
doneBitLevel = 0;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RX2ADCPROFILE;
break;
case ORX_ADCPROFILE:/* wait for x5DF[5]=0 */
spiAddr = MYKONOS_ADDR_ORX_ADC_PRFL;
spiBit = 5;
doneBitLevel = 0;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_ORXADCPROFILE;
break;
case RCAL_CALDONE: /* wait for x1B2[6]=0 */
spiAddr = MYKONOS_ADDR_CALIBRATION_CONTROL;
spiBit = 6;
doneBitLevel = 0;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RCALDONE;
break;
case ARMBUSY:/* wait for xD30[7]=0 */
spiAddr = MYKONOS_ADDR_ARM_CMD;
spiBit = 7;
doneBitLevel = 0;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_ARMBUSY;
break;
case INITARM_DONE:
spiAddr = MYKONOS_ADDR_ARM_CMD;
spiBit = 7;
doneBitLevel = 0;
errCode = MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_INITARMDONE;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_WAITFOREVENT_INV_PARM,
getMykonosErrorMessage(MYKONOS_ERR_WAITFOREVENT_INV_PARM));
return MYKONOS_ERR_WAITFOREVENT_INV_PARM;
}
CMB_setTimeout_us(device->spiSettings, timeout_us); /* timeout after desired time */
do
{
CMB_SPIReadByte(device->spiSettings, spiAddr, &data);
/* For SW verification tests, allow API to think all cals are complete*/
#ifdef MYK_CALS_DONE_SWDEBUG
if (doneBitLevel == 0)
{
data = 0x00;
}
else
{
data = 0xFF;
}
#endif
if (CMB_hasTimeoutExpired(device->spiSettings) > 0)
{
CMB_writeToLog(ADIHAL_LOG_WARNING, device->spiSettings->chipSelectIndex, errCode, getMykonosErrorMessage(errCode));
return errCode;
}
} while (((data >> spiBit) & 0x01) != doneBitLevel);
return MYKONOS_ERR_OK;
}
/**
* \brief Performs a readback with no wait for a Mykonos calibration or Pll Lock
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the Mykonos device data structure containing settings
* \param waitEvent the enum value of the event to wait for
* \param eventDone Return value: 1= calibration event is complete. 0 = Event is still pending
* \return Returns enum mykonosErr_t, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_readEventStatus(mykonosDevice_t *device, waitEvent_t waitEvent, uint8_t *eventDone)
{
uint16_t spiAddr = 0;
uint8_t data = 0;
uint8_t spiBit = 0;
uint8_t doneBitLevel = 0;
switch (waitEvent)
{
case CALPLL_LOCK:/* wait for x17F[7]=1 */
spiAddr = MYKONOS_ADDR_CALPLL_SDM_CONTROL;
spiBit = 7;
doneBitLevel = 1;
break;
case CLKPLLCP: /* wait for x154[5]=1 */
spiAddr = MYKONOS_ADDR_CLK_SYNTH_CAL_STAT;
spiBit = 5;
doneBitLevel = 1;
break;
case CLKPLL_LOCK: /* wait for x157[0]=1 */
spiAddr = MYKONOS_ADDR_CLK_SYNTH_VCO_BAND_BYTE1;
spiBit = 0;
doneBitLevel = 1;
break;
case RF_RXPLLCP:/* wait for x254[5]=1 */
spiAddr = MYKONOS_ADDR_RXSYNTH_CP_CAL_STAT;
spiBit = 5;
doneBitLevel = 1;
break;
case RF_RXPLL_LOCK: /* wait for x257[0]=1 */
spiAddr = MYKONOS_ADDR_RXSYNTH_VCO_BAND_BYTE1;
spiBit = 0;
doneBitLevel = 1;
break;
case RF_TXPLLCP: /* wait for x2C4[5]=1 */
spiAddr = MYKONOS_ADDR_TXSYNTH_CP_CAL_STAT;
spiBit = 5;
doneBitLevel = 1;
break;
case RF_TXPLL_LOCK: /* wait for x2C7[0]=1 */
spiAddr = MYKONOS_ADDR_TXSYNTH_VCO_BAND_BYTE1;
spiBit = 0;
doneBitLevel = 1;
break;
case RF_SNIFFERPLLCP: /* wait for x354[7]=1 */
spiAddr = MYKONOS_ADDR_SNIFF_RXSYNTH_CP_CAL_STAT;
spiBit = 5;
doneBitLevel = 1;
break;
case RF_SNIFFERPLL_LOCK: /* wait for x357[0]=1 */
spiAddr = MYKONOS_ADDR_SNIFF_RXSYNTH_VCO_BAND_BYTE1;
spiBit = 0;
doneBitLevel = 1;
break;
case RXBBF_CALDONE: /* wait for x1B2[5]=0 */
spiAddr = MYKONOS_ADDR_CALIBRATION_CONTROL;
spiBit = 5;
doneBitLevel = 0;
break;
case TXBBF_CALDONE:/* wait for x1B2[0]=0 */
spiAddr = MYKONOS_ADDR_CALIBRATION_CONTROL;
spiBit = 0;
doneBitLevel = 0;
break;
case RX_RFDC_CALDONE: /* wait for x1B2[1]=0 */
spiAddr = MYKONOS_ADDR_CALIBRATION_CONTROL;
spiBit = 1;
doneBitLevel = 0;
break;
case RX_ADCTUNER_CALDONE:/* wait for x1B2[7]=0 */
spiAddr = MYKONOS_ADDR_CALIBRATION_CONTROL;
spiBit = 7;
doneBitLevel = 0;
break;
case RX1_ADCPROFILE:/* wait for x5DD[5]=0 */
spiAddr = MYKONOS_ADDR_RX_ADC1_PRFL;
spiBit = 5;
doneBitLevel = 0;
break;
case RX2_ADCPROFILE:/* wait for x5DE[5]=0 */
spiAddr = MYKONOS_ADDR_RX_ADC2_PRFL;
spiBit = 5;
doneBitLevel = 0;
break;
case ORX_ADCPROFILE:/* wait for x5DF[5]=0 */
spiAddr = MYKONOS_ADDR_ORX_ADC_PRFL;
spiBit = 5;
doneBitLevel = 0;
break;
case RCAL_CALDONE: /* wait for x1B2[6]=0 */
spiAddr = MYKONOS_ADDR_CALIBRATION_CONTROL;
spiBit = 6;
doneBitLevel = 0;
break;
case ARMBUSY:/* wait for xD30[7]=0 */
spiAddr = MYKONOS_ADDR_ARM_CMD;
spiBit = 7;
doneBitLevel = 0;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_WAITFOREVENT_INV_PARM,
getMykonosErrorMessage(MYKONOS_ERR_WAITFOREVENT_INV_PARM));
return MYKONOS_ERR_WAITFOREVENT_INV_PARM;
}
CMB_SPIReadByte(device->spiSettings, spiAddr, &data);
if (doneBitLevel)
{
*eventDone = (data >> spiBit) & 0x01;
}
else
{
*eventDone = ((~(data >> spiBit)) & 0x01);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Sets the CLKPLL output frequency.
*
* This code updates the Synth and Loop filter settings based on a VCO
* frequency LUT. The VCO frequency break points for the Synth LUT can be
* found in an array called vcoFreqArrayMhz.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->spiSettings
* - device->deviceClock_kHz
* - device->rxSettings->rxProfile->vcoFreq_kHz
* - device->rxSettings->rxProfile->clkPllHsDiv
* - device->rxSettings->rxProfile->clkPllVcoDiv
*
* \param device is structure pointer to the MYKONOS data structure containing settings
*
* \return Returns enum MYKONOS_ERR, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_initDigitalClocks(mykonosDevice_t *device)
{
/* RF Synth variables */
/* pull Synth and Loop filter values from a Look Up Table */
uint8_t vcoOutLvl;
uint8_t vcoVaractor; /* [3:0] */
uint8_t vcoBiasRef; /* [2:0] */
uint8_t vcoBiasTcf; /* [1:0] */
uint8_t vcoCalOffset; /* [3:0] */
uint8_t vcoVaractorRef; /* [3:0] */
uint8_t loopFilterIcp; /* Icp[5:0] */
uint8_t loopFilterC2C1; /* C2[3:0],C1[3:0] */
uint8_t loopFilterR1C3; /* R1[3:0],C3[3:0] */
uint8_t loopFilterR3; /* R3[3:0] */
uint8_t vcoIndex;
uint8_t i;
/* RF PLL variables */
uint16_t integerWord;
uint32_t fractionalWord;
uint32_t fractionalRemainder;
uint32_t scaledRefClk_Hz;
/* common */
uint64_t hsDigClk_Hz = 0;
uint32_t scaledRefClk_kHz = 0;
uint8_t deviceClkDiv = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t clockControl2 = 0;
uint8_t sdmSettings = 0;
uint8_t hsDiv = 4;
uint8_t vcoDiv = 0;
uint8_t vcoDivTimes10 = 10;
/******************RF Synth Section************************/
static const uint8_t icp_46p08[53] = {15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30,
31, 32, 32, 33, 34, 34, 35, 36, 36, 37, 38, 39, 21, 21, 21, 22, 22, 22, 23, 23, 23};
static const uint8_t icp_61p44[53] = {11, 12, 13, 13, 14, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 24, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 15, 16, 16, 16, 16, 17, 17, 17, 17};
static const uint8_t icp_76p8[53] = {9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 18, 18,
19, 19, 20, 20, 20, 21, 21, 22, 22, 23, 23, 12, 12, 13, 13, 13, 13, 13, 14, 14};
static const uint32_t vcoFreqArray_kHz[53] = {12605000UL, 12245000UL, 11906000UL, 11588000UL, 11288000UL, 11007000UL, 10742000UL, 10492000UL, 10258000UL, 10036000UL,
9827800UL, 9631100UL, 9445300UL, 9269800UL, 9103600UL, 8946300UL, 8797000UL, 8655300UL, 8520600UL, 8392300UL, 8269900UL, 8153100UL, 8041400UL, 7934400UL,
7831800UL, 7733200UL, 7638400UL, 7547100UL, 7459000UL, 7374000UL, 7291900UL, 7212400UL, 7135500UL, 7061000UL, 6988700UL, 6918600UL, 6850600UL, 6784600UL,
6720500UL, 6658200UL, 6597800UL, 6539200UL, 6482300UL, 6427000UL, 6373400UL, 6321400UL, 6270900UL, 6222000UL, 6174500UL, 6128400UL, 6083600UL, 6040100UL,
5997700UL};
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_initDigitalClocks()\n");
#endif
retVal = MYKONOS_calculateScaledDeviceClk_kHz(device, &scaledRefClk_kHz, &deviceClkDiv);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
hsDiv = device->clocks->clkPllHsDiv;
vcoDiv = device->clocks->clkPllVcoDiv;
switch (hsDiv)
{
case 4:
hsDiv = 4; /* clockControl2[3:2] = 00 */
break;
case 5:
hsDiv = 5;
clockControl2 |= 0x04; /* Set bit[2]=1 */
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CLKPLL_INV_HSDIV, getMykonosErrorMessage(MYKONOS_ERR_CLKPLL_INV_HSDIV));
return MYKONOS_ERR_CLKPLL_INV_HSDIV;
}
switch (vcoDiv)
{
case VCODIV_1:
vcoDivTimes10 = 10; /* clockControl2[1:0] = 00 */
break;
case VCODIV_1p5:
vcoDivTimes10 = 15;
clockControl2 |= 0x01;
break;
case VCODIV_2:
vcoDivTimes10 = 20;
clockControl2 |= 0x02;
break;
case VCODIV_3:
vcoDivTimes10 = 30;
clockControl2 |= 0x03;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CLKPLL_INV_VCODIV, getMykonosErrorMessage(MYKONOS_ERR_CLKPLL_INV_VCODIV));
return MYKONOS_ERR_CLKPLL_INV_VCODIV;
}
clockControl2 |= ((deviceClkDiv & 3) << 4);
/* find vco table index based on vco frequency */
for (i = 0; device->clocks->clkPllVcoFreq_kHz < vcoFreqArray_kHz[i]; i++)
{
/* Intentionally blank, for loop exits when condition met, index i used below */
}
vcoIndex = i + 1;
if (vcoIndex < 1 || vcoIndex > 53)
{
/* vco index out of range */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETCLKPLL_INV_VCOINDEX,
getMykonosErrorMessage(MYKONOS_ERR_SETCLKPLL_INV_VCOINDEX));
return MYKONOS_ERR_SETCLKPLL_INV_VCOINDEX;
}
/* valid for all refclk frequencies */
vcoOutLvl = (vcoIndex <= 16) ? 13 : (vcoIndex > 16 && vcoIndex <= 44) ? 10 : 7;
vcoVaractor = (vcoIndex <= 16) ? 0 : (vcoIndex > 16 && vcoIndex <= 44) ? 1 : 3;
vcoBiasRef = (vcoIndex <= 7) ? 4 : (vcoIndex > 7 && vcoIndex <= 29) ? 6 : 7;
vcoBiasTcf = (vcoIndex <= 29) ? 1 : (vcoIndex > 29 && vcoIndex <= 44) ? 2 : 3;
vcoVaractorRef = (vcoIndex <= 16) ? 10 : (vcoIndex > 16 && vcoIndex <= 29) ? 11 : (vcoIndex > 29 && vcoIndex <= 32) ? 12 :
(vcoIndex > 32 && vcoIndex <= 44) ? 14 : 12;
if ((scaledRefClk_kHz >= 40000) && (scaledRefClk_kHz < 53760))
{ /* Settings designed for 46.08 MHz PLL REFCLK */
vcoCalOffset = (vcoIndex <= 2) ? 14 : (vcoIndex > 2 && vcoIndex <= 5) ? 13 : (vcoIndex > 5 && vcoIndex <= 13) ? 12 : (vcoIndex > 13 && vcoIndex <= 16) ? 11 : 15;
loopFilterIcp = icp_46p08[vcoIndex - 1];
loopFilterC2C1 = 0xF6; /* C2=0xF0 */
loopFilterR1C3 = 0xD5;
loopFilterR3 = 0x0E;
}
else if ((scaledRefClk_kHz >= 53760) && (scaledRefClk_kHz < 69120))
{ /* Settings designed for 61.44 MHz PLL REFCLK */
vcoCalOffset = (vcoIndex <= 2) ? 14 : (vcoIndex > 2 && vcoIndex <= 5) ? 13 : (vcoIndex > 5 && vcoIndex <= 11) ? 12 : (vcoIndex > 11 && vcoIndex <= 16) ? 11 : 15;
loopFilterIcp = icp_61p44[vcoIndex - 1];
loopFilterC2C1 = 0xF6; /* C2=0xF0 */
loopFilterR1C3 = 0xD5;
loopFilterR3 = 0x0E;
}
else if ((scaledRefClk_kHz >= 69120) && (scaledRefClk_kHz <= 80000))
{ /* Settings designed for 76.8 MHz PLL REFCLK */
vcoCalOffset = (vcoIndex <= 2) ? 14 : (vcoIndex > 2 && vcoIndex <= 5) ? 13 : (vcoIndex > 5 && vcoIndex <= 10) ? 12 : (vcoIndex > 10 && vcoIndex <= 16) ? 11 : 15;
loopFilterIcp = icp_76p8[vcoIndex - 1];
loopFilterC2C1 = (vcoIndex == 43) ? 0xF7 : 0xF6; /*C2=0xF0, C1=6 or 7 */
loopFilterR1C3 = 0xD5;
loopFilterR3 = 0x0E;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETRFPLL_INV_REFCLK, getMykonosErrorMessage(MYKONOS_ERR_SETRFPLL_INV_REFCLK));
return MYKONOS_ERR_SETRFPLL_INV_REFCLK; /* invalid ref clk */
}
/* Hold CLKPLL digital logic in reset */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_4, 0x00);
/* Set reference clock scaler + HSdiv + VCOdiv */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_2, clockControl2);
/*Set VCO cal time */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_CAL_CONTROL, 0x02);
/* Write Synth Setting regs */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_F_VCOTN_BYTE1, ((vcoCalOffset & 0x0F) << 3)); /* Set VCO Cal offset[3:0] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_BYTE1, (0xC0 | (vcoVaractor & 0x0F))); /* Init ALC[3:0], VCO varactor[3:0] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_BYTE2, (0x40 | (vcoOutLvl & 0x0F))); /* VCO output level */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_BYTE9, (((vcoBiasTcf & 0x03) << 3) | (vcoBiasRef & 0x07))); /* Set VCO Bias Tcf[1:0] and VCO Bias Ref[2:0] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_VCO_CAL_REF, 0x30); /* Set VCO cal time (compare length) + Set VCO Cal Ref Tcf[2:0]=0 */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_VCO_VAR_CTL1, 0x70); /* Set VCO Varactor Ref Tcf[2:0] and VCO Varactor Offset[3:0] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_VCO_VAR_CTL2, (vcoVaractorRef & 0x0F)); /* Set VCO Varactor Reference[3:0] */
/* Write Loop filter */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_BYTE3, (0x80 | (loopFilterIcp & 0x03F))); /* Set Loop Filter Icp[5:0] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_BYTE6, loopFilterC2C1); /* Set Loop Filter C2[3:0] and C1[3:0] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_BYTE7, loopFilterR1C3); /* Set Loop Filter R1[3:0] and C3[3:0] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_LF_R3, (loopFilterR3 & 0x0F)); /*Set Loop Filter R3[3:0] */
/* Calculate PLL integer and fractional words with integer math */
scaledRefClk_Hz = scaledRefClk_kHz * 1000;
hsDigClk_Hz = (((uint64_t)(device->clocks->clkPllVcoFreq_kHz) * 10000) / vcoDivTimes10) / hsDiv;
integerWord = (uint16_t)(hsDigClk_Hz / scaledRefClk_Hz);
fractionalRemainder = hsDigClk_Hz % scaledRefClk_Hz;
/* +1 >> 1 is rounding (add .5) */
fractionalWord = ((uint32_t)((((uint64_t)fractionalRemainder * 4177920) / (uint64_t)scaledRefClk_Hz) + 1) >> 1);
/* if fractionalWord rounded up and == PLL modulus, fix it */
if (fractionalWord == 2088960)
{
fractionalWord = 0;
integerWord = integerWord + 1;
}
if (fractionalWord > 0)
{ /* in normal case, the fractional word should be zero and SDM bypassed */
CMB_writeToLog(ADIHAL_LOG_WARNING, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETCLKPLL_INV_FRACWORD,
getMykonosErrorMessage(MYKONOS_ERR_SETCLKPLL_INV_FRACWORD));
/* down graded to warning, do not return error code */
//return MYKONOS_ERR_SETCLKPLL_INV_FRACWORD;
sdmSettings = 0x20;
}
else
{
/* Bypass SDM */
sdmSettings = 0xE0;
}
/* Set PLL fractional word[22:0] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_DIVIDER_FRAC_BYTE0, (fractionalWord & 0xFF));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_DIVIDER_FRAC_BYTE1, ((fractionalWord >> 8) & 0xFF));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_DIVIDER_FRAC_BYTE2, ((fractionalWord >> 16) & 0x7F));
/* Write PLL integer word [7:0] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_DIVIDER_INT_BYTE1, (sdmSettings | ((integerWord >> 8) & 0x7)));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_DIVIDER_INT_BYTE0, (integerWord & 0xFF));
/* Release PLL from reset, and set start VCO cal bit to 0 */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_4, 0x80);
/* Power up CLKPLL */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_0, 0x00);
CMB_wait_ms(200); /* Allow PLL time to power up */
/* Enable Charge pump cal after Charge Pump current set (Icp[5:0]) */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_BYTE5, 0x84);
/* Start VCO Cal */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_4, 0x81);
return MYKONOS_ERR_OK;
}
/**
* \brief Sets the RF PLL local oscillator frequency (RF carrier frequency).
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->spiSettings
*
* \param device is structure pointer to the MYKONOS data structure containing settings
* \param pllName Name of the PLL to configure
* \param rfPllLoFrequency_Hz Desired RF LO frequency
*
* \return MYKONOS_ERR_OK Function completed successfully
* \return MYKONOS_ERR_SETRFPLL_ARMERROR ARM Command to set RF PLL frequency failed
*/
mykonosErr_t MYKONOS_setRfPllFrequency(mykonosDevice_t *device, mykonosRfPllName_t pllName, uint64_t rfPllLoFrequency_Hz)
{
const uint8_t SETCMD_OPCODE = 0x0A;
const uint8_t SET_PLL_FREQUENCY = 0x63;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t armData[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uint8_t extData[2] = {0, 0};
uint32_t timeoutMs = 0;
uint8_t cmdStatusByte = 0;
armData[0] = (uint8_t)(rfPllLoFrequency_Hz & 0xFF);
armData[1] = (uint8_t)((rfPllLoFrequency_Hz >> 8) & 0xFF);
armData[2] = (uint8_t)((rfPllLoFrequency_Hz >> 16) & 0xFF);
armData[3] = (uint8_t)((rfPllLoFrequency_Hz >> 24) & 0xFF);
armData[4] = (uint8_t)((rfPllLoFrequency_Hz >> 32) & 0xFF);
armData[5] = (uint8_t)((rfPllLoFrequency_Hz >> 40) & 0xFF);
armData[6] = (uint8_t)((rfPllLoFrequency_Hz >> 48) & 0xFF);
armData[7] = (uint8_t)((rfPllLoFrequency_Hz >> 56) & 0xFF);
/* write 64-bit frequency to ARM memory */
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR, &armData[0], 8);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
extData[0] = SET_PLL_FREQUENCY;
switch (pllName)
{
case RX_PLL:
extData[1] = 0x00;
break;
case TX_PLL:
extData[1] = 0x01;
break;
case SNIFFER_PLL:
extData[1] = 0x02;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETRFPLL_INV_PLLNAME,
getMykonosErrorMessage(MYKONOS_ERR_SETRFPLL_INV_PLLNAME));
return MYKONOS_ERR_SETRFPLL_INV_PLLNAME;
}
}
retVal = MYKONOS_sendArmCommand(device, SETCMD_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000;
retVal = MYKONOS_waitArmCmdStatus(device, SETCMD_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETRFPLL_ARMERROR, getMykonosErrorMessage(MYKONOS_ERR_SETRFPLL_ARMERROR));
return MYKONOS_ERR_SETRFPLL_ARMERROR;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETRFPLL_ARMERROR, getMykonosErrorMessage(MYKONOS_ERR_SETRFPLL_ARMERROR));
return MYKONOS_ERR_SETRFPLL_ARMERROR;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Gets the RF PLL local oscillator frequency (RF carrier frequency).
*
* This function is used to get the RF PLL's frequency. It can get the RX PLL, TX PLL
* Sniffer PLL, and CLKPLL.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->spiSettings
* - device->clocks->deviceClock_kHz
*
* \param device is structure pointer to the MYKONOS data structure containing settings
* \param pllName Name of the PLL for which to read the frequency
* \param rfPllLoFrequency_Hz RF LO frequency currently set for the PLL specified
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GET_PLLFREQ_INV_REFCLKDIV Invalid CLKPLL reference clock divider read from Mykonos device
* \retval MYKONOS_ERR_GET_PLLFREQ_INV_HSDIV Invalid CLKPLL high speed clock divider read from Mykonos device
* \retval MYKONOS_ERR_GETRFPLL_INV_PLLNAME Invalid PLL name, can not get PLL frequency. Use PLL name ENUM.
* \retval MYKONOS_ERR_GETRFPLL_ARMERROR ARM Command to get RF PLL frequency failed
* \retval MYKONOS_ERR_GETRFPLL_NULLPARAM rfPllLoFrequency_Hz function parameter pointer is NULL
*/
mykonosErr_t MYKONOS_getRfPllFrequency(mykonosDevice_t *device, mykonosRfPllName_t pllName, uint64_t *rfPllLoFrequency_Hz)
{
const uint8_t RFPLL_LO_FREQUENCY = 0x63;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t armData[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uint8_t extData[2] = {0, 0};
uint32_t timeoutMs = 0;
uint8_t cmdStatusByte = 0;
uint8_t getClkPllFrequency = 0;
uint32_t clkPllIntWord = 0;
uint32_t clkPllFracWord = 0;
uint8_t clkPllRefClkDiv = 0;
uint8_t hsDiv = 0;
uint8_t vcoDivTimes10 = 0;
uint8_t hsDivReg = 0;
uint8_t vcoDivReg = 0;
uint8_t clkPllIntWord7_0 = 0;
uint8_t clkPllIntWord10_8 = 0;
uint8_t clkPllFracWord7_0 = 0;
uint8_t clkPllFracWord15_8 = 0;
uint8_t clkPllFracWord22_16 = 0;
uint64_t refclk_Hz = 0;
extData[0] = RFPLL_LO_FREQUENCY;
switch (pllName)
{
case CLK_PLL:
getClkPllFrequency = 1;
break;
case RX_PLL:
extData[1] = 0x00;
break;
case TX_PLL:
extData[1] = 0x01;
break;
case SNIFFER_PLL:
extData[1] = 0x02;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETRFPLL_INV_PLLNAME,
getMykonosErrorMessage(MYKONOS_ERR_GETRFPLL_INV_PLLNAME));
return MYKONOS_ERR_GETRFPLL_INV_PLLNAME;
}
}
if (getClkPllFrequency > 0)
{
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_2, &hsDivReg, 0x0C, 2);
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_2, &vcoDivReg, 0x03, 0);
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_2, &clkPllRefClkDiv, 0x70, 4);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_DIVIDER_INT_BYTE0, &clkPllIntWord7_0);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_DIVIDER_INT_BYTE1, &clkPllIntWord10_8);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_DIVIDER_FRAC_BYTE0, &clkPllFracWord7_0);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_DIVIDER_FRAC_BYTE1, &clkPllFracWord15_8);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_DIVIDER_FRAC_BYTE2, &clkPllFracWord22_16);
clkPllIntWord = (((uint32_t)(clkPllIntWord10_8 & 0x7) << 8) | clkPllIntWord7_0);
clkPllFracWord = (((uint32_t)(clkPllFracWord22_16 & 0x7F) << 16) | ((uint32_t)(clkPllFracWord15_8) << 8) | clkPllFracWord7_0);
switch (clkPllRefClkDiv)
{
case 0:
refclk_Hz = (uint64_t)(device->clocks->deviceClock_kHz * 1000);
break;
case 1:
refclk_Hz = (uint64_t)((device->clocks->deviceClock_kHz * 1000) >> 1);
break; /* div 2 */
case 2:
refclk_Hz = (uint64_t)((device->clocks->deviceClock_kHz * 1000) >> 2);
break; /* div 4 */
case 3:
refclk_Hz = (uint64_t)((device->clocks->deviceClock_kHz * 1000) << 1);
break; /* times 2 */
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GET_PLLFREQ_INV_REFCLKDIV,
getMykonosErrorMessage(MYKONOS_ERR_GET_PLLFREQ_INV_REFCLKDIV));
return MYKONOS_ERR_GET_PLLFREQ_INV_REFCLKDIV;
}
}
switch (vcoDivReg)
{
case 0:
vcoDivTimes10 = 10;
break;
case 1:
vcoDivTimes10 = 15;
break;
case 2:
vcoDivTimes10 = 20;
break;
case 3:
vcoDivTimes10 = 30;
break;
}
switch (hsDivReg)
{
case 0:
hsDiv = 4;
break;
case 1:
hsDiv = 5;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GET_PLLFREQ_INV_HSDIV,
getMykonosErrorMessage(MYKONOS_ERR_GET_PLLFREQ_INV_HSDIV));
return MYKONOS_ERR_GET_PLLFREQ_INV_HSDIV;
}
}
/* round to nearest Hz for fractional word (fractional modulus = 2088960) */
*rfPllLoFrequency_Hz = (uint64_t)(((refclk_Hz * clkPllIntWord) + (((refclk_Hz * clkPllFracWord / 1044480) + 1) >> 1)) * hsDiv * vcoDivTimes10 / 10);
}
else
{
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000;
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETRFPLL_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_GETRFPLL_ARMERROR));
return MYKONOS_ERR_GETRFPLL_ARMERROR;
}
return retVal;
}
/* read 64-bit frequency from ARM memory */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR, &armData[0], 8, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETRFPLL_ARMERROR, getMykonosErrorMessage(MYKONOS_ERR_GETRFPLL_ARMERROR));
return MYKONOS_ERR_GETRFPLL_ARMERROR;
}
if (rfPllLoFrequency_Hz == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETRFPLL_NULLPARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETRFPLL_NULLPARAM));
return MYKONOS_ERR_GETRFPLL_NULLPARAM;
}
*rfPllLoFrequency_Hz = (uint64_t)((uint64_t)(armData[0])) | ((uint64_t)(armData[1]) << 8) | ((uint64_t)(armData[2]) << 16) | ((uint64_t)(armData[3]) << 24)
| ((uint64_t)(armData[4]) << 32) | ((uint64_t)(armData[5]) << 40) | ((uint64_t)(armData[6]) << 48) | ((uint64_t)(armData[7]) << 56);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Checks if the PLLs are locked
*
* This function updates the pllLockStatus pointer with a lock status it per
* PLL.
* pllLockStatus[0] = CLKPLL Locked
* pllLockStatus[1] = RX_PLL Locked
* pllLockStatus[2] = TX_PLL Locked
* pllLockStatus[3] = SNIFFER_PLL Locked
* pllLockStatus[4] = CAL_PLL Locked
*
* \param device the Mykonos device data structure
* \param pllLockStatus Lock status bit per PLL
*
* \return Returns enum MYKONOS_ERR, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_checkPllsLockStatus(mykonosDevice_t *device, uint8_t *pllLockStatus)
{
uint8_t readData = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_checkPllsLockStatus()\n");
#endif
if (pllLockStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CHECK_PLL_LOCK_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_CHECK_PLL_LOCK_NULL_PARM));
return MYKONOS_ERR_CHECK_PLL_LOCK_NULL_PARM;
}
*pllLockStatus = 0;
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_VCO_BAND_BYTE1, &readData, 0x01, 0);
*pllLockStatus = readData;
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_RXSYNTH_VCO_BAND_BYTE1, &readData, 0x01, 0);
*pllLockStatus = *pllLockStatus | (readData << 1);
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_TXSYNTH_VCO_BAND_BYTE1, &readData, 0x01, 0);
*pllLockStatus = *pllLockStatus | (readData << 2);
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_SNIFF_RXSYNTH_VCO_BAND_BYTE1, &readData, 0x01, 0);
*pllLockStatus = *pllLockStatus | (readData << 3);
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_CALPLL_SDM_CONTROL, &readData, 0x80, 7);
*pllLockStatus = *pllLockStatus | (readData << 4);
return MYKONOS_ERR_OK;
}
/*
*****************************************************************************
* Shared Data path functions
*****************************************************************************
*/
/**
* \brief Sets the digital Tx PFIR SYNC clock divider.
*
* This function is a helper function. It is called automatically in
* MYKONOS_initialize() and should not need to be called by the BBIC.
*
* This function sets the digital clock divider that is used to synchronize the
* Tx PFIR each time the Tx channel power up. The Sync clock must
* be set equal to or slower than the FIR processing clock.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
* - device->profilesValid
* - device->tx->txProfile->txFir
* - device->tx->txProfile->txFir->numFirCoefs
* - device->tx->txProfile->txFirInterpolation
* - device->tx->txProfile->iqRate_kHz
*
* \param device Pointer to the Mykonos data structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_TXFIR_INV_NUMTAPS_PARM: Invalid number of Tx FIR coefficients
* \retval MYKONOS_ERR_TXFIR_INV_NUMROWS Invalid number of PFIR coefficient rows
* \retval MYKONOS_ERR_TXFIR_TAPSEXCEEDED Too many Tx PFIR taps for the IQ sample rate. FIR processing clock can not run fast enough to handle the number of taps
*/
mykonosErr_t MYKONOS_setTxPfirSyncClk(mykonosDevice_t *device)
{
const uint8_t numTapMultiple = 16;
const uint8_t maxNumTaps = 96;
uint8_t effectiveRows = 0;
uint8_t numRows = 0;
uint32_t dpClk_kHz = 0;
uint32_t syncClk_kHz = 0;
uint32_t hsDigClkDiv4or5_kHz = 0;
uint8_t syncDiv = 0;
if (((device->profilesValid & TX_PROFILE_VALID) > 0) && (device->tx->txProfile->txFir != NULL))
{
/* Calculate number of FIR rows for number of Taps */
if ((device->tx->txProfile->txFir->numFirCoefs % numTapMultiple == 0) && (device->tx->txProfile->txFir->numFirCoefs > 0)
&& (device->tx->txProfile->txFir->numFirCoefs <= maxNumTaps))
{
numRows = (device->tx->txProfile->txFir->numFirCoefs / numTapMultiple);
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_TXFIR_INV_NUMTAPS_PARM,
getMykonosErrorMessage(MYKONOS_ERR_TXFIR_INV_NUMTAPS_PARM));
return MYKONOS_ERR_TXFIR_INV_NUMTAPS_PARM;
}
effectiveRows = ((numRows + (device->tx->txProfile->txFirInterpolation - 1)) / device->tx->txProfile->txFirInterpolation);
/* round up to next power of 2 */
switch (effectiveRows)
{
case 1:
effectiveRows = 1;
break;
case 2:
effectiveRows = 2;
break;
case 3: /* fall through */
case 4:
effectiveRows = 4;
break;
case 5: /* fall through */
case 6: /* fall through */
case 7: /* fall through */
case 8:
effectiveRows = 8;
break;
default:
{
/* invalid number of FIR taps */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_TXFIR_INV_NUMROWS,
getMykonosErrorMessage(MYKONOS_ERR_TXFIR_INV_NUMROWS));
return MYKONOS_ERR_TXFIR_INV_NUMROWS;
}
}
dpClk_kHz = (device->tx->txProfile->iqRate_kHz * device->tx->txProfile->txInputHbInterpolation * device->tx->txProfile->txFirInterpolation * effectiveRows);
/* FIR DPCLK can only run at max of 500MHz */
if (dpClk_kHz > 500000)
{
/* Max number of Tx PFIR taps exceeded for Tx Profile */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_TXFIR_TAPSEXCEEDED,
getMykonosErrorMessage(MYKONOS_ERR_TXFIR_TAPSEXCEEDED));
return MYKONOS_ERR_TXFIR_TAPSEXCEEDED;
}
/* SYNC CLOCK is the PFIR output rate / 2 */
syncClk_kHz = device->tx->txProfile->iqRate_kHz * device->tx->txProfile->txFirInterpolation / 2;
MYKONOS_calculateDigitalClocks(device, NULL, &hsDigClkDiv4or5_kHz);
/* Select correct divider setting for SYNCCLK - must be == syncClk_kHz or slower */
for (syncDiv = 0; syncDiv < 5; syncDiv++)
{
if ((hsDigClkDiv4or5_kHz / (4 << syncDiv)) <= syncClk_kHz)
{
break;
}
}
/* Write Tx PFIR SYNC Clock divider */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_5, syncDiv, 0x70, 4);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Sets the digital Rx PFIR SYNC clock divider.
*
* This function is a helper function. It is called automatically in
* MYKONOS_initialize() and should not need to be called by the BBIC.
*
* This function sets the digital clock divider that is used to synchronize the
* Rx/ORx/Sniffer PFIRs each time the channels power up. The Sync clock must
* be set equal to or slower than the slowest Rx/ORx/Sniffer PFIR processing
* clock.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
* - device->profilesValid
* - device->rx->rxProfile->rxFir
* - device->rx->rxProfile->rxFir->numFirCoefs
* - device->rx->rxProfile->iqRate_kHz
* - device->obsRx->orxProfile->rxFir
* - device->obsRx->orxProfile->rxFir->numFirCoefs
* - device->obsRx->orxProfile->iqRate_kHz
* - device->obsRx->snifferProfile->rxFir
* - device->obsRx->snifferProfile->rxFir->numFirCoefs
* - device->obsRx->snifferProfile->iqRate_kHz
*
* \param device Pointer to the Mykonos data structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_RXFIR_TAPSEXCEEDED ERROR: the number of Rx FIR taps exceeds the number of taps accommodated by the FIR processing clock
* \retval MYKONOS_ERR_ORXFIR_TAPSEXCEEDED ERROR: the number of ORx FIR Taps exceeds the number of taps accommodated by the FIR processing clock
* \retval MYKONOS_ERR_SNRXFIR_TAPSEXCEEDED ERROR: the number of sniffer FIR taps exceeds the number of taps accommodated by the FIR processing clock
*/
mykonosErr_t MYKONOS_setRxPfirSyncClk(mykonosDevice_t *device)
{
uint32_t rxDpClk_kHz = 0;
uint32_t orxDpClk_kHz = 0;
uint32_t snRxDpClk_kHz = 0;
uint32_t slowestIqRate_kHz = 0;
uint32_t syncClk_kHz = 0;
uint8_t effectiveRxNumRows = 0;
uint8_t effectiveOrxNumRows = 0;
uint8_t effectiveSnrxNumRows = 0;
uint32_t hsDigClkDiv4or5_kHz = 0;
uint8_t syncDiv = 0;
/**
* Calculate Rx SYNC Clock divider for Rx PFIR. Same Rx SYNC Clock is used
* for Rx, ORx, and Sniffer PFIRs, and must be slow enough to handle the slowest
* PFIR rate.
**/
if (((device->profilesValid & RX_PROFILE_VALID) > 0) && (device->rx->rxProfile->rxFir != NULL))
{
switch (device->rx->rxProfile->rxFir->numFirCoefs)
{
case 24:
effectiveRxNumRows = 1;
break;
case 48:
effectiveRxNumRows = 2;
break;
case 72:
effectiveRxNumRows = 4;
break;
}
rxDpClk_kHz = device->rx->rxProfile->iqRate_kHz * effectiveRxNumRows;
if (rxDpClk_kHz > 500000)
{
/* Max number of Rx PFIR taps exceeded for Profile */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RXFIR_TAPSEXCEEDED,
getMykonosErrorMessage(MYKONOS_ERR_RXFIR_TAPSEXCEEDED));
return MYKONOS_ERR_RXFIR_TAPSEXCEEDED;
}
slowestIqRate_kHz = device->rx->rxProfile->iqRate_kHz;
}
if (((device->profilesValid & ORX_PROFILE_VALID) > 0) && (device->obsRx->orxProfile->rxFir != NULL))
{
switch (device->obsRx->orxProfile->rxFir->numFirCoefs)
{
case 24:
effectiveOrxNumRows = 1;
break;
case 48:
effectiveOrxNumRows = 2;
break;
case 72:
effectiveOrxNumRows = 4;
break;
}
orxDpClk_kHz = device->obsRx->orxProfile->iqRate_kHz * effectiveOrxNumRows;
if (orxDpClk_kHz > 500000)
{
/* Max number of ORx PFIR taps exceeded for Profile */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ORXFIR_TAPSEXCEEDED,
getMykonosErrorMessage(MYKONOS_ERR_ORXFIR_TAPSEXCEEDED));
return MYKONOS_ERR_ORXFIR_TAPSEXCEEDED;
}
if ((slowestIqRate_kHz == 0) || (slowestIqRate_kHz > device->obsRx->orxProfile->iqRate_kHz))
{
slowestIqRate_kHz = device->obsRx->orxProfile->iqRate_kHz;
}
}
if (((device->profilesValid & SNIFF_PROFILE_VALID) > 0) && (device->obsRx->snifferProfile->rxFir != NULL))
{
switch (device->obsRx->snifferProfile->rxFir->numFirCoefs)
{
case 24:
effectiveSnrxNumRows = 1;
break;
case 48:
effectiveSnrxNumRows = 2;
break;
case 72:
effectiveSnrxNumRows = 4;
break;
}
snRxDpClk_kHz = device->obsRx->snifferProfile->iqRate_kHz * effectiveSnrxNumRows;
if (snRxDpClk_kHz > 500000)
{
/* Max number of ORx PFIR taps exceeded for Profile */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SNRXFIR_TAPSEXCEEDED,
getMykonosErrorMessage(MYKONOS_ERR_SNRXFIR_TAPSEXCEEDED));
return MYKONOS_ERR_SNRXFIR_TAPSEXCEEDED;
}
if ((slowestIqRate_kHz == 0) || (slowestIqRate_kHz > device->obsRx->snifferProfile->iqRate_kHz))
{
slowestIqRate_kHz = device->obsRx->snifferProfile->iqRate_kHz;
}
}
/* SYNC CLOCK should be FIR output rate / 2 */
syncClk_kHz = (slowestIqRate_kHz / 2);
MYKONOS_calculateDigitalClocks(device, NULL, &hsDigClkDiv4or5_kHz);
/* Select correct divider setting for SYNCCLK - must be == syncClk_kHz or slower */
for (syncDiv = 0; syncDiv < 5; syncDiv++)
{
if ((hsDigClkDiv4or5_kHz / (4 << syncDiv)) <= syncClk_kHz)
{
break;
}
}
/* Write Rx PFIR SYNC Clock divider */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_5, syncDiv, 0x07, 0);
return MYKONOS_ERR_OK;
}
/**
* \brief Configures one or more FIR filters in the device
*
* The device stores up to 6 FIR filters (2Rx, 2Obs Rx/Sniffer, and 2Tx).
* Rx filters can have 24, 48, or 72 taps. Tx filters can have 16, 32,
* 48, 64, 80, or 96 taps.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the Mykonos data structure
* \param filterToProgram Name of the desired filter to program
* \param firFilter Pointer to the filter to write into the device
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_PROGRAMFIR_NULL_PARM ERROR: firFilter parameter is a NULL pointer
* \retval MYKONOS_ERR_PROGRAMFIR_COEFS_NULL ERROR: firFilter->coefs is a NULL pointer
* \retval MYKONOS_ERR_PROGRAMFIR_INV_FIRNAME_PARM ERROR: Invalid FIR filter name in filterToProgram parameter
* \retval MYKONOS_ERR_PROGRAMFIR_INV_NUMTAPS_PARM ERROR: Invalid number of taps for the filter
* \retval MYKONOS_ERR_RXFIR_INV_GAIN_PARM ERROR: Rx FIR filter has invalid gain setting
* \retval MYKONOS_ERR_OBSRXFIR_INV_GAIN_PARM ERROR: OBSRX_A (ORX) FIR filter has invalid gain setting
* \retval MYKONOS_ERR_SRXFIR_INV_GAIN_PARM ERROR: OBSRX_B (Sniffer) FIR filter has invalid gain setting
* \retval MYKONOS_ERR_TXFIR_INV_GAIN_PARM ERROR: Tx FIR filter has invalid gain setting
*/
mykonosErr_t MYKONOS_programFir(mykonosDevice_t *device, mykonosfirName_t filterToProgram, mykonosFir_t *firFilter)
{
uint8_t filterSelect = 0;
uint8_t i = 0;
uint8_t numTapsReg = 0;
uint8_t numTapMultiple = 24; /* Rx=24, Tx=16 */
uint8_t maxNumTaps = 72; /* Rx=72, Tx=96 */
uint8_t filterGain = 0;
#if MYK_ENABLE_SPIWRITEARRAY == 1
uint32_t addrIndex = 0;
uint32_t dataIndex = 0;
uint32_t spiBufferSize = ((MYK_SPIWRITEARRAY_BUFFERSIZE / 6) * 6); /* Make buffer size a multiple of 6 */
uint16_t addrArray[MYK_SPIWRITEARRAY_BUFFERSIZE] = {0};
uint8_t dataArray[MYK_SPIWRITEARRAY_BUFFERSIZE] = {0};
#endif
const uint8_t COEF_WRITE_EN = 0x40;
const uint8_t PROGRAM_CLK_EN = 0x80;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_programFir()\n");
#endif
if (firFilter == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_PROGRAMFIR_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_PROGRAMFIR_NULL_PARM));
return MYKONOS_ERR_PROGRAMFIR_NULL_PARM;
}
if (firFilter->coefs == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_PROGRAMFIR_COEFS_NULL,
getMykonosErrorMessage(MYKONOS_ERR_PROGRAMFIR_COEFS_NULL));
return MYKONOS_ERR_PROGRAMFIR_COEFS_NULL;
}
switch (filterToProgram)
{
case TX1_FIR:
filterSelect = 0x01;
numTapMultiple = 16;
maxNumTaps = 96;
break;
case TX2_FIR:
filterSelect = 0x02;
numTapMultiple = 16;
maxNumTaps = 96;
break;
case TX1TX2_FIR:
filterSelect = 0x03;
numTapMultiple = 16;
maxNumTaps = 96;
break;
case RX1_FIR:
filterSelect = 0x04;
numTapMultiple = 24;
maxNumTaps = 72;
break;
case RX2_FIR:
filterSelect = 0x08;
numTapMultiple = 24;
maxNumTaps = 72;
break;
case RX1RX2_FIR:
filterSelect = 0x0C;
numTapMultiple = 24;
maxNumTaps = 72;
break;
case OBSRX_A_FIR:
filterSelect = 0x10;
numTapMultiple = 24;
maxNumTaps = 72;
break;
case OBSRX_B_FIR:
filterSelect = 0x20;
numTapMultiple = 24;
maxNumTaps = 72;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_PROGRAMFIR_INV_FIRNAME_PARM,
getMykonosErrorMessage(MYKONOS_ERR_PROGRAMFIR_INV_FIRNAME_PARM));
return MYKONOS_ERR_PROGRAMFIR_INV_FIRNAME_PARM;
}
/* Calculate register value for number of Taps */
if ((firFilter->numFirCoefs % numTapMultiple == 0) && (firFilter->numFirCoefs > 0) && (firFilter->numFirCoefs <= maxNumTaps))
{
numTapsReg = (firFilter->numFirCoefs / numTapMultiple) - 1;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_PROGRAMFIR_INV_NUMTAPS_PARM,
getMykonosErrorMessage(MYKONOS_ERR_PROGRAMFIR_INV_NUMTAPS_PARM));
return MYKONOS_ERR_PROGRAMFIR_INV_NUMTAPS_PARM;
}
/* Select which FIR filter to program coeffs for */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_CTL, (PROGRAM_CLK_EN | filterSelect)); //select filter and enable the programming clock
#if (MYK_ENABLE_SPIWRITEARRAY == 0)
/* write filter coefficients */
for (i = 0; i < firFilter->numFirCoefs; i++)
{
/* Write Low byte of 16bit coefficient */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_ADDR, (i * 2));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_DATA, (firFilter->coefs[i] & 0xFF));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_CTL, (PROGRAM_CLK_EN | COEF_WRITE_EN | filterSelect)); /* write enable (self clearing) */
/* Write High Byte of 16bit coefficient */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_ADDR, ((i * 2) + 1));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_DATA, ((firFilter->coefs[i] >> 8) & 0xFF));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_CTL, (PROGRAM_CLK_EN | COEF_WRITE_EN | filterSelect));/* write enable (self clearing) */
}
#elif (MYK_ENABLE_SPIWRITEARRAY == 1)
addrIndex = 0;
dataIndex = 0;
for (i = 0; i < firFilter->numFirCoefs; i++)
{
addrArray[addrIndex++] = MYKONOS_ADDR_PFIR_COEFF_ADDR;
addrArray[addrIndex++] = MYKONOS_ADDR_PFIR_COEFF_DATA;
addrArray[addrIndex++] = MYKONOS_ADDR_PFIR_COEFF_CTL;
addrArray[addrIndex++] = MYKONOS_ADDR_PFIR_COEFF_ADDR;
addrArray[addrIndex++] = MYKONOS_ADDR_PFIR_COEFF_DATA;
addrArray[addrIndex++] = MYKONOS_ADDR_PFIR_COEFF_CTL;
dataArray[dataIndex++] = (i * 2);
dataArray[dataIndex++] = (firFilter->coefs[i] & 0xFF);
dataArray[dataIndex++] = (PROGRAM_CLK_EN | COEF_WRITE_EN | filterSelect);
dataArray[dataIndex++] = ((i * 2) + 1);
dataArray[dataIndex++] = ((firFilter->coefs[i] >> 8) & 0xFF);
dataArray[dataIndex++] = (PROGRAM_CLK_EN | COEF_WRITE_EN | filterSelect);
/* Send full buffer size when possible */
/* spiBufferSize set to multiple of 6 at top of function */
if (addrIndex >= spiBufferSize)
{
CMB_SPIWriteBytes(device->spiSettings, &addrArray[0], &dataArray[0], addrIndex);
dataIndex = 0;
addrIndex = 0;
}
}
if (addrIndex > 0)
{
CMB_SPIWriteBytes(device->spiSettings, &addrArray[0], &dataArray[0], addrIndex);
}
#endif
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_CTL, filterSelect); /* clear Program clock enable */
/* write filter gain and #taps */
if (filterToProgram == RX1_FIR || filterToProgram == RX2_FIR || filterToProgram == RX1RX2_FIR)
{
/* Write Rx FIR #taps */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_RX_FILTER_CONFIGURATION, numTapsReg, 0x60, 5);
/* Set Rx filter gain */
switch (firFilter->gain_dB)
{
case -12:
filterGain = 0x00;
break;
case -6:
filterGain = 0x01;
break;
case 0:
filterGain = 0x02;
break;
case 6:
filterGain = 0x03;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RXFIR_INV_GAIN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_RXFIR_INV_GAIN_PARM));
return MYKONOS_ERR_RXFIR_INV_GAIN_PARM;
}
/* Write Rx filter gain */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_RX_FILTER_GAIN, filterGain, 0x03, 0);
}
else if (filterToProgram == OBSRX_A_FIR)
{
/* Write Obs Rx FIR A #taps */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_RX_FILTER_CONFIGURATION, numTapsReg, 0x06, 1);
/* Set Rx filter gain */
switch (firFilter->gain_dB)
{
case -12:
filterGain = 0x00;
break;
case -6:
filterGain = 0x01;
break;
case 0:
filterGain = 0x02;
break;
case 6:
filterGain = 0x03;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBSRXFIR_INV_GAIN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_OBSRXFIR_INV_GAIN_PARM));
return MYKONOS_ERR_OBSRXFIR_INV_GAIN_PARM;
}
/* Write Obs Rx filter gain */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_DPD_SNIFFER_RX_FILTER_GAIN, filterGain, 0x03, 0);
}
else if (filterToProgram == OBSRX_B_FIR)
{
/* Write Obs Rx FIR B #taps */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_RX_FILTER_CONFIGURATION, numTapsReg, 0x18, 3);
/* Set Rx filter gain */
switch (firFilter->gain_dB)
{
case -12:
filterGain = 0x00;
break;
case -6:
filterGain = 0x01;
break;
case 0:
filterGain = 0x02;
break;
case 6:
filterGain = 0x03;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SRXFIR_INV_GAIN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SRXFIR_INV_GAIN_PARM));
return MYKONOS_ERR_SRXFIR_INV_GAIN_PARM;
}
/* Write Obs Rx filter gain */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_DPD_SNIFFER_RX_FILTER_GAIN, filterGain, 0x60, 5);
}
else if (filterToProgram == TX1_FIR || filterToProgram == TX2_FIR || filterToProgram == TX1TX2_FIR)
{
/* Write number of Taps */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_FILTER_CONFIGURATION, numTapsReg, 0xE0, 5);
switch (firFilter->gain_dB)
{
case 0:
filterGain = 0;
break;
case 6:
filterGain = 1;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_TXFIR_INV_GAIN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_TXFIR_INV_GAIN_PARM));
return MYKONOS_ERR_TXFIR_INV_GAIN_PARM;
}
/* Write Tx Filter gain */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_FILTER_CONFIGURATION, filterGain, 0x01, 0);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Reads the FIR filter programmed into the device
*
* The device stores up to 6 FIR filters (2Rx, 2Obs Rx/Sniffer, and 2Tx).
* Rx filters can have 24, 48, or 72 taps. Tx filters can have 16, 32,
* 48, 64, 80, or 96 taps.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the Mykonos data structure
* \param filterToRead Name of the desired filter to be read
* \param firFilter Pointer to the filter to be read from the device
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_READFIR_NULL_PARM ERROR: firFilter parameter is a NULL pointer
* \retval MYKONOS_ERR_READFIR_COEFS_NULL ERROR: firFilter->coefs is a NULL pointer
* \retval MYKONOS_ERR_READFIR_INV_FIRNAME_PARM ERROR: Invalid FIR filter name in filterToRead parameter
* \retval MYKONOS_ERR_READFIR_INV_NUMTAPS_PARM ERROR: Invalid number of taps for the filter
* \retval MYKONOS_ERR_RXFIR_INV_GAIN_PARM ERROR: Rx FIR filter has invalid gain setting
* \retval MYKONOS_ERR_OBSRXFIR_INV_GAIN_PARM ERROR: OBSRX_A (ORX) FIR filter has invalid gain setting
* \retval MYKONOS_ERR_SRXFIR_INV_GAIN_PARM ERROR: OBSRX_B (Sniffer) FIR filter has invalid gain setting
* \retval MYKONOS_ERR_TXFIR_INV_GAIN_PARM ERROR: Tx FIR filter has invalid gain setting
*/
mykonosErr_t MYKONOS_readFir(mykonosDevice_t *device, mykonosfirName_t filterToRead, mykonosFir_t *firFilter)
{
uint8_t filterSelect = 0;
uint8_t i = 0;
uint8_t numTapsReg = 0;
uint8_t numTapMultiple = 24;
uint8_t maxNumTaps = 72;
uint8_t filterGain = 0;
uint8_t msbRead = 0;
uint8_t lsbRead = 0;
const uint8_t PROGRAM_CLK_EN = 0x80;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_readFir()\n");
#endif
if (firFilter == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READFIR_NULL_PARM, getMykonosErrorMessage(MYKONOS_ERR_READFIR_NULL_PARM));
return MYKONOS_ERR_READFIR_NULL_PARM;
}
if (firFilter->coefs == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READFIR_COEFS_NULL, getMykonosErrorMessage(MYKONOS_ERR_READFIR_COEFS_NULL));
return MYKONOS_ERR_READFIR_COEFS_NULL;
}
switch (filterToRead)
{
case TX1_FIR:
filterSelect = 0x01;
numTapMultiple = 16;
maxNumTaps = 96;
break;
case TX2_FIR:
filterSelect = 0x02;
numTapMultiple = 16;
maxNumTaps = 96;
break;
case TX1TX2_FIR:
filterSelect = 0x03;
numTapMultiple = 16;
maxNumTaps = 96;
break;
case RX1_FIR:
filterSelect = 0x04;
numTapMultiple = 24;
maxNumTaps = 72;
break;
case RX2_FIR:
filterSelect = 0x08;
numTapMultiple = 24;
maxNumTaps = 72;
break;
case RX1RX2_FIR:
filterSelect = 0x0C;
numTapMultiple = 24;
maxNumTaps = 72;
break;
case OBSRX_A_FIR:
filterSelect = 0x10;
numTapMultiple = 24;
maxNumTaps = 72;
break;
case OBSRX_B_FIR:
filterSelect = 0x20;
numTapMultiple = 24;
maxNumTaps = 72;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READFIR_INV_FIRNAME_PARM,
getMykonosErrorMessage(MYKONOS_ERR_READFIR_INV_FIRNAME_PARM));
return MYKONOS_ERR_READFIR_INV_FIRNAME_PARM;
}
/* clear Program clock enable */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_CTL, filterSelect);
/* Read filter gain and #taps */
if (filterToRead == RX1_FIR || filterToRead == RX2_FIR || filterToRead == RX1RX2_FIR)
{
/* Read Rx FIR #taps */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_RX_FILTER_CONFIGURATION, &numTapsReg, 0x60, 5);
firFilter->numFirCoefs = (numTapsReg + 1) * numTapMultiple;
/* Read Rx filter gain */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_RX_FILTER_GAIN, &filterGain, 0x03, 0);
switch (filterGain)
{
case 0x00:
firFilter->gain_dB = -12;
break;
case 0x01:
firFilter->gain_dB = -6;
break;
case 0x02:
firFilter->gain_dB = 0;
break;
case 0x03:
firFilter->gain_dB = 6;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RXFIR_INV_GAIN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_RXFIR_INV_GAIN_PARM));
return MYKONOS_ERR_RXFIR_INV_GAIN_PARM;
}
}
else if (filterToRead == OBSRX_A_FIR)
{
/* Read Obs Rx FIR A #taps */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_RX_FILTER_CONFIGURATION, &numTapsReg, 0x60, 1);
firFilter->numFirCoefs = (numTapsReg + 1) * numTapMultiple;
/* Read Obs Rx FIR A gain */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_DPD_SNIFFER_RX_FILTER_GAIN, &filterGain, 0x03, 0);
switch (filterGain)
{
case 0x00:
firFilter->gain_dB = -12;
break;
case 0x01:
firFilter->gain_dB = -6;
break;
case 0x02:
firFilter->gain_dB = 0;
break;
case 0x03:
firFilter->gain_dB = 6;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBSRXFIR_INV_GAIN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_OBSRXFIR_INV_GAIN_PARM));
return MYKONOS_ERR_OBSRXFIR_INV_GAIN_PARM;
}
}
else if (filterToRead == OBSRX_B_FIR)
{
/* Read Obs Rx FIR B #taps */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_RX_FILTER_CONFIGURATION, &numTapsReg, 0x18, 3);
firFilter->numFirCoefs = (numTapsReg + 1) * numTapMultiple;
/* Read Obs Rx FIR B gain */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_DPD_SNIFFER_RX_FILTER_GAIN, &filterGain, 0x60, 5);
switch (filterGain)
{
case 0x00:
firFilter->gain_dB = -12;
break;
case 0x01:
firFilter->gain_dB = -6;
break;
case 0x02:
firFilter->gain_dB = 0;
break;
case 0x03:
firFilter->gain_dB = 6;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SRXFIR_INV_GAIN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SRXFIR_INV_GAIN_PARM));
return MYKONOS_ERR_SRXFIR_INV_GAIN_PARM;
}
}
else if (filterToRead == TX1_FIR || filterToRead == TX2_FIR || filterToRead == TX1TX2_FIR)
{
/* Read number of Taps */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_TX_FILTER_CONFIGURATION, &numTapsReg, 0xE0, 5);
firFilter->numFirCoefs = (numTapsReg + 1) * numTapMultiple;
/* Read Tx Filter gain */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_TX_FILTER_CONFIGURATION, &filterGain, 0x01, 0);
switch (filterGain)
{
case 0:
firFilter->gain_dB = 0;
break;
case 1:
firFilter->gain_dB = 6;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_TXFIR_INV_GAIN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_TXFIR_INV_GAIN_PARM));
return MYKONOS_ERR_TXFIR_INV_GAIN_PARM;
}
}
/* Select which FIR filter to read the coeffs for */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_CTL, (PROGRAM_CLK_EN | filterSelect)); //select filter and enable the programming clock
if (firFilter->numFirCoefs > maxNumTaps)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READFIR_INV_NUMTAPS_PARM,
getMykonosErrorMessage(MYKONOS_ERR_READFIR_INV_NUMTAPS_PARM));
return MYKONOS_ERR_READFIR_INV_NUMTAPS_PARM;
}
/* write filter coefficients */
for (i = 0; i < firFilter->numFirCoefs; i++)
{
/* Write Low byte of 16bit coefficient */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_ADDR, (i * 2));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_CTL, (PROGRAM_CLK_EN | filterSelect)); /* write enable (self clearing) */
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_DATA, &lsbRead);
/* Write High Byte of 16bit coefficient */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_ADDR, ((i * 2) + 1));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_CTL, (PROGRAM_CLK_EN | filterSelect));/* write enable (self clearing) */
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_PFIR_COEFF_DATA, &msbRead);
firFilter->coefs[i] = (int16_t)((lsbRead & 0xFF) | ((msbRead << 8) & 0xFF00));
}
return MYKONOS_ERR_OK;
}
/*
*****************************************************************************
* Rx Data path functions
*****************************************************************************
*/
/*!
* \brief Programs the gain table settings for either Rx1, Rx2, Rx1 + Rx2, ORx, or SnRx receiver types
*
* The gain table for a receiver type is set with the parameters passed by uint8_t gainTablePtr array.
* gainTablePtr is a 4 x n array, where there are four (4) elements per index, and the array
* length (n) is dependent upon receiver type. The (n) value is conveyed by numGainIndexesInTable.
* All gain tables have a maximum index of 255 when used with this function. The minimum gain index is
* application dependent.
*
* Where for Rx1, Rx2, and ObsRx:
* [A, B, C, D]: A = Front End Gain, B = External Control, C = Digital Attenuation/Gain, D = Attenuation/Gain select
*
* Where for SnRx:
* [A, B, C, D]: A = Front End Gain, B = LNA Bypass, C = Digital Attenuation/Gain, D = Attenuation/Gain select
*
* The gain table starting address changes with each receiver type. This function accounts for this change as well as the
* difference between byte [B] for {Rx1, Rx2, ObsRx} and SnRx receiver array values and programs the correct registers.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the Mykonos data structure
* \param gainTablePtr Pointer to 4 x n array containing gain table program values
* \param numGainIndexesInTable The number of 'n' indices in 4 x n array. A range check is performed to ensure the maximum is not exceeded.
* \param rxChannel mykonosGainTable_t enum type to select either Rx1, Rx2, Rx1 + Rx2, ORx, or SnRx gain table for programming. A
* channel check is performed to ensure a valid selection.
*
* \return Returns enum MYKONOS_ERR, MYKONOS_ERR_OK if successful, MYKONOS_ERR_RXGAINTABLE_INV_CHANNEL if invalid channel is selected, MYKONOS_ERR_RXGAINTABLE_INV_GAIN_INDEX_RANGE
* if numGainIndexesInTable exceeds range for selected receiver gain table
*/
mykonosErr_t MYKONOS_programRxGainTable(mykonosDevice_t *device, uint8_t *gainTablePtr, uint8_t numGainIndexesInTable, mykonosGainTable_t rxChannel)
{
uint8_t ctlReg = 0;
uint8_t ch3CtlReg = 0;
uint16_t rxFEGainAddr = 0;
uint16_t rxExtCtlLnaAddr = 0;
uint16_t rxDigGainAttenAddr = 0;
uint16_t rx2FEGainAddr = 0;
uint16_t rx2ExtCtlAddr = 0;
uint16_t rx2DigGainAttenAddr = 0;
uint8_t minGainIndex = 0;
uint8_t startIndex = 0;
int16_t i = 0;
uint16_t tableRowIndex = 0;
uint8_t retFlag = 0;
#if MYK_ENABLE_SPIWRITEARRAY
uint32_t addrIndex = 0;
uint32_t dataIndex = 0;
uint32_t spiBufferSize = (((MYK_SPIWRITEARRAY_BUFFERSIZE / 9) - 1) * 9);
uint16_t addrArray[MYK_SPIWRITEARRAY_BUFFERSIZE] = {0};
uint8_t dataArray[MYK_SPIWRITEARRAY_BUFFERSIZE] = {0};
#endif
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_programRxGainTable()\n");
#endif
if (gainTablePtr == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_PROGRAM_RXGAIN_TABLE_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_PROGRAM_RXGAIN_TABLE_NULL_PARM));
return MYKONOS_ERR_PROGRAM_RXGAIN_TABLE_NULL_PARM;
}
/* checking range of numGainIndexesInTable against maximums and for valid rxChannel selection */
switch (rxChannel)
{
case RX1_GT:
/* Rx1 max gain index = 255, check is out of range of uint8_t */
break;
case RX2_GT:
/* Rx1 max gain index = 255, check is out of range of uint8_t */
break;
case RX1_RX2_GT:
/* Rx1 max gain index = 255, check is out of range of uint8_t */
break;
case ORX_GT:
if (numGainIndexesInTable > MAX_ORX_GAIN_TABLE_NUMINDEXES)
{
retFlag = 1;
}
break;
case SNRX_GT:
if (numGainIndexesInTable > MAX_SNRX_GAIN_TABLE_NUMINDEXES)
{
retFlag = 1;
}
break;
case LOOPBACK_GT:
if (numGainIndexesInTable > MAX_LOOPBACK_GAIN_TABLE_NUMINDEXES)
{
retFlag = 1;
}
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RXGAINTABLE_INV_CHANNEL,
getMykonosErrorMessage(MYKONOS_ERR_RXGAINTABLE_INV_CHANNEL));
return MYKONOS_ERR_RXGAINTABLE_INV_CHANNEL;
}
if (retFlag)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RXGAINTABLE_INV_GAIN_INDEX_RANGE,
getMykonosErrorMessage(MYKONOS_ERR_RXGAINTABLE_INV_GAIN_INDEX_RANGE));
return MYKONOS_ERR_RXGAINTABLE_INV_GAIN_INDEX_RANGE;
}
else
{
/* calculating minimum gain index value */
minGainIndex = MAX_GAIN_TABLE_INDEX - numGainIndexesInTable + 1;
}
/* forming control register words based on channel select, assigning starting index, and register addressing, also updating max and min gain table indices in structure */
switch (rxChannel)
{
case RX1_GT:
ctlReg = (rxChannel << 3) | 0x05;
startIndex = START_RX_GAIN_INDEX;
rxFEGainAddr = MYKONOS_ADDR_GAIN_TABLE_RX1_FE_GAIN;
rxExtCtlLnaAddr = MYKONOS_ADDR_GAIN_TABLE_RX1_EXT_CTL;
rxDigGainAttenAddr = MYKONOS_ADDR_GAIN_TABLE_RX1_DIG_GAIN;
device->rx->rxGainCtrl->rx1MaxGainIndex = MAX_GAIN_TABLE_INDEX;
device->rx->rxGainCtrl->rx1MinGainIndex = minGainIndex;
break;
case RX2_GT:
ctlReg = (rxChannel << 3) | 0x05;
startIndex = START_RX_GAIN_INDEX;
rxFEGainAddr = MYKONOS_ADDR_GAIN_TABLE_RX2_FE_GAIN;
rxExtCtlLnaAddr = MYKONOS_ADDR_GAIN_TABLE_RX2_EXT_CTL;
rxDigGainAttenAddr = MYKONOS_ADDR_GAIN_TABLE_RX2_DIG_GAIN;
device->rx->rxGainCtrl->rx2MaxGainIndex = MAX_GAIN_TABLE_INDEX;
device->rx->rxGainCtrl->rx2MinGainIndex = minGainIndex;
break;
case RX1_RX2_GT:
ctlReg = (rxChannel << 3) | 0x05;
startIndex = START_RX_GAIN_INDEX;
rxFEGainAddr = MYKONOS_ADDR_GAIN_TABLE_RX1_FE_GAIN;
rx2FEGainAddr = MYKONOS_ADDR_GAIN_TABLE_RX2_FE_GAIN;
rxExtCtlLnaAddr = MYKONOS_ADDR_GAIN_TABLE_RX1_EXT_CTL;
rx2ExtCtlAddr = MYKONOS_ADDR_GAIN_TABLE_RX2_EXT_CTL;
rxDigGainAttenAddr = MYKONOS_ADDR_GAIN_TABLE_RX1_DIG_GAIN;
rx2DigGainAttenAddr = MYKONOS_ADDR_GAIN_TABLE_RX2_DIG_GAIN;
device->rx->rxGainCtrl->rx1MaxGainIndex = MAX_GAIN_TABLE_INDEX;
device->rx->rxGainCtrl->rx1MinGainIndex = minGainIndex;
device->rx->rxGainCtrl->rx2MaxGainIndex = MAX_GAIN_TABLE_INDEX;
device->rx->rxGainCtrl->rx2MinGainIndex = minGainIndex;
break;
case ORX_GT:
ctlReg = 0x05;
ch3CtlReg = 0x08;
startIndex = START_ORX_GAIN_INDEX;
rxFEGainAddr = MYKONOS_ADDR_GAIN_TABLE_RX3_FE_GAIN;
rxExtCtlLnaAddr = MYKONOS_ADDR_GAIN_TABLE_RX3_LNA_ENAB;
rxDigGainAttenAddr = MYKONOS_ADDR_GAIN_TABLE_RX3_DIG_GAIN;
device->obsRx->orxGainCtrl->maxGainIndex = MAX_GAIN_TABLE_INDEX;
device->obsRx->orxGainCtrl->minGainIndex = minGainIndex;
break;
case SNRX_GT:
ctlReg = 0x05;
ch3CtlReg = 0x00;
startIndex = START_SNRX_GAIN_INDEX;
rxFEGainAddr = MYKONOS_ADDR_GAIN_TABLE_RX3_FE_GAIN;
rxExtCtlLnaAddr = MYKONOS_ADDR_GAIN_TABLE_RX3_LNA_ENAB;
rxDigGainAttenAddr = MYKONOS_ADDR_GAIN_TABLE_RX3_DIG_GAIN;
device->obsRx->snifferGainCtrl->maxGainIndex = MAX_GAIN_TABLE_INDEX;
device->obsRx->snifferGainCtrl->minGainIndex = minGainIndex;
break;
case LOOPBACK_GT: /* Loopback is only for ARM calibrations */
ctlReg = 0x05;
ch3CtlReg = 0x10;
startIndex = START_LOOPBACK_GAIN_INDEX;
rxFEGainAddr = MYKONOS_ADDR_GAIN_TABLE_RX3_FE_GAIN;
rxExtCtlLnaAddr = MYKONOS_ADDR_GAIN_TABLE_RX3_LNA_ENAB;
rxDigGainAttenAddr = MYKONOS_ADDR_GAIN_TABLE_RX3_DIG_GAIN;
break;
}
/* starting the gain table clock and read from gain table address bits */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_GAIN_TABLE_CONFIGURATION, ctlReg);
/* if ORx or Sniffer are selected also writing channel 3 readback bits for ObsRx or Sniffer selection */
if (rxChannel > RX1_RX2_GT)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CH3_GAIN_TABLE_CONFIGURATION, ch3CtlReg);
}
/* programming a table selected by rxChannel enum type */
#if MYK_ENABLE_SPIWRITEARRAY == 0
for(i = startIndex; i >= ((startIndex + 1) - numGainIndexesInTable); i--)
{
tableRowIndex = (uint16_t)(startIndex - i) << 2;
/* set current gain table index (address) */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_GAIN_TABLE_ADDR, i);
/* Set Rx Front End gain[5:0] */
CMB_SPIWriteByte(device->spiSettings, rxFEGainAddr, gainTablePtr[tableRowIndex]);
/* Set external control [5:0] OR LNA bypass if rxChannel == SNRX_GT */
if (rxChannel == SNRX_GT)
{
CMB_SPIWriteByte(device->spiSettings, rxExtCtlLnaAddr, gainTablePtr[tableRowIndex + 1] << 4);
}
else
{
CMB_SPIWriteByte(device->spiSettings, rxExtCtlLnaAddr, gainTablePtr[tableRowIndex + 1]);
}
/* Set digital attenuation/gain[6:0] and set/clear attenuation bit */
CMB_SPIWriteByte(device->spiSettings, rxDigGainAttenAddr, (gainTablePtr[tableRowIndex + 3] << 7) | gainTablePtr[tableRowIndex + 2]);
/* repeating gain table settings if Rx1 and Rx2 are selected for Rx2 configuration */
if (rxChannel == RX1_RX2_GT)
{
/* Set Rx Front End gain[5:0] */
CMB_SPIWriteByte(device->spiSettings, rx2FEGainAddr, gainTablePtr[tableRowIndex]);
/* Set external control [5:0] */
CMB_SPIWriteByte(device->spiSettings, rx2ExtCtlAddr, gainTablePtr[tableRowIndex + 1]);
/* Set digital attenuation/gain[6:0] */
CMB_SPIWriteByte(device->spiSettings, rx2DigGainAttenAddr, (gainTablePtr[tableRowIndex + 3] << 7) | gainTablePtr[tableRowIndex + 2]);
}
/* setting the write enable depending on rxChannel choice */
if (rxChannel == ORX_GT)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CH3_GAIN_TABLE_CONFIGURATION, ch3CtlReg | 0x02);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_GAIN_TABLE_CONFIGURATION, ctlReg | 0x02);
}
else if (rxChannel == SNRX_GT)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CH3_GAIN_TABLE_CONFIGURATION, ch3CtlReg | 0x01);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_GAIN_TABLE_CONFIGURATION, ctlReg | 0x02);
}
else if (rxChannel == LOOPBACK_GT)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CH3_GAIN_TABLE_CONFIGURATION, ch3CtlReg | 0x04);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_GAIN_TABLE_CONFIGURATION, ctlReg | 0x02);
}
else
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_GAIN_TABLE_CONFIGURATION, ctlReg | 0x02);
}
}
#elif MYK_ENABLE_SPIWRITEARRAY == 1
//#elif 0
addrIndex = 0;
dataIndex = 0;
for (i = startIndex; i >= ((startIndex + 1) - numGainIndexesInTable); i--)
{
tableRowIndex = (uint16_t)(startIndex - (uint8_t)i) << 2;
/* set current gain table index (address) */
addrArray[addrIndex++] = MYKONOS_ADDR_GAIN_TABLE_ADDR;
dataArray[dataIndex++] = (uint8_t)i;
/* Set Rx Front End gain[5:0] */
addrArray[addrIndex++] = rxFEGainAddr;
dataArray[dataIndex++] = gainTablePtr[tableRowIndex];
/* Set external control [5:0] OR LNA bypass if rxChannel == SNRX_GT */
addrArray[addrIndex++] = rxExtCtlLnaAddr;
dataArray[dataIndex++] = (rxChannel == SNRX_GT) ? (gainTablePtr[tableRowIndex + 1] << 4) : (gainTablePtr[tableRowIndex + 1]);
/* Set digital attenuation/gain[6:0] and set/clear attenuation bit */
addrArray[addrIndex++] = rxDigGainAttenAddr;
dataArray[dataIndex++] = ((gainTablePtr[tableRowIndex + 3] << 7) | gainTablePtr[tableRowIndex + 2]);
/* repeating gain table settings if Rx1 and Rx2 are selected for Rx2 configuration */
if (rxChannel == RX1_RX2_GT)
{
/* Set Rx Front End gain[5:0] */
addrArray[addrIndex++] = rx2FEGainAddr;
dataArray[dataIndex++] = gainTablePtr[tableRowIndex];
/* Set external control [5:0] */
addrArray[addrIndex++] = rx2ExtCtlAddr;
dataArray[dataIndex++] = gainTablePtr[tableRowIndex + 1];
/* Set digital attenuation/gain[6:0] */
addrArray[addrIndex++] = rx2DigGainAttenAddr;
dataArray[dataIndex++] = ((gainTablePtr[tableRowIndex + 3] << 7) | gainTablePtr[tableRowIndex + 2]);
}
/* setting the write enable depending on rxChannel choice */
if (rxChannel == ORX_GT)
{
addrArray[addrIndex++] = MYKONOS_ADDR_CH3_GAIN_TABLE_CONFIGURATION;
dataArray[dataIndex++] = (ch3CtlReg | 0x02);
addrArray[addrIndex++] = MYKONOS_ADDR_GAIN_TABLE_CONFIGURATION;
dataArray[dataIndex++] = (ctlReg | 0x02);
}
else if (rxChannel == SNRX_GT)
{
addrArray[addrIndex++] = MYKONOS_ADDR_CH3_GAIN_TABLE_CONFIGURATION;
dataArray[dataIndex++] = (ch3CtlReg | 0x01);
addrArray[addrIndex++] = MYKONOS_ADDR_GAIN_TABLE_CONFIGURATION;
dataArray[dataIndex++] = (ctlReg | 0x02);
}
else if (rxChannel == LOOPBACK_GT)
{
addrArray[addrIndex++] = MYKONOS_ADDR_CH3_GAIN_TABLE_CONFIGURATION;
dataArray[dataIndex++] = (ch3CtlReg | 0x04);
addrArray[addrIndex++] = MYKONOS_ADDR_GAIN_TABLE_CONFIGURATION;
dataArray[dataIndex++] = (ctlReg | 0x02);
}
else
{
addrArray[addrIndex++] = MYKONOS_ADDR_GAIN_TABLE_CONFIGURATION;
dataArray[dataIndex++] = (ctlReg | 0x02);
}
if (addrIndex >= spiBufferSize)
{
CMB_SPIWriteBytes(device->spiSettings, &addrArray[0], &dataArray[0], addrIndex);
dataIndex = 0;
addrIndex = 0;
}
}
if (addrIndex > 0)
{
CMB_SPIWriteBytes(device->spiSettings, &addrArray[0], &dataArray[0], addrIndex);
}
#endif
/* clearing the channel 3 gain table configuration register if selected and stopping the gain table clock */
if (rxChannel > RX1_RX2_GT)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_CH3_GAIN_TABLE_CONFIGURATION, 0x00);
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_GAIN_TABLE_CONFIGURATION, 0x08);
return MYKONOS_ERR_OK;
}
/**
* \brief Sets the Rx1 Manual Gain Index
*
* If the value passed in the gainIndex parameter is within range of the gain table minimum and
* maximum indexes, the Rx1 gain index will be updated in the device data structure
* and written to the transceiver. Else, an error will be returned. The maximum index is 255
* and the minimum index is application specific.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->rxSettings->rxGainControl->rx1GainIndex
* - device->rxSettings->rxGainControl->rx1MaxGainIndex
* - device->rxSettings->rxGainControl->rx1MinGainIndex
*
* \param device Pointer to the Mykonos data structure
* \param gainIndex Desired Rx1 gain index
*
* \return Returns enum MYKONOS_ERR, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_setRx1ManualGain(mykonosDevice_t *device, uint8_t gainIndex)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setRx1ManualGain()\n");
#endif
if ((gainIndex < device->rx->rxGainCtrl->rx1MinGainIndex) || (gainIndex > device->rx->rxGainCtrl->rx1MaxGainIndex))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETRX1GAIN_INV_GAIN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SETRX1GAIN_INV_GAIN_PARM));
return MYKONOS_ERR_SETRX1GAIN_INV_GAIN_PARM;
}
else
{
/* If the desired gain index is in range of the gain table, update the
* value in the device data structure, and write to device.
*/
device->rx->rxGainCtrl->rx1GainIndex = gainIndex;
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_MANUAL_GAIN_INDEX_CH_1, gainIndex);
return MYKONOS_ERR_OK;
}
}
/**
* \brief Sets the Rx2 Manual Gain index
*
* If the value passed in the gainIndex parameter is within range of the gain table minimum and
* maximum indexes, the Rx2 gain index will be updated in the device data structure
* and written to the transceiver. Else, an error will be returned. The maximum index is 255
* and the minimum index is application specific.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->rxTxSettings->rxGainControl->rx2GainIndex
* - device->rxTxSettings->rxGainControl->rx2MaxGainIndex
* - device->rxTxSettings->rxGainControl->rx2MinGainIndex
*
* \param device Pointer to the Mykonos data structure
* \param gainIndex Desired Rx2 gain index
*
* \return Returns enum MYKONOS_ERR, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_setRx2ManualGain(mykonosDevice_t *device, uint8_t gainIndex)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setRx2ManualGain()\n");
#endif
if ((gainIndex < device->rx->rxGainCtrl->rx2MinGainIndex) || (gainIndex > device->rx->rxGainCtrl->rx2MaxGainIndex))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETRX2GAIN_INV_GAIN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SETRX2GAIN_INV_GAIN_PARM));
return MYKONOS_ERR_SETRX2GAIN_INV_GAIN_PARM;
}
else
{
/* If the desired gain index is in range of the gain table, update the
* value in the device data structure, and write to device.
*/
device->rx->rxGainCtrl->rx2GainIndex = gainIndex;
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_MANUAL_GAIN_INDEX_CH_2, gainIndex);
return MYKONOS_ERR_OK;
}
}
/**
* \brief Reads the Rx1 Gain Index for Manual or AGC gain control mode
*
* This function reads the Rx1 gain index for manual or AGC modes. If the
* *rx1GainIndex pointer is nonzero, the read back gain index will
* be returned in the parameter. If the *rx1GainIndex pointer
* is NULL, the device data structure will be updated with the new read back value
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->rxTxSettings->rxGainControl->rx1GainIndex
*
* \param device Pointer to the Mykonos data structure
* \param rx1GainIndex uint8_t Pointer to the Rx1 gain index value
*
* \return Returns enum MYKONOS_ERR, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_getRx1Gain(mykonosDevice_t *device, uint8_t *rx1GainIndex)
{
uint8_t readData;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getRx1Gain()\n");
#endif
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_GAIN_CTL_CHANNEL_1, &readData);
/*
* If rx1GainIndex address is not NULL, return the Rx1 gain index in the
* rx1GainIndex function parameter
*/
if (rx1GainIndex != NULL)
{
*rx1GainIndex = readData;
}
/*
* set the current Rx1 gain in the device data structure
*/
if (device->profilesValid & RX_PROFILE_VALID)
{
device->rx->rxGainCtrl->rx1GainIndex = readData;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Reads the Rx2 Gain Index for Manual or AGC gain control mode
*
* This function reads the Rx2 gain index for manual or AGC modes. If the
* *rx1GainIndex pointer is nonzero, the read back gain index will
* be returned in the parameter. If the *rx1GainIndex pointer
* is NULL, the device data structure will be updated with the new read back value
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->rxTxSettings->rxGainControl->rx2GainIndex
*
* \param device Pointer to the Mykonos data structure
* \param rx2GainIndex Desired Rx2 gain index
*
* \return Returns enum MYKONOS_ERR, MYKONOS_ERR_OK=pass, !MYKONOS_ERR_OK=fail
*/
mykonosErr_t MYKONOS_getRx2Gain(mykonosDevice_t *device, uint8_t *rx2GainIndex)
{
uint8_t readData;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getRx2Gain()\n");
#endif
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_GAIN_CTL_CHANNEL_2, &readData);
/*
* If rx1GainIndex address is not NULL, return the Rx1 gain index in the
* rx1GainIndex function parameter
*/
if (rx2GainIndex != NULL)
{
*rx2GainIndex = readData;
}
/*
* set the current Rx2 gain in the device data structure
*/
if (device->profilesValid & RX_PROFILE_VALID)
{
device->rx->rxGainCtrl->rx2GainIndex = readData;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Sets up the device Rx Automatic Gain Control (AGC) registers.
*
* Three data structures (mykonosAgcCfg_t, mykonosPeakDetAgcCfg_t, mykonosPowerMeasAgcCfg_t)
* must be instantiated prior to calling this function. Valid ranges for data structure members
* must also be provided.
*
*
* <B>Dependencies:</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
* - device->rx->rxAgcCtrl->agcRx1MaxGainIndex
* - device->rx->rxAgcCtrl->agcRx1MinGainIndex
* - device->rx->rxAgcCtrl->agcRx2MaxGainIndex
* - device->rx->rxAgcCtrl->agcRx2MinGainIndex
* - device->rx->rxAgcCtrl->agcObsRxMaxGainIndex
* - device->rx->rxAgcCtrl->agcObsRxMinGainIndex
* - device->rx->rxAgcCtrl->agcObsRxSelect
* - device->rx->rxAgcCtrl->agcPeakThresholdMode
* - device->rx->rxAgcCtrl->agcLowThsPreventGainIncrease
* - device->rx->rxAgcCtrl->agcGainUpdateCounter
* - device->rx->rxAgcCtrl->agcSlowLoopSettlingDelay
* - device->rx->rxAgcCtrl->agcPeakWaitTime
* - device->rx->rxAgcCtrl->agcResetOnRxEnable
* - device->rx->rxAgcCtrl->agcEnableSyncPulseForGainCounter
* - device->rx->rxAgcCtrl->peakAgc->apdHighThresh
* - device->rx->rxAgcCtrl->peakAgc->apdLowThresh
* - device->rx->rxAgcCtrl->peakAgc->hb2HighThresh
* - device->rx->rxAgcCtrl->peakAgc->hb2LowThresh
* - device->rx->rxAgcCtrl->peakAgc->hb2VeryLowThresh
* - device->rx->rxAgcCtrl->peakAgc->apdHighThreshExceededCnt
* - device->rx->rxAgcCtrl->peakAgc->apdLowThreshExceededCnt
* - device->rx->rxAgcCtrl->peakAgc->hb2HighThreshExceededCnt
* - device->rx->rxAgcCtrl->peakAgc->hb2LowThreshExceededCnt
* - device->rx->rxAgcCtrl->peakAgc->hb2VeryLowThreshExceededCnt
* - device->rx->rxAgcCtrl->peakAgc->apdHighGainStepAttack
* - device->rx->rxAgcCtrl->peakAgc->apdLowGainStepRecovery
* - device->rx->rxAgcCtrl->peakAgc->hb2HighGainStepAttack
* - device->rx->rxAgcCtrl->peakAgc->hb2LowGainStepRecovery
* - device->rx->rxAgcCtrl->peakAgc->hb2VeryLowGainStepRecovery
* - device->rx->rxAgcCtrl->peakAgc->apdFastAttack
* - device->rx->rxAgcCtrl->peakAgc->hb2FastAttack
* - device->rx->rxAgcCtrl->peakAgc->hb2OverloadDetectEnable
* - device->rx->rxAgcCtrl->peakAgc->hb2OverloadDurationCnt
* - device->rx->rxAgcCtrl->peakAgc->hb2OverloadThreshCnt
* - device->rx->rxAgcCtrl->powerAgc->pmdUpperHighThresh
* - device->rx->rxAgcCtrl->powerAgc->pmdUpperLowThresh
* - device->rx->rxAgcCtrl->powerAgc->pmdLowerHighThresh
* - device->rx->rxAgcCtrl->powerAgc->pmdLowerLowThresh
* - device->rx->rxAgcCtrl->powerAgc->pmdUpperHighGainStepAttack
* - device->rx->rxAgcCtrl->powerAgc->pmdUpperLowGainStepAttack
* - device->rx->rxAgcCtrl->powerAgc->pmdLowerHighGainStepRecovery
* - device->rx->rxAgcCtrl->powerAgc->pmdLowerLowGainStepRecovery
* - device->rx->rxAgcCtrl->powerAgc->pmdMeasDuration
* - device->rx->rxAgcCtrl->powerAgc->pmdMeasConfig
*
* \param device is structure pointer to the Mykonos data structure containing settings
* The pointer to the Mykonos AGC data structure containing settings is checked for a null pointer
* to ensure it has been initialized. If not an error is thrown.
*
* \retval Returns MYKONOS_ERR=pass, !MYKONOS_ERR=fail
* \retval MYKONOS_ERR_INV_AGC_RX_STRUCT_INIT
* \retval MYKONOS_ERR_INV_AGC_RX_PEAK_STRUCT_INIT
* \retval MYKONOS_ERR_INV_AGC_RX_PWR_STRUCT_INIT
* \retval MYKONOS_ERR_INV_AGC_RX1_MAX_GAIN_INDEX
* \retval MYKONOS_ERR_INV_AGC_RX1_MIN_GAIN_INDEX
* \retval MYKONOS_ERR_INV_AGC_RX2_MAX_GAIN_INDEX
* \retval MYKONOS_ERR_INV_AGC_RX2_MIN_GAIN_INDEX
* \retval MYKONOS_ERR_INV_AGC_RX_GAIN_UPDATE_TIME_PARM
* \retval MYKONOS_ERR_INV_AGC_RX_PEAK_WAIT_TIME_PARM
* \retval MYKONOS_ERR_INV_AGC_RX_SLOW_LOOP_SETTLING_DELAY
* \retval MYKONOS_ERR_INV_AGC_PMD_MEAS_DURATION
* \retval MYKONOS_ERR_INV_AGC_PMD_MEAS_CONFIG
* \retval MYKONOS_ERR_INV_AGC_RX_LOW_THS_PREV_GAIN_INC
* \retval MYKONOS_ERR_INV_AGC_RX_PEAK_THRESH_MODE
* \retval MYKONOS_ERR_INV_AGC_RX_RESET_ON_RX_ENABLE
* \retval MYKONOS_ERR_INV_AGC_RX_ENABLE_SYNC_PULSE_GAIN_COUNTER
* \retval MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_HIGH_THRESH
* \retval MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_LOW_THRESH
* \retval MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_LOW_THRESH
* \retval MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_HIGH_THRESH
* \retval MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_HIGH_GAIN_STEP
* \retval MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_LOW_GAIN_STEP
* \retval MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_LOW_GAIN_STEP
* \retval MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_LOW_GAIN_STEP
* \retval MYKONOS_ERR_INV_AGC_RX_PKDET_FAST_ATTACK_VALUE
* \retval MYKONOS_ERR_INV_AGC_RX_APD_HIGH_THRESH_PARM
* \retval MYKONOS_ERR_INV_AGC_RX_APD_LOW_THRESH_PARM
* \retval MYKONOS_ERR_INV_AGC_RX_HB2_HIGH_THRESH_PARM
* \retval MYKONOS_ERR_INV_AGC_RX_HB2_LOW_THRESH_PARM
* \retval MYKONOS_ERR_INV_AGC_RX_HB2_VERY_LOW_THRESH_PARM
* \retval MYKONOS_ERR_INV_AGC_RX_APD_HIGH_GAIN_STEP_PARM
* \retval MYKONOS_ERR_INV_AGC_RX_APD_LOW_GAIN_STEP_PARM
* \retval MYKONOS_ERR_INV_AGC_RX_HB2_HIGH_GAIN_STEP_PARM
* \retval MYKONOS_ERR_INV_AGC_RX_HB2_LOW_GAIN_STEP_PARM
* \retval MYKONOS_ERR_INV_AGC_RX_HB2_VERY_LOW_GAIN_STEP_PARM
* \retval MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_ENABLE
* \retval MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_DUR_CNT
* \retval MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_THRESH_CNT
*/
mykonosErr_t MYKONOS_setupRxAgc(mykonosDevice_t *device)
{
uint8_t decPowerConfig = 0;
uint8_t lower1ThreshGainStepRegValue = 0;
uint8_t powerThresholdsRegValue = 0;
uint8_t hb2OvldCfgRegValue = 0;
uint8_t agcGainUpdateCtr[3] = {0};
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setRxAgc()\n");
#endif
/* Check mykonosAgcCfg_t device->rx->rxAgcCtrl pointer for initialization */
if (&device->rx->rxAgcCtrl == 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_STRUCT_INIT,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_STRUCT_INIT));
return MYKONOS_ERR_INV_AGC_RX_STRUCT_INIT;
}
/* Check mykonosPeakDetAgcCfg_t device->rx->rxAgcCtrl->peakAgc pointer for initialization */
if (&device->rx->rxAgcCtrl->peakAgc == 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PEAK_STRUCT_INIT,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PEAK_STRUCT_INIT));
return MYKONOS_ERR_INV_AGC_RX_PEAK_STRUCT_INIT;
}
/* Check mykonosPowerMeasAgcCfg_t device->rx->rxAgcCtrl->powerAgc pointer for initialization */
if (&device->rx->rxAgcCtrl->powerAgc == 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PWR_STRUCT_INIT,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PWR_STRUCT_INIT));
return MYKONOS_ERR_INV_AGC_RX_PWR_STRUCT_INIT;
}
/* Range check agcRx1MaxGainIndex versus gain table limits */
if ((device->rx->rxAgcCtrl->agcRx1MaxGainIndex > device->rx->rxGainCtrl->rx1MaxGainIndex)
|| (device->rx->rxAgcCtrl->agcRx1MaxGainIndex < device->rx->rxAgcCtrl->agcRx1MinGainIndex))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX1_MAX_GAIN_INDEX,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX1_MAX_GAIN_INDEX));
return MYKONOS_ERR_INV_AGC_RX1_MAX_GAIN_INDEX;
}
else
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_RX1_MAX_GAIN_INDEX, device->rx->rxAgcCtrl->agcRx1MaxGainIndex);
}
/* Range check agcRx1MinGainIndex versus gain table limits */
if ((device->rx->rxAgcCtrl->agcRx1MinGainIndex < device->rx->rxGainCtrl->rx1MinGainIndex)
|| (device->rx->rxAgcCtrl->agcRx1MaxGainIndex < device->rx->rxAgcCtrl->agcRx1MinGainIndex))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX1_MIN_GAIN_INDEX,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX1_MIN_GAIN_INDEX));
return MYKONOS_ERR_INV_AGC_RX1_MIN_GAIN_INDEX;
}
else
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_RX1_MIN_GAIN_INDEX, device->rx->rxAgcCtrl->agcRx1MinGainIndex);
}
/* Range check agcRx2MaxGainIndex versus gain table limits */
if ((device->rx->rxAgcCtrl->agcRx2MaxGainIndex > device->rx->rxGainCtrl->rx2MaxGainIndex)
|| (device->rx->rxAgcCtrl->agcRx2MaxGainIndex < device->rx->rxAgcCtrl->agcRx2MinGainIndex))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX2_MAX_GAIN_INDEX,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX2_MAX_GAIN_INDEX));
return MYKONOS_ERR_INV_AGC_RX2_MAX_GAIN_INDEX;
}
else
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_RX2_MAX_GAIN_INDEX, device->rx->rxAgcCtrl->agcRx2MaxGainIndex);
}
/* Range check agcRx2MinGainIndex versus gain table limits */
if ((device->rx->rxAgcCtrl->agcRx2MinGainIndex < device->rx->rxGainCtrl->rx2MinGainIndex)
|| (device->rx->rxAgcCtrl->agcRx2MaxGainIndex < device->rx->rxAgcCtrl->agcRx2MinGainIndex))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX2_MIN_GAIN_INDEX,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX2_MIN_GAIN_INDEX));
return MYKONOS_ERR_INV_AGC_RX2_MIN_GAIN_INDEX;
}
else
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_RX2_MIN_GAIN_INDEX, device->rx->rxAgcCtrl->agcRx2MinGainIndex);
}
/* Range check for agcGainUpdateCounter (22-bit) */
if ((device->rx->rxAgcCtrl->agcGainUpdateCounter > 0x3FFFFF) || (device->rx->rxAgcCtrl->agcGainUpdateCounter < 1))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_GAIN_UPDATE_TIME_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_GAIN_UPDATE_TIME_PARM));
return MYKONOS_ERR_INV_AGC_RX_GAIN_UPDATE_TIME_PARM;
}
else
{
/* Split agcGainUpdateCounter into three values */
agcGainUpdateCtr[0] = (uint8_t)(device->rx->rxAgcCtrl->agcGainUpdateCounter);
agcGainUpdateCtr[1] = (uint8_t)(device->rx->rxAgcCtrl->agcGainUpdateCounter >> 8);
agcGainUpdateCtr[2] = (uint8_t)(device->rx->rxAgcCtrl->agcGainUpdateCounter >> 16);
/* Write two bytes directly due. Third word has its upper two bits masked off. */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_GAIN_UPDATE_CNT_1, agcGainUpdateCtr[0]);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_GAIN_UPDATE_CNT_2, agcGainUpdateCtr[1]);
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_GAIN_UPDATE_CNT_3, agcGainUpdateCtr[2], 0x3F, 0);
}
/* Range check on agcPeakWaitTime (5-bit) */
if (device->rx->rxAgcCtrl->agcPeakWaitTime > 0x1F || device->rx->rxAgcCtrl->agcPeakWaitTime < 0x02)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PEAK_WAIT_TIME_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PEAK_WAIT_TIME_PARM));
return MYKONOS_ERR_INV_AGC_RX_PEAK_WAIT_TIME_PARM;
}
else
{
/* Write agcPeakWaitTime */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_CFG_2, device->rx->rxAgcCtrl->agcPeakWaitTime, 0x1F, 0);
}
/* Set MYKONOS_ADDR_AGC_CFG_2 bits [6:5] = b11 to enable AGC counters for MGC mode - needed for ARM cals to work correctly */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_CFG_2, 3, 0x60, 5);
/* Range check for agcSlowLoopSettlingDelay (7-bit) */
if (device->rx->rxAgcCtrl->agcSlowLoopSettlingDelay > 0x7F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_SLOW_LOOP_SETTLING_DELAY,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_SLOW_LOOP_SETTLING_DELAY));
return MYKONOS_ERR_INV_AGC_RX_SLOW_LOOP_SETTLING_DELAY;
}
else
{
/* Write agcSlowLoopSettlingDelay */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_LOOP_CFG, device->rx->rxAgcCtrl->agcSlowLoopSettlingDelay, 0x7F, 0);
}
/* Range check for pmdMeasDuration */
if ((1 << (3 + device->rx->rxAgcCtrl->powerAgc->pmdMeasDuration)) >= (device->rx->rxAgcCtrl->agcGainUpdateCounter))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_PMD_MEAS_DURATION,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_PMD_MEAS_DURATION));
return MYKONOS_ERR_INV_AGC_PMD_MEAS_DURATION;
}
else
{
/* Write pmdMeasDuration */
CMB_SPIWriteField(device->spiSettings, MYKONOS_DEC_POWER_CONFIG_2, device->rx->rxAgcCtrl->powerAgc->pmdMeasDuration, 0x0F, 0);
}
/* Range check for pmdMeasConfig */
if (device->rx->rxAgcCtrl->powerAgc->pmdMeasConfig > 0x3)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_PMD_MEAS_CONFIG,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_PMD_MEAS_CONFIG));
return MYKONOS_ERR_INV_AGC_PMD_MEAS_CONFIG;
}
else
{
if (device->rx->rxAgcCtrl->powerAgc->pmdMeasConfig == 0)
{
decPowerConfig = 0x0; /* Dec Pwr measurement disable */
}
else if (device->rx->rxAgcCtrl->powerAgc->pmdMeasConfig == 1)
{
decPowerConfig = 0x3; /* Dec Pwr measurement enable, HB2 for decPwr measurement */
}
else if (device->rx->rxAgcCtrl->powerAgc->pmdMeasConfig == 2)
{
decPowerConfig = 0x5; /* Dec Pwr measurement enable, RFIR for decPwr measurement */
}
else if (device->rx->rxAgcCtrl->powerAgc->pmdMeasConfig == 3)
{
decPowerConfig = 0x11; /* Dec Pwr measurement enable, BBDC2 for decPwr measurement */
}
/* Write pmdMeasConfig */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_DEC_POWER_CONFIG_1, decPowerConfig);
}
/* Range check agcLowThsPreventGainIncrease (1-bit) */
if (device->rx->rxAgcCtrl->agcLowThsPreventGainIncrease > 1)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_LOW_THS_PREV_GAIN_INC,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_LOW_THS_PREV_GAIN_INC));
return MYKONOS_ERR_INV_AGC_RX_LOW_THS_PREV_GAIN_INC;
}
else
{
/* Write agcLowThsPreventGainIncrease */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_LOCK_LEV_THRSH, device->rx->rxAgcCtrl->agcLowThsPreventGainIncrease, 0x80, 7);
}
/* Range check agcPeakThresholdMode (1-bit), */
if (device->rx->rxAgcCtrl->agcPeakThresholdMode > 1)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PEAK_THRESH_MODE,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PEAK_THRESH_MODE));
return MYKONOS_ERR_INV_AGC_RX_PEAK_THRESH_MODE;
}
else
{
/* Save to lower1ThreshGainStepRegValue register variable */
lower1ThreshGainStepRegValue |= (device->rx->rxAgcCtrl->agcPeakThresholdMode << 5);
}
/* Range check agcResetOnRxEnable (1-bit) */
if (device->rx->rxAgcCtrl->agcResetOnRxEnable > 1)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_LOW_THS_PREV_GAIN_INC,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_LOW_THS_PREV_GAIN_INC));
return MYKONOS_ERR_INV_AGC_RX_RESET_ON_RX_ENABLE;
}
else
{
/* Write agcResetOnRxEnable */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_GAIN_UPDATE_CNT_3, (device->rx->rxAgcCtrl->agcResetOnRxEnable << 7), 0x80, 0);
}
/* Range check agcEnableSyncPulseForGainCounter (1-bit) */
if (device->rx->rxAgcCtrl->agcEnableSyncPulseForGainCounter > 1)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_ENABLE_SYNC_PULSE_GAIN_COUNTER,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_ENABLE_SYNC_PULSE_GAIN_COUNTER));
return MYKONOS_ERR_INV_AGC_RX_ENABLE_SYNC_PULSE_GAIN_COUNTER;
}
else
{
/* Write agcEnableSyncPulseForGainCounter */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_LOOP_CFG, (device->rx->rxAgcCtrl->agcEnableSyncPulseForGainCounter << 7), 0x80, 0);
}
/* WRITE REGISTERS FOR THE AGC POWER MEASUREMENT DETECTOR (PMD) STRUCTURE */
/* Range check pmdLowerHighThresh (7-bit) vs 0x7F and pmdUpperLowThresh */
if ((device->rx->rxAgcCtrl->powerAgc->pmdLowerHighThresh <= device->rx->rxAgcCtrl->powerAgc->pmdUpperLowThresh)
|| device->rx->rxAgcCtrl->powerAgc->pmdLowerHighThresh > 0x7F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_HIGH_THRESH,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_HIGH_THRESH));
return MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_HIGH_THRESH;
}
else
{
/* Write pmdLowerHighThresh */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_LOCK_LEV_THRSH, device->rx->rxAgcCtrl->powerAgc->pmdLowerHighThresh, 0x7F, 0);
}
/* Range check pmdUpperLowThresh (7-bit): Comparison to pmdLowerHigh done earlier */
if (device->rx->rxAgcCtrl->powerAgc->pmdUpperLowThresh > 0x7F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_LOW_THRESH,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_LOW_THRESH));
return MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_LOW_THRESH;
}
else
{
/* Write pmdUpperLowThresh */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_LOCK_LEVEL, device->rx->rxAgcCtrl->powerAgc->pmdUpperLowThresh);
}
/* Range check pmdLowerLowThresh (4-bit) */
if (device->rx->rxAgcCtrl->powerAgc->pmdLowerLowThresh > 0xF)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_LOW_THRESH,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_LOW_THRESH));
return MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_LOW_THRESH;
}
else
{
/* Write pmdUpperLowThresh to temp variable */
powerThresholdsRegValue |= device->rx->rxAgcCtrl->powerAgc->pmdLowerLowThresh;
}
/* Range check pmdUpperHighThresh (4-bit) */
if (device->rx->rxAgcCtrl->powerAgc->pmdUpperHighThresh > 0xF)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_HIGH_THRESH,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_HIGH_THRESH));
return MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_HIGH_THRESH;
}
else
{
/* Write pmdUpperHighThresh to temp var, then to register */
powerThresholdsRegValue |= (device->rx->rxAgcCtrl->powerAgc->pmdUpperHighThresh << 4);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_POWER_THRSH, powerThresholdsRegValue);
}
/* Range check pmdUpperHighGainStepAttack (5-bit) */
if (device->rx->rxAgcCtrl->powerAgc->pmdUpperHighGainStepAttack > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_HIGH_GAIN_STEP,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_HIGH_GAIN_STEP));
return MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_HIGH_GAIN_STEP;
}
else
{
/* Write pmdUpperHighGainStepAttack */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_UPPER1_THRSH_GAIN_STEP, device->rx->rxAgcCtrl->powerAgc->pmdUpperHighGainStepAttack, 0x1F, 0);
}
/* Range check pmdLowerLowGainStepRecovery (5-bit) */
if (device->rx->rxAgcCtrl->powerAgc->pmdLowerLowGainStepRecovery > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_LOW_GAIN_STEP,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_LOW_GAIN_STEP));
return MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_LOW_GAIN_STEP;
}
else
{
/* Write pmdLowerLowGainStepRecovery to temp var, then to register */
lower1ThreshGainStepRegValue |= (device->rx->rxAgcCtrl->powerAgc->pmdLowerLowGainStepRecovery);
}
/* Range check pmdUpperLowGainStepRecovery (5-bit) */
if (device->rx->rxAgcCtrl->powerAgc->pmdUpperLowGainStepAttack > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_LOW_GAIN_STEP,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_LOW_GAIN_STEP));
return MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_LOW_GAIN_STEP;
}
else
{
/* Write pmdLowerLowGainStepRecovery to temp var, then to register */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_UPPER0_THRSH_GAIN_STEP, device->rx->rxAgcCtrl->powerAgc->pmdUpperLowGainStepAttack);
}
/* Range check pmdLowerHighGainStepRecovery (5-bit) */
if (device->rx->rxAgcCtrl->powerAgc->pmdLowerHighGainStepRecovery > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_HIGH_GAIN_STEP,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_HIGH_GAIN_STEP));
return MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_HIGH_GAIN_STEP;
}
else
{
/* Write pmdLowerLowGainStepRecovery to temp var, then to register */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_LOWER0_THRSH_GAIN_STEP, device->rx->rxAgcCtrl->powerAgc->pmdLowerHighGainStepRecovery);
}
/* WRITE REGISTERS FOR THE AGC PEAK DETECTOR (APD/HB2) STRUCTURE */
/* Range check apdFastAttack and hb2FastAttack (1-bit) */
if (device->rx->rxAgcCtrl->peakAgc->apdFastAttack > 0x1 || device->rx->rxAgcCtrl->peakAgc->hb2FastAttack > 0x1)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_PKDET_FAST_ATTACK_VALUE,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_PKDET_FAST_ATTACK_VALUE));
return MYKONOS_ERR_INV_AGC_RX_PKDET_FAST_ATTACK_VALUE;
}
else
{
/* Write pmdLowerLowGainStepRecovery to temp var, then to register */
lower1ThreshGainStepRegValue |= (device->rx->rxAgcCtrl->peakAgc->apdFastAttack << 7);
lower1ThreshGainStepRegValue |= (device->rx->rxAgcCtrl->peakAgc->hb2FastAttack << 6);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_LOWER1_THRSH_GAIN_STEP, lower1ThreshGainStepRegValue);
}
/* Range check apdHighThresh */
if ((device->rx->rxAgcCtrl->peakAgc->apdHighThresh > 0x3F) || (device->rx->rxAgcCtrl->peakAgc->apdHighThresh <= device->rx->rxAgcCtrl->peakAgc->apdLowThresh))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_APD_HIGH_THRESH_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_APD_HIGH_THRESH_PARM));
return MYKONOS_ERR_INV_AGC_RX_APD_HIGH_THRESH_PARM;
}
else
{
/* Write apdHighThresh */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_ULB_THRSH, device->rx->rxAgcCtrl->peakAgc->apdHighThresh, 0X3F, 0);
}
/* Range check apdLowThresh */
if ((device->rx->rxAgcCtrl->peakAgc->apdLowThresh > 0x3F) || (device->rx->rxAgcCtrl->peakAgc->apdHighThresh < device->rx->rxAgcCtrl->peakAgc->apdLowThresh))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_APD_LOW_THRESH_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_APD_LOW_THRESH_PARM));
return MYKONOS_ERR_INV_AGC_RX_APD_LOW_THRESH_PARM;
}
else
{
/* write apdLowThresh */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_LLB_THRSH, device->rx->rxAgcCtrl->peakAgc->apdLowThresh, 0x3F, 0);
}
/* Range check hb2HighThresh */
if ((device->rx->rxAgcCtrl->peakAgc->hb2HighThresh > 0xFF) || (device->rx->rxAgcCtrl->peakAgc->hb2HighThresh < device->rx->rxAgcCtrl->peakAgc->hb2LowThresh))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_HB2_HIGH_THRESH_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_HB2_HIGH_THRESH_PARM));
return MYKONOS_ERR_INV_AGC_RX_HB2_HIGH_THRESH_PARM;
}
else
{
/* write hb2HighThresh */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OVRLD_PD_DEC_OVRLD_UPPER_THRSH, device->rx->rxAgcCtrl->peakAgc->hb2HighThresh);
}
/* Range check hb2LowThresh */
if ((device->rx->rxAgcCtrl->peakAgc->hb2LowThresh > 0xFF) || (device->rx->rxAgcCtrl->peakAgc->hb2LowThresh > device->rx->rxAgcCtrl->peakAgc->hb2HighThresh))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_HB2_LOW_THRESH_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_HB2_LOW_THRESH_PARM));
return MYKONOS_ERR_INV_AGC_RX_HB2_LOW_THRESH_PARM;
}
else
{
/* write hb2LowThresh */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OVRLD_PD_DEC_OVRLD_LOWER_THRSH, device->rx->rxAgcCtrl->peakAgc->hb2LowThresh);
}
/* Range check hb2VeryLowThresh */
if ((device->rx->rxAgcCtrl->peakAgc->hb2VeryLowThresh > 0xFF) || (device->rx->rxAgcCtrl->peakAgc->hb2VeryLowThresh > device->rx->rxAgcCtrl->peakAgc->hb2LowThresh))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_HB2_VERY_LOW_THRESH_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_HB2_VERY_LOW_THRESH_PARM));
return MYKONOS_ERR_INV_AGC_RX_HB2_VERY_LOW_THRESH_PARM;
}
else
{
/* write hb2VeryLowThresh */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OVRLD_PD_DEC_VERYLOW_THRSH, device->rx->rxAgcCtrl->peakAgc->hb2VeryLowThresh);
}
/* Write threshold counter values for apdHigh/apdLow/hb2High/hb2Low/hb2VeryLow */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ULB_CNT_THRSH, device->rx->rxAgcCtrl->peakAgc->apdHighThreshExceededCnt);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_LLB_CNT_THRSH, device->rx->rxAgcCtrl->peakAgc->apdLowThreshExceededCnt);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_HIGH_OVRG_CNT_THRSH, device->rx->rxAgcCtrl->peakAgc->hb2HighThreshExceededCnt);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_LOW_OVRG_CNT_THRSH, device->rx->rxAgcCtrl->peakAgc->hb2LowThreshExceededCnt);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_VERYLOW_OVRG_CNT_THRSH, device->rx->rxAgcCtrl->peakAgc->hb2VeryLowThreshExceededCnt);
/* Range check on apdHighGainStepAttack (5-bit) */
if (device->rx->rxAgcCtrl->peakAgc->apdHighGainStepAttack > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_APD_HIGH_GAIN_STEP_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_APD_HIGH_GAIN_STEP_PARM));
return MYKONOS_ERR_INV_AGC_RX_APD_HIGH_GAIN_STEP_PARM;
}
else
{
/* Write apdHighGainStepAttack */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_OVRG_GAIN_STEP_1, device->rx->rxAgcCtrl->peakAgc->apdHighGainStepAttack);
}
/* Range check on apdLowGainStepRecovery (5-bit) */
if (device->rx->rxAgcCtrl->peakAgc->apdLowGainStepRecovery > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_APD_LOW_GAIN_STEP_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_APD_LOW_GAIN_STEP_PARM));
return MYKONOS_ERR_INV_AGC_RX_APD_LOW_GAIN_STEP_PARM;
}
else
{
/* Write apdLowGainStepRecovery */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_OVRG_GAIN_STEP_4, device->rx->rxAgcCtrl->peakAgc->apdLowGainStepRecovery);
}
/* Range check on hb2HighGainStepAttack (5-bit) */
if (device->rx->rxAgcCtrl->peakAgc->hb2HighGainStepAttack > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_HB2_HIGH_GAIN_STEP_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_HB2_HIGH_GAIN_STEP_PARM));
return MYKONOS_ERR_INV_AGC_RX_HB2_HIGH_GAIN_STEP_PARM;
}
else
{
/* Write hb2HighGainStepAttack */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_OVRG_GAIN_STEP_2, device->rx->rxAgcCtrl->peakAgc->hb2HighGainStepAttack);
}
/* Range check on hb2LowGainStepRecovery (5-bit) */
if (device->rx->rxAgcCtrl->peakAgc->hb2LowGainStepRecovery > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_HB2_LOW_GAIN_STEP_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_HB2_LOW_GAIN_STEP_PARM));
return MYKONOS_ERR_INV_AGC_RX_HB2_LOW_GAIN_STEP_PARM;
}
else
{
/* Write hb2LowGainStepRecovery */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_OVRG_GAIN_STEP_5, device->rx->rxAgcCtrl->peakAgc->hb2LowGainStepRecovery);
}
/* Range check on hb2VeryLowGainStepRecovery (5-bit) */
if (device->rx->rxAgcCtrl->peakAgc->hb2VeryLowGainStepRecovery > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_HB2_VERY_LOW_GAIN_STEP_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_HB2_VERY_LOW_GAIN_STEP_PARM));
return MYKONOS_ERR_INV_AGC_RX_HB2_VERY_LOW_GAIN_STEP_PARM;
}
else
{
/* Write hb2VeryLowGainStepRecovery */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_OVRG_GAIN_STEP_6, device->rx->rxAgcCtrl->peakAgc->hb2VeryLowGainStepRecovery);
}
/* Range Check on hb2OverloadDetectEnable */
if (device->rx->rxAgcCtrl->peakAgc->hb2OverloadDetectEnable > 0x1)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_ENABLE,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_ENABLE));
return MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_ENABLE;
}
/* Range Check on hb2OverloadDetectEnable */
if (device->rx->rxAgcCtrl->peakAgc->hb2OverloadDurationCnt > 0x7)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_DUR_CNT,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_DUR_CNT));
return MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_DUR_CNT;
}
/* Range Check on hb2OverloadDetectEnable */
if (device->rx->rxAgcCtrl->peakAgc->hb2OverloadThreshCnt > 0xF)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_THRESH_CNT,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_THRESH_CNT));
return MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_THRESH_CNT;
}
else
{
/* Write the hb2OvldCfgRegValue, the combination of hb2OverloadThreshCnt, hb2OverloadDurationCnt, and hb2OverloadDetectEnable */
hb2OvldCfgRegValue = (device->rx->rxAgcCtrl->peakAgc->hb2OverloadThreshCnt) | (device->rx->rxAgcCtrl->peakAgc->hb2OverloadDurationCnt << 4)
| (device->rx->rxAgcCtrl->peakAgc->hb2OverloadDetectEnable << 7);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OVRLD_PD_DEC_OVRLD_CFG, hb2OvldCfgRegValue);
}
/* Hard-coded value for the ADC overload configuration. Sets the HB2 offset to -6dB.*/
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OVRLD_ADC_OVRLD_CFG, 0x18);
/* Hard-coded value for APD decay setting. Setting allows for the quickest settling time of peak detector */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_RX_BLOCK_DET_DECAY, 0x0);
/* performing a soft reset */
MYKONOS_resetRxAgc(device);
return MYKONOS_ERR_OK;
}
/**
* \brief This function resets the AGC state machine
*
* Calling this function resets all state machines within the gain control and maximum gain.
*
* <B>Dependencies:</B>
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing the device SPI settings
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_resetRxAgc(mykonosDevice_t *device)
{
const uint8_t AGC_RESET = 0x80;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_resetRxAgc()\n");
#endif
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_CFG_2, 1, AGC_RESET, 7);
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_CFG_2, 0, AGC_RESET, 7);
return MYKONOS_ERR_OK;
}
/**
* \brief This function sets the min/max gain indexes for AGC in the main RX channel
*
* Allows to change min/max gain index on runtime.
* If RX1_RX2 selected, then the maxGainIndex/minGainIndex value will be applied to both channels.
* If only Rx1 selected, then only Rx1 min/max gain indices will be updated, along with their device data structure values.
* If only Rx2 selected, then only Rx2 min/max gain indices will be updated, along with their device data structure values.
*
* <B>Dependencies:</B>
* - device->spiSettings
* - device->rx->rxAgcCtrl
*
* \param device is structure pointer to the Mykonos data structure containing the device SPI settings
* \param rxChannelSelect RX channel for setting the max and min gain index settings
* \param maxGainIndex Max gain index setting
* \param minGainIndex Min gain index setting
*
* \retval MYKONOS_ERR_SET_RX_MAX_GAIN_INDEX Max gain index bigger than max gain index loaded table.
* \retval MYKONOS_ERR_SET_RX_MIN_GAIN_INDEX Min gain index lower than min gain index loaded table.
* \retval MYKONOS_ERR_AGC_MIN_MAX_CHANNEL Wrong RX channel selected
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_setRxAgcMinMaxGainIndex(mykonosDevice_t *device, mykonosRxChannels_t rxChannelSelect, uint8_t maxGainIndex, uint8_t minGainIndex)
{
const uint8_t MIN_GAIN_INDEX = 1 + MAX_GAIN_TABLE_INDEX - (sizeof(RxGainTable) / sizeof(RxGainTable[0]));
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setRxAgcMinMaxGainIndex()\n");
#endif
/* Check for maxGainIndex */
if (maxGainIndex > MAX_GAIN_TABLE_INDEX)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SET_RX_MAX_GAIN_INDEX,
getMykonosErrorMessage(MYKONOS_ERR_SET_RX_MAX_GAIN_INDEX));
return MYKONOS_ERR_SET_RX_MAX_GAIN_INDEX;
}
/* Check for minGainIndex */
if (minGainIndex < MIN_GAIN_INDEX)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SET_RX_MIN_GAIN_INDEX,
getMykonosErrorMessage(MYKONOS_ERR_SET_RX_MIN_GAIN_INDEX));
return MYKONOS_ERR_SET_RX_MIN_GAIN_INDEX;
}
if (rxChannelSelect & RX1)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_RX1_MAX_GAIN_INDEX, maxGainIndex);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_RX1_MIN_GAIN_INDEX, minGainIndex);
device->rx->rxAgcCtrl->agcRx1MaxGainIndex = maxGainIndex;
device->rx->rxAgcCtrl->agcRx1MinGainIndex = minGainIndex;
}
if (rxChannelSelect & RX2)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_RX2_MAX_GAIN_INDEX, maxGainIndex);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_RX2_MIN_GAIN_INDEX, minGainIndex);
device->rx->rxAgcCtrl->agcRx2MaxGainIndex = maxGainIndex;
device->rx->rxAgcCtrl->agcRx2MinGainIndex = minGainIndex;
}
/* Check for invalid Rx channel */
if (!(rxChannelSelect & RX1_RX2))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_AGC_MIN_MAX_RX_CHANNEL,
getMykonosErrorMessage(MYKONOS_ERR_AGC_MIN_MAX_RX_CHANNEL));
return MYKONOS_ERR_AGC_MIN_MAX_RX_CHANNEL;
}
return MYKONOS_ERR_OK;
}
/**
* \brief This function sets the min/max gain indexes for AGC in the observation channel
*
* Allows to change min/max gain index on runtime.
*
* <B>Dependencies:</B>
* - device->spiSettings
* - device->rx->rxAgcCtrl
*
* \param device is structure pointer to the Mykonos data structure containing the device SPI settings
* \param obsRxChannelSelect Observation channel for setting the max and min gain index settings
* \param maxGainIndex Max gain index setting
* \param minGainIndex Min gain index setting
*
* \retval MYKONOS_ERR_SET_ORX_MAX_GAIN_INDEX_CHANNEL Wrong read back channel.
* \retval MYKONOS_ERR_SET_ORX_MAX_GAIN_INDEX Max gain index bigger than max gain index loaded table.
* \retval MYKONOS_ERR_SET_ORX_MIN_GAIN_INDEX Min gain index lower than min gain index loaded table.
* \retval MYKONOS_ERR_AGC_MIN_MAX_ORX_CHANNEL Wrong observation channel selected
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_setObsRxAgcMinMaxGainIndex(mykonosDevice_t *device, mykonosObsRxChannels_t obsRxChannelSelect, uint8_t maxGainIndex, uint8_t minGainIndex)
{
uint8_t rdObsActive = 0x00;
uint8_t obsActive = 0x00;
uint8_t obsCheck = 0x00;
uint8_t minGainIndexCheck = 0x00;
uint8_t maxGainIndexCheck = 0x00;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setObsRxAgcMinMaxGainIndex()\n");
#endif
/* Read active channel */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_ACTIVE, &rdObsActive, 0x03, 0);
/* Check active channel and set min/max checks */
switch (rdObsActive)
{
case 0x00:
case 0x01:
/*sniffer*/
maxGainIndexCheck = MAX_GAIN_TABLE_INDEX;
minGainIndexCheck = MAX_GAIN_TABLE_INDEX - (sizeof(SnRxGainTable) / sizeof(SnRxGainTable[0]));
obsActive = OBS_SNIFFER | OBS_SNIFFER_A | OBS_SNIFFER_B | OBS_SNIFFER_C;
break;
case 0x02:
case 0x03:
/*observation 1*/
maxGainIndexCheck = MAX_GAIN_TABLE_INDEX;
minGainIndexCheck = MAX_GAIN_TABLE_INDEX - (sizeof(ORxGainTable) / sizeof(ORxGainTable[0]));
obsActive = OBS_RX1_TXLO | OBS_RX1_SNIFFERLO | OBS_RX2_TXLO | OBS_RX2_SNIFFERLO;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SET_ORX_MAX_GAIN_INDEX_CHANNEL,
getMykonosErrorMessage(MYKONOS_ERR_SET_ORX_MAX_GAIN_INDEX_CHANNEL));
return MYKONOS_ERR_SET_ORX_MAX_GAIN_INDEX_CHANNEL;
}
/* Check for maxGainIndex */
if ((maxGainIndex > maxGainIndexCheck) || (maxGainIndex < minGainIndexCheck))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SET_ORX_MAX_GAIN_INDEX,
getMykonosErrorMessage(MYKONOS_ERR_SET_ORX_MAX_GAIN_INDEX));
return MYKONOS_ERR_SET_ORX_MAX_GAIN_INDEX;
}
/* Check for minGainIndex */
if ((minGainIndex < minGainIndexCheck) || (minGainIndex > maxGainIndexCheck))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SET_ORX_MIN_GAIN_INDEX,
getMykonosErrorMessage(MYKONOS_ERR_SET_ORX_MIN_GAIN_INDEX));
return MYKONOS_ERR_SET_ORX_MIN_GAIN_INDEX;
}
device->obsRx->orxAgcCtrl->agcObsRxMaxGainIndex = maxGainIndex;
device->obsRx->orxAgcCtrl->agcObsRxMinGainIndex = minGainIndex;
switch (obsRxChannelSelect)
{
case OBS_SNIFFER:
case OBS_SNIFFER_A:
case OBS_SNIFFER_B:
case OBS_SNIFFER_C:
obsCheck = OBS_SNIFFER | OBS_SNIFFER_A | OBS_SNIFFER_B | OBS_SNIFFER_C;
maxGainIndex = maxGainIndex - MAX_SNRX_GAIN_TABLE_NUMINDEXES;
minGainIndex = minGainIndex - MAX_SNRX_GAIN_TABLE_NUMINDEXES;
break;
case OBS_RX1_TXLO:
case OBS_RX2_TXLO:
case OBS_RX1_SNIFFERLO:
case OBS_RX2_SNIFFERLO:
obsCheck = OBS_RX1_TXLO | OBS_RX1_SNIFFERLO | OBS_RX2_TXLO | OBS_RX2_SNIFFERLO;
maxGainIndex = maxGainIndex - MAX_ORX_GAIN_TABLE_NUMINDEXES;
minGainIndex = minGainIndex - MAX_ORX_GAIN_TABLE_NUMINDEXES;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_AGC_MIN_MAX_ORX_CHANNEL,
getMykonosErrorMessage(MYKONOS_ERR_AGC_MIN_MAX_ORX_CHANNEL));
return MYKONOS_ERR_AGC_MIN_MAX_ORX_CHANNEL;
}
if (obsCheck & obsActive)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_MAX_GAIN_INDEX, maxGainIndex);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_MIN_GAIN_INDEX, minGainIndex);
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_AGC_MIN_MAX_ORX_CHANNEL,
getMykonosErrorMessage(MYKONOS_ERR_AGC_MIN_MAX_ORX_CHANNEL));
return MYKONOS_ERR_AGC_MIN_MAX_ORX_CHANNEL;
}
return MYKONOS_ERR_OK;
}
/**
* \brief This function sets the Temperature gain compensation for Rx1 channel
*
* The temperature gain compensation control allow for a +3000mdB to -3000mdB digital gain
* in the data path.
* The resolution of the temperature compensation gain is 250mdB.
*
* <B>Dependencies:</B>
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing the device SPI settings
* \param rx1TempCompGain_mdB gain compensation for Rx1, the range is from -3000mdB to +3000mdB in steps of 250mdB
*
* \retval MYKONOS_ERR_RX1_TEMP_GAIN_COMP_RANGE The temp gain compensation is outside range (-3000mdB to 3000mdB)
* \retval MYKONOS_ERR_RX1_TEMP_GAIN_COMP_STEP Not valid temp gain compensation, step size is 250mdB
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_setRx1TempGainComp(mykonosDevice_t *device, int16_t rx1TempCompGain_mdB)
{
int8_t tempGainComp = 0x00;
const int16_t LOW_LIMIT_GAIN_COMP = -3000;
const int16_t HIGH_LIMIT_GAIN_COMP = 3000;
const int16_t GAIN_COMP_STEP = 250;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setRx1TempGainComp()\n");
#endif
/* Check for Gain compensation range */
if ((rx1TempCompGain_mdB > HIGH_LIMIT_GAIN_COMP) || (rx1TempCompGain_mdB < LOW_LIMIT_GAIN_COMP))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RX1_TEMP_GAIN_COMP_RANGE,
getMykonosErrorMessage(MYKONOS_ERR_RX1_TEMP_GAIN_COMP_RANGE));
return MYKONOS_ERR_RX1_TEMP_GAIN_COMP_RANGE;
}
/* Check for Gain compensation steps */
if (rx1TempCompGain_mdB % GAIN_COMP_STEP)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RX1_TEMP_GAIN_COMP_STEP,
getMykonosErrorMessage(MYKONOS_ERR_RX1_TEMP_GAIN_COMP_STEP));
return MYKONOS_ERR_RX1_TEMP_GAIN_COMP_STEP;
}
/* Prepare register write */
tempGainComp = (rx1TempCompGain_mdB / GAIN_COMP_STEP) & 0x1F;
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX1_TEMP_GAIN_COMP, (uint8_t)tempGainComp);
return MYKONOS_ERR_OK;
}
/**
* \brief This function gets the Temperature gain compensation for Rx1
*
* <B>Dependencies:</B>
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing the device SPI settings
* \param rx1TempCompGain_mdB Which will be populated with the Temperature Gain Compensation in mdB value for Rx1 channel.
*
* \retval MYKONOS_ERR_RX1_TEMP_GAIN_COMP_NULL rx1TempCompGain_mdB pointer is null.
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getRx1TempGainComp(mykonosDevice_t *device, int16_t *rx1TempCompGain_mdB)
{
uint8_t tempGainComp = 0x00;
int8_t tempGainCompDB = 0x00;
const int16_t GAIN_COMP_STEP = 250;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getRx1TempGainComp()\n");
#endif
/* Check for null passed parameter */
if (rx1TempCompGain_mdB == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RX1_TEMP_GAIN_COMP_NULL,
getMykonosErrorMessage(MYKONOS_ERR_RX1_TEMP_GAIN_COMP_NULL));
return MYKONOS_ERR_RX1_TEMP_GAIN_COMP_NULL;
}
/* Read Temperature Gain Compensation */
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_RX1_TEMP_GAIN_COMP, &tempGainComp);
/* Convert to dB and prepare the signed return */
tempGainCompDB = tempGainComp & 0x1F;
if (tempGainCompDB & 0x10)
{
tempGainCompDB = (((~tempGainCompDB) & 0x0F) + 1) * -1;
}
/* Assign value to the passed pointer */
*rx1TempCompGain_mdB = tempGainCompDB * GAIN_COMP_STEP;
return MYKONOS_ERR_OK;
}
/**
* \brief This function sets the Temperature gain compensation for Rx2 channel
*
* The temperature gain compensation control allow for a +3000mdB to -3000mdB digital gain
* in the data path.
* The resolution of the temperature compensation gain is 250mdB.
*
* <B>Dependencies:</B>
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing the device SPI settings
* \param rx2TempCompGain_mdB gain compensation for Rx1,
* the range is from -3000mdB to +3000mdB in steps of 250mdB
*
* \retval MYKONOS_ERR_RX2_TEMP_GAIN_COMP_RANGE The temp gain compensation is outside range (-3000mdB to 3000mdB)
* \retval MYKONOS_ERR_RX2_TEMP_GAIN_COMP_STEP Not valid temp gain compensation, step size is 250mdB
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_setRx2TempGainComp(mykonosDevice_t *device, int16_t rx2TempCompGain_mdB)
{
int8_t tempGainComp = 0x00;
const int16_t LOW_LIMIT_GAIN_COMP = -3000;
const int16_t HIGH_LIMIT_GAIN_COMP = 3000;
const int16_t GAIN_COMP_STEP = 250;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setRx2TempGainComp()\n");
#endif
/* Check for Gain compensation range */
if ((rx2TempCompGain_mdB > HIGH_LIMIT_GAIN_COMP) || (rx2TempCompGain_mdB < LOW_LIMIT_GAIN_COMP))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RX2_TEMP_GAIN_COMP_RANGE,
getMykonosErrorMessage(MYKONOS_ERR_RX2_TEMP_GAIN_COMP_RANGE));
return MYKONOS_ERR_RX2_TEMP_GAIN_COMP_RANGE;
}
/* Check for Gain compensation range */
if (rx2TempCompGain_mdB % GAIN_COMP_STEP)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RX2_TEMP_GAIN_COMP_STEP,
getMykonosErrorMessage(MYKONOS_ERR_RX2_TEMP_GAIN_COMP_STEP));
return MYKONOS_ERR_RX2_TEMP_GAIN_COMP_STEP;
}
/* Prepare register write */
tempGainComp = (rx2TempCompGain_mdB / GAIN_COMP_STEP) & 0x1F;
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_RX2_TEMP_GAIN_COMP, (uint8_t)tempGainComp);
return MYKONOS_ERR_OK;
}
/**
* \brief This function gets the Temperature gain compensation for Rx2
*
* <B>Dependencies:</B>
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing the device SPI settings
* \param rx2TempCompGain_mdB Which will be populated with the Temperature Gain Compensation in mdB value for Rx2 channel.
*
* \retval MYKONOS_ERR_RX2_TEMP_GAIN_COMP_NULL rx2TempCompGain_mdB pointer is null.
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getRx2TempGainComp(mykonosDevice_t *device, int16_t *rx2TempCompGain_mdB)
{
uint8_t tempGainComp = 0x00;
int8_t tempGainCompDB = 0x00;
const int16_t GAIN_COMP_STEP = 250;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getRx2TempGainComp()\n");
#endif
/* Check for null passed parameter */
if (rx2TempCompGain_mdB == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RX2_TEMP_GAIN_COMP_NULL,
getMykonosErrorMessage(MYKONOS_ERR_RX2_TEMP_GAIN_COMP_NULL));
return MYKONOS_ERR_RX2_TEMP_GAIN_COMP_NULL;
}
/* Read programmed Temperature Gain Compensation */
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_RX2_TEMP_GAIN_COMP, &tempGainComp);
/* Convert to dB and prepare the signed return */
tempGainCompDB = tempGainComp & 0x1F;
if (tempGainCompDB & 0x10)
{
tempGainCompDB = (((~tempGainCompDB) & 0x0F) + 1) * -1;
}
/* Assign value to the passed pointer */
*rx2TempCompGain_mdB = tempGainCompDB * GAIN_COMP_STEP;
return MYKONOS_ERR_OK;
}
/**
* \brief This function sets the Temperature gain compensation for the observation channel
*
* The temperature gain compensation control allow for a +3000mdB to -3000mdB digital gain
* in the data path.
* The resolution of the temperature compensation gain is 250mdB.
*
* <B>Dependencies:</B>
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing the device SPI settings
* \param obsRxTempCompGain_mdB gain compensation for observation channel,
* the range is from -3000mdB to +3000mdB in steps of 250mdB
*
* \retval MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_RANGE The temp gain compensation is outside range (-3000mdB to 3000mdB)
* \retval MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_STEP Not valid temp gain compensation, step size is 250mdB
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_setObsRxTempGainComp(mykonosDevice_t *device, int16_t obsRxTempCompGain_mdB)
{
int8_t tempGainComp = 0x00;
const int16_t LOW_LIMIT_GAIN_COMP = -3000;
const int16_t HIGH_LIMIT_GAIN_COMP = 3000;
const int16_t GAIN_COMP_STEP = 250;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setObsRxTempGainComp()\n");
#endif
/* Check for Gain compensation range */
if ((obsRxTempCompGain_mdB > HIGH_LIMIT_GAIN_COMP) || (obsRxTempCompGain_mdB < LOW_LIMIT_GAIN_COMP))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_RANGE,
getMykonosErrorMessage(MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_RANGE));
return MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_RANGE;
}
/* Check for Gain compensation range */
if (obsRxTempCompGain_mdB % GAIN_COMP_STEP)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_STEP,
getMykonosErrorMessage(MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_STEP));
return MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_STEP;
}
/* Prepare register write */
tempGainComp = (obsRxTempCompGain_mdB / GAIN_COMP_STEP) & 0x1F;
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_TEMP_GAIN_COMP, (uint8_t)tempGainComp);
return MYKONOS_ERR_OK;
}
/**
* \brief This function gets the Temperature gain compensation for the observation channel
*
*
* <B>Dependencies:</B>
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing the device SPI settings
* \param obsRxTempCompGain_mdB Which will be populated with the Temperature Gain Compensation in mdB value for the observation channel.
*
* \retval MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_NULL obsRxTempCompGain_mdB pointer is null.
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getObsRxTempGainComp(mykonosDevice_t *device, int16_t *obsRxTempCompGain_mdB)
{
uint8_t tempGainComp = 0x00;
int8_t tempGainCompDB = 0x00;
const int16_t GAIN_COMP_STEP = 250;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getObsRxTempGainComp()\n");
#endif
/* Check for null passed parameter */
if (obsRxTempCompGain_mdB == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_NULL,
getMykonosErrorMessage(MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_NULL));
return MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_NULL;
}
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_OBS_TEMP_GAIN_COMP, &tempGainComp);
/* Convert to dB and prepare the signed return */
tempGainCompDB = tempGainComp & 0x1F;
if (tempGainCompDB & 0x10)
{
tempGainCompDB = (((~tempGainCompDB) & 0x0F) + 1) * -1;
}
/* Assign value to the passed pointer */
*obsRxTempCompGain_mdB = tempGainCompDB * GAIN_COMP_STEP;
return MYKONOS_ERR_OK;
}
/**
* \brief Enables or disables the Rx slow loop gain counter to use the sync pulse
*
* <B>Dependencies:</B>
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing the device SPI settings
* \param enable is a uint8_t data type where '0' = disable Rx gain counter from using sync pulse, '1' = enable Rx gain. All other values will throw an error.
* counter to use the sync pulse. This value is written back to the device data structure for storage.
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_enableRxGainCtrSyncPulse(mykonosDevice_t *device, uint8_t enable)
{
const uint8_t syncPulseBitMask = 0x80;
uint8_t enableBit = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setRxGainCtrSyncPulse()\n");
#endif
/* read, modify, write Rx gain counter sync pulse enable bit */
enableBit = (enable > 0) ? 1 : 0;
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_LOOP_CFG, enableBit, syncPulseBitMask, 7);
return MYKONOS_ERR_OK;
}
/**
* \brief Configures the Rx gain control mode
*
* <B>Dependencies:</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
* - device->rx->rxGainCtrl->gainMode
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param mode is a mykonosGainMode_t enumerated gain control mode type where:
* Manual Gain = MGC, Automatic Gain Control = AGC, and hybrid mode = HYBRID
*
* When the mode enumerated type is passed, the Rx1 and Rx2 gain mode is set to this value and the
* Rx gainMode structure member is updated with the new value
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_INV_RX_GAIN_MODE_PARM Invalid AGC mode pass in function mode paramter
*/
mykonosErr_t MYKONOS_setRxGainControlMode(mykonosDevice_t *device, mykonosGainMode_t mode)
{
uint8_t rxGainCfgReg = 0;
const uint8_t RX_GAIN_TYPE_MASK = 0x1F;
const uint8_t RX_GAIN_HYBRID_MASK = 0x10;
const uint8_t RX_GAIN_TYPE_SHIFT = 0x02;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setRxGainControlMode()\n");
#endif
/* read AGC type for Rx1 and Rx2 for modify, write */
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_AGC_CFG_1, &rxGainCfgReg);
rxGainCfgReg &= ~RX_GAIN_TYPE_MASK;
/* performing AGC type check */
switch (mode)
{
case MGC:
rxGainCfgReg &= ~RX_GAIN_HYBRID_MASK;
break;
case AGC:
rxGainCfgReg &= ~RX_GAIN_HYBRID_MASK;
break;
case HYBRID:
rxGainCfgReg |= RX_GAIN_HYBRID_MASK;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_RX_GAIN_MODE_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_RX_GAIN_MODE_PARM));
return MYKONOS_ERR_INV_RX_GAIN_MODE_PARM;
}
/* modify, write AGC type for Rx1 and Rx2 */
rxGainCfgReg |= mode;
rxGainCfgReg |= mode << RX_GAIN_TYPE_SHIFT;
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_CFG_1, rxGainCfgReg);
/* writing mode setting to data structure */
if ((device->profilesValid & RX_PROFILE_VALID) > 0)
{
device->rx->rxGainCtrl->gainMode = mode;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Performs a power measurement in the Rx1 digital data path.
*
* Due to interdependencies between the AGC and power measurement the power measurement duration and
* where the measurement is taken is variable.
* The location of the power measurement is given by device->rx->rxAgcCtrl->rxPwrAgc->pmdMeasConfig
* The number of samples the power measurement uses is given by 8*2^(device->rx->rxAgcCtrl->rxPwrAgc->pmdMeasDuration) at the IQ rate,
* if measured at RFIR output. This number of samples must be less than the agcGainUpdateCounter.
* If the receiver is disabled during the power measurement, this function returns a 0 value for rx1DecPower_mdBFS
*
* The resolution of this function is 0.25dB.
* The dynamic range of this function is 40dB. Signals lower than 40dBFS may not be measured accurately.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->rx->rxAgcCtrl->rxPwrAgc->pmdMeasConfig
* - device->rx->rxAgcCtrl->rxPwrAgc->pmdMeasDuration
*
* \param device Pointer to the Mykonos data structure
* \param rx1DecPower_mdBFS Pointer to store the Rx1 decimated power return. Value returned in mdBFS
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getRx1DecPower(mykonosDevice_t *device, uint16_t *rx1DecPower_mdBFS)
{
uint8_t rx1DecPower_dBFS = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getRx1DecPower()\n");
#endif
/* read Rx1 Dec Power Measurement */
if (rx1DecPower_mdBFS != NULL)
{
CMB_SPIReadByte(device->spiSettings, MYKONOS_CH1_DECIMATED_PWR, &rx1DecPower_dBFS);
*rx1DecPower_mdBFS = (uint16_t)(rx1DecPower_dBFS * 250); /* 250 = 1000 * 0.25dB */
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GET_RX1_DEC_POWER_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_GET_RX1_DEC_POWER_NULL_PARM));
return MYKONOS_ERR_GET_RX1_DEC_POWER_NULL_PARM;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Performs a power measurement in the Rx2 digital data path.
*
* Due to interdependencies between the AGC and power measurement the power measurement duration and
* where the measurement is taken is variable.
* The location of the power measurement is given by device->rx->rxAgcCtrl->rxPwrAgc->pmdMeasConfig
* The number of samples the power measurement uses is given by 8*2^(device->rx->rxAgcCtrl->rxPwrAgc->pmdMeasDuration) at the IQ rate,
* if measured at RFIR output. This number of samples must be less than the agcGainUpdateCounter.
* If the receiver is disabled during the power measurement, this function returns a 0 value for rx2DecPower_mdBFS
*
* The resolution of this function is 0.25dB.
* The dynamic range of this function is 40dB. Signals lower than 40dBFS may not be measured accurately.
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device Pointer to the Mykonos data structure
* \param rx2DecPower_mdBFS Pointer to store the Rx1 decimated power return. Value returned in mdBFS
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getRx2DecPower(mykonosDevice_t *device, uint16_t *rx2DecPower_mdBFS)
{
uint8_t rx2DecPower_dBFS = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getRx2DecPower()\n");
#endif
/* read Rx2 Dec Power Measurement */
if (rx2DecPower_mdBFS != NULL)
{
CMB_SPIReadByte(device->spiSettings, MYKONOS_CH2_DECIMATED_PWR, &rx2DecPower_dBFS);
*rx2DecPower_mdBFS = (uint16_t)(rx2DecPower_dBFS * 250); /* 250 = 1000 * 0.25dB */
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GET_RX2_DEC_POWER_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_GET_RX2_DEC_POWER_NULL_PARM));
return MYKONOS_ERR_GET_RX2_DEC_POWER_NULL_PARM;
}
return MYKONOS_ERR_OK;
}
/*
*****************************************************************************
* Observation Rx Data path functions
*****************************************************************************
*/
/**
* \brief Sets the default Obs Rx channel to enter when device moves from
* radioOff to radioOn
*
* By default, the observation receiver remains powered down when the device
* moves into the radioOn state. If the BBIC prefers a particular ObsRx
* channel to be enabled, this function can be called in radioOff to set
* the default channel to power up when the device moves to radioOn.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->obsRx->defaultObsRxChannel
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param defaultObsRxCh is mykonosObsRxChannels_t enum type which selects the desired observation receive path to power up
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_SETDEFOBSRXPATH_NULL_OBSRX_STRUCT Observation profile not valid, device->obsRx structure is NULL
* \retval MYKONOS_ERR_SETDEFOBSRXPATH_NULL_DEF_OBSRX_STRUCT Invalid defaultObsRxCh function parameter
*/
mykonosErr_t MYKONOS_setDefaultObsRxPath(mykonosDevice_t *device, mykonosObsRxChannels_t defaultObsRxCh)
{
uint8_t orxEntryMode[1] = {0};
uint16_t byteOffset = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setDefaultObsRxPath()\n");
#endif
if (device->obsRx == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETDEFOBSRXPATH_NULL_DEF_OBSRX_STRUCT,
getMykonosErrorMessage(MYKONOS_ERR_SETDEFOBSRXPATH_NULL_DEF_OBSRX_STRUCT));
return MYKONOS_ERR_SETDEFOBSRXPATH_NULL_DEF_OBSRX_STRUCT;
}
if (((defaultObsRxCh > OBS_RX2_SNIFFERLO) && (defaultObsRxCh != OBS_SNIFFER_A) && (defaultObsRxCh != OBS_SNIFFER_B) && (defaultObsRxCh != OBS_SNIFFER_C)))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_PU_OBSRXPATH_INV_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_PU_OBSRXPATH_INV_PARAM));
return MYKONOS_ERR_PU_OBSRXPATH_INV_PARAM;
}
device->obsRx->defaultObsRxChannel = defaultObsRxCh;
orxEntryMode[0] = (device->obsRx->defaultObsRxChannel & 0xFF);
byteOffset = 6;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_RADIO_CONTROL, byteOffset, &orxEntryMode[0], 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Powers up or down the Observation Rx signal chain in the radioOn state
*
* When the ARM radio control is in ARM command mode, this
* function allows the user to selectively power up or down the desired ObsRx
* data path. If this function is called when the ARM is expecting GPIO pin
* control of the ObsRx path source, an error will be returned.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param obsRxCh is mykonosObsRxChannels_t enum type which selects the desired observation receive path to power up
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_PU_OBSRXPATH_INV_PARAM Invalid obsRxCh function parameter
* \retval MYKONOS_ERR_PU_OBSRXPATH_ARMERROR ARM returned an error while trying to set the ObsRx Path source
*/
mykonosErr_t MYKONOS_setObsRxPathSource(mykonosDevice_t *device, mykonosObsRxChannels_t obsRxCh)
{
uint8_t cmdStatByte = 0;
uint32_t timeoutMs = 0;
uint8_t payload[2] = {0, 0};
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setObsRxPathSource()\n");
#endif
if (((obsRxCh > OBS_RX2_SNIFFERLO) && (obsRxCh != OBS_SNIFFER_A) && (obsRxCh != OBS_SNIFFER_B) && (obsRxCh != OBS_SNIFFER_C)))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_PU_OBSRXPATH_INV_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_PU_OBSRXPATH_INV_PARAM));
return MYKONOS_ERR_PU_OBSRXPATH_INV_PARAM;
}
payload[0] = MYKONOS_ARM_OBJECTID_ORX_MODE;
payload[1] = (uint8_t)(obsRxCh);
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_SET_OPCODE, &payload[0], sizeof(payload));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000; /* wait max of 1sec for command to complete */
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_SET_OPCODE, timeoutMs, &cmdStatByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_PU_OBSRXPATH_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_PU_OBSRXPATH_ARMERROR));
return MYKONOS_ERR_PU_OBSRXPATH_ARMERROR;
}
return retVal;
}
/* Verify ARM command did not return an error */
if (cmdStatByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_PU_OBSRXPATH_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_PU_OBSRXPATH_ARMERROR));
return MYKONOS_ERR_PU_OBSRXPATH_ARMERROR;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Reads back the currently enabled Observation Rx channel in the
* radioOn state
*
* In pin mode, the pin could change asynchronous to reading back the
* current enable ObsRx path. Calling this function while in radioOff will
* return OBS_RXOFF since all radio channels are powered down.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param obsRxCh Parameter to return enum of the current observation receive
* path powered up
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_PU_GETOBSRXPATH_ARMERROR ARM returned an error while trying to get the ObsRx Path source
*/
mykonosErr_t MYKONOS_getObsRxPathSource(mykonosDevice_t *device, mykonosObsRxChannels_t *obsRxCh)
{
uint8_t extData[1] = {MYKONOS_ARM_OBJECTID_ORX_MODE};
uint8_t cmdStatusByte = 0;
uint8_t armData[1] = {0};
uint32_t timeoutMs = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getObsRxPathSource()\n");
#endif
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000;
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_PU_GETOBSRXPATH_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_PU_GETOBSRXPATH_ARMERROR));
return MYKONOS_ERR_PU_GETOBSRXPATH_ARMERROR;
}
return retVal;
}
/* read 64-bit frequency from ARM memory */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR, &armData[0], 1, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_PU_GETOBSRXPATH_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_PU_GETOBSRXPATH_ARMERROR));
return MYKONOS_ERR_PU_GETOBSRXPATH_ARMERROR;
}
*obsRxCh = (mykonosObsRxChannels_t)(armData[0]);
return MYKONOS_ERR_OK;
}
/**
* \brief Sets the Rx gain of the ObsRx channel
*
* The ObsRx channel can have different RF inputs (ORx1/ORx2/SnRx A,B,C)
* This function sets the ObsRx gain index independently for ORx1/ORx2, or SnRx.
* SnRx A, B, and C share the same gain index. Please note that ORx1/ORx2 share a gain
* table, as does SnRx A, B, and C. The maximum index is 255
* and the minimum index is application specific.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->obsRx->orxGainCtrl->maxGainIndex
* - device->obsRx->orxGainCtrl->minGainIndex
* - device->obsRx->orxGainCtrl->orx1GainIndex
* - device->obsRx->orxGainCtrl->orx2GainIndex
* - device->obsRx->snifferGainCtrl->maxGainIndex
* - device->obsRx->snifferGainCtrl->minGainIndex
* - device->obsRx->snifferGainCtrl->gainIndex
*
* \param device Pointer to the Mykonos device data structure
* \param obsRxCh is an enum type mykonosObsRxChannels_t to identify the desired RF input for gain change
* \param gainIndex Desired manual gain table index to set
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_SETORXGAIN_INV_ORX1GAIN Invalid gain requested for ORx1: outside gain table min/max index
* \retval MYKONOS_ERR_SETORXGAIN_INV_ORX2GAIN Invalid gain requested for ORx2: outside gain table min/max index
* \retval MYKONOS_ERR_SETORXGAIN_INV_SNRXGAIN Invalid gain requested for Sniffer: outside gain table min/max index
* \retval MYKONOS_ERR_SETORXGAIN_INV_CHANNEL Function parameter obsRxCh has an invalid enum value
*/
mykonosErr_t MYKONOS_setObsRxManualGain(mykonosDevice_t *device, mykonosObsRxChannels_t obsRxCh, uint8_t gainIndex)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setObsRxManualGain()\n");
#endif
if ((obsRxCh == OBS_RX1_TXLO) || (obsRxCh == OBS_RX1_SNIFFERLO))
{
if (gainIndex <= device->obsRx->orxGainCtrl->maxGainIndex && gainIndex >= device->obsRx->orxGainCtrl->minGainIndex)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX1_MANUAL_GAIN_INDEX, (gainIndex - MIN_ORX_GAIN_TABLE_INDEX));
device->obsRx->orxGainCtrl->orx1GainIndex = gainIndex;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETORXGAIN_INV_ORX1GAIN,
getMykonosErrorMessage(MYKONOS_ERR_SETORXGAIN_INV_ORX1GAIN));
return MYKONOS_ERR_SETORXGAIN_INV_ORX1GAIN;
}
}
else if ((obsRxCh == OBS_RX2_TXLO) || (obsRxCh == OBS_RX2_SNIFFERLO))
{
if (gainIndex <= device->obsRx->orxGainCtrl->maxGainIndex && gainIndex >= device->obsRx->orxGainCtrl->minGainIndex)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX2_MANUAL_GAIN_INDEX, (gainIndex - MIN_ORX_GAIN_TABLE_INDEX));
device->obsRx->orxGainCtrl->orx2GainIndex = gainIndex;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETORXGAIN_INV_ORX2GAIN,
getMykonosErrorMessage(MYKONOS_ERR_SETORXGAIN_INV_ORX2GAIN));
return MYKONOS_ERR_SETORXGAIN_INV_ORX2GAIN;
}
}
else if (obsRxCh == OBS_SNIFFER_A || obsRxCh == OBS_SNIFFER_B || obsRxCh == OBS_SNIFFER_C || obsRxCh == OBS_SNIFFER)
{
if (gainIndex <= device->obsRx->snifferGainCtrl->maxGainIndex && gainIndex >= device->obsRx->snifferGainCtrl->minGainIndex)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SNRX_MANUAL_GAIN_INDEX, (gainIndex - MIN_SNRX_GAIN_TABLE_INDEX));
device->obsRx->snifferGainCtrl->gainIndex = gainIndex;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETORXGAIN_INV_SNRXGAIN,
getMykonosErrorMessage(MYKONOS_ERR_SETORXGAIN_INV_SNRXGAIN));
return MYKONOS_ERR_SETORXGAIN_INV_SNRXGAIN;
}
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETORXGAIN_INV_CHANNEL,
getMykonosErrorMessage(MYKONOS_ERR_SETORXGAIN_INV_CHANNEL));
return MYKONOS_ERR_SETORXGAIN_INV_CHANNEL;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Gets the gain index of the currently enabled ObsRx channel
*
* The ObsRx data path can have multiple RF sources. This function will
* read back the gain index of the currently enabled RF source. If the ObsRx
* data path is disabled, an error is returned. If the functions uint8_t *gainIndex
* parameter is a valid pointer, the gain index is returned at the pointers
* address. Else, if the uint8_t *gainIndex pointer is NULL, the gainIndex read back
* is stored in the device data structure.
*
* NOTE: if the observation source is chosen by ORX_MODE pins, it is possible that
* the readback value will be incorrect if the obsRx channel changes while this function
* reads the gain.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->profilesValid
* - device->obsRx->orxGainCtrl->orx1GainIndex
* - device->obsRx->orxGainCtrl->orx2GainIndex
* - device->obsRx->snifferGainCtrl->gainIndex
*
* \param device Pointer to the Mykonos device data structure
* \param gainIndex Return value of the current gain index for the currently enabled ObsRx channel.
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETORX1GAIN_INV_POINTER The ObsRx profile is not valid in the device data structure
* \retval MYKONOS_ERR_GETORX2GAIN_INV_POINTER The ObsRx profile is not valid in the device data structure
* \retval MYKONOS_ERR_GETSNIFFGAIN_INV_POINTER The sniffer profile is not valid in the device data structure
* \retval MYKONOS_ERR_GETOBSRXGAIN_CH_DISABLED The observation receiver is currently disabled, can not read back gain index.
*/
mykonosErr_t MYKONOS_getObsRxGain(mykonosDevice_t *device, uint8_t *gainIndex)
{
/* Potential issue, if ARM is using loopback path when this function is called, it will likely readback loopback gain */
uint8_t readObsRxPathEnabled = 0;
uint8_t readObsRxGain = 0;
const uint8_t ORX1_EN = 0x01;
const uint8_t ORX2_EN = 0x02;
const uint8_t SNRX_EN = 0x04;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getObsRxGain()\n");
#endif
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_DPD_SNIFFER_CONFIGURATION_CONTROL_1, &readObsRxPathEnabled);
/* If obsRx channel enabled, then read gain index */
if (readObsRxPathEnabled > 0)
{
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_GAIN_CTL_ORX_SNRX_GAIN, &readObsRxGain);
switch (readObsRxPathEnabled)
{
case 0x01:
readObsRxGain += MIN_ORX_GAIN_TABLE_INDEX;
break;
case 0x02:
readObsRxGain += MIN_ORX_GAIN_TABLE_INDEX;
break;
case 0x04:
readObsRxGain += MIN_SNRX_GAIN_TABLE_INDEX;
break;
default:
break;
}
if (gainIndex != NULL)
{
*gainIndex = readObsRxGain;
}
/* Store the gain index in the device's gain control data structure. */
if (readObsRxPathEnabled == ORX1_EN)
{
/* verify valid data structure pointers */
if (device->profilesValid & ORX_PROFILE_VALID)
{
device->obsRx->orxGainCtrl->orx1GainIndex = readObsRxGain;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETORX1GAIN_INV_POINTER,
getMykonosErrorMessage(MYKONOS_ERR_GETORX1GAIN_INV_POINTER));
return MYKONOS_ERR_GETORX1GAIN_INV_POINTER;
}
}
else if (readObsRxPathEnabled == ORX2_EN)
{
/* verify valid pointers */
if (device->profilesValid & ORX_PROFILE_VALID)
{
device->obsRx->orxGainCtrl->orx2GainIndex = readObsRxGain;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETORX2GAIN_INV_POINTER,
getMykonosErrorMessage(MYKONOS_ERR_GETORX2GAIN_INV_POINTER));
return MYKONOS_ERR_GETORX2GAIN_INV_POINTER;
}
}
else if (readObsRxPathEnabled == SNRX_EN)
{
/* verify valid pointers */
if (device->profilesValid & SNIFF_PROFILE_VALID)
{
device->obsRx->snifferGainCtrl->gainIndex = readObsRxGain;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETSNIFFGAIN_INV_POINTER,
getMykonosErrorMessage(MYKONOS_ERR_GETSNIFFGAIN_INV_POINTER));
return MYKONOS_ERR_GETSNIFFGAIN_INV_POINTER;
}
}
else
{
/* ignore gain index for Tx loopback input into obsRx channel */
}
}
else
{
CMB_writeToLog(ADIHAL_LOG_WARNING, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETOBSRXGAIN_CH_DISABLED,
getMykonosErrorMessage(MYKONOS_ERR_GETOBSRXGAIN_CH_DISABLED));
return MYKONOS_ERR_GETOBSRXGAIN_CH_DISABLED;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Sets up the device ObsRx Automatic Gain Control (AGC) registers.
*
* Three data structures (of types mykonosAgcCfg_t, mykonosPeakDetAgcCfg_t, mykonosPowerMeasAgcCfg_t)
* must be instantiated prior to calling this function. Valid ranges for data structure members
* must also be provided.
*
*
* <B>Dependencies:</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
* - device->obsRx->orxAgcCtrl->agcRx1MaxGainIndex
* - device->obsRx->orxAgcCtrl->agcRx1MinGainIndex
* - device->obsRx->orxAgcCtrl->agcRx2MaxGainIndex
* - device->obsRx->orxAgcCtrl->agcRx2MinGainIndex
* - device->obsRx->orxAgcCtrl->agcObsRxMaxGainIndex
* - device->obsRx->orxAgcCtrl->agcObsRxMinGainIndex
* - device->obsRx->orxAgcCtrl->agcObsRxSelect
* - device->obsRx->orxAgcCtrl->agcPeakThresholdMode
* - device->obsRx->orxAgcCtrl->agcLowThsPreventGainIncrease
* - device->obsRx->orxAgcCtrl->agcGainUpdateCounter
* - device->obsRx->orxAgcCtrl->agcSlowLoopSettlingDelay
* - device->obsRx->orxAgcCtrl->agcPeakWaitTime
* - device->obsRx->orxAgcCtrl->agcResetOnRxEnable
* - device->obsRx->orxAgcCtrl->agcEnableSyncPulseForGainCounter
* - device->obsRx->orxAgcCtrl->peakAgc->apdHighThresh
* - device->obsRx->orxAgcCtrl->peakAgc->apdLowThresh
* - device->obsRx->orxAgcCtrl->peakAgc->hb2HighThresh
* - device->obsRx->orxAgcCtrl->peakAgc->hb2LowThresh
* - device->obsRx->orxAgcCtrl->peakAgc->hb2VeryLowThresh
* - device->obsRx->orxAgcCtrl->peakAgc->apdHighThreshExceededCnt
* - device->obsRx->orxAgcCtrl->peakAgc->apdLowThreshExceededCnt
* - device->obsRx->orxAgcCtrl->peakAgc->hb2HighThreshExceededCnt
* - device->obsRx->orxAgcCtrl->peakAgc->hb2LowThreshExceededCnt
* - device->obsRx->orxAgcCtrl->peakAgc->hb2VeryLowThreshExceededCnt
* - device->obsRx->orxAgcCtrl->peakAgc->apdHighGainStepAttack
* - device->obsRx->orxAgcCtrl->peakAgc->apdLowGainStepRecovery
* - device->obsRx->orxAgcCtrl->peakAgc->hb2HighGainStepAttack
* - device->obsRx->orxAgcCtrl->peakAgc->hb2LowGainStepRecovery
* - device->obsRx->orxAgcCtrl->peakAgc->hb2VeryLowGainStepRecovery
* - device->obsRx->orxAgcCtrl->peakAgc->apdFastAttack
* - device->obsRx->orxAgcCtrl->peakAgc->hb2FastAttack
* - device->obsRx->orxAgcCtrl->peakAgc->hb2OverloadDetectEnable
* - device->obsRx->orxAgcCtrl->peakAgc->hb2OverloadDurationCnt
* - device->obsRx->orxAgcCtrl->peakAgc->hb2OverloadThreshCnt
* - device->obsRx->orxAgcCtrl->powerAgc->pmdUpperHighThresh
* - device->obsRx->orxAgcCtrl->powerAgc->pmdUpperLowThresh
* - device->obsRx->orxAgcCtrl->powerAgc->pmdLowerHighThresh
* - device->obsRx->orxAgcCtrl->powerAgc->pmdLowerLowThresh
* - device->obsRx->orxAgcCtrl->powerAgc->pmdUpperHighGainStepAttack
* - device->obsRx->orxAgcCtrl->powerAgc->pmdUpperLowGainStepAttack
* - device->obsRx->orxAgcCtrl->powerAgc->pmdLowerHighGainStepRecovery
* - device->obsRx->orxAgcCtrl->powerAgc->pmdLowerLowGainStepRecovery
* - device->obsRx->orxAgcCtrl->powerAgc->pmdMeasDuration
* - device->obsRx->orxAgcCtrl->powerAgc->pmdMeasConfig
*
* \param device is structure pointer to the Mykonos data structure containing settings
* The pointer to the Mykonos AGC data structure containing settings is checked for a null pointer
* to ensure it has been initialized. If not an error is thrown.
*
* \retval Returns MYKONOS_ERR=pass, !MYKONOS_ERR=fail
* \retval MYKONOS_ERR_INV_AGC_OBSRX_STRUCT_INIT
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PEAK_STRUCT_INIT
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PWR_STRUCT_INIT
* \retval MYKONOS_ERR_INV_AGC_OBSRX_MAX_GAIN_INDEX
* \retval MYKONOS_ERR_INV_AGC_OBSRX_MIN_GAIN_INDEX
* \retval MYKONOS_ERR_INV_AGC_OBSRX_SELECT
* \retval MYKONOS_ERR_INV_AGC_OBSRX_GAIN_UPDATE_TIME_PARM
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PEAK_WAIT_TIME_PARM
* \retval MYKONOS_ERR_INV_AGC_OBSRX_SLOW_LOOP_SETTLING_DELAY
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PMD_MEAS_DURATION
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PMD_MEAS_CONFIG
* \retval MYKONOS_ERR_INV_AGC_OBSRX_LOW_THS_PREV_GAIN_INC
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PEAK_THRESH_MODE
* \retval MYKONOS_ERR_INV_AGC_OBSRX_RESET_ON_RX_ENABLE
* \retval MYKONOS_ERR_INV_AGC_OBSRX_ENABLE_SYNC_PULSE_GAIN_COUNTER
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_HIGH_THRESH
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_LOW_THRESH
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_LOW_THRESH
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_HIGH_THRESH
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_HIGH_GAIN_STEP
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_LOW_GAIN_STEP
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_LOW_GAIN_STEP
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_HIGH_GAIN_STEP
* \retval MYKONOS_ERR_INV_AGC_OBSRX_PKDET_FAST_ATTACK_VALUE
* \retval MYKONOS_ERR_INV_AGC_OBSRX_APD_HIGH_THRESH_PARM
* \retval MYKONOS_ERR_INV_AGC_OBSRX_APD_LOW_THRESH_PARM
* \retval MYKONOS_ERR_INV_AGC_OBSRX_HB2_HIGH_THRESH_PARM
* \retval MYKONOS_ERR_INV_AGC_OBSRX_HB2_LOW_THRESH_PARM
* \retval MYKONOS_ERR_INV_AGC_OBSRX_HB2_VERY_LOW_THRESH_PARM
* \retval MYKONOS_ERR_INV_AGC_OBSRX_APD_HIGH_GAIN_STEP_PARM
* \retval MYKONOS_ERR_INV_AGC_OBSRX_APD_LOW_GAIN_STEP_PARM
* \retval MYKONOS_ERR_INV_AGC_OBSRX_HB2_HIGH_GAIN_STEP_PARM
* \retval MYKONOS_ERR_INV_AGC_OBSRX_HB2_LOW_GAIN_STEP_PARM
* \retval MYKONOS_ERR_INV_AGC_OBSRX_HB2_VERY_LOW_GAIN_STEP_PARM
* \retval MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_ENABLE
* \retval MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_DUR_CNT
* \retval MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_THRESH_CNT
*/
mykonosErr_t MYKONOS_setupObsRxAgc(mykonosDevice_t *device)
{
/* Current configuration does not support AGC on ORx channel */
uint8_t decPowerConfig = 0;
uint8_t lower1ThreshGainStepRegValue = 0;
uint8_t powerThresholdsRegValue = 0;
uint8_t hb2OvldCfgRegValue = 0;
uint8_t agcGainUpdateCtr[3] = {0};
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setupObsRxAgc()\n");
#endif
/* Check mykonosAgcCfg_t device->obsRx->orxAgcCtrl pointer for initialization */
if (&device->obsRx->orxAgcCtrl == 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_STRUCT_INIT,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_STRUCT_INIT));
return MYKONOS_ERR_INV_AGC_OBSRX_STRUCT_INIT;
}
/* Check mykonosPeakDetAgcCfg_t device->orx->orxAgcCtrl->peakAgc pointer for initialization */
if (&device->obsRx->orxAgcCtrl->peakAgc == 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PEAK_STRUCT_INIT,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PEAK_STRUCT_INIT));
return MYKONOS_ERR_INV_AGC_OBSRX_PEAK_STRUCT_INIT;
}
/* Check mykonosPowerMeasAgcCfg_t device->obsRx->orxAgcCtrl->powerAgc pointer for initialization */
if (&device->obsRx->orxAgcCtrl->powerAgc == 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PWR_STRUCT_INIT,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PWR_STRUCT_INIT));
return MYKONOS_ERR_INV_AGC_OBSRX_PWR_STRUCT_INIT;
}
/* Range check agcObsRxMaxGainIndex versus gain table limits and agcObsRxMinGainIndex */
if ((device->obsRx->orxAgcCtrl->agcObsRxMaxGainIndex > device->obsRx->snifferGainCtrl->maxGainIndex) ||
(device->obsRx->orxAgcCtrl->agcObsRxMaxGainIndex < device->obsRx->orxAgcCtrl->agcObsRxMinGainIndex))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_MAX_GAIN_INDEX,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_MAX_GAIN_INDEX));
return MYKONOS_ERR_INV_AGC_OBSRX_MAX_GAIN_INDEX;
}
else
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_MAX_GAIN_INDEX,
(device->obsRx->orxAgcCtrl->agcObsRxMaxGainIndex - MAX_SNRX_GAIN_TABLE_NUMINDEXES));
}
/* Range check agcObsRxMinGainIndex versus gain table limits and agcObsRxMaxGainIndex */
if ((device->obsRx->orxAgcCtrl->agcObsRxMinGainIndex < device->obsRx->snifferGainCtrl->minGainIndex) ||
(device->obsRx->orxAgcCtrl->agcObsRxMaxGainIndex < device->obsRx->orxAgcCtrl->agcObsRxMinGainIndex))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_MIN_GAIN_INDEX,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_MIN_GAIN_INDEX));
return MYKONOS_ERR_INV_AGC_OBSRX_MIN_GAIN_INDEX;
}
else
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_MIN_GAIN_INDEX,
(device->obsRx->orxAgcCtrl->agcObsRxMinGainIndex - MAX_SNRX_GAIN_TABLE_NUMINDEXES));
}
/* Range check agcObsRxSelect. Sniffer only support. Sniffer is selected if value is 0 or 1. 2 or 3 select ORx1/ORx2 respectively */
if (device->obsRx->orxAgcCtrl->agcObsRxSelect > 1)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_SELECT,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_SELECT));
return MYKONOS_ERR_INV_AGC_OBSRX_SELECT;
}
else
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_ACTIVE, device->obsRx->orxAgcCtrl->agcObsRxSelect);
}
/* Range check for agcGainUpdateCounter (22-bit) */
if ((device->obsRx->orxAgcCtrl->agcGainUpdateCounter > 0x3FFFFF) ||
(device->obsRx->orxAgcCtrl->agcGainUpdateCounter < 1))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_GAIN_UPDATE_TIME_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_GAIN_UPDATE_TIME_PARM));
return MYKONOS_ERR_INV_AGC_OBSRX_GAIN_UPDATE_TIME_PARM;
}
else
{
/* Split agcGainUpdateCounter into three values */
agcGainUpdateCtr[0] = (uint8_t)(device->obsRx->orxAgcCtrl->agcGainUpdateCounter);
agcGainUpdateCtr[1] = (uint8_t)(device->obsRx->orxAgcCtrl->agcGainUpdateCounter >> 8);
agcGainUpdateCtr[2] = (uint8_t)(device->obsRx->orxAgcCtrl->agcGainUpdateCounter >> 16);
/* Write two bytes directly due. Third word has its upper two bits masked off. */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_GAIN_UPDATE_CTR_1, agcGainUpdateCtr[0]);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_GAIN_UPDATE_CTR_2, agcGainUpdateCtr[1]);
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_GAIN_UPDATE_CTR_3, agcGainUpdateCtr[2], 0x3F, 0);
}
/* Range check on agcPeakWaitTime (5-bit) */
if ((device->obsRx->orxAgcCtrl->agcPeakWaitTime > 0x1F) ||
(device->obsRx->orxAgcCtrl->agcPeakWaitTime < 0x02))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PEAK_WAIT_TIME_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PEAK_WAIT_TIME_PARM));
return MYKONOS_ERR_INV_AGC_OBSRX_PEAK_WAIT_TIME_PARM;
}
else
{
/* Write agcPeakWaitTime */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_CFG_2, device->obsRx->orxAgcCtrl->agcPeakWaitTime, 0x1F, 0);
}
/* Range check for agcSlowLoopSettlingDelay (7-bit) */
if (device->obsRx->orxAgcCtrl->agcSlowLoopSettlingDelay > 0x7F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_SLOW_LOOP_SETTLING_DELAY,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_SLOW_LOOP_SETTLING_DELAY));
return MYKONOS_ERR_INV_AGC_OBSRX_SLOW_LOOP_SETTLING_DELAY;
}
else
{
/* Write agcSlowLoopSettlingDelay */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_LOOP_CFG, device->obsRx->orxAgcCtrl->agcSlowLoopSettlingDelay, 0x7F, 0);
}
/* Range check for pmdMeasDuration */
if ((1 << (3 + device->obsRx->orxAgcCtrl->powerAgc->pmdMeasDuration)) >= (device->obsRx->orxAgcCtrl->agcGainUpdateCounter))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PMD_MEAS_DURATION,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PMD_MEAS_DURATION));
return MYKONOS_ERR_INV_AGC_OBSRX_PMD_MEAS_DURATION;
}
else
{
/* Write pmdMeasDuration */
CMB_SPIWriteField(device->spiSettings, MYKONOS_SNIFFER_DEC_POWER_CONFIG_2, device->obsRx->orxAgcCtrl->powerAgc->pmdMeasDuration, 0x0F, 0);
}
/* Range check for pmdMeasConfig */
if (device->obsRx->orxAgcCtrl->powerAgc->pmdMeasConfig > 0x3)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PMD_MEAS_CONFIG,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PMD_MEAS_CONFIG));
return MYKONOS_ERR_INV_AGC_OBSRX_PMD_MEAS_CONFIG;
}
else
{
if (device->obsRx->orxAgcCtrl->powerAgc->pmdMeasConfig == 0)
{
decPowerConfig = 0x0; /* Dec Pwr measurement disable */
}
else if (device->obsRx->orxAgcCtrl->powerAgc->pmdMeasConfig == 1)
{
decPowerConfig = 0x3; /* Dec Pwr measurement enable, HB2 for decPwr measurement */
}
else if (device->obsRx->orxAgcCtrl->powerAgc->pmdMeasConfig == 2)
{
decPowerConfig = 0x5; /* Dec Pwr measurement enable, RFIR for decPwr measurement */
}
else if (device->obsRx->orxAgcCtrl->powerAgc->pmdMeasConfig == 3)
{
decPowerConfig = 0x11; /* Dec Pwr measurement enable, BBDC2 for decPwr measurement */
}
/* Write pmdMeasConfig */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_SNIFFER_DEC_POWER_CONFIG_1, decPowerConfig);
}
/* Range check agcLowThsPreventGainIncrease (1-bit) */
if (device->obsRx->orxAgcCtrl->agcLowThsPreventGainIncrease > 1)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_LOW_THS_PREV_GAIN_INC,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_LOW_THS_PREV_GAIN_INC));
return MYKONOS_ERR_INV_AGC_OBSRX_LOW_THS_PREV_GAIN_INC;
}
else
{
/* Write agcLowThsPreventGainIncrease */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_LOCK_LEV_THRSH, device->obsRx->orxAgcCtrl->agcLowThsPreventGainIncrease, 0x80, 7);
}
/* Range check agcPeakThresholdMode (1-bit), */
if (device->obsRx->orxAgcCtrl->agcPeakThresholdMode > 1)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PEAK_THRESH_MODE,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PEAK_THRESH_MODE));
return MYKONOS_ERR_INV_AGC_OBSRX_PEAK_THRESH_MODE;
}
else
{
/* Save to lower1ThreshGainStepRegValue register variable */
lower1ThreshGainStepRegValue |= (device->obsRx->orxAgcCtrl->agcPeakThresholdMode << 5);
}
/* Range check agcResetOnRxEnable (1-bit) */
if (device->obsRx->orxAgcCtrl->agcResetOnRxEnable > 1)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_RESET_ON_RX_ENABLE,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_RESET_ON_RX_ENABLE));
return MYKONOS_ERR_INV_AGC_OBSRX_RESET_ON_RX_ENABLE;
}
else
{
/* Write agcResetOnRxEnable */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_GAIN_UPDATE_CTR_3, (device->obsRx->orxAgcCtrl->agcResetOnRxEnable << 7), 0x80, 0);
}
/* Range check agcEnableSyncPulseForGainCounter (1-bit) */
if (device->obsRx->orxAgcCtrl->agcEnableSyncPulseForGainCounter > 1)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_ENABLE_SYNC_PULSE_GAIN_COUNTER,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_ENABLE_SYNC_PULSE_GAIN_COUNTER));
return MYKONOS_ERR_INV_AGC_OBSRX_ENABLE_SYNC_PULSE_GAIN_COUNTER;
}
else
{
/* Write agcEnableSyncPulseForGainCounter */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_LOOP_CFG, (device->obsRx->orxAgcCtrl->agcEnableSyncPulseForGainCounter << 7), 0x80, 0);
}
/* WRITE REGISTERS FOR THE AGC POWER MEASUREMENT DETECTOR (PMD) STRUCTURE */
/* Range check pmdLowerHighThresh (7-bit) vs 0x7F and pmdUpperLowThresh */
if ((device->obsRx->orxAgcCtrl->powerAgc->pmdLowerHighThresh <= device->obsRx->orxAgcCtrl->powerAgc->pmdUpperLowThresh) ||
(device->obsRx->orxAgcCtrl->powerAgc->pmdLowerHighThresh > 0x7F))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_HIGH_THRESH,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_HIGH_THRESH));
return MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_HIGH_THRESH;
}
else
{
/* Write pmdLowerHighThresh */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_LOCK_LEV_THRSH, device->obsRx->orxAgcCtrl->powerAgc->pmdLowerHighThresh, 0x7F, 0);
}
/* Range check pmdUpperLowThresh (7-bit): Comparison to pmdLowerHigh done earlier */
if (device->obsRx->orxAgcCtrl->powerAgc->pmdUpperLowThresh > 0x7F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_LOW_THRESH,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_LOW_THRESH));
return MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_LOW_THRESH;
}
else
{
/* Write pmdUpperLowThresh */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_LOCK_LEVEL, device->obsRx->orxAgcCtrl->powerAgc->pmdUpperLowThresh);
}
/* Range check pmdLowerLowThresh (4-bit) */
if (device->obsRx->orxAgcCtrl->powerAgc->pmdLowerLowThresh > 0xF)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_LOW_THRESH,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_LOW_THRESH));
return MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_LOW_THRESH;
}
else
{
/* Write pmdUpperLowThresh to temp variable */
powerThresholdsRegValue |= device->obsRx->orxAgcCtrl->powerAgc->pmdLowerLowThresh;
}
/* Range check pmdUpperHighThresh (4-bit) */
if (device->obsRx->orxAgcCtrl->powerAgc->pmdUpperHighThresh > 0xF)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_HIGH_THRESH,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_HIGH_THRESH));
return MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_HIGH_THRESH;
}
else
{
/* Write pmdUpperHighThresh to temp var, then to register */
powerThresholdsRegValue |= (device->obsRx->orxAgcCtrl->powerAgc->pmdUpperHighThresh << 4);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_POWER_THRSH, powerThresholdsRegValue);
}
/* Range check pmdUpperHighGainStepAttack (5-bit) */
if (device->obsRx->orxAgcCtrl->powerAgc->pmdUpperHighGainStepAttack > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_HIGH_GAIN_STEP,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_HIGH_GAIN_STEP));
return MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_HIGH_GAIN_STEP;
}
else
{
/* Write pmdUpperHighGainStepAttack */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_UPPER1_THRSH_GAIN_STEP, device->obsRx->orxAgcCtrl->powerAgc->pmdUpperHighGainStepAttack,
0x1F, 0);
}
/* Range check pmdLowerLowGainStepRecovery (5-bit) */
if (device->obsRx->orxAgcCtrl->powerAgc->pmdLowerLowGainStepRecovery > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_LOW_GAIN_STEP,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_LOW_GAIN_STEP));
return MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_LOW_GAIN_STEP;
}
else
{
/* Write pmdLowerLowGainStepRecovery to temp var, then to register */
lower1ThreshGainStepRegValue |= (device->obsRx->orxAgcCtrl->powerAgc->pmdLowerLowGainStepRecovery);
}
/* Range check pmdUpperLowGainStepRecovery (5-bit) */
if (device->obsRx->orxAgcCtrl->powerAgc->pmdUpperLowGainStepAttack > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_LOW_GAIN_STEP,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_LOW_GAIN_STEP));
return MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_LOW_GAIN_STEP;
}
else
{
/* Write pmdUpperLowGainStepRecovery to register */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_UPPER0_THRSH_GAIN_STEP, device->obsRx->orxAgcCtrl->powerAgc->pmdUpperLowGainStepAttack);
}
/* Range check pmdLowerHighGainStepRecovery (5-bit) */
if (device->obsRx->orxAgcCtrl->powerAgc->pmdLowerHighGainStepRecovery > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_HIGH_GAIN_STEP,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_HIGH_GAIN_STEP));
return MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_HIGH_GAIN_STEP;
}
else
{
/* Write pmdLowerLowGainStepRecovery to temp var, then to register */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_LOWER0_THRSH_GAIN_STEP, device->obsRx->orxAgcCtrl->powerAgc->pmdLowerHighGainStepRecovery);
}
/* WRITE REGISTERS FOR THE AGC PEAK DETECTOR (APD/HB2) STRUCTURE */
/* Range check apdFastAttack and hb2FastAttack (1-bit) */
if ((device->obsRx->orxAgcCtrl->peakAgc->apdFastAttack > 0x1) ||
(device->obsRx->orxAgcCtrl->peakAgc->hb2FastAttack > 0x1))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_PKDET_FAST_ATTACK_VALUE,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_PKDET_FAST_ATTACK_VALUE));
return MYKONOS_ERR_INV_AGC_OBSRX_PKDET_FAST_ATTACK_VALUE;
}
else
{
/* Write pmdLowerLowGainStepRecovery to temp var, then to register */
lower1ThreshGainStepRegValue |= (device->obsRx->orxAgcCtrl->peakAgc->apdFastAttack << 7);
lower1ThreshGainStepRegValue |= (device->obsRx->orxAgcCtrl->peakAgc->hb2FastAttack << 6);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_LOWER1_THRSH_GAIN_STEP, lower1ThreshGainStepRegValue);
}
/* Range check apdHighThresh */
if ((device->obsRx->orxAgcCtrl->peakAgc->apdHighThresh > 0x3F) ||
(device->obsRx->orxAgcCtrl->peakAgc->apdHighThresh <= device->obsRx->orxAgcCtrl->peakAgc->apdLowThresh))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_APD_HIGH_THRESH_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_APD_HIGH_THRESH_PARM));
return MYKONOS_ERR_INV_AGC_OBSRX_APD_HIGH_THRESH_PARM;
}
else
{
/* Write apdHighThresh */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_ULB_THRSH, device->obsRx->orxAgcCtrl->peakAgc->apdHighThresh, 0X3F, 0);
}
/* Range check apdLowThresh */
if ((device->obsRx->orxAgcCtrl->peakAgc->apdLowThresh > 0x3F) ||
(device->obsRx->orxAgcCtrl->peakAgc->apdHighThresh < device->obsRx->orxAgcCtrl->peakAgc->apdLowThresh))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_APD_LOW_THRESH_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_APD_LOW_THRESH_PARM));
return MYKONOS_ERR_INV_AGC_OBSRX_APD_LOW_THRESH_PARM;
}
else
{
/* write apdLowThresh */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_LLB_THRSH, device->obsRx->orxAgcCtrl->peakAgc->apdLowThresh, 0x3F, 0);
}
/* Range check hb2HighThresh */
if (device->obsRx->orxAgcCtrl->peakAgc->hb2HighThresh < device->obsRx->orxAgcCtrl->peakAgc->hb2LowThresh)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_HB2_HIGH_THRESH_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_HB2_HIGH_THRESH_PARM));
return MYKONOS_ERR_INV_AGC_OBSRX_HB2_HIGH_THRESH_PARM;
}
else
{
/* write hb2HighThresh */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ORX_SNRX_OVRLD_PD_DEC_OVRLD_UPPER_THRSH, device->obsRx->orxAgcCtrl->peakAgc->hb2HighThresh);
}
/* Range check hb2LowThresh */
if (device->obsRx->orxAgcCtrl->peakAgc->hb2LowThresh > device->obsRx->orxAgcCtrl->peakAgc->hb2HighThresh)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_HB2_LOW_THRESH_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_HB2_LOW_THRESH_PARM));
return MYKONOS_ERR_INV_AGC_OBSRX_HB2_LOW_THRESH_PARM;
}
else
{
/* write hb2LowThresh */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ORX_SNRX_OVRLD_PD_DEC_OVRLD_LOWER_THRSH, device->obsRx->orxAgcCtrl->peakAgc->hb2LowThresh);
}
/* Range check hb2VeryLowThresh */
if (device->obsRx->orxAgcCtrl->peakAgc->hb2VeryLowThresh > device->obsRx->orxAgcCtrl->peakAgc->hb2LowThresh)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_HB2_VERY_LOW_THRESH_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_HB2_VERY_LOW_THRESH_PARM));
return MYKONOS_ERR_INV_AGC_OBSRX_HB2_VERY_LOW_THRESH_PARM;
}
else
{
/* write hb2VeryLowThresh */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ORX_SNRX_OVRLD_PD_DEC_OVRLD_VERYLOW_THRSH, device->obsRx->orxAgcCtrl->peakAgc->hb2VeryLowThresh);
}
/* Write threshold counter values for apdHigh/apdLow/hb2High/hb2Low/hb2VeryLow */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_ULB_CNT_THRSH, device->obsRx->orxAgcCtrl->peakAgc->apdHighThreshExceededCnt);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_LLB_CNT_THRSH, device->obsRx->orxAgcCtrl->peakAgc->apdLowThreshExceededCnt);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_ADC_HIGH_OVRG_CNT_THRSH, device->obsRx->orxAgcCtrl->peakAgc->hb2HighThreshExceededCnt);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_ADC_LOW_OVRG_CNT_THRSH, device->obsRx->orxAgcCtrl->peakAgc->hb2LowThreshExceededCnt);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_ADC_VERYLOW_OVRG_CNT_THRSH, device->obsRx->orxAgcCtrl->peakAgc->hb2VeryLowThreshExceededCnt);
/* Range check on apdHighGainStepAttack (5-bit) */
if (device->obsRx->orxAgcCtrl->peakAgc->apdHighGainStepAttack > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_APD_HIGH_GAIN_STEP_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_APD_HIGH_GAIN_STEP_PARM));
return MYKONOS_ERR_INV_AGC_OBSRX_APD_HIGH_GAIN_STEP_PARM;
}
else
{
/* Write apdHighGainStepAttack */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_OVRG_GAIN_STEP_1, device->obsRx->orxAgcCtrl->peakAgc->apdHighGainStepAttack);
}
/* Range check on apdLowGainStepRecovery (5-bit) */
if (device->obsRx->orxAgcCtrl->peakAgc->apdLowGainStepRecovery > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_APD_LOW_GAIN_STEP_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_APD_LOW_GAIN_STEP_PARM));
return MYKONOS_ERR_INV_AGC_OBSRX_APD_LOW_GAIN_STEP_PARM;
}
else
{
/* Write apdLowGainStepRecovery */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_OVRG_GAIN_STEP_4, device->obsRx->orxAgcCtrl->peakAgc->apdLowGainStepRecovery);
}
/* Range check on hb2HighGainStepAttack (5-bit) */
if (device->obsRx->orxAgcCtrl->peakAgc->hb2HighGainStepAttack > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_HB2_HIGH_GAIN_STEP_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_HB2_HIGH_GAIN_STEP_PARM));
return MYKONOS_ERR_INV_AGC_OBSRX_HB2_HIGH_GAIN_STEP_PARM;
}
else
{
/* Write hb2HighGainStepAttack */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_OVRG_GAIN_STEP_2, device->obsRx->orxAgcCtrl->peakAgc->hb2HighGainStepAttack);
}
/* Range check on hb2LowGainStepRecovery (5-bit) */
if (device->obsRx->orxAgcCtrl->peakAgc->hb2LowGainStepRecovery > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_HB2_LOW_GAIN_STEP_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_HB2_LOW_GAIN_STEP_PARM));
return MYKONOS_ERR_INV_AGC_OBSRX_HB2_LOW_GAIN_STEP_PARM;
}
else
{
/* Write hb2LowGainStepRecovery */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_OVRG_GAIN_STEP_5, device->obsRx->orxAgcCtrl->peakAgc->hb2LowGainStepRecovery);
}
/* Range check on hb2VeryLowGainStepRecovery (5-bit) */
if (device->obsRx->orxAgcCtrl->peakAgc->hb2VeryLowGainStepRecovery > 0x1F)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_HB2_VERY_LOW_GAIN_STEP_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_HB2_VERY_LOW_GAIN_STEP_PARM));
return MYKONOS_ERR_INV_AGC_OBSRX_HB2_VERY_LOW_GAIN_STEP_PARM;
}
else
{
/* Write hb2VeryLowGainStepRecovery */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_OVRG_GAIN_STEP_6, device->obsRx->orxAgcCtrl->peakAgc->hb2VeryLowGainStepRecovery);
}
/* Range Check on hb2OverloadDetectEnable */
if (device->obsRx->orxAgcCtrl->peakAgc->hb2OverloadDetectEnable > 0x1)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_ENABLE,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_ENABLE));
return MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_ENABLE;
}
/* Range Check on hb2OverloadDetectEnable */
if (device->obsRx->orxAgcCtrl->peakAgc->hb2OverloadDurationCnt > 0x7)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_DUR_CNT,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_DUR_CNT));
return MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_DUR_CNT;
}
/* Range Check on hb2OverloadDetectEnable */
if (device->obsRx->orxAgcCtrl->peakAgc->hb2OverloadThreshCnt > 0xF)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_THRESH_CNT,
getMykonosErrorMessage(MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_THRESH_CNT));
return MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_THRESH_CNT;
}
else
{
/* Write the hb2OvldCfgRegValue, the combination of hb2OverloadThreshCnt, hb2OverloadDurationCnt, and hb2OverloadDetectEnable */
hb2OvldCfgRegValue = (device->obsRx->orxAgcCtrl->peakAgc->hb2OverloadThreshCnt) |
(device->obsRx->orxAgcCtrl->peakAgc->hb2OverloadDurationCnt << 4) |
(device->obsRx->orxAgcCtrl->peakAgc->hb2OverloadDetectEnable << 7);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ORX_SNRX_OVRLD_PD_DEC_OVRLD_CFG, hb2OvldCfgRegValue);
}
/* Hard-coded value for the ADC overload configuration. Sets the HB2 offset to -6dB.*/
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ORX_SNRX_OVRLD_ADC_OVRLD_CFG, 0x18);
/* Hard-coded value for APD decay setting. Setting allows for the quickest settling time of peak detector */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_BLOCK_DET_DECAY, 0x0);
/* performing a soft reset */
MYKONOS_resetRxAgc(device);
return MYKONOS_ERR_OK;
}
/**
* \brief Enables or disables the ObsRx slow loop gain counter to use the sync pulse
*
* <B>Dependencies:</B>
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing the device SPI settings
* \param enable is a uint8_t data type where '0' = disable ObsRx gain counter from using sync pulse, '1' = enable ObsRx gain. All other values will throw an error.
* counter to use the sync pulse. This value is written back to the device data structure for storage.
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_enableObsRxGainCtrSyncPulse(mykonosDevice_t *device, uint8_t enable)
{
const uint8_t syncPulseBitMask = 0x80;
uint8_t enableBit = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableObsRxGainCtrSyncPulse()\n");
#endif
enableBit = (enable > 0) ? 1 : 0;
/* read, modify, write ObsRx gain counter sync pulse enable bit */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_SLOW_ORX_SNRX_LOOP_CFG, enableBit, syncPulseBitMask, 7);
return MYKONOS_ERR_OK;
}
/**
* \brief Configures the ObsRx gain control mode
*
* <B>Dependencies:</B>
* - device->spiSettings
* - device->obsRx->orxGainCtrl->gainMode
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param mode is a mykonosGainMode_t enumerated gain control mode type
*
* When the mode enumerated type is passed, the ObsRx gain mode is set to this value and the
* ObsRX agcType mykonosAgcCfg_t structure member is updated with the new value
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_INV_ORX_GAIN_MODE_PARM Invalid Observation Rx Gain control mode selected (use mykonosGainMode_t ENUM values)
*/
mykonosErr_t MYKONOS_setObsRxGainControlMode(mykonosDevice_t *device, mykonosGainMode_t mode)
{
const uint8_t ORX_GAIN_TYPE_MASK = 0x3;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setObsRxGainControlMode()\n");
#endif
/* performing gain type check */
switch (mode)
{
case MGC:
break;
case AGC:
break;
case HYBRID:
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_ORX_GAIN_MODE_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_ORX_GAIN_MODE_PARM));
return MYKONOS_ERR_INV_ORX_GAIN_MODE_PARM;
}
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_AGC_ORX_SNRX_CFG_1, mode, ORX_GAIN_TYPE_MASK, 0);
/* writing mode setting to data structure */
if ((device->profilesValid & ORX_PROFILE_VALID) > 0)
{
device->obsRx->orxGainCtrl->gainMode = mode;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Performs a power measurement in the ObsRx digital data path.
*
* Due to interdependencies between the AGC and power measurement the power measurement duration and
* where the measurement is taken is variable.
* The location of the power measurement is given by device->obsRx->obsRxAgcCtrl->obsRxPwrAgc->pmdMeasConfig
* The number of samples the power measurement uses is given by 8*2^(device->obsRx->obsRxAgcCtrl->obsRxPwrAgc->pmdMeasConfig) at the IQ rate,
* if measured at RFIR output. This number of samples must be less than the agcGainUpdateCounter.
* If the receiver is disabled during the power measurement, this function returns a 0 value for rx2DecPower_mdBFS
*
* The resolution of this function is 0.25dB.
* The dynamic range of this function is 40dB. Signals lower than 40dBFS may not be measured accurately.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->obsRx->obsRxAgcCtrl->obsRxPwrAgc->pmdMeasConfig
* - device->obsRx->obsRxAgcCtrl->obsRxPwrAgc->pmdMeasConfig
*
* \param device Pointer to the Mykonos data structure
* \param obsRxDecPower_mdBFS Pointer to store the Rx1 decimated power return. Value returned in mdBFS
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getObsRxDecPower(mykonosDevice_t *device, uint16_t *obsRxDecPower_mdBFS)
{
uint8_t obsRxDecPower_dBFS = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getObsRxDecPower()\n");
#endif
/* read ObsRx Dec Power Measurement */
if (obsRxDecPower_mdBFS != NULL)
{
CMB_SPIReadByte(device->spiSettings, MYKONOS_SNIFFER_DECIMATED_PWR, &obsRxDecPower_dBFS);
*obsRxDecPower_mdBFS = (uint16_t)(obsRxDecPower_dBFS * 250); /* 250 = 1000 * 0.25dB */
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GET_OBSRX_DEC_POWER_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_GET_OBSRX_DEC_POWER_NULL_PARM));
return MYKONOS_ERR_GET_OBSRX_DEC_POWER_NULL_PARM;
}
return MYKONOS_ERR_OK;
}
/*
*****************************************************************************
* Tx Data path functions
*****************************************************************************
*/
/**
* \brief Sets the Tx1 RF output Attenuation
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
* - device->tx->txAttenStepSize
*
* \param device Pointer to the Mykonos device's data structure
* \param tx1Attenuation_mdB The desired TxAttenuation in milli-dB (Range: 0 to 41950 mdB)
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_SETTX1ATTEN_INV_PARM tx1Attenuation_mdB parameter is out of range (0 - 41950)
* \retval MYKONOS_ERR_SETTX1ATTEN_INV_STEPSIZE_PARM device->tx->txAttenStepSize is not a valid enum value
*/
mykonosErr_t MYKONOS_setTx1Attenuation(mykonosDevice_t *device, uint16_t tx1Attenuation_mdB)
{
uint16_t data = 0;
uint16_t attenStepSizeDiv = 50;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setTx1Attenuation()\n");
#endif
/* check input parameter is in valid range */
if (tx1Attenuation_mdB > 41950)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETTX1ATTEN_INV_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SETTX1ATTEN_INV_PARM));
return MYKONOS_ERR_SETTX1ATTEN_INV_PARM;
}
switch (device->tx->txAttenStepSize)
{
case TXATTEN_0P05_DB:
attenStepSizeDiv = 50;
break;
case TXATTEN_0P1_DB:
attenStepSizeDiv = 100;
break;
case TXATTEN_0P2_DB:
attenStepSizeDiv = 200;
break;
case TXATTEN_0P4_DB:
attenStepSizeDiv = 400;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETTX1ATTEN_INV_STEPSIZE_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SETTX1ATTEN_INV_STEPSIZE_PARM));
return MYKONOS_ERR_SETTX1ATTEN_INV_STEPSIZE_PARM;
}
data = (tx1Attenuation_mdB / attenStepSizeDiv);
/* Write MSB bits followed by LSB bits, TxAtten updates when [7:0] written */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX1_ATTENUATION_1, ((data >> 8) & 0x03));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX1_ATTENUATION_0, (data & 0xFF));
return MYKONOS_ERR_OK;
}
/**
* \brief Sets the Tx2 RF output Attenuation (Step size is 0.05dB.)
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
* - device->tx->txAttenStepSize
*
* \param device Pointer to the Mykonos device's data structure
* \param tx2Attenuation_mdB The desired TxAttenuation in milli-dB
* (Range: 0 to 41950 mdB)
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_SETTX2ATTEN_INV_PARM tx2Attenuation_mdB parameter is out of range (0 - 41950)
* \retval MYKONOS_ERR_SETTX2ATTEN_INV_STEPSIZE_PARM device->tx->txAttenStepSize is not a valid enum value
*/
mykonosErr_t MYKONOS_setTx2Attenuation(mykonosDevice_t *device, uint16_t tx2Attenuation_mdB)
{
uint16_t attenStepSizeDiv = 50;
uint16_t data = 0;
//const uint8_t SPI_TXATTEN_MODE = 0x01;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setTx2Attenuation()\n");
#endif
/* check input parameter is in valid range */
if (tx2Attenuation_mdB > 41950)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETTX2ATTEN_INV_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SETTX2ATTEN_INV_PARM));
return MYKONOS_ERR_SETTX2ATTEN_INV_PARM;
}
switch (device->tx->txAttenStepSize)
{
case TXATTEN_0P05_DB:
attenStepSizeDiv = 50;
break;
case TXATTEN_0P1_DB:
attenStepSizeDiv = 100;
break;
case TXATTEN_0P2_DB:
attenStepSizeDiv = 200;
break;
case TXATTEN_0P4_DB:
attenStepSizeDiv = 400;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETTX2ATTEN_INV_STEPSIZE_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SETTX2ATTEN_INV_STEPSIZE_PARM));
return MYKONOS_ERR_SETTX2ATTEN_INV_STEPSIZE_PARM;
}
data = (tx2Attenuation_mdB / attenStepSizeDiv);
/* Write MSB bits followed by LSB bits, TxAtten updates when [7:0] written */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX2_ATTENUATION_1, ((data >> 8) & 0x03));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX2_ATTENUATION_0, (data & 0xFF));
return MYKONOS_ERR_OK;
}
/**
* \brief Reads back the Tx1 RF output Attenuation
*
* This function reads back the TxAttenuation setting currently applied to the transmit chain.
* The function will work with SPI mode or pin controlled TxAtten mode using the increment/decrement GPIO
* pins. For the readback value to be valid the Tx data path must be powered up. If the Tx data path
* is powered down or radioOff state, the last TxAtten setting while the Tx was powered up will be
* read back.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the Mykonos device's data structure
* \param tx1Attenuation_mdB The readback value of the Tx1 Attenuation in milli-dB (Range: 0 to 41950 mdB)
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETTX1ATTEN_NULL_PARM tx1Attenuation_mdB return parameter has NULL pointer
*/
mykonosErr_t MYKONOS_getTx1Attenuation(mykonosDevice_t *device, uint16_t *tx1Attenuation_mdB)
{
uint8_t txAttenLsb = 0;
uint8_t txAttenMsb = 0;
uint16_t attenStepSizeDiv = 50;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getTx1Attenuation()\n");
#endif
/* check return parameter pointer is not NULL pointer */
if (tx1Attenuation_mdB == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETTX1ATTEN_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_GETTX1ATTEN_NULL_PARM));
return MYKONOS_ERR_GETTX1ATTEN_NULL_PARM;
}
/* Write TxAtten read back reg to update readback values, then read Tx1Atten */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX1_ATTENUATION_1_READBACK, 0x00);
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_TX1_ATTENUATION_0_READBACK, &txAttenLsb, 0xFF, 0);
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_TX1_ATTENUATION_1_READBACK, &txAttenMsb, 0x03, 0);
/* Readback word always reads back with 0.05dB resolution */
*tx1Attenuation_mdB = (((uint16_t)(txAttenLsb) | ((uint16_t)(txAttenMsb) << 8)) * attenStepSizeDiv);
return MYKONOS_ERR_OK;
}
/**
* \brief Reads back the Tx2 RF output Attenuation
*
* This function reads back the TxAttenuation setting currently applied to the transmit chain.
* The function will work with SPI mode or pin controlled TxAtten mode using the increment/decrement GPIO
* pins. For the readback value to be valid the Tx data path must be powered up. If the Tx data path
* is powered down or radioOff state, the last TxAtten setting while the Tx was powered up will be
* read back.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the Mykonos device's data structure
* \param tx2Attenuation_mdB The readback value of the Tx2 Attenuation in milli-dB (Range: 0 to 41950 mdB)
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETTX2ATTEN_NULL_PARM tx2Attenuation_mdB return parameter pointer is NULL
*/
mykonosErr_t MYKONOS_getTx2Attenuation(mykonosDevice_t *device, uint16_t *tx2Attenuation_mdB)
{
uint8_t txAttenLsb = 0;
uint8_t txAttenMsb = 0;
uint16_t attenStepSizeDiv = 50;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getTx2Attenuation()\n");
#endif
/* check return parameter pointer is not NULL pointer */
if (tx2Attenuation_mdB == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETTX2ATTEN_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_GETTX2ATTEN_NULL_PARM));
return MYKONOS_ERR_GETTX2ATTEN_NULL_PARM;
}
/* Write TxAtten read back reg to update readback values, then read Tx1Atten */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX2_ATTENUATION_1_READBACK, 0x00);
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_TX2_ATTENUATION_0_READBACK, &txAttenLsb, 0xFF, 0);
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_TX2_ATTENUATION_1_READBACK, &txAttenMsb, 0x03, 0);
/* Readback word always reads back with 0.05dB resolution */
*tx2Attenuation_mdB = (((uint16_t)(txAttenLsb) | ((uint16_t)(txAttenMsb) << 8)) * attenStepSizeDiv);
return MYKONOS_ERR_OK;
}
/**
* \brief Checks the Tx Filter over-range bit assignments for digital clipping in the Tx data path
*
* <B>Dependencies</B>
* - device->spiSettings
*
* txFilterStatus bit-field assignments are:
* txFilterStatus[0] = TFIR Ch1 Overflow
* txFilterStatus[1] = HB1 Ch1 Overflow
* txFilterStatus[2] = HB2 Ch1 Overflow
* txFilterStatus[3] = QEC Ch1 Overflow
* txFilterStatus[4] = TFIR Ch2 Overflow
* txFilterStatus[5] = HB1 Ch2 Overflow
* txFilterStatus[6] = HB2 Ch2 Overflow
* txFilterStatus[7] = QEC Ch2 Overflow
*
* \param device Pointer to the Mykonos device's data structure
* \param txFilterStatus is an 8-bit Tx filter over-range status bit-field
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GET_TXFILTEROVRG_NULL_PARM Function txFilterStatus parameter pointer is NULL
*/
mykonosErr_t MYKONOS_getTxFilterOverRangeStatus(mykonosDevice_t *device, uint8_t *txFilterStatus)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getTxFilterOverRangeStatus()\n");
#endif
if (txFilterStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GET_TXFILTEROVRG_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_GET_TXFILTEROVRG_NULL_PARM));
return MYKONOS_ERR_GET_TXFILTEROVRG_NULL_PARM;
}
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_TX_FILTER_OVERFLOW, txFilterStatus);
return MYKONOS_ERR_OK;
}
/**
* \brief Enables/Disables the Tx NCO test tone
*
* This function enables/disables a digital numerically controlled oscillator
* in the Mykonos Digital to create a test CW tone on Tx1 and Tx2 RF outputs.
*
* The TxAttenuation is forced in this function to max analog output power, but
* the digital attenuation is backed off 6dB to make sure the digital filter
* does not clip and cause spurs in the tx spectrum.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->profilesValid
* - device->tx->txProfile->iqRate_kHz
*
* \param device Pointer to the Mykonos device's data structure
* \param enable 0 = Disable Tx NCO, 1 = Enable Tx NCO on both transmitters
* \param tx1ToneFreq_kHz Signed frequency in kHz of the desired Tx1 tone
* \param tx2ToneFreq_kHz Signed frequency in kHz of the desired Tx2 tone
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_ENTXNCO_TXPROFILE_INVALID Can not enable Tx NCO when Tx Profile is not enabled/valid
* \retval MYKONOS_ERR_ENTXNCO_TX1_FREQ_INVALID Tx1 NCO Tone frequency out of range (-IQrate/2 to IQrate/2)
* \retval MYKONOS_ERR_ENTXNCO_TX2_FREQ_INVALID Tx2 NCO Tone frequency out of range (-IQrate/2 to IQrate/2)
*/
mykonosErr_t MYKONOS_enableTxNco(mykonosDevice_t *device, uint8_t enable, int32_t tx1ToneFreq_kHz, int32_t tx2ToneFreq_kHz)
{
int16_t tx1NcoTuneWord = 0;
int16_t tx2NcoTuneWord = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableTxNco()\n");
#endif
if (enable > 0)
{
if ((device->profilesValid & TX_PROFILE_VALID) == 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ENTXNCO_TXPROFILE_INVALID,
getMykonosErrorMessage(MYKONOS_ERR_ENTXNCO_TXPROFILE_INVALID));
return MYKONOS_ERR_ENTXNCO_TXPROFILE_INVALID;
}
if ((tx1ToneFreq_kHz > ((int32_t)(device->tx->txProfile->iqRate_kHz) / 2)) || (tx1ToneFreq_kHz < ((int32_t)(device->tx->txProfile->iqRate_kHz) * -1 / 2)))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ENTXNCO_TX1_FREQ_INVALID,
getMykonosErrorMessage(MYKONOS_ERR_ENTXNCO_TX1_FREQ_INVALID));
return MYKONOS_ERR_ENTXNCO_TX1_FREQ_INVALID;
}
if ((tx2ToneFreq_kHz > ((int32_t)(device->tx->txProfile->iqRate_kHz) / 2)) || (tx2ToneFreq_kHz < ((int32_t)(device->tx->txProfile->iqRate_kHz) * -1 / 2)))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ENTXNCO_TX2_FREQ_INVALID,
getMykonosErrorMessage(MYKONOS_ERR_ENTXNCO_TX2_FREQ_INVALID));
return MYKONOS_ERR_ENTXNCO_TX2_FREQ_INVALID;
}
/* Force Tx output power to max analog output power, but 6dB digital */
/* backoff to prevent the NCO from clipping the Tx PFIR filter */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX1_GAIN_0, 0x78);
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX1_GAIN_1, 0x00, 0x3F, 0);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX1_GAIN_2, 0x0);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX2_GAIN_0, 0x78);
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX2_GAIN_1, 0x00, 0x3F, 0);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX2_GAIN_2, 0x0);
/* Enable manual Tx output power mode */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_TPC_CONFIG, 0x0A, 0x0F, 0);
/* Set Tx NCO tuning words */
tx1NcoTuneWord = (int16_t)(((int64_t)(tx1ToneFreq_kHz) << 16) / device->tx->txProfile->iqRate_kHz * -1);
tx2NcoTuneWord = (int16_t)(((int64_t)(tx2ToneFreq_kHz) << 16) / device->tx->txProfile->iqRate_kHz * -1);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX_ABBF_FREQ_CAL_NCO_I_MSB, ((tx1NcoTuneWord >> 8) & 0xFF));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX_ABBF_FREQ_CAL_NCO_I_LSB, (tx1NcoTuneWord & 0xFF));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX_ABBF_FREQ_CAL_NCO_Q_MSB, ((tx2NcoTuneWord >> 8) & 0xFF));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_TX_ABBF_FREQ_CAL_NCO_Q_LSB, (tx2NcoTuneWord & 0xFF));
/* Enable Tx NCO - set [7] = 1 */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_DIGITAL_TEST_BYTE_0, 1, 0x80, 7);
}
else
{
/* Disable Tx NCO - set [7] = 0 */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_DIGITAL_TEST_BYTE_0, 0, 0x80, 7);
/* Enable normal Tx Atten table mode */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_TX_TPC_CONFIG, 0x05, 0x0F, 0);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Writes Mykonos device registers with settings for the PA Protection block.
*
* This function writes register settings for the Mykonos PA Protection Block.
* This function does not enable the PA Protection functionality.
* Note that independent control of PA protection for both Tx channels is not possible.
* The PA Protection block allows for error flags to go high if the accumulated TX power in the data path
* exceeds a programmable threshold level based on samples taken in a programmable duration.
*
* \post After calling this function the user will need to call MYKONOS_enablePaProtection(...)
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the Mykonos device's data structure
* \param powerThreshold PA Protection Threshold sets the power level that, if detected in the TX data path, raises the PA error flags. The range is 0 to 4096.
* To calculate the required setting for the power threshold:
* powerThreshold = MAX_DAC_CODE * (10^((txPowerThresh_dBFS/10)))
* For example: If the required dBFS for the threshold is -10 dBFS, then the powerThreshold passed should be 409.
*
* \param attenStepSize Attenuation Step Size sets the size of the attenuation step when Tx Atten Control is Enabled. The range is 0 to 128 with a resolution is 0.2dB/LSB.
* \param avgDuration Averaging Duration for the TX data path power measurement. The range is 0 to 14 specified in number of cycles of the TX IQ Rate.
* \param stickyFlagEnable "1" Enables the PA Error Flags to stay high after being triggered, even if the power decreases below threshold. "0" disables this functionality.
* \param txAttenControlEnable "1" Enables autonomous attenuation changes in response to PA error flags. "0" disables this functionality.
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_SETUP_PA_PROT_INV_AVG_DURATION avgDuration parameter invalid (valid 0-15)
* \retval MYKONOS_ERR_SETUP_PA_PROT_INV_ATTEN_STEP attenStepSize function parameter invalid (valid 0-127)
*/
mykonosErr_t MYKONOS_setupPaProtection(mykonosDevice_t *device, uint16_t powerThreshold, uint8_t attenStepSize, uint8_t avgDuration, uint8_t stickyFlagEnable, uint8_t txAttenControlEnable)
{
uint8_t paProtectConfig = 0;
uint8_t paProtectAttenCntl = 0;
const uint8_t PROTECT_AVG_DUR_MASK = 0x1E;
const uint8_t STICKY_FLAG_EN_MASK = 0x40;
const uint8_t ATT_STEP_MASK = 0xFE;
const uint8_t PROTECT_ATT_EN_MASK = 0x01;
const uint8_t AVG_DUR_MASK = 0x0F;
const uint8_t ATT_STEP_SIZE = 0x7F;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setupPaProtection()\n");
#endif
/* Overwrite PA Protection Config register data with averaging duration and sticky flag. Also performing range check on stickyFlagEnable and avgDuration */
if (avgDuration > AVG_DUR_MASK)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETUP_PA_PROT_INV_AVG_DURATION,
getMykonosErrorMessage(MYKONOS_ERR_SETUP_PA_PROT_INV_AVG_DURATION));
return MYKONOS_ERR_SETUP_PA_PROT_INV_AVG_DURATION;
}
if (attenStepSize > ATT_STEP_SIZE)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETUP_PA_PROT_INV_ATTEN_STEP,
getMykonosErrorMessage(MYKONOS_ERR_SETUP_PA_PROT_INV_ATTEN_STEP));
return MYKONOS_ERR_SETUP_PA_PROT_INV_ATTEN_STEP;
}
paProtectConfig = (PROTECT_AVG_DUR_MASK & (avgDuration << 1));
if (stickyFlagEnable > 0)
{
paProtectConfig |= (STICKY_FLAG_EN_MASK);
}
paProtectAttenCntl = ATT_STEP_MASK & (attenStepSize << 1);
if (txAttenControlEnable > 0)
{
paProtectAttenCntl |= (PROTECT_ATT_EN_MASK);
}
/* Clear and write all PA Protection setup registers */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_ATTEN_CONTROL, 0x00);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_CONFIGURATION, 0x00);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_THRESHOLD_LSB, 0x00);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_THRESHOLD_MSB, 0x00);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_ATTEN_CONTROL, paProtectAttenCntl);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_CONFIGURATION, paProtectConfig);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_THRESHOLD_LSB, (powerThreshold & 0xFF));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_THRESHOLD_MSB, ((powerThreshold >> 8) & 0x0F));
return MYKONOS_ERR_OK;
}
/**
* \brief Enables the Mykonos PA Protection block according to the parameters passed in MYKONOS_setupPaProtection(...).
*
* This function enables the PA Protection block according to the parameters passed in MYKONOS_setupPaProtection(...)
* The paProtectEnable signal enables the PA Protection block, allowing usage of the PA protection functions.
*
* \pre Before calling this function the user needs to setup the PA protection by calling MYKONOS_setupPaProtection(...)
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the Mykonos device's data structure
* \param paProtectEnable "1" Enables the PA Protection block. "0" Disables the PA Protection block
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_enablePaProtection(mykonosDevice_t *device, uint8_t paProtectEnable)
{
uint8_t paProtectEnableReg = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enablePaProtection()\n");
#endif
paProtectEnableReg = (paProtectEnable > 0) ? 1 : 0;
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_CONFIGURATION, paProtectEnableReg, 0x01, 0);
return MYKONOS_ERR_OK;
}
/**
* \brief Obtains an estimate of a TX channel's accumulated power over the sample duration provided in MYKONOS_setupPaProtection(...)
*
* This function uses the 'avgDuration' parameter provided in MYKONOS_setupPaProtection to set the number of samples to accumulate
* to obtain an estimate for a TX channel specified by the 'channel' parameter.
* A 12-bit field estimating the channel power is returned in the '*channelPower' pointer.
* To obtain the dBFS value of the reading:
* dBFS value = 10*log10(channelPower/MAX_DAC_CODE)
* where MAX_DAC_CODE = 2^12 = 4096
* For example: If channelPower is reading 409 then the channel power in dBFS is -10dBFS.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Point to the Mykonos device's data structure
* \param channel Select the channel of interest. Only use TX1 (1) or TX2 (2) of mykonosTxChannels_t
* \param *channelPower A pointer that stores the selected channels power. Read back is provided as a 12 bit value.
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GET_DAC_PWR_INV_POINTER Function channelPower parameter is a NULL pointer
* \retval MYKONOS_ERR_SETUP_PA_PROT_INV_TX_CHANNEL Invalid Tx Channel passed in function channel parameter (TX1 or TX2)
*/
mykonosErr_t MYKONOS_getDacPower(mykonosDevice_t *device, mykonosTxChannels_t channel, uint16_t *channelPower)
{
uint8_t channelPowerLsb = 0;
uint8_t channelPowerMsb = 0;
const uint8_t CHAN_POWER_MSB_MASK = 0xF;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getDacPower()\n");
#endif
if (channelPower == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GET_DAC_PWR_INV_POINTER,
getMykonosErrorMessage(MYKONOS_ERR_GET_DAC_PWR_INV_POINTER));
return MYKONOS_ERR_GET_DAC_PWR_INV_POINTER;
}
/* Set bit D5 to read the appropriate channel power */
switch (channel)
{
case TX1:
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_CONFIGURATION, 0, 0x20, 5);
break;
case TX2:
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_CONFIGURATION, 1, 0x20, 5);
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETUP_PA_PROT_INV_TX_CHANNEL,
getMykonosErrorMessage(MYKONOS_ERR_SETUP_PA_PROT_INV_TX_CHANNEL));
return MYKONOS_ERR_SETUP_PA_PROT_INV_TX_CHANNEL;
}
/* SPI Write to register PA Protection power readback registers (write strobe) */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_POWER_READBACK_LSB, 0x00);
/* SPI Read of the PA Protection power readback registers */
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_POWER_READBACK_LSB, &channelPowerLsb);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_POWER_READBACK_MSB, &channelPowerMsb);
*channelPower = (channelPowerLsb | (((uint16_t)(channelPowerMsb & CHAN_POWER_MSB_MASK)) << 8));
return MYKONOS_ERR_OK;
}
/**
* \brief Returns PA Protection Error Flag Status
*
* This function provides a readback of the PA protection Error Flag Status through the '*errorFlagStatus' pointer
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Point to the Mykonos device's data structure
* \param errorFlagStatus Pointer to store the error flag status.
* errorFlagStatus | error
* -----------------|------------
* 0 | indicates no PA Error Flags are high
* 1 | indicates TX1 Error Flag
* 2 | indicates TX2 Error Flag
* 3 | indicates TX1 and TX2 Error Flags are high
*
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GET_PA_FLAG_STATUS_INV_POINTER Function errorFlagStatus parameter has NULL pointer
*/
mykonosErr_t MYKONOS_getPaProtectErrorFlagStatus(mykonosDevice_t *device, uint8_t *errorFlagStatus)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getPaProtectErrorFlagStatus()\n");
#endif
if (errorFlagStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GET_PA_FLAG_STATUS_INV_POINTER,
getMykonosErrorMessage(MYKONOS_ERR_GET_PA_FLAG_STATUS_INV_POINTER));
return MYKONOS_ERR_GET_PA_FLAG_STATUS_INV_POINTER;
}
/* SPI Write to register PA Protection power readback registers (write strobe) */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_POWER_READBACK_LSB, 0x00);
/* SPI Read of the PA Protection power readback registers */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_POWER_READBACK_MSB, errorFlagStatus, 0x60, 5);
return MYKONOS_ERR_OK;
}
/**
* \brief Manually clears the PA Protection Error Flags.
*
* This function manually clears the PA Error Flags. The user must setup the PA Protection block to enable
* sticky error flags. Sticky error flags require the user to clear the bit manually even if the accumulated power is
* below the power threshold for the PA protection block.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the Mykonos device's data structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_clearPaErrorFlag(mykonosDevice_t *device)
{
uint8_t paProtectConfig;
const uint8_t PA_ERROR_CLEAR_MASK = 0x80;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_clearPaErrorFlag()\n");
#endif
/* SPI Read of the PA Protection power readback registers */
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_CONFIGURATION, &paProtectConfig);
/* SPI Write to self clear the PA Error Flags */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_PA_PROTECTION_CONFIGURATION, (paProtectConfig | PA_ERROR_CLEAR_MASK));
return MYKONOS_ERR_OK;
}
/**
* \brief Helper function for return of character string based on 32-bit mykonosErr_t enum value
*
* To save codespace, these error strings are ifdef'd out unless the user
* adds a define MYKONOS_VERBOSE to their workspace. This function can be
* useful for debug. Each function also returns unique error codes to
* make it easier to determine where the code broke.
*
* \param errorCode is enumerated error code value
*
* \return Returns character string based on enumerated value
*/
const char* getMykonosErrorMessage(mykonosErr_t errorCode)
{
#ifndef MYKONOS_VERBOSE
return "";
#else
switch (errorCode)
{
case MYKONOS_ERR_OK:
return "";
case MYKONOS_ERR_INV_PARM:
return "Mykonos: Invalid parameter\n";
case MYKONOS_ERR_FAILED:
return "Mykonos: General Failure\n";
case MYKONOS_ERR_WAITFOREVENT_INV_PARM:
return "waitForEvent had invalid parameter.\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT:
return "waitForEvent timed out.\n";
case MYKONOS_ERR_SETENSM_INVALID_NEWSTATE_WAIT:
return "Requested new ENSM state is invalid from the WAIT state.\n";
case MYKONOS_ERR_SETENSM_INVALID_NEWSTATE_ALERT:
return "Requested new ENSM state is invalid from the ALERT state.\n";
case MYKONOS_ERR_SETENSM_INVALID_NEWSTATE_TXRX:
return "Requested new ENSM state is invalid from the TXRX state.\n";
case MYKONOS_ERR_SETENSM_INVALIDSTATE:
return "Current ENSM state is an invalid state or calibration state.\n";
case MYKONOS_ERR_PU_RXPATH_INV_PARAM:
return "Invalid Rx channel was requested to be powered up.\n";
case MYKONOS_ERR_PU_TXPATH_INV_PARAM:
return "Invalid Tx channel was requested to be powered up.\n";
case MYKONOS_ERR_PU_OBSRXPATH_INV_PARAM:
return "Invalid ObsRx channel was requested to be powered up.\n";
case MYKONOS_ERR_SETDEFOBSRXPATH_NULL_DEF_OBSRX_STRUCT:
return "Invalid default ObsRx channel was requested to be powered up.\n";
case MYKONOS_ERR_INIT_INV_ORXCHAN:
return "Invalid ObsRx channel requested during initialize().\n";
case MYKONOS_ERR_INIT_INV_RXSYNCB_ORXSYNCB_MODE:
return "Invalid combination for rxsyncb and orxsyncb, if shared syncb they should have the CMOS/LVDS mode\n";
case MYKONOS_ERR_INIT_INV_TXFIR_INTERPOLATION:
return "Invalid TxFIR interpolation value.(Valid: 1,2,4)\n";
case MYKONOS_ERR_INIT_INV_TXHB2_INTERPOLATION:
return "Invalid TXHB2 interpolation value.(Valid: 1 or 2)\n";
case MYKONOS_ERR_INIT_INV_TXHB1_INTERPOLATION:
return "Invalid TXHB1 interpolation value.(Valid: 1 or 2)\n";
case MYKONOS_ERR_INIT_INV_RXFIR_DECIMATION:
return "Invalid RxFIR decimation value.(Valid: 1,2,4)\n";
case MYKONOS_ERR_INIT_INV_RXDEC5_DECIMATION:
return "Invalid Rx DEC5 decimation value.(Valid: 4 or 5)\n";
case MYKONOS_ERR_INIT_INV_RXHB1_DECIMATION:
return "Invalid RxHB1 decimation value.(Valid: 1 or 2)\n";
case MYKONOS_ERR_INIT_INV_SNIFFER_RHB1:
return "Invalid Sniffer HB1 decimation value (Valid 1 or 2)\n";
case MYKONOS_ERR_INIT_INV_SNIFFER_RFIR_DEC:
return "Invalid Sniffer RFIR decimation value (Valid 1,2,4)\n";
case MYKONOS_ERR_INIT_INV_ORX_RHB1:
return "Invalid ORx HB1 decimation value (Valid 1 or 2)\n";
case MYKONOS_ERR_INIT_INV_ORX_RFIR_DEC:
return "Invalid ORx RFIR decimation value. (Valid 1,2,4)\n";
case MYKONOS_ERR_INIT_INV_ADCDIV:
return "Invalid Rx ADC divider. (Valid 1 or 2)\n";
case MYKONOS_ERR_INIT_INV_DACDIV:
return "Invalid Tx DAC divider. Use enum DACDIV_2, DACDIV_2p5 or DACDIV_4.\n";
case MYKONOS_ERR_INIT_INV_OBSRX_ADCDIV:
return "Invalid ObsRx ADC div. (Valid 1 or 2)\n";
case MYKONOS_ERR_CLKPLL_INV_HSDIV:
return "Invalid CLKPLL HSDIV. (Valid 4 or 5)\n";
case MYKONOS_ERR_CLKPLL_INV_VCODIV:
return "Invalid CLKPLL VCODIV. Use enum VCODIV_1, VCODIV_1p5, VCODIV_2, VCODIV_3\n";
case MYKONOS_ERR_CLKPLL_INV_RXTXPROFILES:
return "No Rx or Tx profile is specified.\n";
case MYKONOS_ERR_SETCLKPLL_INV_VCOINDEX:
return "CLKPLL VCO frequency out of range.\n";
case MYKONOS_ERR_SETCLKPLL_INV_FRACWORD:
return "CLKPLL fractional word is non zero.\n";
case MYKONOS_ERR_SETRFPLL_INV_PLLNAME:
return "Invalid pllName requested in setRfPllFreuquency()\n";
case MYKONOS_ERR_SETRFPLL_INV_LO_PARM:
return "RF PLL frequency out of range\n";
case MYKONOS_ERR_GETRFPLL_INV_PLLNAME:
return "Invalid pllName requested in getRfPllFrequency()\n";
case MYKONOS_ERR_GETRFPLL_ARMERROR:
return "ARM Command Error in MYKONOS_getRfPllFrequency()\n";
case MYKONOS_ERR_GETRFPLL_NULLPARAM:
return "NULL pointer in function parameter for MYKONOS_setRfPllFrequency()\n";
case MYKONOS_ERR_INV_SCALEDDEVCLK_PARAM:
return "Could not scale device clock into range 40MHz to 80Mhz.\n";
case MYKONOS_ERR_SETRFPLL_INV_VCOINDEX:
return "RFPLL VCO frequency out of range.\n";
case MYKONOS_ERR_SETRFPLL_INV_REFCLK:
return "Unsupported PLL reference clock or refclk out of range.\n";
case MYKONOS_ERR_SETORXGAIN_INV_CHANNEL:
return "Invalid ObsRx channel in setObsRxManualGain().\n";
case MYKONOS_ERR_SETORXGAIN_INV_ORX1GAIN:
return "Invalid gain requested in setObsRxManualGain() for ORX1\n";
case MYKONOS_ERR_SETORXGAIN_INV_ORX2GAIN:
return "Invalid gain requested in setObsRxManualGain() for ORX2\n";
case MYKONOS_ERR_SETORXGAIN_INV_SNRXGAIN:
return "Invalid gain requested in setObsRxManualGain() for Sniffer\n";
case MYKONOS_ERR_GETORX1GAIN_INV_POINTER:
return "Cannot return ORx1 gain to gain control data structure (invalid pointer).\n";
case MYKONOS_ERR_GETORX2GAIN_INV_POINTER:
return "Cannot return ORx2 gain to gain control data structure (invalid pointer).\n";
case MYKONOS_ERR_GETSNIFFGAIN_INV_POINTER:
return "Cannot return Sniffer gain to gain control data structure (invalid pointer).\n";
case MYKONOS_ERR_GETOBSRXGAIN_CH_DISABLED:
return "Cannot read ObsRx gain index. ObsRx Channel is disabled.\n";
case MYKONOS_ERR_SETTX1ATTEN_INV_PARM:
return "Tx1 attenuation is out of range (0 - 41950 mdB).\n";
case MYKONOS_ERR_SETTX1ATTEN_INV_STEPSIZE_PARM:
return "Invalid Tx1Atten stepsize. Use enum mykonosTxAttenStepSize_t\n";
case MYKONOS_ERR_SETTX2ATTEN_INV_PARM:
return "Tx2 attenuation is out of range (0 - 41950 mdB).\n";
case MYKONOS_ERR_SETTX2ATTEN_INV_STEPSIZE_PARM:
return "Invalid Tx2Atten stepsize. Use enum mykonosTxAttenStepSize_t\n";
case MYKONOS_ERR_PROGRAMFIR_INV_NUMTAPS_PARM:
return "Invalid number of FIR taps\n";
case MYKONOS_ERR_READFIR_INV_NUMTAPS_PARM:
return "Invalid number of FIR taps read for the selected Filter\n";
case MYKONOS_ERR_PROGRAMFIR_INV_FIRNAME_PARM:
return "Invalid FIR filter name requested. use enum mykonosfirName_t\n";
case MYKONOS_ERR_RXFIR_INV_GAIN_PARM:
return "Rx FIR filter has invalid gain setting\n";
case MYKONOS_ERR_OBSRXFIR_INV_GAIN_PARM:
return "ObsRx FIR filter A (ORx) has invalid gain setting\n";
case MYKONOS_ERR_SRXFIR_INV_GAIN_PARM:
return "ObsRx FIR filter B (Sniffer) has invalid gain setting\n";
case MYKONOS_ERR_TXFIR_INV_GAIN_PARM:
return "Tx FIR filter has invalid gain setting\n";
case MYKONOS_ERR_READFIR_NULL_PARM:
return "MYKONOS_readFir() has a null *firFilter parameter\n";
case MYKONOS_ERR_READFIR_COEFS_NULL:
return "MYKONOS_readFir() has a null coef array in *firFilter structure\n";
case MYKONOS_ERR_READFIR_INV_FIRNAME_PARM:
return "Invalid FIR filter name requested. use enum mykonosfirName_t\n";
case MYKONOS_ERR_SETRX1GAIN_INV_GAIN_PARM:
return "Rx1 manual gain index out of range of gain table\n";
case MYKONOS_ERR_SETRX2GAIN_INV_GAIN_PARM:
return "Rx2 manual gain index out of range of gain table\n";
case MYKONOS_ERR_INITSER_INV_VCODIV_PARM:
return "Found invalid VCO divider value during setupSerializers()\n";
case MYKONOS_ERR_INITDES_INV_VCODIV_PARM:
return "Found invalid VCO divider value during setupDeserializers()\n";
case MYKONOS_ERR_SER_INV_M_PARM:
return "Invalid JESD Framer M parameter during setupSerializers()\n";
case MYKONOS_ERR_SER_INV_L_PARM:
return "Invalid JESD Framer L parameter during setupSerializers()\n";
case MYKONOS_ERR_SER_INV_HSCLK_PARM:
return "Invalid HSCLK frequency in setupSerializers()\n";
case MYKONOS_ERR_SER_INV_LANERATE_PARM:
return "Invalid Lanerate frequency in setupSerializer()\n";
case MYKONOS_ERR_SER_INV_LANEEN_PARM:
return "Invalid number of JESD204 lanes enabled.\n";
case MYKONOS_ERR_SER_INV_AMP_PARM:
return "Invalid JESD204 serializer amplitude\n";
case MYKONOS_ERR_SER_INV_PREEMP_PARM:
return "Invalid JESD204 serializer preemphasis setting\n";
case MYKONOS_ERR_SER_INV_LANEPN_PARM:
return "Invald JESD204 serializer PN invert setting\n";
case MYKONOS_ERR_SER_LANE_CONFLICT_PARM:
return "Rx framer and ObsRx framer are attempting to use the same physical lanes\n";
case MYKONOS_ERR_SER_INV_TXSER_DIV_PARM:
return "Invalid serializer lane clock divider\n";
case MYKONOS_ERR_SER_LANE_RATE_CONFLICT_PARM:
return "Rx lane and ObsRx lane rate must match\n";
case MYKONOS_ERR_SER_INV_REAL_IF_DATA_PARM:
return "Framer M can only =1 if Real IF data option is enabled\n";
case MYKONOS_ERR_HS_AND_LANE_RATE_NOT_INTEGER_MULT:
return "Serializer HSCLK and lane clock are not integer multiples\n";
case MYKONOS_ERR_DES_HS_AND_LANE_RATE_NOT_INTEGER_MULT:
return "Deserializer HSCLK and lane clock are not integer multiples\n";
case MYKONOS_ERR_DESER_INV_M_PARM:
return "Invalid deserializer M value. (Valid 2 or 4)\n";
case MYKONOS_ERR_DESER_INV_L_PARM:
return "Invalid deserializer L value. (Valid 1,2,4)\n";
case MYKONOS_ERR_DESER_INV_HSCLK_PARM:
return "Invalid HSCLK in setupDeserializer()\n";
case MYKONOS_ERR_DESER_INV_LANERATE_PARM:
return "Invalid deserializer lane rate\n";
case MYKONOS_ERR_DESER_INV_LANEEN_PARM:
return "Invalid number of deserializer lanes enabled\n";
case MYKONOS_ERR_DESER_INV_EQ_PARM:
return "Invalid deserializer EQ setting";
case MYKONOS_ERR_DESER_INV_LANEPN_PARM:
return "Invalid deserializer invert Lane PN setting\n";
case MYKONOS_ERR_FRAMER_INV_M_PARM:
return "Invalid Rx framer M setting\n";
case MYKONOS_ERR_FRAMER_INV_BANKID_PARM:
return "Invalid Rx framer Bank ID\n";
case MYKONOS_ERR_FRAMER_INV_LANEID_PARM:
return "Invalid Rx framer Lane ID\n";
case MYKONOS_ERR_FRAMER_INV_K_OFFSET_PARAM:
return "Invalid Rx framer LMFC offset\n";
case MYKONOS_ERR_FRAMER_INV_REAL_IF_DATA_PARM:
return "Invalid Rx framer Real IF setting\n";
case MYKONOS_ERR_OBSRX_FRAMER_INV_M_PARM:
return "Invalid ObsRx Framer M value\n";
case MYKONOS_ERR_OBSRX_FRAMER_INV_BANKID_PARM:
return "Invalid ObsRx Framer Bank ID\n";
case MYKONOS_ERR_OBSRX_FRAMER_INV_LANEID_PARM:
return "Invalid ObsRx framer Lane ID\n";
case MYKONOS_ERR_OBSRX_FRAMER_INV_K_OFFSET_PARAM:
return "Invalid ObsRx framer LMFC offset\n";
case MYKONOS_ERR_OBSRX_FRAMER_INV_REAL_IF_DATA_PARM:
return "Invalid ObsRx framer Real IF setting, M must =1\n";
case MYKONOS_ERR_DEFRAMER_INV_M_PARM:
return "Invalid Deframer M setting\n";
case MYKONOS_ERR_DEFRAMER_INV_BANKID_PARM:
return "Invalid Deframer Bank ID\n";
case MYKONOS_ERR_ERR_DEFRAMER_INV_LANEID_PARM:
return "Invalid Deframer Lane ID\n";
case MYKONOS_ERR_DEFRAMER_INV_K_OFFSET_PARAM:
return "Invalid Deframer LMFC offset";
case MYKONOS_ERR_DEFRAMER_INV_K_PARAM:
return "Invalid Deframer K setting\n";
case MYKONOS_ERR_DEFRAMER_INV_FK_PARAM:
return "Invalid Deframer F*K value\n";
case MYKONOS_ERR_RX_FRAMER_INV_PRBS_POLYORDER_PARAM:
return "Invalid polyOrder parameter in enableRxFramerPrbs()\n";
case MYKONOS_ERR_OBSRX_FRAMER_INV_PRBS_POLYORDER_PARAM:
return "Invalid polyOrder parameter in enableObsRxFramerPrbs()\n";
case MYKONOS_ERR_DEFRAMER_INV_PRBS_ENABLE_PARAM:
return "Invalid enable parameter value in enableDeframerPrbsChecker()\n";
case MYKONOS_ERR_DEFRAMER_INV_PRBS_POLYORDER_PARAM:
return "Invalid polyOrder parameter in enableDeframerPrbsChecker()\n";
case MYKONOS_ERR_DEFRAMER_INV_PRBS_CNTR_SEL_PARAM:
return "Invalid lane counter select in readDeframerPrbsCounters()\n";
case MYKONOS_ERR_INITARM_INV_DATARATE_PARM:
return 0;
case MYKONOS_ERR_INITARM_INV_VCODIV:
return "Invalid ARM VCO divider\n";
case MYKONOS_ERR_INITARM_INV_REGCLK:
return "Invalid ARM SPI register clock rate\n";
case MYKONOS_ERR_INITARM_INV_ARMCLK_PARAM:
return "Invalid ARM clock rate\n";
case MYKONOS_ERR_LOADHEX_INV_CHARCOUNT:
return "LoadHex() char count = 0\n";
case MYKONOS_ERR_LOADHEX_INVALID_FIRSTCHAR:
return "LoadHex() First char is not :\n";
case MYKONOS_ERR_LOADHEX_INVALID_CHKSUM:
return "LoadHex() line checksum is invalid\n";
case MYKONOS_ERR_LOADBIN_INVALID_BYTECOUNT:
return 0;
case MYKONOS_ERR_ARM_INVALID_BUILDCHKSUM:
return "Verify ARM checksum failed\n";
case MYKONOS_ERR_READARMMEM_INV_ADDR_PARM:
return "ReadArmMem() was given an invalid memory address\n";
case MYKONOS_ERR_WRITEARMMEM_INV_ADDR_PARM:
return "WriteArmMem() was given an invalid memory address\n";
case MYKONOS_ERR_ARMCMD_INV_OPCODE_PARM:
return "Invalid ARM opcode given to sendArmCommand()\n";
case MYKONOS_ERR_ARMCMD_INV_NUMBYTES_PARM:
return "Invalid number of extended data in sendArmCommand()\n";
case MYKONOS_ERR_ARMCMDSTATUS_INV_OPCODE_PARM:
return "Invalid opcode given to waitArmCmdStatus()\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_NULLDEVPOINTER:
return "Pointer to Mykonos device data structure is NULL\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_SPI:
return "Invalid spiSettings pointer in device data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_RX:
return "Invalid device->rx pointer in device data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_RXSUB:
return "Invalid pointer within device->rx data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_RXFIR:
return "Invalid RXFIR pointer in device data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_TX:
return "Invalid device->tx pointer in device data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_TXSUB:
return "Invalid pointer within device->tx data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_TXFIR:
return "Invalid TXFIR pointer in device data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_OBSRX:
return "Invalid device->obsRx pointer in device data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_OBSRXSUB:
return "Invalid pointer within device->obsRx data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_SNIFFERFIR:
return "Invalid Sniffer FIR pointer in device data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_ORXFIR:
return "Invalid ORX FIR pointer in device data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_ORXGAINCTRL:
return "Invalid Orx gain control pointer in device data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_SNIFFERGAINCTRL:
return "Invalid Sniffer gain control pointer in device data structure\n";
case MYKONOS_ERR_CHECKDEVSTRUCT_OBSRXFRAMER:
return "Invalid obsRx framer pointer in device data structure\n";
case MYKONOS_ERR_INITSER_INV_PROFILE:
return "Invalid RX profile within device data structure detected in MYKONOS_setupSerializers()\n";
case MYKONOS_ERR_INITDES_INV_TXPROFILE:
return "Invalid TX profile within device data structure detected in MYKONOS_setupDeserializers()\n";
case MYKONOS_ERR_JESD204B_ILAS_MISMATCH:
return "Mismatch detected in MYKONOS_jesd204bIlasCheck()\n";
case MYKONOS_ERR_RXGAINTABLE_INV_CHANNEL:
return "Invalid channel specified in MYKONOS_programRxGainTable()\n";
case MYKONOS_ERR_RXGAINTABLE_INV_GAIN_INDEX_RANGE:
return "Invalid numGainIndicesinTable greater than possible number of gain indices for channel. \n";
case MYKONOS_ERR_WRITE_CFG_MEMORY_FAILED:
return "Failed write to ARM memory in MYKONOS_writeArmProfile()\n";
case MYKONOS_ERR_INV_RXFRAMER_PCLKDIV_PARM:
return "Invalid PCLKDIV parameter detected in MYKONOS_setupSerializers()\n";
case MYKONOS_ERR_RXFRAMER_INV_FK_PARAM:
return "Invalid FK parameter detected in MYKONOS_setupJesd204bFramer()\n";
case MYKONOS_ERR_OBSRXFRAMER_INV_FK_PARAM:
return "Invalid FK paramter detected in MYKONOS_setupJesd204bObsRxFramer()\n";
case MYKONOS_ERR_INV_OBSRXFRAMER_PCLKDIV_PARM:
return "Invalid PCLKDIV paramter detected in MYKONOS_setupSerializers()\n";
case MYKONOS_ERR_PU_OBSRXPATH_INV_LOSOURCE_PARAM:
return "Invalid LO Source for OBSRX data path \n";
case MYKONOS_ERR_ARM_RADIOON_FAILED:
return "ARM command to move to radioOn state failed. \n";
case MYKONOS_ERR_ARM_RADIOOFF_FAILED:
return "ARM command to move to radioOff state failed. \n";
case MYKONOS_ERR_INV_RX_GAIN_MODE_PARM:
return "Invalid gain control mode detected in MYKONOS_setRxGainControlMode()\n";
case MYKONOS_ERR_INV_ORX_GAIN_MODE_PARM:
return "Invalid gain control mode detected in MYKONOS_setObsRxGainControlMode()\n";
case MYKONOS_ERR_INV_AGC_RX_STRUCT_INIT:
return "Invalid RX AGC structure detected at &device->rx->rxAgcCtrl in MYKONOS_setupRxAgc()\n";
case MYKONOS_ERR_INV_AGC_RX_PEAK_WAIT_TIME_PARM:
return "device->rx->rxAgcCtrl->agcPeakWaitTime out of range in MYKONOS_setupRxAgc()\n";
case MYKONOS_ERR_INV_AGC_RX_GAIN_UPDATE_TIME_PARM:
return "device->rx->rxAgcCtrl->agcGainUpdateTime_us out of range in MYKONOS_setupRxAgc()\n";
case MYKONOS_ERR_INV_AGC_RX_APD_HIGH_THRESH_PARM:
return "device->rx->rxAgcCtrl->apdHighThresh out of range in MYKONOS_setupRxAgc()\n";
case MYKONOS_ERR_INV_AGC_RX_APD_LOW_THRESH_PARM:
return "device->rx->rxAgcCtrl->apdLowThresh out of range in MYKONOS_setupRxAgc()\n";
case MYKONOS_ERR_INV_AGC_RX_BLOCK_DET_DECAY_PARM:
return "device->rx->rxAgcCtrl->apdDecay out of range in MYKONOS_setupRxAgc()\n";
case MYKONOS_ERR_INV_AGC_RX_PEAK_STRUCT_INIT:
return "Data structure for peakAgc not initialized when used in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_PWR_STRUCT_INIT:
return "Data structure for powerAgc not initialized when used in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX1_MAX_GAIN_INDEX:
return "device->rx->rxAgcCtrl->agcRx1MaxGainIndex out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX1_MIN_GAIN_INDEX:
return "device->rx->rxAgcCtrl->agcRx1MinGainIndex out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX2_MAX_GAIN_INDEX:
return "device->rx->rxAgcCtrl->agcRx2MaxGainIndex out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX2_MIN_GAIN_INDEX:
return "device->rx->rxAgcCtrl->agcRx2MinGainIndex out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_SLOW_LOOP_SETTLING_DELAY:
return "device->rx->rxAgcCtrl->agcSlowLoopSettlingDelay out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_PMD_MEAS_DURATION:
return "device->rx->rxAgcCtrl->powerAgc->pmdMeasDuration out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_PMD_MEAS_CONFIG:
return "device->rx->rxAgcCtrl->powerAgc->pmdMeasConfig out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_LOW_THS_PREV_GAIN_INC:
return "device->rx->rxAgcCtrl->agcLowThsPreventGainIncrease out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_PEAK_THRESH_MODE:
return "device->rx->rxAgcCtrl->agcPeakThresholdMode out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_RESET_ON_RX_ENABLE:
return "device->rx->rxAgcCtrl->agcResetOnRxEnable out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_ENABLE_SYNC_PULSE_GAIN_COUNTER:
return "device->rx->rxAgcCtrl->agcEnableSyncPulseForGainCounter out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_HIGH_THRESH:
return "device->rx->rxAgcCtrl->powerAgc->pmdLowerHighThresh out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_LOW_THRESH:
return "device->rx->rxAgcCtrl->powerAgc->pmdUpperLowThresh out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_LOW_THRESH:
return "device->rx->rxAgcCtrl->powerAgc->pmdLowerLowThresh out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_HIGH_THRESH:
return "device->rx->rxAgcCtrl->powerAgc->pmdUpperHighThresh out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_HIGH_GAIN_STEP:
return "device->rx->rxAgcCtrl->powerAgc->pmdUpperHighGainStepAttack out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_LOW_GAIN_STEP:
return "device->rx->rxAgcCtrl->powerAgc->pmdLowerLowGainStepRecovery out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_PMD_LOWER_HIGH_GAIN_STEP:
return "device->rx->rxAgcCtrl->powerAgc->pmdLowerHighGainStepRecovery out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_PMD_UPPER_LOW_GAIN_STEP:
return "device->rx->rxAgcCtrl->powerAgc->pmdUpperLowGainStepAttack out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_PKDET_FAST_ATTACK_VALUE:
return "device->rx->rxAgcCtrl->peakAgc->apdFastAttack or hb2FastAttack out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_HB2_HIGH_THRESH_PARM:
return "device->rx->rxAgcCtrl->peakAgc->hb2HighThresh out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_HB2_LOW_THRESH_PARM:
return "device->rx->rxAgcCtrl->peakAgc->hb2LowThresh out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_HB2_VERY_LOW_THRESH_PARM:
return "device->rx->rxAgcCtrl->peakAgc->hb2VeryLowThresh out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_APD_HIGH_GAIN_STEP_PARM:
return "device->rx->rxAgcCtrl->peakAgc->apdHighGainStepAttack out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_APD_LOW_GAIN_STEP_PARM:
return "device->rx->rxAgcCtrl->peakAgc->apdLowGainStepRecovery out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_HB2_HIGH_GAIN_STEP_PARM:
return "device->rx->rxAgcCtrl->peakAgc->hb2HighGainStepAttack out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_HB2_LOW_GAIN_STEP_PARM:
return "device->rx->rxAgcCtrl->peakAgc->hb2LowGainStepRecovery out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_HB2_VERY_LOW_GAIN_STEP_PARM:
return "device->rx->rxAgcCtrl->peakAgc->hb2VeryLowGainStepRecovery out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_ENABLE:
return "device->rx->rxAgcCtrl->peakAgc->hb2OverloadEnable out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_THRESH_CNT:
return "device->rx->rxAgcCtrl->peakAgc->hb2OverloadThreshCnt out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_RX_HB2_OVLD_DUR_CNT:
return "device->rx->rxAgcCtrl->peakAgc->hb2OverloadDurationCnt out of range in MYKONOS_setupRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_STRUCT_INIT:
return "Invalid OBSRX AGC structure detected at &device->obsRx->orxAgcCtrl in MYKONOS_setupObsRxAgc()\n";
case MYKONOS_ERR_INV_AGC_OBSRX_PEAK_STRUCT_INIT:
return "Data structure for obsRx->orxAgcCtrl->peakAgc not initialized when used in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PWR_STRUCT_INIT:
return "Data structure for obsRx->orxAgcCtrl->powerAgc not initialized when used in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_MAX_GAIN_INDEX:
return "device->obsRx->orxAgcCtrl->agcObsRxMaxGainIndex out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_MIN_GAIN_INDEX:
return "device->obsRx->orxAgcCtrl->agcObsRxMinGainIndex out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_SELECT:
return "device->obsRx->orxAgcCtrl->agcObsRxSelect out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_GAIN_UPDATE_TIME_PARM:
return "device->obsRx->orxAgcCtrl->agcGainUpdateTime_us out of range in MYKONOS_setupObsRxAgc()\n";
case MYKONOS_ERR_INV_AGC_OBSRX_PEAK_WAIT_TIME_PARM:
return "device->obsRx->orxAgcCtrl->agcPeakWaitTime out of range in MYKONOS_setupObsRxAgc()\n";
case MYKONOS_ERR_INV_AGC_OBSRX_SLOW_LOOP_SETTLING_DELAY:
return "device->obsRx->orxAgcCtrl->agcSlowLoopSettlingDelay out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PMD_MEAS_DURATION:
return "device->obsRx->orxAgcCtrl->powerAgc->pmdMeasDuration out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PMD_MEAS_CONFIG:
return "device->obsRx->orxAgcCtrl->powerAgc->pmdMeasConfig out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_LOW_THS_PREV_GAIN_INC:
return "device->obsRx->orxAgcCtrl->agcLowThsPreventGainIncrease out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PEAK_THRESH_MODE:
return "device->obsRx->orxAgcCtrl->agcPeakThresholdMode out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_RESET_ON_RX_ENABLE:
return "device->obsRx->orxAgcCtrl->agcResetOnRxEnable out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_ENABLE_SYNC_PULSE_GAIN_COUNTER:
return "device->obsRx->orxAgcCtrl->agcEnableSyncPulseForGainCounter out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_HIGH_THRESH:
return "device->obsRx->orxAgcCtrl->powerAgc->pmdLowerHighThresh out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_LOW_THRESH:
return "device->obsRx->orxAgcCtrl->powerAgc->pmdUpperLowThresh out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_LOW_THRESH:
return "device->obsRx->orxAgcCtrl->powerAgc->pmdLowerLowThresh out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_HIGH_THRESH:
return "device->obsRx->orxAgcCtrl->powerAgc->pmdUpperHighThresh out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_HIGH_GAIN_STEP:
return "device->obsRx->orxAgcCtrl->powerAgc->pmdUpperHighGainStepAttack out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_LOW_GAIN_STEP:
return "device->obsRx->orxAgcCtrl->powerAgc->pmdLowerLowGainStepRecovery out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PMD_UPPER_LOW_GAIN_STEP:
return "device->obsRx->orxAgcCtrl->powerAgc->pmdUpperLowGainStepAttack out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PKDET_FAST_ATTACK_VALUE:
return "device->obsRx->orxAgcCtrl->peakAgc->apdFastAttack or hb2FastAttack out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_APD_HIGH_THRESH_PARM:
return "device->obsRx->orxAgcCtrl->apdHighThresh out of range in MYKONOS_setupObsRxAgc()\n";
case MYKONOS_ERR_INV_AGC_OBSRX_APD_LOW_THRESH_PARM:
return "device->obsRx->orxAgcCtrl->apdLowThresh out of range in MYKONOS_setupObsRxAgc()\n";
case MYKONOS_ERR_INV_AGC_OBSRX_HB2_HIGH_THRESH_PARM:
return "device->obsRx->orxAgcCtrl->peakAgc->hb2HighThresh out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_HB2_LOW_THRESH_PARM:
return "device->obsRx->orxAgcCtrl->peakAgc->hb2LowThresh out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_HB2_VERY_LOW_THRESH_PARM:
return "device->obsRx->orxAgcCtrl->peakAgc->hb2VeryLowThresh out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_APD_HIGH_GAIN_STEP_PARM:
return "device->obsRx->orxAgcCtrl->peakAgc->apdHighGainStepAttack out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_APD_LOW_GAIN_STEP_PARM:
return "device->obsRx->orxAgcCtrl->peakAgc->apdLowGainStepRecovery out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_HB2_HIGH_GAIN_STEP_PARM:
return "device->obsRx->orxAgcCtrl->peakAgc->hb2HighGainStepAttack out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_HB2_LOW_GAIN_STEP_PARM:
return "device->obsRx->orxAgcCtrl->peakAgc->hb2LowGainStepRecovery out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_HB2_VERY_LOW_GAIN_STEP_PARM:
return "device->obsRx->orxAgcCtrl->peakAgc->hb2VeryLowGainStepRecovery out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_ENABLE:
return "device->obsRx->orxAgcCtrl->peakAgc->hb2OverloadEnable out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_DUR_CNT:
return "device->obsRx->orxAgcCtrl->peakAgc->hb2OverloadDurationCnt out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_HB2_OVLD_THRESH_CNT:
return "device->obsRx->orxAgcCtrl->peakAgc->hb2OverloadThresholdCnt out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_INV_AGC_OBSRX_PMD_LOWER_HIGH_GAIN_STEP:
return "device->obsRx->orxAgcCtrl->powerAgc->pmdLowerHighGainStepRecovery out of range in MYKONOS_setupObsRxAgc() \n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_CALPLL_LOCK:
return "CAL PLL Lock event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_CLKPLLCP:
return "Clock PLL Charge Pump Cal event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_CLKPLL_LOCK:
return "Clock PLL Lock event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RXPLLCP:
return "RX PLL Charge Pump Cal event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RXPLL_LOCK:
return "RX PLL Lock event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_TXPLLCP:
return "TX PLL Charge Pump Cal event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_TXPLL_LOCK:
return "TX PLL Lock event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_SNIFFPLLCP:
return "Sniffer PLL Charge Pump Cal event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_SNIFFPLL_LOCK:
return "Sniffer PLL Lock event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RXBBFCALDONE:
return "RX Baseband Filter Cal event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_TXBBFCALDONE:
return "TX Baseband Filter Cal timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RFDCCALDONE:
return "RF DC Offset Cal event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_ADCTUNECALDONE:
return "ADC Tuner Cal event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RX1ADCPROFILE:
return "Rx1 ADC Profile Loading event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RX2ADCPROFILE:
return "Rx2 ADC Profile Loading event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_ORXADCPROFILE:
return "ObsRx ADC Profile Loading event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_RCALDONE:
return "Resistor Cal event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_ARMBUSY:
return "ARM Busy event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_WAITFOREVENT_TIMEDOUT_INITARMDONE:
return "Initialize ARM event timed out in MYKONOS_waitForEvent()\n";
case MYKONOS_ERR_TIMEDOUT_ARMMAILBOXBUSY:
return "ARM Mailbox Busy. Command not executed in MYKONOS_sendArmCommand()\n";
case MYKONOS_ERR_PU_OBSRXPATH_ARMERROR:
return "ARM Command Error in MYKONOS_setObsRxPathSource()\n";
case MYKONOS_ERR_EN_TRACKING_CALS_ARMSTATE_ERROR:
return "Device not in radioOff/IDLE state. Error in MYKONOS_enableTrackingCals()\n";
case MYKONOS_ERR_EN_TRACKING_CALS_ARMERROR:
return "ARM Command Error in MYKONOS_enableTrackingCals()\n";
case MYKONOS_ERR_SETRFPLL_ARMERROR:
return "ARM Command Error in MYKONOS_setRfPllFrequency()\n";
case MYKONOS_ERR_INIT_INV_TXINPUTHB_PARM:
return "device->tx->txProfile->txInputHbInterpolation out of range in MYKONOS_initialize(): valid = 1,2 or 4\n";
case MYKONOS_ERR_LOAD_ADCPROFILE_INV_VCODIV:
return "device->clocks->clkPllVcoDiv value not supported in MYKONOS_loadAdcProfiles\n";
case MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_RXREQUIRED:
return "Custom RX ADC Profile required\n";
case MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_ORXREQUIRED:
return "Custom ORX ADC Profile required\n";
case MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_SNRXREQUIRED:
return "Custom SNRX ADC Profile required\n";
case MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_LBREQUIRED:
return "Custom Loopback ADC profile required\n";
case MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED:
return "WriteArmMemory call failed while writing the Loopback ADC profile into ARM memory\n";
case MYKONOS_ERR_LOAD_SNRXADCPROFILE_ARMMEM_FAILED:
return "WriteArmMemory call failed while writing the Sniffer ADC profile into ARM memory\n";
case MYKONOS_ERR_LOAD_ORXADCPROFILE_ARMMEM_FAILED:
return "WriteArmMemory call failed while writing the ObsRx ADC profile into ARM memory\n";
case MYKONOS_ERR_LOAD_RXADCPROFILE_ARMMEM_FAILED:
return "WriteArmMemory call failed while writing the RX ADC profile into ARM memory\n";
case MYKONOS_ERR_LOAD_ADCPROFILE_SNRX_ADCDIV_ZERO:
return "SnRx profile has invalid ADC divider of 0, causing a divide by zero\n";
case MYKONOS_ERR_LOAD_ADCPROFILE_ORXADCDIV_ZERO:
return "ORx profile has invalid ADC divider of 0, causing a divide by zero\n";
case MYKONOS_ERR_LOAD_ADCPROFILE_RXADCDIV_ZERO:
return "Rx profile has invalid ADC divider of 0, causing a divide by zero\n";
case MYKONOS_ERR_LOAD_ADCPROFILE_MISSING_ORX_PROFILE:
return "If Tx Profile is valid, a matching ORx profile must be provided to set ADC divider and digital filtering for loopback calibrations\n";
case MYKONOS_ERR_SETUP_PA_PROT_INV_AVG_DURATION:
return "Invalid setting for avgDuration in MYKONOS_setupPaProtection(...)\n";
case MYKONOS_ERR_SETUP_PA_PROT_INV_ATTEN_STEP:
return "Invalid setting for attenStepSize in MYKONOS_setupPaProtection(...)\n";
case MYKONOS_ERR_SETUP_PA_PROT_INV_ATTEN_ENABLE:
return "Invalid setting for txAttenControlEnable in MYKONOS_setupPaProtection(...)\n";
case MYKONOS_ERR_SETUP_PA_PROT_INV_POWER_THRESH:
return "Invalid setting for powerThreshold in MYKONOS_setupPaProtection(...)\n";
case MYKONOS_ERR_SETUP_PA_PROT_INV_TX_CHANNEL:
return "Invalid TX channel selected for MYKONOS_getDacPower(...)\n";
case MYKONOS_ERR_GET_DAC_PWR_INV_POINTER:
return "Cannot return DAC Power information (invalid pointer)\n";
case MYKONOS_ERR_GET_PA_FLAG_STATUS_INV_POINTER:
return "Cannot return PA Protection Flag Status information (invalid pointer)\n";
case MYKONOS_ERR_GET_OBSRX_OVERLOADS_NULL_PARM:
return "MYKONOS_getObsRxPathOverloads() has null *obsRxOverloads parameter\n";
case MYKONOS_ERR_GET_RX1_OVERLOADS_NULL_PARM:
return "MYKONOS_getRxPathOverloads() has null *rx1Overloads parameter\n";
case MYKONOS_ERR_GET_RX2_OVERLOADS_NULL_PARM:
return "MYKONOS_getRxPathOverloads() has null *rx2Overloads parameter\n";
case MYKONOS_ERR_GETRADIOSTATE_NULL_PARAM:
return "MYKONOS_getRadioState() has null *radioStatus parameter\n";
case MYKONOS_ERR_ABORT_INITCALS_NULL_PARAM:
return "MYKONOS_abortInitCals() has null *calsCompleted parameter\n";
case MYKONOS_ERR_WAIT_INITCALS_ARMERROR:
return "MYKONOS_waitInitCals() returned an ARM error\n";
case MYKONOS_ERR_WAIT_INITCALS_NULL_PARAM:
return "MYKONOS_waitInitCals() has one or more null parameters\n";
case MYKONOS_ERR_CHECK_PLL_LOCK_NULL_PARM:
return "MYKONOS_checkPllsLockStatus() has a null *pllLockStatus parameter\n";
case MYKONOS_ERR_GET_TXFILTEROVRG_NULL_PARM:
return "MYKONOS_getTxFilterOverRangeStatus() has a null *txFilterStatus parameter\n";
case MYKONOS_ERR_PROGRAM_RXGAIN_TABLE_NULL_PARM:
return "MYKONOS_programRxGainTable() has a null *gainTablePtr parameter\n";
case MYKONOS_ERR_PROGRAMFIR_NULL_PARM:
return "MYKONOS_programFir() has a null *firFilter parameter\n";
case MYKONOS_ERR_PROGRAMFIR_COEFS_NULL:
return "MYKONOS_programFir() has a null coef array in *firFilter structure\n";
case MYKONOS_ERR_READ_DEFRAMERSTATUS_NULL_PARAM:
return "MYKONOS_readDeframerStatus() has a null *deframerStatus parameter\n";
case MYKONOS_ERR_READ_DEFRAMERPRBS_NULL_PARAM:
return "MYKONOS_readDeframerPrbscounters() has a null *prbsErrorCount parameter\n";
case MYKONOS_ERR_READ_ORXFRAMERSTATUS_NULL_PARAM:
return "MYKONOS_readOrxFramerStatus() has a null *obsFramerStatus parameter\n";
case MYKONOS_ERR_READ_RXFRAMERSTATUS_NULL_PARAM:
return "MYKONOS_readRxFramerStatus() has a null *framerStatus parameter\n";
case MYKONOS_ERR_ARMCMDSTATUS_NULL_PARM:
return "MYKONOS_waitArmCmdStatus() has a null *cmdStatByte parameter\n";
case MYKONOS_ERR_READARMCMDSTATUS_NULL_PARM:
return "MYKONOS_readArmCmdStatus() has one or more null pointer parameters\n";
case MYKONOS_ERR_READARMCMDSTATUS_INV_OPCODE_PARM:
return "MYKONOS_readArmCmdStatusByte() has an invalid opcode parameter\n";
case MYKONOS_ERR_READARMCMDSTATUSBYTE_NULL_PARM:
return "MYKONOS_readArmCmdStatusByte() has a null *cmdStatByte parameter\n";
case MYKONOS_ERR_ARMCMD_NULL_PARM:
return "MYKONOS_sendArmCommand() has a null *extendedData parameter\n";
case MYKONOS_ERR_WRITEARMMEM_NULL_PARM:
return "MYKONOS_writeArmMem() has a null *data parameter\n";
case MYKONOS_ERR_LOADBIN_NULL_PARAM:
return "MYKONOS_loadArmFromBinary() has a null *binary parameter\n";
case MYKONOS_ERR_GETTX1ATTEN_NULL_PARM:
return "MYKONOS_getTx1Attenuation() has NULL tx1Attenuation_mdB parameter\n";
case MYKONOS_ERR_GETTX2ATTEN_NULL_PARM:
return "MYKONOS_getTx2Attenuation() has NULL tx2Attenuation_mdB parameter\n";
case MYKONOS_ERR_ENFRAMERLINK_INV_LANESEN_PARM:
return "Invalid serializer Lanes Enable parameter in Rx framer structure\n";
case MYKONOS_ERR_ENOBSFRAMERLINK_INV_LANESEN_PARM:
return "Invalid serializer Lanes Enable parameter in ObsRx framer structure\n";
case MYKONOS_ERR_ENTXNCO_TXPROFILE_INVALID:
return "Can not enable Tx NCO when Tx Profile is invalid\n";
case MYKONOS_ERR_ENTXNCO_TX1_FREQ_INVALID:
return "Invalid Tx1 NCO frequency\n";
case MYKONOS_ERR_ENTXNCO_TX2_FREQ_INVALID:
return "Invalid Tx2 NCO frequency\n";
case MYKONOS_ERR_JESD204B_ILAS_MISMATCH_NULLPARAM:
return "Function parameter has NULL pointer in MYKONOS_jesd204bIlasCheck()\n";
case MYKONOS_ERR_GET_PLLFREQ_INV_REFCLKDIV:
return "CLKPLL refclk divider was read back as an invalid setting in MYKONOS_getRfPllFrequency()\n";
case MYKONOS_ERR_GET_PLLFREQ_INV_HSDIV:
return "CLKPLL HSDIV divider was read back as an invalid setting in MYKONOS_getRfPllFrequency()\n";
case MYKONOS_ERR_GET_RX1_DEC_POWER_NULL_PARM:
return "MYKONOS_getRx1DecPower() has a null *rx1DecPower_mdBFS parameter\n";
case MYKONOS_ERR_GET_RX1_DEC_POWER_NUM_SAMPLES:
return "MYKONOS_getRx1DecPower() numSamples greater than agcGainUpdateCounter\n";
case MYKONOS_ERR_GET_RX2_DEC_POWER_NULL_PARM:
return "MYKONOS_getRx2DecPower() has a null *rx2DecPower_mdBFS parameter\n";
case MYKONOS_ERR_GET_RX2_DEC_POWER_NUM_SAMPLES:
return "MYKONOS_getRx2DecPower() numSamples greater than agcGainUpdateCounter\n";
case MYKONOS_ERR_GET_OBSRX_DEC_POWER_NULL_PARM:
return "MYKONOS_getObsRxDecPower() has a null *obsRxDecPower_mdBFS parameter\n";
case MYKONOS_ERR_GET_OBSRX_DEC_POWER_NUM_SAMPLES:
return "MYKONOS_getObsRxDecPower() numSamples greater than agcGainUpdateCounter\n";
case MYKONOS_ERR_GETARMVER_NULL_PARM:
return "MYKONOS_getArmVersion() has a NULL pointer in one of the function parameters\n";
case MYKONOS_ERR_EN_DPDTRACKING_ARMSTATE_ERROR:
return "ARM is not in the RadioOff state before MYKONOS_enableDpdTracking(), call MYKONOS_radioOff()\n";
case MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE:
return "MYKONOS_restoreDpdModel() supplied DPD Model Data Buffer is incorrect size\n";
case MYKONOS_ERR_RESTDPDMOD_ARMSTATE:
return "ARM is not in the RadioOff state before MYKONOS_restoreDpdModel(), call MYKONOS_radioOff()\n";
case MYKONOS_ERR_RESTDPDMOD_INVALID_TXCHANNEL:
return "MYKONOS_restoreDpdModel() invalid txChannel specified\n";
case MYKONOS_ERR_SAVDPDMOD_WRONGBUFFERSIZE:
return "MYKONOS_saveDpdModelL() supplied DPD Model Data Buffer is incorrect size\n";
case MYKONOS_ERR_SAVDPDMOD_ARMSTATE:
return "ARM is not in the RadioOff state before MYKONOS_saveDpdModelL(), call MYKONOS_radioOff()\n";
case MYKONOS_ERR_SAVDPDMOD_INVALID_TXCHANNEL:
return "MYKONOS_saveDpdModelL() invalid txChannel specified\n";
case MYKONOS_ERR_EN_CLGCTRACKING_ARMSTATE_ERROR:
return "ARM is not in the RadioOff state before MYKONOS_enableClgcTracking(), call MYKONOS_radioOff()\n";
case MYKONOS_ERR_CFGDPD_ARMSTATE_ERROR:
return "MYKONOS_configDpd() was called while ARM was not in radioOff state\n";
case MYKONOS_ERR_CFGDPD_TXORX_PROFILE_INV:
return "Tx or ORx profile is not valid, both are necessary for DPD features in MYKONOS_configDpd()\n";
case MYKONOS_ERR_CFGDPD_NULL_DPDCFGSTRUCT:
return "device->tx->dpdConfig structure has NULL pointer in MYKONOS_configDpd()\n";
case MYKONOS_ERR_WRITEARMCFG_ARMERRFLAG:
return "The ARM reported a error while writing to an ARM config structure in MYKONOS_writeArmCfgStruct()\n";
case MYKONOS_ERR_CFGDPD_INV_DPDDAMPING:
return "ERROR: device->tx->dpdConfig->damping parameter is out of range (0-15)\n";
case MYKONOS_ERR_CFGDPD_INV_DPDSAMPLES:
return "ERROR: device->tx->dpdConfig->samples parameter is out of range (64 - 32768)\n";
case MYKONOS_ERR_CFGDPD_INV_NUMWEIGHTS:
return "ERROR: device->tx->dpdConfig->numWeights parameter is out of range (0-3)\n";
case MYKONOS_ERR_CFGDPD_INV_DPDOUTLIERTHRESH:
return "ERROR: device->tx->dpdConfig->outlierThreshold parameter is out of range\n";
case MYKONOS_ERR_CFGDPD_INV_DPDPRIORWEIGHT:
return "ERROR: device->tx->dpdConfig->modelPriorWeight parameter is out of range (Valid 0-32)\n";
case MYKONOS_ERR_CFGCLGC_INV_DESIREDGAIN:
return "ERROR: device->tx->clgcConfig->tx1DesiredGain or tx2DesiredGain parameter is out of range\n";
case MYKONOS_ERR_CFGCLGC_INV_TXATTENLIMIT:
return "ERROR: device->tx->clgcConfig->tx1AttenLimit or tx2AttenLimit parameter is out of range\n";
case MYKONOS_ERR_CFGCLGC_INV_CLGC_CTRLRATIO:
return "ERROR: device->tx->clgcConfig->tx1ControlRatio or tx2ControlRatio parameter is out of range\n";
case MYKONOS_ERR_CFGDPD_INV_DPD_ADDDELAY:
return "ERROR: device->tx->dpdConfig->additionalDelayOffset parameter is out of range\n";
case MYKONOS_ERR_CFGDPD_INV_PNSEQLEVEL:
return "ERROR: device->tx->dpdConfig->pathDelayPnSeqLevel parameter is out of range\n";
case MYKONOS_ERR_CFGDPD_INV_MODELVERSION:
return "ERROR: device->tx->dpdConfig->modelVersion parameter is out of range\n";
case MYKONOS_ERR_READARMCFG_ARMERRFLAG:
return "ERROR: MYKONOS_readArmConfig failed due to an ARM error\n";
case MYKONOS_ERR_GETPENDTRKCALS_NULL_PARAM:
return "MYKONOS_getPendingTrackingCals() has NULL function parameter\n";
case MYKONOS_ERR_ARMCMDSTATUS_ARMERROR:
return "MYKONOS_waitArmCmdStatus() exited due to ARM error for the desired ARM opcode\n";
case MYKONOS_ERR_WAITARMCMDSTATUS_TIMEOUT:
return "MYKONOS_waitArmCmdStatus() timed out waiting for the ARM to complete the requested command\n";
case MYKONOS_ERR_PU_GETOBSRXPATH_ARMERROR:
return "ARM returned an error while trying to get the ObsRx Path source in MYKONOS_getObsRxPathSource()\n";
case MYKONOS_ERR_GETDPDCFG_NULL_DPDCFGSTRUCT:
return "MYKONOS_getDpdConfig() could not complete due to a NULL pointer to device->tx->dpdConfig structure\n";
case MYKONOS_ERR_GETDPDCFG_TXORX_PROFILE_INV:
return "The Tx and ORx profiles must be valid for DPD related functions\n";
case MYKONOS_ERR_GETDPDSTATUS_ARMERRFLAG:
return "MYKONOS_getDpdStatus() reported an ARM error with the ARM Get command\n";
case MYKONOS_ERR_GETDPDSTATUS_NULLPARAM:
return "MYKONOS_getDpdStatus() has NULL pointer in the function parameter\n";
case MYKONOS_ERR_SETDEFOBSRXPATH_NULL_OBSRX_STRUCT:
return "Observation profile not valid, device->obsRx structure is NULL in MYKONOS_setDefaultObsRxPath()\n";
case MYKONOS_ERR_GETCLGCSTATUS_NULLPARAM:
return "MYKONOS_getClgcStatus() has NULL clgcStatus parameter\n";
case MYKONOS_ERR_GETCLGCSTATUS_ARMERRFLAG:
return "ARM reported an error with the ARM GET command during MYKONOS_getClgcStatus()\n";
case MYKONOS_ERR_READ_DEFFIFODEPTH_NULL_PARAM:
return "MYKONOS_getDeframerFifoDepth() function parameter fifoDepth is a NULL pointer\n";
case MYKONOS_ERR_READ_DEFFIFODEPTH_LMFCCOUNT_NULL_PARAM:
return "MYKONOS_getDeframerFifoDepth() function parameter readEnLmfcCount is a NULL pointer\n";
case MYKONOS_ERR_GETDPDSTATUS_INV_CH:
return "MYKONOS_getDpdStatus() txChannel parameter is not valid (TX1 and TX2 are the only valid options)\n";
case MYKONOS_ERR_GETCLGCSTATUS_INV_CH:
return "MYKONOS_getClgcStatus() txChannel parameter is not valid (TX1 and TX2 are the only valid options)\n";
case MYKONOS_ERR_INIT_INV_TXINPUTHB_INV_RATE:
return "Invalid Tx profile: When using Tx Input halfband, IQ rate must not exceed 160MSPS\n";
case MYKONOS_ERR_INIT_INV_TXINPUTHB0_INV_RATE:
return "Invalid Tx profile: When using Tx Input halfband 0, IQ rate must not exceed 80MSPS\n";
case MYKONOS_ERR_RXFIR_TAPSEXCEEDED:
return "Rx PFIR can not be clocked fast enough to handle the number of FIR coefficents provided\n";
case MYKONOS_ERR_ORXFIR_TAPSEXCEEDED:
return "ORx PFIR can not be clocked fast enough to handle the number of FIR coefficents provided\n";
case MYKONOS_ERR_SNRXFIR_TAPSEXCEEDED:
return "Sniffer Rx PFIR can not be clocked fast enough to handle the number of FIR coefficents provided\n";
case MYKONOS_ERR_TXFIR_INV_NUMTAPS_PARM:
return "Invalid number of Tx FIR coefficients\n";
case MYKONOS_ERR_TXFIR_INV_NUMROWS:
return "Invalid number of PFIR coefficient rows\n";
case MYKONOS_ERR_TXFIR_TAPSEXCEEDED:
return "Too many Tx PFIR taps for the IQ sample rate. FIR processing clock can not run fast enough to handle the number of taps\n";
case MYKONOS_ERR_GETINITCALSTATUS_NULL_PARAM:
return "MYKONOS_getInitCalStatus() has a null pointer in parameter list\n";
case MYKONOS_ERR_GETINITCALSTATUS_ARMERROR:
return "MYKONOS_getInitCalStatus() returned an ARM error while getting the init cal status information";
case MYKONOS_ERR_CFGCLGC_TXORX_PROFILE_INV:
return "Tx and ObsRx profiles must be valid to use the CLGC feature in MYKONOS_configClgc()\n";
case MYKONOS_ERR_CFGCLGC_NULL_CLGCCFGSTRUCT:
return "CLGC config structure is NULL in device->tx->clgcConfig in MYKONOS_configClgc()\n";
case MYKONOS_ERR_CFGCLGC_ARMSTATE_ERROR:
return "CLGC config could not be set because ARM is not in radioOff or ready state in MYKONOS_configClgc()\n";
case MYKONOS_ERR_GETCLGCCFG_TXORX_PROFILE_INV:
return "Could not read back CLGC status because Tx and ORx profiles are not valid\n";
case MYKONOS_ERR_GETCLGCCFG_NULL_CFGSTRUCT:
return "Could not read back CLGC status because return structure device->tx->clgcConfig pointer is NULL\n";
case MYKONOS_ERR_CALCDIGCLK_NULLDEV_PARAM:
return "device structure pointer is NULL in MYKONOS_calculateDigitalClocks()\n";
case MYKONOS_ERR_CALCDIGCLK_NULL_CLKSTRUCT:
return "device->clocks structure pointer is NULL in MYKONOS_calculateDigitalClocks()\n";
case MYKONOS_ERR_NULL_DEVICE_PARAM:
return "The device pointer in the calling function's parameter list is a NULL pointer\n";
case MYKONOS_ERR_CALCDEVCLK_NULLPARAM:
return "MYKONOS_calculateScaledDeviceClk_kHz() has a NULL pointer in one of the function parameters\n";
case MYKONOS_ERR_CFGCLGC_INV_CLGC_ADDDELAY:
return "CLGC Additional Delay parameter is out of range in MYKONOS_configClgc\n";
case MYKONOS_ERR_CFGCLGC_INV_PNSEQLEVEL:
return "CLGC PN Sequence level parameter is out of range in MYKONOS_configClgc\n";
case MYKONOS_ERR_CFGVSWR_TXORX_PROFILE_INV:
return "The Tx and ORx profiles must be valid to use the VSWR feature in MYKONOS_configVswr()\n";
case MYKONOS_ERR_CFGVSWR_ARMSTATE_ERROR:
return "ARM must be in radioOff state to configure the VSWR config parameters in MYKONOS_configVswr()\n";
case MYKONOS_ERR_CFGVSWR_INV_3P3GPIOPIN:
return "VSWR 3.3v GPIO pin selection is out of range (0-11) in MYKONOS_configVswr()\n";
case MYKONOS_ERR_CFGVSWR_INV_PNSEQLEVEL:
return "VSWR init PN sequence level is out of range in MYKONOS_configVswr()\n";
case MYKONOS_ERR_CFGVSWR_INV_VSWR_ADDDELAY:
return "VSWR additionalDelay member is out of range in MYKONOS_configVswr()\n";
case MYKONOS_ERR_CFGVSWR_NULL_VSWRCFGSTRUCT:
return "device->tx->vswrConfig pointer is null in MYKONOS_confgiVswr()\n";
case MYKONOS_ERR_GETVSWRCFG_NULL_CFGSTRUCT:
return "device->tx->vswrConfig pointer is null in MYKONOS_getVswrConfig()\n";
case MYKONOS_ERR_GETVSWRCFG_TXORX_PROFILE_INV:
return "Tx and ORx profiles must be valid in MYKONOS_getVswrConfig()\n";
case MYKONOS_ERR_GETVSWRSTATUS_ARMERRFLAG:
return "ARM returned an error while attempting to read the VSWR status structure\n";
case MYKONOS_ERR_GETVSWRSTATUS_INV_CH:
return "Invalid Tx channel parameter passed to MYKONOS_getVswrStatus()\n";
case MYKONOS_ERR_GETVSWRSTATUS_NULLPARAM:
return "vswrStatus function parameter is null in MYKONOS_getVswrStatus\n";
case MYKONOS_ERR_SET_RX_MAX_GAIN_INDEX:
return "Max gain index bigger than max gain index loaded table in MYKONOS_setRxAgcMinMaxGainIndex().\n";
case MYKONOS_ERR_SET_RX_MIN_GAIN_INDEX:
return "Min gain index lower than min gain index loaded table in MYKONOS_setRxAgcMinMaxGainIndex().\n";
case MYKONOS_ERR_AGC_MIN_MAX_RX_CHANNEL:
return "Wrong RX channel selected in MYKONOS_setRxAgcMinMaxGainIndex().\n";
case MYKONOS_ERR_SET_ORX_MAX_GAIN_INDEX_CHANNEL:
return "Wrong read back channel in MYKONOS_setObsRxAgcMinMaxGainIndex().\n";
case MYKONOS_ERR_SET_ORX_MAX_GAIN_INDEX:
return "Max gain index bigger than max gain index loaded table in MYKONOS_setObsRxAgcMinMaxGainIndex().\n";
case MYKONOS_ERR_SET_ORX_MIN_GAIN_INDEX:
return "Min gain index lower than min gain index loaded table in MYKONOS_setObsRxAgcMinMaxGainIndex().\n";
case MYKONOS_ERR_AGC_MIN_MAX_ORX_CHANNEL:
return "Wrong observation channel selected in MYKONOS_setObsRxAgcMinMaxGainIndex().\n";
case MYKONOS_ERR_RX1_TEMP_GAIN_COMP_RANGE:
return "The temp gain compensation is outside range (-3000mdB to 3000mdB) in MYKONOS_setRx1TempGainComp().\n";
case MYKONOS_ERR_RX1_TEMP_GAIN_COMP_STEP:
return "Not valid temp gain compensation, step size is 250mdB in MYKONOS_setRx1TempGainComp().\n";
case MYKONOS_ERR_RX2_TEMP_GAIN_COMP_RANGE:
return "The temp gain compensation is outside range (-3000mdB to 3000mdB) in MYKONOS_setRx2TempGainComp().\n";
case MYKONOS_ERR_RX2_TEMP_GAIN_COMP_STEP:
return "Not valid temp gain compensation, step size is 250mdB in MYKONOS_setRx2TempGainComp().\n";
case MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_RANGE:
return "The temp gain compensation is outside range (-3000mdB to 3000mdB) in MYKONOS_setObsRxTempGainComp().\n";
case MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_STEP:
return "Not valid temp gain compensation, step size is 250mdB in MYKONOS_setObsRxTempGainComp().\n";
case MYKONOS_ERR_RX1_TEMP_GAIN_COMP_NULL:
return "rx1TempCompGain_mdB pointer is null MYKONOS_getRx1TempGainComp().\n";
case MYKONOS_ERR_RX2_TEMP_GAIN_COMP_NULL:
return "rx2TempCompGain_mdB pointer is null MYKONOS_getRx2TempGainComp().\n";
case MYKONOS_ERR_OBS_RX_TEMP_GAIN_COMP_NULL:
return "obsRxTempCompGain_mdB pointer is null MYKONOS_getObsRxTempGainComp().\n";
case MYKONOS_ERR_GETORXQECSTATUS_NULLPARAM:
return "Function parameter mykonosOrxQecStatus_t is a NULL pointer in MYKONOS_getOrxQecStatus().\n";
case MYKONOS_ERR_GETORXQECSTATUS_INV_CH:
return "Channel selection not valid in MYKONOS_getOrxQecStatus().\n";
case MYKONOS_ERR_GETORXQECSTATUS_ARMERRFLAG:
return "ARM command error in MYKONOS_getOrxQecStatus().\n";
case MYKONOS_ERR_GETRXQECSTATUS_NULLPARAM:
return "Function parameter mykonosRxQecStatus_t is a NULL pointer in MYKONOS_getRxQecStatus().\n";
case MYKONOS_ERR_GETRXQECSTATUS_INV_CH:
return "Channel selection not valid in MYKONOS_getRxQecStatus().\n";
case MYKONOS_ERR_GETRXQECSTATUS_ARMERRFLAG:
return "ARM command error in MYKONOS_getRxQecStatus().\n";
case MYKONOS_ERR_GETTXQECSTATUS_NULLPARAM:
return "Function parameter mykonosTxQecStatus_t is a NULL pointer in MYKONOS_getRxQecStatus().\n";
case MYKONOS_ERR_GETTXQECSTATUS_INV_CH:
return "Channel selection not valid in MYKONOS_getTxQecStatus().\n";
case MYKONOS_ERR_GETTXQECSTATUS_ARMERRFLAG:
return "ARM command error in MYKONOS_getTxQecStatus().\n";
case MYKONOS_ERR_GETTXLOLSTATUS_NULLPARAM:
return "Function parameter mykonosTxLolStatus_t is a NULL pointer in MYKONOS_getTLolStatus().\n";
case MYKONOS_ERR_GETTXLOLSTATUS_INV_CH:
return "Channel selection not valid in MYKONOS_getTLolStatus().\n";
case MYKONOS_ERR_GETTXLOLSTATUS_ARMERRFLAG:
return "ARM command error in MYKONOS_getTLolStatus().\n";
case MYKONOS_ERR_RESCHEDULE_TRACK_CAL_INV:
return "Not valid calibration passed to MYKONOS_rescheduleTrackingCal().\n";
case MYKONOS_ERR_RESCHEDULE_TRACK_ARMERRFLAG:
return "ARM error in MYKONOS_rescheduleTrackingCal().\n";
case MYKONOS_ERR_ARMSTATE_EXCEPTION:
return "ARM system problem has been detected.\n";
case MYKONOS_ERR_ARMSTATE_CAL_ERROR:
return "ARM has detected an error in the tracking calibrations.\n";
case MYKONOS_ERR_ARMSTATE_PROFILE_ERROR:
return "ARM has detected an illegal profile.\n";
case MYKONOS_ERR_WAITARMCSTATE_TIMEOUT:
return "Timeout occurred in MYKONOS_checkArmState().\n";
case MYKONOS_ERR_GET_API_VERSION_NULL_PARAM:
return "Null parameter passed to the function MYKONOS_getApiVersion().\n";
case MYKONOS_ERR_GETPRODUCTID_NULL_PARAM:
return "Null parameter passed to the function MYKONOS_getProductId().\n";
case MYKONOS_ERR_TXPROFILE_IQRATE:
return "Tx Profile IQ rate out of range.\n";
case MYKONOS_ERR_TXPROFILE_RFBW:
return "Tx Profile RF bandwidth out of range.\n";
case MYKONOS_ERR_TXPROFILE_FILTER_INTERPOLATION:
return "Tx Filter interpolation not valid.\n";
case MYKONOS_ERR_TXPROFILE_FIR_COEFS:
return "Tx FIR filter not valid.\n";
case MYKONOS_ERR_RXPROFILE_RXCHANNEL:
return " Rx channel is not valid.\n";
case MYKONOS_ERR_RXPROFILE_IQRATE:
return "Receiver profile out of range IQ rate.\n";
case MYKONOS_ERR_RXPROFILE_RFBW:
return "Receiver profile out of range RF bandwidth.\n";
case MYKONOS_ERR_RXPROFILE_FILTER_DECIMATION:
return "Receiver profile not valid filter decimation setting.\n";
case MYKONOS_ERR_RXPROFILE_FIR_COEFS:
return "Receiver profile FIR filter not valid.\n";
case MYKONOS_ERR_RXPROFILE_ADCDIV:
return "Receiver profile not valid ADC divider.\n";
case MYKONOS_ERR_PROFILES_HSDIGCLK:
return "Profile combinations loaded are not valid.\n";
case MYKONOS_ERR_RESET_TXLOL_INV_PARAM:
return "Selected channel is not valid.\n";
case MYKONOS_ERR_RESET_TXLOL_ARMERROR:
return "ARM command error in MYKONOS_resetExtTxLolChannel().\n";
case MYKONOS_ERR_SETSTATEALL_TRACK_CAL_INV:
return "Not valid calibration mask passed for trackCals.\n";
case MYKONOS_ERR_SETSTATEALL_TRACK_ARMERRFLAG:
return "ARM error flag set.\n";
case MYKONOS_ERR_GETSTATEALL_TRACK_ARMERRFLAG:
return "ARM error flag set.\n";
case MYKONOS_ERR_GETSTATEALL_TRACK_ARMERROR:
return "ARM command error.\n";
case MYKONOS_ERR_GETSTATEALL_TRACK_NULL_PARAM:
return "Null parameter passed for trackCals.\n";
case MYKONOS_ERR_SETSTATE_TRACK_CAL_INV:
return "Not valid calibration passed.\n";
case MYKONOS_ERR_SETSTATE_TRACK_ARMERRFLAG:
return "ARM command error.\n";
case MYKONOS_ERR_GETSTATE_TRACK_NULL_PARAM:
return "Null parameter passed to trackCalState.\n";
case MYKONOS_ERR_GETSTATE_TRACK_ARMERRFLAG:
return "ARM command error flag set.\n";
case MYKONOS_ERR_GETSTATE_TRACK_ARMERROR:
return "ARM command error.\n";
case MYKONOS_ERR_SETCLGCGAIN_INV_TXCHANNEL:
return "Tx channel is not valid (Valid ENUM values: TX1 or TX2 only).\n";
case MYKONOS_ERR_SETCLGCGAIN_TRACK_ARMERRFLAG:
return "ARM command flag error set.\n";
case MYKONOS_ERR_SETCLGCGAIN_INV_DESIREDGAIN:
return "CLGC gain parameter is out of range, valid range is from -10000 to 10000.\n";
case MYKONOS_ERR_SETDPDACT_INV_TXCHANNEL:
return "Tx channel is not valid (Valid ENUM values: TX1, TX2 or TX1_TX2).\n";
case MYKONOS_ERR_SETDPDACT_INV_STATE:
return "Invalid Actuator state, valid states are 0-disable and 1-enable.\n";
case MYKONOS_ERR_SETDPDACT_ARMERRFLAG:
return "ARM command flag error set.\n";
default:
return "";
}
#endif
}
/**
* \brief Calculates the scaled device clock frequency at the input of the
* CLKPLL or RFPLL
*
* Use this helper function any time the scaled device clock frequency is needed.
*
* <B>Dependencies</B>
* - device->clocks->deviceClock_kHz
* - device->spiSettings->chipSelectIndex
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param scaledRefClk_kHz Output: The returned scaled reference clock for the device's PLLs
* \param deviceClkDiv Output: The device clock divider setting that gets set in the devices SPI register.
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_NULL_DEVICE_PARAM Function parameter device pointer is NULL
* \retval MYKONOS_ERR_INV_SCALEDDEVCLK_PARAM The scaled PLL refclk frequency is out of range (40MHz to 80MHz)
* \retval MYKONOS_ERR_CALCDEVCLK_NULLPARAM Function parameter scaledRefClk_kHz or deviceClkDiv has a NULL pointer
*/
static mykonosErr_t MYKONOS_calculateScaledDeviceClk_kHz(mykonosDevice_t *device, uint32_t *scaledRefClk_kHz, uint8_t *deviceClkDiv)
{
uint32_t deviceClock_kHz = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_calculateScaledDeviceClk_kHz()\n");
#endif
if ((device == NULL) || (device->clocks == NULL))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, 0, MYKONOS_ERR_NULL_DEVICE_PARAM, getMykonosErrorMessage(MYKONOS_ERR_NULL_DEVICE_PARAM));
return MYKONOS_ERR_NULL_DEVICE_PARAM;
}
deviceClock_kHz = device->clocks->deviceClock_kHz;
if ((scaledRefClk_kHz == NULL) || (deviceClkDiv == NULL))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CALCDEVCLK_NULLPARAM,
getMykonosErrorMessage(MYKONOS_ERR_CALCDEVCLK_NULLPARAM));
return MYKONOS_ERR_CALCDEVCLK_NULLPARAM;
}
/* scaled Ref Clock at input to CLKPLL must be in range 40-80MHz. */
if (deviceClock_kHz > 20000 && deviceClock_kHz <= 40000)
{
*scaledRefClk_kHz = deviceClock_kHz << 1;
*deviceClkDiv = 3;
} /* x2 */
else if (deviceClock_kHz > 40000 && deviceClock_kHz <= 80000)
{
*scaledRefClk_kHz = deviceClock_kHz;
*deviceClkDiv = 0;
} /* x1 */
else if (deviceClock_kHz > 80000 && deviceClock_kHz <= 160000)
{
*scaledRefClk_kHz = deviceClock_kHz >> 1;
*deviceClkDiv = 1;
} /* div2 */
else if (deviceClock_kHz > 160000 && deviceClock_kHz <= 320000)
{
*scaledRefClk_kHz = deviceClock_kHz >> 2;
*deviceClkDiv = 2;
} /* div4 */
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_SCALEDDEVCLK_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_INV_SCALEDDEVCLK_PARAM));
return MYKONOS_ERR_INV_SCALEDDEVCLK_PARAM;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Resets the JESD204B Deframer
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_resetDeframer(mykonosDevice_t *device)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_resetDeframer()\n");
#endif
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_RESET, 0x03);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_RESET, 0x00);
return MYKONOS_ERR_OK;
}
/**
* \brief Sets up the JESD204B Serializers
*
* This function uses the Rx framer and ObsRx framer structures to setup the 4
* serializer lanes that are shared between the two framers. If the Rx profile is valid
* the serializer amplitude and preEmphasis are used from the Rx framer. If only the ObsRx
* profile is valid, the obsRx framer settings are used.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
* - device->rx->framer->M
* - device->rx->framer->serializerAmplitude
* - device->rx->framer->preEmphasis
* - device->rx->framer->serializerLanesEnabled
* - device->rx->framer->invertLanePolarity
* - device->obsRx->framer->serializerLanesEnabled
* - device->obsRx->framer->invertLanePolarity
* - device->obsRx->framer->M
* - device->obsRx->framer->serializerLanesEnabled
* - device->obsRx->framer->serializerAmplitude
* - device->obsRx->framer->preEmphasis
*
* \param device Pointer to the device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_INITSER_INV_VCODIV_PARM Mykonos CLKPLL has invalid VCO divider, verify CLKPLL config
* \retval MYKONOS_ERR_SER_LANE_CONFLICT_PARM When both Rx and ObsRx framers are enabled, framers can not share the same physical lane.
* \retval MYKONOS_ERR_SER_INV_REAL_IF_DATA_PARM Rx Framer M can only = 1 when Real IF mode is enabled
* \retval MYKONOS_ERR_SER_INV_M_PARM Invalid Rx Framer M (valid 1,2,4)
* \retval MYKONOS_ERR_SER_INV_LANEEN_PARM Invalid Rx framer serializerLanesEnabled (valid 0-15)
* \retval MYKONOS_ERR_SER_INV_AMP_PARM Invalid Rx serializer amplitude (valid 0-31)
* \retval MYKONOS_ERR_SER_INV_PREEMP_PARM Invalid Rx serializer pre-emphesis (valid 0-7)
* \retval MYKONOS_ERR_SER_INV_LANEPN_PARM Invalid Rx serializer PN invert setting (valid 0-15)
* \retval MYKONOS_ERR_SER_INV_L_PARM Invalid Rx serializer lanes enabled (must use 1, 2 or 4 lanes)
* \retval MYKONOS_ERR_SER_INV_LANERATE_PARM Invalid Rx serializer lane rate (valid 614.4Mbps - 6144Mbps)
*
* \retval MYKONOS_ERR_SER_INV_REAL_IF_DATA_PARM
* \retval MYKONOS_ERR_SER_INV_LANEEN_PARM
* \retval MYKONOS_ERR_SER_INV_AMP_PARM
* \retval MYKONOS_ERR_SER_INV_PREEMP_PARM
* \retval MYKONOS_ERR_SER_INV_LANEPN_PARM
* \retval MYKONOS_ERR_SER_INV_L_PARM
* \retval MYKONOS_ERR_SER_INV_LANERATE_PARM
*
* \retval MYKONOS_ERR_SER_LANE_RATE_CONFLICT_PARM Necessary lane rates for Rx and ObsRx framer can not be obtained with possible divider settings
* \retval MYKONOS_ERR_SER_INV_HSCLK_PARM Invalid HSCLK frequency (check CLKPLL config, HSCLK must be <= 6144GHz)
* \retval MYKONOS_ERR_HS_AND_LANE_RATE_NOT_INTEGER_MULT HSCLK is not an integer multiple of the lane clock rate
* \retval MYKONOS_ERR_SER_INV_TXSER_DIV_PARM No valid Tx serializer divider to obtain desired lane rates
* \retval MYKONOS_ERR_INITSER_INV_PROFILE Rx/ObsRx and sniffer profiles are not valid - can not config serializers
* \retval MYKONOS_ERR_INV_RXFRAMER_PCLKDIV_PARM Invalid Rx framer PCLK divider
* \retval MYKONOS_ERR_INV_OBSRXFRAMER_PCLKDIV_PARM Invalid ORx/Sniffer framer PCLK divider
*
*/
mykonosErr_t MYKONOS_setupSerializers(mykonosDevice_t *device)
{
uint8_t div2 = 0;
uint8_t txser_div = 0;
uint8_t txser_div_reg = 0;
uint32_t clkPllVcoFrequency_kHz = 0;
uint32_t hsclkRate_kHz = 0;
uint32_t rxLaneRate_kHz = 0;
uint32_t obsRxLaneRate_kHz = 0;
uint32_t fasterLaneRate_kHz = 0;
uint32_t slowerLaneRate_kHz = 0;
uint8_t modHsLaneRate = 0;
uint8_t rxL = 0;
uint8_t obsRxL = 0;
uint8_t i = 0;
uint8_t amplitudeEmphasis = 0;
uint8_t lanePowerDown = 0x00;
mykonosVcoDiv_t vcoDiv = VCODIV_1;
uint8_t rxLanePn = 0;
uint8_t obsRxLanePn = 0;
uint32_t hsDigClkdiv4_5_kHz = 0;
uint32_t rxPclkDiv = 0;
uint32_t obsRxPclkDiv = 0;
uint32_t tempPclkDiv = 0;
uint32_t rxFramerPclk_kHz = 0;
uint32_t obsRxFramerPclk_kHz = 0;
uint8_t rxSyncbSelect = 0;
uint8_t obsRxSyncbSelect = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setupSerializers()\n");
#endif
vcoDiv = device->clocks->clkPllVcoDiv;
clkPllVcoFrequency_kHz = device->clocks->clkPllVcoFreq_kHz;
switch (vcoDiv)
{
case VCODIV_1:
hsclkRate_kHz = clkPllVcoFrequency_kHz;
break;
case VCODIV_1p5:
hsclkRate_kHz = (clkPllVcoFrequency_kHz / 15) * 10;
break;
case VCODIV_2:
hsclkRate_kHz = clkPllVcoFrequency_kHz >> 1;
break;
case VCODIV_3:
hsclkRate_kHz = (clkPllVcoFrequency_kHz / 30) * 10;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INITSER_INV_VCODIV_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INITSER_INV_VCODIV_PARM));
return MYKONOS_ERR_INITSER_INV_VCODIV_PARM;
}
}
if ((device->profilesValid & RX_PROFILE_VALID) && (device->profilesValid & (ORX_PROFILE_VALID | SNIFF_PROFILE_VALID)))
{
if (device->rx->framer->serializerLanesEnabled & device->obsRx->framer->serializerLanesEnabled)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_LANE_CONFLICT_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_LANE_CONFLICT_PARM));
return MYKONOS_ERR_SER_LANE_CONFLICT_PARM;
}
}
lanePowerDown = 0x9F;
if (device->profilesValid & RX_PROFILE_VALID)
{
if (device->rx->framer->M == 1 && !(device->rx->realIfData))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_REAL_IF_DATA_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_INV_REAL_IF_DATA_PARM));
return MYKONOS_ERR_SER_INV_REAL_IF_DATA_PARM;
}
if (device->rx->framer->M != 1 && device->rx->framer->M != 2 && device->rx->framer->M != 4)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_M_PARM, getMykonosErrorMessage(MYKONOS_ERR_SER_INV_M_PARM));
return MYKONOS_ERR_SER_INV_M_PARM;
}
for (i = 0; i < 4; i++)
{
rxL += ((device->rx->framer->serializerLanesEnabled >> i) & 0x01);
}
if (device->rx->framer->serializerLanesEnabled > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_LANEEN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_INV_LANEEN_PARM));
return MYKONOS_ERR_SER_INV_LANEEN_PARM;
}
if (device->rx->framer->serializerAmplitude > 31)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_AMP_PARM, getMykonosErrorMessage(MYKONOS_ERR_SER_INV_AMP_PARM));
return MYKONOS_ERR_SER_INV_AMP_PARM;
}
if (device->rx->framer->preEmphasis > 7)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_PREEMP_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_INV_PREEMP_PARM));
return MYKONOS_ERR_SER_INV_PREEMP_PARM;
}
if (device->rx->framer->invertLanePolarity > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_LANEPN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_INV_LANEPN_PARM));
return MYKONOS_ERR_SER_INV_LANEPN_PARM;
}
if ((rxL != 1) && (rxL != 2) && (rxL != 4))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_L_PARM, getMykonosErrorMessage(MYKONOS_ERR_SER_INV_L_PARM));
return MYKONOS_ERR_SER_INV_L_PARM;
}
rxLaneRate_kHz = device->rx->rxProfile->iqRate_kHz * 20 * device->rx->framer->M / rxL;
lanePowerDown &= (~(device->rx->framer->serializerLanesEnabled));
if ((rxLaneRate_kHz < 614400) || (rxLaneRate_kHz > 6144000))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_LANERATE_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_INV_LANERATE_PARM));
return MYKONOS_ERR_SER_INV_LANERATE_PARM;
}
}
if (device->obsRx->framer > 0 && (device->profilesValid & (ORX_PROFILE_VALID | SNIFF_PROFILE_VALID)))
{
if (device->obsRx->framer->M == 1 && !(device->obsRx->realIfData))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_REAL_IF_DATA_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_INV_REAL_IF_DATA_PARM));
return MYKONOS_ERR_SER_INV_REAL_IF_DATA_PARM;
}
for (i = 0; i < 4; i++)
{
obsRxL += ((device->obsRx->framer->serializerLanesEnabled >> i) & 0x01);
}
if (device->obsRx->framer->serializerLanesEnabled > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_LANEEN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_INV_LANEEN_PARM));
return MYKONOS_ERR_SER_INV_LANEEN_PARM;
}
if (device->obsRx->framer->serializerAmplitude > 31)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_AMP_PARM, getMykonosErrorMessage(MYKONOS_ERR_SER_INV_AMP_PARM));
return MYKONOS_ERR_SER_INV_AMP_PARM;
}
if (device->obsRx->framer->preEmphasis > 7)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_PREEMP_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_INV_PREEMP_PARM));
return MYKONOS_ERR_SER_INV_PREEMP_PARM;
}
if (device->obsRx->framer->invertLanePolarity > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_LANEPN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_INV_LANEPN_PARM));
return MYKONOS_ERR_SER_INV_LANEPN_PARM;
}
if ((obsRxL != 0) && (obsRxL != 1) && (obsRxL != 2) && (obsRxL != 4))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_L_PARM, getMykonosErrorMessage(MYKONOS_ERR_SER_INV_L_PARM));
return MYKONOS_ERR_SER_INV_L_PARM;
}
/* check for valid pointer */
if (obsRxL == 0)
{
/* Allow ORx receiver to work but disable Obs Rx framer link - valid on 9373 */
obsRxLaneRate_kHz = 0;
}
else if (device->profilesValid & ORX_PROFILE_VALID)
{
obsRxLaneRate_kHz = device->obsRx->orxProfile->iqRate_kHz * 20 * device->obsRx->framer->M / obsRxL;
}
else if (device->profilesValid & SNIFF_PROFILE_VALID)
{
obsRxLaneRate_kHz = device->obsRx->snifferProfile->iqRate_kHz * 20 * device->obsRx->framer->M / obsRxL;
}
lanePowerDown &= (~(device->obsRx->framer->serializerLanesEnabled));
if ((obsRxLaneRate_kHz != 0) && ((obsRxLaneRate_kHz < 614400) || (obsRxLaneRate_kHz > 6144000)))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_LANERATE_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_INV_LANERATE_PARM));
return MYKONOS_ERR_SER_INV_LANERATE_PARM;
}
}
/* checking for RX and OBSRX effective lane rates match */
/* Need to account for oversampling, verify that the 2 lane rate are integer related */
if ((rxLaneRate_kHz > 0) && (obsRxLaneRate_kHz > 0))
{
fasterLaneRate_kHz = (rxLaneRate_kHz >= obsRxLaneRate_kHz) ? (rxLaneRate_kHz) : (obsRxLaneRate_kHz);
slowerLaneRate_kHz = (rxLaneRate_kHz >= obsRxLaneRate_kHz) ? (obsRxLaneRate_kHz) : (rxLaneRate_kHz);
/* Verify that lane rates are integer multiples of each other */
if ((fasterLaneRate_kHz % slowerLaneRate_kHz) != 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_LANE_RATE_CONFLICT_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_LANE_RATE_CONFLICT_PARM));
return MYKONOS_ERR_SER_LANE_RATE_CONFLICT_PARM;
}
}
else
{
fasterLaneRate_kHz = (rxLaneRate_kHz >= obsRxLaneRate_kHz) ? (rxLaneRate_kHz) : (obsRxLaneRate_kHz);
}
if (hsclkRate_kHz > 6144000)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_HSCLK_PARM, getMykonosErrorMessage(MYKONOS_ERR_SER_INV_HSCLK_PARM));
return MYKONOS_ERR_SER_INV_HSCLK_PARM;
}
/* performing integer multiple check on HS clock and lane rate clock */
if (fasterLaneRate_kHz == 0)
{
/* All serializer lanes are disabled */
txser_div = 1;
div2 = 0;
}
else
{
modHsLaneRate = hsclkRate_kHz % fasterLaneRate_kHz;
if (modHsLaneRate)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_HS_AND_LANE_RATE_NOT_INTEGER_MULT,
getMykonosErrorMessage(MYKONOS_ERR_HS_AND_LANE_RATE_NOT_INTEGER_MULT));
return MYKONOS_ERR_HS_AND_LANE_RATE_NOT_INTEGER_MULT;
}
/* if lane rate = HSCLK /1, /2 or /4, the division is set in reg x11A */
/* if lane rate = HSCLK /8, x11A is set for /4 and 0xB3 is set for /2 */
txser_div = (uint8_t)(hsclkRate_kHz / fasterLaneRate_kHz);
if (txser_div == 8)
{
div2 = 1;
}
else
{
div2 = 0;
}
}
switch (txser_div)
{
case 1:
txser_div_reg = 0;
break;
case 2:
txser_div_reg = 1;
break;
case 4:
txser_div_reg = 2;
break;
case 8:
txser_div_reg = 2;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SER_INV_TXSER_DIV_PARM,
getMykonosErrorMessage(MYKONOS_ERR_SER_INV_TXSER_DIV_PARM));
return MYKONOS_ERR_SER_INV_TXSER_DIV_PARM;
break;
}
if (device->profilesValid & RX_PROFILE_VALID)
{
amplitudeEmphasis = ((device->rx->framer->serializerAmplitude & 0x1f) << 3) | (device->rx->framer->preEmphasis & 0x07);
}
else if (device->profilesValid & (ORX_PROFILE_VALID | SNIFF_PROFILE_VALID))
{
amplitudeEmphasis = ((device->obsRx->framer->serializerAmplitude & 0x1f) << 3) | (device->obsRx->framer->preEmphasis & 0x07);
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INITSER_INV_PROFILE, getMykonosErrorMessage(MYKONOS_ERR_INITSER_INV_PROFILE));
return MYKONOS_ERR_INITSER_INV_PROFILE;
}
if (device->profilesValid & RX_PROFILE_VALID)
{
rxSyncbSelect = (device->rx->framer->obsRxSyncbSelect > 0) ? 1 : 0;
rxLanePn = (rxSyncbSelect << 7) | (device->rx->framer->invertLanePolarity & 0xF);
}
if (device->profilesValid & (ORX_PROFILE_VALID | SNIFF_PROFILE_VALID))
{
obsRxSyncbSelect = (device->obsRx->framer->obsRxSyncbSelect > 0) ? 1 : 0;
obsRxLanePn = (obsRxSyncbSelect << 7) | (device->obsRx->framer->invertLanePolarity & 0xF);
}
/* Serializer lane clock frequency */
/* serLaneClock_kHz = fasterLaneRate_kHz / txser_div / 20; */
if (device->profilesValid & RX_PROFILE_VALID)
{
/* calculate manual PCLK frequency for Rx framer = Rx IQrate * F, where F = (2*M/L) or PCLK = lanerate /10 */
if (device->rx->framer->overSample)
{
rxFramerPclk_kHz = fasterLaneRate_kHz / 10;
}
else
{
rxFramerPclk_kHz = rxLaneRate_kHz / 10;
}
hsDigClkdiv4_5_kHz = hsclkRate_kHz / device->clocks->clkPllHsDiv / device->rx->rxProfile->rxDec5Decimation;
/* PCLKDiv: 0=4x, 1=2x, 2=1x, 3=/2, 4=/4, 5=/8, 6=/16 */
if (hsDigClkdiv4_5_kHz == rxFramerPclk_kHz)
{
rxPclkDiv = 2;
}
else if (hsDigClkdiv4_5_kHz > rxFramerPclk_kHz)
{
tempPclkDiv = hsDigClkdiv4_5_kHz / rxFramerPclk_kHz;
switch (tempPclkDiv)
{
case 2:
rxPclkDiv = 3;
break;
case 4:
rxPclkDiv = 4;
break;
case 8:
rxPclkDiv = 5;
break;
case 16:
rxPclkDiv = 6;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_RXFRAMER_PCLKDIV_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_RXFRAMER_PCLKDIV_PARM));
return MYKONOS_ERR_INV_RXFRAMER_PCLKDIV_PARM;
}
}
}
else if (hsDigClkdiv4_5_kHz < rxFramerPclk_kHz)
{
tempPclkDiv = rxFramerPclk_kHz / hsDigClkdiv4_5_kHz;
switch (tempPclkDiv)
{
case 2:
rxPclkDiv = 1;
break;
case 4:
rxPclkDiv = 0;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_RXFRAMER_PCLKDIV_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_RXFRAMER_PCLKDIV_PARM));
return MYKONOS_ERR_INV_RXFRAMER_PCLKDIV_PARM;
}
}
}
}
if (obsRxL == 0)
{
/* Make sure PCLK is set as low as possible because it interacts with Rx Framer logic, */
/* even though ObsRx Framer disabled */
obsRxPclkDiv = 6;
}
else if (device->profilesValid & (ORX_PROFILE_VALID | SNIFF_PROFILE_VALID))
{
/* calculate manual PCLK frequency for obsRx framer = obsRx IQrate * F, where F = (2*M/L) */
if (device->profilesValid & ORX_PROFILE_VALID)
{
if (device->obsRx->framer->overSample)
{
obsRxFramerPclk_kHz = fasterLaneRate_kHz / 10;
}
else
{
obsRxFramerPclk_kHz = obsRxLaneRate_kHz / 10;
}
hsDigClkdiv4_5_kHz = hsclkRate_kHz / device->clocks->clkPllHsDiv / device->obsRx->orxProfile->rxDec5Decimation;
}
else if (device->profilesValid & SNIFF_PROFILE_VALID)
{
if (device->obsRx->framer->overSample)
{
obsRxFramerPclk_kHz = fasterLaneRate_kHz / 10;
}
else
{
obsRxFramerPclk_kHz = obsRxLaneRate_kHz / 10;
}
hsDigClkdiv4_5_kHz = hsclkRate_kHz / device->clocks->clkPllHsDiv / device->obsRx->snifferProfile->rxDec5Decimation;
}
/* PCLKDiv: 0=4x, 1=2x, 2=1x, 3=/2, 4=/4, 5=/8, 6=/16 */
if (hsDigClkdiv4_5_kHz == obsRxFramerPclk_kHz)
{
obsRxPclkDiv = 2;
}
else if ((hsDigClkdiv4_5_kHz > obsRxFramerPclk_kHz) && (obsRxFramerPclk_kHz != 0))
{
tempPclkDiv = hsDigClkdiv4_5_kHz / obsRxFramerPclk_kHz;
switch (tempPclkDiv)
{
case 2:
obsRxPclkDiv = 3;
break;
case 4:
obsRxPclkDiv = 4;
break;
case 8:
obsRxPclkDiv = 5;
break;
case 16:
obsRxPclkDiv = 6;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_OBSRXFRAMER_PCLKDIV_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_OBSRXFRAMER_PCLKDIV_PARM));
return MYKONOS_ERR_INV_OBSRXFRAMER_PCLKDIV_PARM;
}
}
}
else if (hsDigClkdiv4_5_kHz < obsRxFramerPclk_kHz)
{
tempPclkDiv = obsRxFramerPclk_kHz / hsDigClkdiv4_5_kHz;
switch (tempPclkDiv)
{
case 2:
obsRxPclkDiv = 1;
break;
case 4:
obsRxPclkDiv = 0;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INV_OBSRXFRAMER_PCLKDIV_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INV_OBSRXFRAMER_PCLKDIV_PARM));
return MYKONOS_ERR_INV_OBSRXFRAMER_PCLKDIV_PARM;
}
}
}
}
/* set lane rate divide setting */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_3, txser_div_reg, 0x03, 0);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_SERIALIZER_CTL_2, amplitudeEmphasis);
/* Serializer: Release Reset */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_SERIALIZER_SPECIAL, 0x03);
/* Serializer: txser clk enable */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_SERIALIZER_HS_DIV_TXSER_CLK_EN, 0x01);
/* Serializer: Enable 2 to 1 serializer */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_SERIALIZER_CTL_3, 0x20 | div2);
/* power up desired serializer lanes */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_SERIALIZER_CTL_1, lanePowerDown);
/* apply desired lane PN inversions to the TX and OBSRX framers */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_LANE_DATA_CTL, rxLanePn);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_LANE_DATA_CTL, obsRxLanePn);
/* set Rx framer manual PCLK frequency based on lane rate of the serializers */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_FRAMER_CLK_EN, rxPclkDiv, 0x70, 4);
/* enable bit repeat mode in Rx framer - since manual PCLK, oversample will still work */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_FRAMER_CLK_EN, 0, 0x80, 7);
/* enable manual PCLK mode in Rx framer */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_FRAMER_CLK_EN, 1, 0x04, 2);
/* set obsRx framer manual PCLK frequency based on lane rate of the serializers */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_CLK_EN, obsRxPclkDiv, 0x70, 4);
/* enable bit repeat mode in ObsRx framer - since manual PCLK, oversample will still work */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_CLK_EN, 0, 0x80, 7);
/* enable manual PCLK mode in ObsRx framer */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_CLK_EN, 1, 0x04, 2);
return MYKONOS_ERR_OK;
}
/**
* \brief Sets up the JESD204B Deserializers
*
* This function enables the necessary deserializer lanes, sets the deserializer clocks
* PN inversion settings, and EQ settings based on the info found in the device data structure.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
* - device->tx->txProfile->clkPllVcoDiv
* - device->tx->txProfile->vcoFreq_kHz
* - device->tx->txProfile->txIqRate_kHz
* - device->tx->deframer->M
* - device->tx->deframer->deserializerLanesEnabled
* - device->tx->deframer->invertLanePolarity
* - device->tx->deframer->EQSetting
*
* \param device Pointer to the device settings structure
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_INITDES_INV_TXPROFILE Tx Profile is not valid in data structure - can not setup deserializer
* \retval MYKONOS_ERR_INITDES_INV_VCODIV_PARM Mykonos CLKPLL VCO divider is invalid
* \retval MYKONOS_ERR_DESER_INV_M_PARM Invalid M (valid 2 or 4)
* \retval MYKONOS_ERR_DESER_INV_L_PARM Invalid L (valid 1,2,4)
* \retval MYKONOS_ERR_DESER_INV_HSCLK_PARM Invalid HSCLK, must be 6.144G or less after CLKPLL VCO divider - verify CLKPLL config
* \retval MYKONOS_ERR_DESER_INV_LANERATE_PARM Invalid lanerate, must be between 614.4 Mbps to 6144 Mbps
* \retval MYKONOS_ERR_DESER_INV_LANEEN_PARM Invalid deserializerLanesEnabled (valid 0-15 in 1,2,4 lane combinations)
* \retval MYKONOS_ERR_DESER_INV_EQ_PARM Invalid EQ parameter (valid 0-4)
* \retval MYKONOS_ERR_DESER_INV_LANEPN_PARM Invalid PN invert setting, (valid 0-15, invert bit per lane)
* \retval MYKONOS_ERR_DES_HS_AND_LANE_RATE_NOT_INTEGER_MULT Invalid clock settings, HSCLK is not an integer multiple of lane rate
*
*/
mykonosErr_t MYKONOS_setupDeserializers(mykonosDevice_t *device)
{
uint8_t lanePowerDown = 0xF;
uint8_t des_div = 0;
uint8_t des_div_bitfield = 0;
uint8_t rxcdr_div = 0;
uint8_t rxcdr_div_bitfield = 0;
uint32_t hsclkRate_kHz = 0;
uint8_t i = 0;
uint8_t L = 0;
uint32_t laneRate_kHz = 0;
uint8_t invertLanePolarity = 0;
uint8_t modHsLaneRate = 0;
const uint32_t MAX_HSCLKRATE_KHZ = 12288000;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setupDeserializers()\n");
#endif
if ((device->profilesValid & TX_PROFILE_VALID) == 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INITDES_INV_TXPROFILE,
getMykonosErrorMessage(MYKONOS_ERR_INITDES_INV_TXPROFILE));
return MYKONOS_ERR_INITDES_INV_TXPROFILE;
}
if (device->tx->deframer->M != 2 && device->tx->deframer->M != 4)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DESER_INV_M_PARM, getMykonosErrorMessage(MYKONOS_ERR_DESER_INV_M_PARM));
return MYKONOS_ERR_DESER_INV_M_PARM;
}
for (i = 0; i < 4; i++)
{
L += ((device->tx->deframer->deserializerLanesEnabled >> i) & 0x01);
}
if ((L == 0) || (L == 3) || (L > 4))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DESER_INV_L_PARM, getMykonosErrorMessage(MYKONOS_ERR_DESER_INV_L_PARM));
return MYKONOS_ERR_DESER_INV_L_PARM;
}
//laneRate_kHz calculation and checks
laneRate_kHz = device->tx->txProfile->iqRate_kHz * 20 * device->tx->deframer->M / L;
if ((laneRate_kHz < 614400) || (laneRate_kHz > 6144000))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DESER_INV_LANERATE_PARM,
getMykonosErrorMessage(MYKONOS_ERR_DESER_INV_LANERATE_PARM));
return MYKONOS_ERR_DESER_INV_LANERATE_PARM;
}
if (device->tx->deframer->deserializerLanesEnabled > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DESER_INV_LANEEN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_DESER_INV_LANEEN_PARM));
return MYKONOS_ERR_DESER_INV_LANEEN_PARM;
}
if ((device->tx->deframer->deserializerLanesEnabled == 0x7) || (device->tx->deframer->deserializerLanesEnabled == 0xB)
|| (device->tx->deframer->deserializerLanesEnabled == 0xD) || (device->tx->deframer->deserializerLanesEnabled == 0xE))
{
/* 3 lanes not valid, only 1,2, or 4 lanes */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DESER_INV_LANEEN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_DESER_INV_LANEEN_PARM));
return MYKONOS_ERR_DESER_INV_LANEEN_PARM;
}
if (device->tx->deframer->EQSetting > 4)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DESER_INV_EQ_PARM, getMykonosErrorMessage(MYKONOS_ERR_DESER_INV_EQ_PARM));
return MYKONOS_ERR_DESER_INV_EQ_PARM;
}
if (device->tx->deframer->invertLanePolarity > 15)
{
/* only lower 4 bits of parameter are valid */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DESER_INV_LANEPN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_DESER_INV_LANEPN_PARM));
return MYKONOS_ERR_DESER_INV_LANEPN_PARM;
}
//hsclkRate_kHz calculations
switch (device->clocks->clkPllVcoDiv)
{
case VCODIV_1:
hsclkRate_kHz = device->clocks->clkPllVcoFreq_kHz;
break;
case VCODIV_1p5:
hsclkRate_kHz = (device->clocks->clkPllVcoFreq_kHz / 15) * 10;
break;
case VCODIV_2:
hsclkRate_kHz = device->clocks->clkPllVcoFreq_kHz >> 1;
break;
case VCODIV_3:
hsclkRate_kHz = (device->clocks->clkPllVcoFreq_kHz / 30) * 10;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INITDES_INV_VCODIV_PARM,
getMykonosErrorMessage(MYKONOS_ERR_INITDES_INV_VCODIV_PARM));
return MYKONOS_ERR_INITDES_INV_VCODIV_PARM;
}
if (hsclkRate_kHz > MAX_HSCLKRATE_KHZ)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DESER_INV_HSCLK_PARM,
getMykonosErrorMessage(MYKONOS_ERR_DESER_INV_HSCLK_PARM));
return MYKONOS_ERR_DESER_INV_HSCLK_PARM;
}
/* The deserializer clock needs to be in the range 3.8GHz to 6.144 GHz in reg x107. The rest of the division is in xDD */
if (hsclkRate_kHz <= 6144000)
{
rxcdr_div = 1;
}
else if (hsclkRate_kHz > 6144000 && hsclkRate_kHz <= MAX_HSCLKRATE_KHZ)
{
rxcdr_div = 2;
}
else if (hsclkRate_kHz > MAX_HSCLKRATE_KHZ)
{
rxcdr_div = 4;
}
switch (rxcdr_div)
{
case 1:
rxcdr_div_bitfield = 0;
break;
case 2:
rxcdr_div_bitfield = 1;
break;
case 4:
rxcdr_div_bitfield = 2;
break;
default:
rxcdr_div_bitfield = 0;
break;
}
/* performing integer multiple check on HS clock and lane rate clock */
modHsLaneRate = hsclkRate_kHz % laneRate_kHz;
if (modHsLaneRate)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DES_HS_AND_LANE_RATE_NOT_INTEGER_MULT,
getMykonosErrorMessage(MYKONOS_ERR_DES_HS_AND_LANE_RATE_NOT_INTEGER_MULT));
return MYKONOS_ERR_DES_HS_AND_LANE_RATE_NOT_INTEGER_MULT;
}
des_div = (uint8_t)(hsclkRate_kHz / laneRate_kHz / rxcdr_div);
switch (des_div)
{
case 1:
des_div_bitfield = 0;
break;
case 2:
des_div_bitfield = 1;
break;
case 4:
des_div_bitfield = 2;
break;
case 8:
des_div_bitfield = 3;
break;
default:
des_div_bitfield = 0;
break;
}
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_3, rxcdr_div_bitfield, 0x0C, 0x02);
invertLanePolarity = (device->tx->deframer->invertLanePolarity & 0xF);
lanePowerDown = (~(device->tx->deframer->deserializerLanesEnabled)) & 0xF;
/* Deserializer: PLL clock enable */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DESERIALIZER_HS_DIV_RXCDR_CLK_EN, 0x01);
/* Deserializer: Set Pdet control */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DESERIALIZER_PDET_CTL, 0x09);
/* Deserializer: Set Power down control */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DESERIALIZER_CTL_0, (0x80U | lanePowerDown | (des_div_bitfield << 4)));
/* Deserializer: Set Sine Shape */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DESERIALIZER_SIN_SHAPE_0, 0x00);
/* Deserializer: Set ss gain and vga */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DESERIALIZER_SIN_SHAPE_1, 0x00);
/* Deserializer: Enable EQ, AC coupled JESD204B lanes */
/* TODO: add ability to set this for AC coupling or DC coupling */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DESERIALIZER_EQ_CTL_1, 0x07);
/* Deserializer: Clear Data present at negedge, disable peak adjust */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DESERIALIZER_MISC_CTL, 0x04);
/* Deserializer: Set Equalizer for lanes 1 and 0 */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DESERIALIZER_EQ_CTL_1_TO_0, ((device->tx->deframer->EQSetting << 3) | device->tx->deframer->EQSetting));
/* Deserializer: Set Equalizer for lanes 2 and 3 */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DESERIALIZER_EQ_CTL_3_TO_2, ((device->tx->deframer->EQSetting << 3) | device->tx->deframer->EQSetting));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_LANE_DATA_CTL, invertLanePolarity);
/* Reset Deserializers - toggle resetb bit in [0] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DESERIALIZER_SPECIAL, 0x00);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DESERIALIZER_SPECIAL, 0x01);
/* Start ALC cal */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DESERIALIZER_CDR_CAL_CTL, 0x02);
/* Deframer: Enable clocks and lane clocks */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_CLK_EN, 0x03);
return MYKONOS_ERR_OK;
}
/**
* \brief Sets up the JESD204B Framer
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
* - device->rx->framer->M
* - device->rx->realIfData
* - device->rx->framer->bankId
* - device->rx->framer->lane0Id
* - device->rx->framer->serializerLanesEnabled
* - device->rx->framer->obsRxSyncbSelect
* - device->rx->framer->K
* - device->rx->framer->externalSysref
* - device->rx->rxChannels
* - device->rx->framer->newSysrefOnRelink
* - device->rx->framer->enableAutoChanXbar
* - device->rx->framer->lmfcOffset
* - device->rx->framer->scramble
*
* \param device Pointer to the device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_FRAMER_INV_REAL_IF_DATA_PARM Invalid framer M, M can only = 1 in real IF mode
* \retval MYKONOS_ERR_FRAMER_INV_M_PARM Invalid framer M (valid 1,2,4)
* \retval MYKONOS_ERR_FRAMER_INV_BANKID_PARM Invalid BankId (valid 0-15)
* \retval MYKONOS_ERR_FRAMER_INV_LANEID_PARM Invalid Lane0Id (valid 0-31)
* \retval MYKONOS_ERR_RXFRAMER_INV_FK_PARAM
* \retval MYKONOS_ERR_FRAMER_INV_K_OFFSET_PARAM
*/
mykonosErr_t MYKONOS_setupJesd204bFramer(mykonosDevice_t *device)
{
uint8_t i = 0;
uint8_t fifoLaneEnable = 0;
uint8_t L = 0;
uint8_t ML = 0;
uint8_t framerConfigF = 0;
uint8_t subaddr[29] = {0}; /* holds address to framer sub register map */
uint8_t subdata[29] = {0}; /* holds data for framer sub register map */
/* Setup submap registers */
uint8_t SUBCLASSV = 1; /* JESD subclass 1 */
uint8_t JESDV = 1; /* Version: JESD204B */
uint8_t DID = 0;
uint8_t BID = 0;
uint8_t LID0 = 0;
uint8_t LID1 = 1;
uint8_t LID2 = 2;
uint8_t LID3 = 3;
uint8_t CS = 0;
uint8_t N = 0x0F;
uint8_t Np = 0x0F;
uint8_t S = 0;
uint8_t CF = 0;
uint8_t K = 31;
uint8_t HD = 0;
uint8_t FramerL = 1;
uint8_t FramerM = 2;
uint8_t FramerF = 1;
uint8_t framerADC_XBar = 0xE4;
uint16_t FK = 0;
uint8_t regE0 = 0;
uint8_t regE2 = 0;
uint8_t framerLaneXbar = 0xE4;
uint16_t CheckSum = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setupJesd204bFramer()\n");
#endif
if (device->rx->framer->M == 1 && !(device->rx->realIfData))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_FRAMER_INV_REAL_IF_DATA_PARM,
getMykonosErrorMessage(MYKONOS_ERR_FRAMER_INV_REAL_IF_DATA_PARM));
return MYKONOS_ERR_FRAMER_INV_REAL_IF_DATA_PARM;
}
if (device->rx->framer->M != 1 && device->rx->framer->M != 2 && device->rx->framer->M != 4)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_FRAMER_INV_M_PARM, getMykonosErrorMessage(MYKONOS_ERR_FRAMER_INV_M_PARM));
return MYKONOS_ERR_FRAMER_INV_M_PARM;
}
if (device->rx->framer->bankId > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_FRAMER_INV_BANKID_PARM,
getMykonosErrorMessage(MYKONOS_ERR_FRAMER_INV_BANKID_PARM));
return MYKONOS_ERR_FRAMER_INV_BANKID_PARM;
}
/* no need to check deviceId, its range is full uint8_t range */
if (device->rx->framer->lane0Id > 31)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_FRAMER_INV_LANEID_PARM,
getMykonosErrorMessage(MYKONOS_ERR_FRAMER_INV_LANEID_PARM));
return MYKONOS_ERR_FRAMER_INV_LANEID_PARM;
}
//count number of lanes
L = 0;
ML = 0;
for (i = 0; i < 4; i++)
{
L += ((device->rx->framer->serializerLanesEnabled >> i) & 0x01);
}
ML = device->rx->framer->M * 10 + L;
FK = (uint16_t)device->rx->framer->K * 2 * device->rx->framer->M / L;
if (FK < 20 || FK > 256 || FK % 4 != 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RXFRAMER_INV_FK_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_RXFRAMER_INV_FK_PARAM));
return MYKONOS_ERR_RXFRAMER_INV_FK_PARAM;
}
if (device->rx->framer->externalSysref == 0)
{
/* Framer: Generate SYSREF internally */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_TEST_CNTR_CTL, 0x20);
}
framerADC_XBar = 0xB1;
if (ML == 24)
{
if (device->rx->rxChannels == RX1)
{
/* adc 0 and 2 used */
framerADC_XBar = ((framerADC_XBar & 0x0C) << 2) | (framerADC_XBar & 0x03);
}
else if (device->rx->rxChannels == RX2)
{
/* swap ADC xbar for Rx1 and Rx2 */
framerADC_XBar = ((framerADC_XBar & 0xF) << 4) | ((framerADC_XBar & 0xF0) >> 4);
/* adc 0 and 2 used */
framerADC_XBar = ((framerADC_XBar & 0x0C) << 2) | (framerADC_XBar & 0x03);
}
/* Framer: Set ADC Crossbar */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_ADC_XBAR_SEL, framerADC_XBar);
}
else
{
/* Framer: Set ADC Crossbar */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_ADC_XBAR_SEL, framerADC_XBar);
}
if (ML == 42)
{
/* uses framer outputs 0 and 2 instead of 0 and 1...fix framer lane XBar */
/* only 2 lane cases here */
switch ((device->rx->framer->serializerLanesEnabled & 0x0F))
{
case 3:
framerLaneXbar = 0x08;
break;
case 5:
framerLaneXbar = 0x20;
break;
case 6:
framerLaneXbar = 0x20;
break;
case 9:
framerLaneXbar = 0x80;
break;
case 10:
framerLaneXbar = 0x80;
break;
case 12:
framerLaneXbar = 0x80;
break;
default:
/* default to valid setting for Lane 0 */
framerLaneXbar = 0x08;
break;
}
}
else
{
switch ((device->rx->framer->serializerLanesEnabled & 0x0F))
{
/* all 4 lanes get framer 0 output */
case 1:
framerLaneXbar = 0x00;
break;
case 2:
framerLaneXbar = 0x00;
break;
case 3:
framerLaneXbar = 0x04;
break;
case 4:
framerLaneXbar = 0x00;
break;
case 5:
framerLaneXbar = 0x10;
break;
case 6:
framerLaneXbar = 0x10;
break;
case 8:
framerLaneXbar = 0x00;
break;
case 9:
framerLaneXbar = 0x40;
break;
case 10:
framerLaneXbar = 0x40;
break;
case 12:
framerLaneXbar = 0x40;
break;
case 15:
framerLaneXbar = 0xE4;
break;
default:
/* default to valid setting for all Lanes */
framerLaneXbar = 0xE4;
break;
}
}
/* Framer: Set Lane Crossbar */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_LANE_XBAR_SEL, framerLaneXbar);
if (ML == 24)
{
/* Framer: Clear ADC Xbar channel auto switch */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_CONFIG_LOOPBACK_XBAR_REV, 0x00);
}
else
{
/* Framer: Set ADC Xbar channel auto switch */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_CONFIG_LOOPBACK_XBAR_REV, 0x04);
}
/* enabling the SYSREF for relink if newSysrefOnRelink is set */
if (device->rx->framer->newSysrefOnRelink)
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_FRAMER_SYSREF_FIFO_EN, 0x01, 0x40, 6);
}
/* enabling auto channel if the enableAutoChanXbar structure member is set */
if (device->rx->framer->enableAutoChanXbar)
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_FRAMER_CONFIG_LOOPBACK_XBAR_REV, 0x01, 0x04, 2);
}
/* determining F octets per frame based on 2*M/L */
framerConfigF = 2 * (device->rx->framer->M / L);
/* Framer: Soft Reset */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_RESET, 0x03);
/* Framer: Clear Soft Reset */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_RESET, 0x00);
/* Framer: Set F (Octets in Frame) */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_CONFIG_F, framerConfigF);
/* Framer: Enable framer clock and lane clocks */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_FRAMER_CLK_EN, 0x03, 0x03, 0);
/* Set Framer lane FIFO enable for each lane enabled */
fifoLaneEnable = (((device->rx->framer->serializerLanesEnabled & 0x0F) << 4) | 0x01);
/* Framer: Enable Lane FIFOs */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_LANE_CTL, fifoLaneEnable);
/* Setup submap registers */
SUBCLASSV = 1; /* JESD subclass 1 */
JESDV = 1; /* Version: JESD204B */
DID = device->rx->framer->deviceId;
BID = device->rx->framer->bankId;
LID0 = device->rx->framer->lane0Id;
LID1 = device->rx->framer->lane0Id + 1;
LID2 = device->rx->framer->lane0Id + 2;
LID3 = device->rx->framer->lane0Id + 3;
CS = 0;
N = 0x0F;
Np = 0x0F;
S = 0;
CF = 0;
HD = 0;
K = device->rx->framer->K - 1;
FramerL = L - 1;
FramerM = device->rx->framer->M - 1;
FramerF = (2 * device->rx->framer->M / L) - 1;
if (ML == 11)
{
regE0 = 0x01;
regE2 = 0x01;
}
else if (ML == 12)
{
regE0 = 0x01;
regE2 = 0x03;
HD = 0x01;
}
else if (ML == 21)
{
regE0 = 0x03;
regE2 = 0x01;
}
else if (ML == 22)
{
regE0 = 0x03;
regE2 = 0x03;
}
else if (ML == 24)
{
regE0 = 0x05;
regE2 = 0x0F;
HD = 0x01;
}
else if (ML == 41)
{
regE0 = 0x0F;
regE2 = 0x01;
}
else if (ML == 42)
{
regE0 = 0x0F;
regE2 = 0x05;
}
else if (ML == 44)
{
regE0 = 0x0F;
regE2 = 0x0F;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_FRAMER_INV_M_PARM, getMykonosErrorMessage(MYKONOS_ERR_FRAMER_INV_M_PARM));
return MYKONOS_ERR_FRAMER_INV_M_PARM;
}
/* setting K offset for framer */
if (device->rx->framer->lmfcOffset < device->rx->framer->K)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_LMFC_K_OFFSET, device->rx->framer->lmfcOffset);
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_FRAMER_INV_K_OFFSET_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_FRAMER_INV_K_OFFSET_PARAM));
return MYKONOS_ERR_FRAMER_INV_K_OFFSET_PARAM;
}
subaddr[0] = 0x00;
subdata[0] = (DID & 0xFF); /* Device ID */
subaddr[1] = 0x01;
subdata[1] = (BID & 0x0F); /* Bank ID */
subaddr[2] = 0x02;
subdata[2] = (LID0 & 0x1F); /* Lane 0 ID */
subaddr[3] = 0x03;
subdata[3] = (device->rx->framer->scramble << 7) | (FramerL & 0x1F); /* [7] Scramble, #Lanes[4:0]-1 */
subaddr[4] = 0x04;
subdata[4] = (FramerF & 0xFF); /* F[7:0]-1 */
subaddr[5] = 0x05;
subdata[5] = (K & 0x1F); /* K[4:0]-1 */
subaddr[6] = 0x06;
subdata[6] = (FramerM & 0xFF); /* M[7:0]-1 */
subaddr[7] = 0x07;
subdata[7] = ((CS & 0x3) << 6) | (N & 0x1F); /* [7:6] = CS[1:0], N[4:0]-1 */
subaddr[8] = 0x08;
subdata[8] = ((SUBCLASSV & 7) << 5) | (Np & 0x1F); /* NP[4:0] -1 */
subaddr[9] = 0x09;
subdata[9] = ((JESDV & 7) << 5) | (S & 0x1F); /* S[4:0]-1 */
subaddr[10] = 0x0A;
subdata[10] = ((HD & 1) << 7) | (CF & 0x1F); /* [7] = HD, CF[4:0] */
subaddr[11] = 0x0B;
subdata[11] = 0x00; /* reserved */
subaddr[12] = 0x0C;
subdata[12] = 0x00; /* reserved */
CheckSum = (DID & 0xFF) + (BID & 0xF) + (LID0 & 0x1F) + (device->rx->framer->scramble) + (FramerL & 0x1F) + (FramerF & 0xFF) + (K & 0x1F) + (FramerM & 0xFF)
+ (CS & 0x3) + (N & 0x1F) + (Np & 0x1F) + (S & 0x1F) + (HD & 1) + (CF & 0x1F) + (SUBCLASSV & 7) + (JESDV & 7);
/* Checksum Lane 0 */
subaddr[13] = 0x0D;
subdata[13] = CheckSum & 0xFF;
/* in JESD204B ML=42 case, framer ip lanes 0 and 2 are used, write lane 1 id and checksum to ip lane 2 regs */
if (ML == 42)
{
/* Lane 1 ID */
subaddr[14] = 0x1A;
subdata[14] = LID1;
CheckSum = (DID & 0xFF) + (BID & 0xF) + (LID1 & 0x1F) + (device->rx->framer->scramble) + (FramerL & 0x1F) + (FramerF & 0xFF) + (K & 0x1F) + (FramerM & 0xFF)
+ (CS & 0x3) + (N & 0x1F) + (Np & 0x1F) + (S & 0x1F) + (HD & 1) + (CF & 0x1F) + (SUBCLASSV & 7) + (JESDV & 7);
/* Checksum Lane 1 */
subaddr[15] = 0x1D;
subdata[15] = CheckSum & 0xFF;
}
else
{
/* Lane 1 ID */
subaddr[14] = 0x12;
subdata[14] = LID1;
CheckSum = (DID & 0xFF) + (BID & 0xF) + (LID1 & 0x1F) + (device->rx->framer->scramble) + (FramerL & 0x1F) + (FramerF & 0xFF) + (K & 0x1F) + (FramerM & 0xFF)
+ (CS & 0x3) + (N & 0x1F) + (Np & 0x1F) + (S & 0x1F) + (HD & 1) + (CF & 0x1F) + (SUBCLASSV & 7) + (JESDV & 7);
/* Checksum Lane 1 */
subaddr[15] = 0x15;
subdata[15] = CheckSum & 0xFF;
/* Lane 2 ID */
subaddr[16] = 0x1A;
subdata[16] = LID2;
CheckSum = (DID & 0xFF) + (BID & 0xF) + (LID2 & 0x1F) + (device->rx->framer->scramble) + (FramerL & 0x1F) + (FramerF & 0xFF) + (K & 0x1F) + (FramerM & 0xFF)
+ (CS & 0x3) + (N & 0x1F) + (Np & 0x1F) + (S & 0x1F) + (HD & 1) + (CF & 0x1F) + (SUBCLASSV & 7) + (JESDV & 7);
/* Checksum Lane 2 */
subaddr[17] = 0x1D;
subdata[17] = CheckSum & 0xFF;
/* Lane 3 ID */
subaddr[18] = 0x22;
subdata[18] = LID3;
CheckSum = (DID & 0xFF) + (BID & 0xF) + (LID3 & 0x1F) + (device->rx->framer->scramble) + (FramerL & 0x1F) + (FramerF & 0xFF) + (K & 0x1F) + (FramerM & 0xFF)
+ (CS & 0x3) + (N & 0x1F) + (Np & 0x1F) + (S & 0x1F) + (HD & 1) + (CF & 0x1F) + (SUBCLASSV & 7) + (JESDV & 7);
subaddr[19] = 0x25;
subdata[19] = CheckSum & 0xFF;
}
subaddr[20] = 0xE0;
subdata[20] = regE0; /* Enable converter n logic */
subaddr[21] = 0xE2;
subdata[21] = regE2; /* Enable Lane n logic */
subaddr[22] = 0xE4;
subdata[22] = 0x00;
subaddr[23] = 0xE6;
subdata[23] = 0x00;
subaddr[24] = 0xF0;
subdata[24] = 0x00; /* #multiframes in ILAS */
subaddr[25] = 0xF2;
subdata[25] = 0x00;
subaddr[26] = 0xF3;
subdata[26] = 0x00;
subaddr[27] = 0xF4;
subdata[27] = 0x00;
subaddr[28] = 0xC0;
subdata[28] = 0x03; /* Framer enable, both sides perform lane sync */
for (i = 0; i <= 28; i++)
{
/* Set framer sub register map address */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_ADDR, subaddr[i]);
/* Set framer sub register map data word */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_DATA, subdata[i]);
/* Write enable */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_WRITE_EN, 0x01);
}
if (device->rx->framer->externalSysref > 0)
{
/* Framer: Enable lane FIFO sync (Enable CGS) */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_SYSREF_FIFO_EN, 0x30);
}
else
{
/* Framer: Enable lane FIFO sync (Enable CGS) */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_SYSREF_FIFO_EN, 0x10);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Sets up the JESD204B OBSRX Framer
*
* <B>Dependencies</B>
* - device->rxChannels
* - device->spiSettings->chipSelectIndex
* - device->obsRx->framer->bankId
* - device->obsRx->framer->M
* - device->obsRx->framer->serializerLanesEnabled
* - device->obsRx->framer->externalSysref
* - device->spiSettings
* - device->obsRx->framer->deviceId
* - device->obsRx->framer->lane0Id
* - device->obsRx->framer->K
* - device->obsRx->framer->lmfcOffset
* - device->obsRx->framer->scramble
* - device->obsRx->framer->obsRxSyncbSelect
*
* \param device Pointer to the device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_OBSRX_FRAMER_INV_REAL_IF_DATA_PARM M parameter can only be 1 when real IF data mode is enabled
* \retval MYKONOS_ERR_OBSRX_FRAMER_INV_M_PARM ObsRx Framer M parameter can only be 1 or 2
* \retval MYKONOS_ERR_OBSRX_FRAMER_INV_BANKID_PARM Invalid BankId (0-15)
* \retval MYKONOS_ERR_OBSRX_FRAMER_INV_LANEID_PARM Invalid lane0Id (0-31)
* \retval MYKONOS_ERR_OBSRXFRAMER_INV_FK_PARAM Invalid F*K value (F * K must be > 20 and divisible by 4)
* \retval MYKONOS_ERR_OBSRX_FRAMER_INV_K_OFFSET_PARAM Invalid K offset, must be less than K
*/
mykonosErr_t MYKONOS_setupJesd204bObsRxFramer(mykonosDevice_t *device)
{
uint8_t i = 0;
uint8_t laneFifoEnable = 0;
uint8_t L = 1;
uint8_t ML = 2;
uint8_t framerConfigF = 0;
uint8_t subaddr[29] = {0}; /* holds address to framer sub register map */
uint8_t subdata[29] = {0}; /* holds data for framer sub register map */
/* Setup submap registers */
uint8_t SUBCLASSV = 1; /* JESD subclass 1 */
uint8_t JESDV = 1; /* Version: JESD204B */
uint8_t DID = 0;
uint8_t BID = 0;
uint8_t LID0 = 0;
uint8_t LID1 = 1;
uint8_t LID2 = 2;
uint8_t LID3 = 3;
uint8_t CS = 0;
uint8_t N = 0x0F;
uint8_t Np = 0x0F;
uint8_t S = 0;
uint8_t CF = 0;
uint8_t K = 31;
uint8_t HD = 0;
uint8_t FramerL = 1;
uint8_t FramerM = 2;
uint8_t FramerF = 1;
uint8_t framerADC_XBar = 0xE4;
uint8_t regE0 = 0;
uint8_t regE2 = 0;
uint8_t framerLaneXbar = 0xE4;
uint16_t CheckSum = 0;
uint16_t FK = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setupJesd204bObsRxFramer()\n");
#endif
if (device->obsRx->framer->M == 1 && !(device->obsRx->realIfData))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBSRX_FRAMER_INV_REAL_IF_DATA_PARM,
getMykonosErrorMessage(MYKONOS_ERR_OBSRX_FRAMER_INV_REAL_IF_DATA_PARM));
return MYKONOS_ERR_OBSRX_FRAMER_INV_REAL_IF_DATA_PARM;
}
if (device->obsRx->framer->M != 1 && device->obsRx->framer->M != 2)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBSRX_FRAMER_INV_M_PARM,
getMykonosErrorMessage(MYKONOS_ERR_OBSRX_FRAMER_INV_M_PARM));
return MYKONOS_ERR_OBSRX_FRAMER_INV_M_PARM;
}
if (device->obsRx->framer->bankId > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBSRX_FRAMER_INV_BANKID_PARM,
getMykonosErrorMessage(MYKONOS_ERR_OBSRX_FRAMER_INV_BANKID_PARM));
return MYKONOS_ERR_OBSRX_FRAMER_INV_BANKID_PARM;
}
/* no need to check deviceId, its range is full uint8_t range */
if (device->obsRx->framer->lane0Id > 31)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBSRX_FRAMER_INV_LANEID_PARM,
getMykonosErrorMessage(MYKONOS_ERR_OBSRX_FRAMER_INV_LANEID_PARM));
return MYKONOS_ERR_OBSRX_FRAMER_INV_LANEID_PARM;
}
//count number of lanes
L = 0;
ML = 0;
for (i = 0; i < 4; i++)
{
L += ((device->obsRx->framer->serializerLanesEnabled >> i) & 0x01);
}
ML = device->obsRx->framer->M * 10 + L;
if (L == 0)
{
/* Disable framer and return successfully */
/* Disable framer clock and lane clocks */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_CLK_EN, 0, 0x03, 0);
/* Disable lane FIFO enables */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_LANE_CTL, 0, 0xF0, 4);
return MYKONOS_ERR_OK;
}
FK = (uint16_t)device->obsRx->framer->K * 2 * device->obsRx->framer->M / L;
if (FK < 20 || FK > 256 || FK % 4 != 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBSRXFRAMER_INV_FK_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_OBSRXFRAMER_INV_FK_PARAM));
return MYKONOS_ERR_OBSRXFRAMER_INV_FK_PARAM;
}
if (device->obsRx->framer->externalSysref == 0)
{
/* Framer: Generate SYSREF internally */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_TEST_CNTR_CTL, 0x20);
}
/* Framer: Set ADC Crossbar */
framerADC_XBar = 0xB1;
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_ADC_XBAR_SEL, framerADC_XBar);
if (ML == 42)
{
/* uses framer outputs 0 and 2 instead of 0 and 1...fix framer lane XBar */
/* only 2 lane cases here */
switch ((device->obsRx->framer->serializerLanesEnabled & 0x0F))
{
case 3:
framerLaneXbar = 0x08;
break;
case 5:
framerLaneXbar = 0x20;
break;
case 6:
framerLaneXbar = 0x20;
break;
case 9:
framerLaneXbar = 0x80;
break;
case 10:
framerLaneXbar = 0x80;
break;
case 12:
framerLaneXbar = 0x80;
break;
default:
/* default to valid setting for Lane 0 */
framerLaneXbar = 0x08;
break;
}
}
else
{
switch ((device->obsRx->framer->serializerLanesEnabled & 0x0F))
{
/* all 4 lanes get framer 0 output */
case 1:
framerLaneXbar = 0x00;
break;
case 2:
framerLaneXbar = 0x00;
break;
case 3:
framerLaneXbar = 0x04;
break;
case 4:
framerLaneXbar = 0x00;
break;
case 5:
framerLaneXbar = 0x10;
break;
case 6:
framerLaneXbar = 0x10;
break;
case 8:
framerLaneXbar = 0x00;
break;
case 9:
framerLaneXbar = 0x40;
break;
case 10:
framerLaneXbar = 0x40;
break;
case 12:
framerLaneXbar = 0x40;
break;
case 15:
framerLaneXbar = 0xE4;
break;
default:
/* default to valid setting for all Lanes */
framerLaneXbar = 0xE4;
break;
}
}
/* Framer: set Lane Crossbar */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_LANE_XBAR_SEL, framerLaneXbar);
/* Framer: determine the framerConfigF value (2*M/L) */
framerConfigF = 2 * (device->obsRx->framer->M / L);
/* Framer: Soft Reset */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_RESET, 0x03);
/* Framer: Clear Soft Reset */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_RESET, 0x00);
/* Framer: Set F (Octets in Frame) */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_CONFIG_F, framerConfigF);
/* Framer: Enable framer clock and lane clocks */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_CLK_EN, 0x03, 0x03, 0);
/* Set Framer lane FIFO enable for each lane enabled */
laneFifoEnable = (((device->obsRx->framer->serializerLanesEnabled & 0x0F) << 4) | 0x01);
/* Framer: Enable Lane FIFOs */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_LANE_CTL, laneFifoEnable);
/* enabling the SYSREF for relink if newSysrefOnRelink is set */
if (device->obsRx->framer->newSysrefOnRelink)
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_SYSREF_FIFO_EN, 0x01, 0x40, 6);
}
/* enabling auto channel if the enableAutoChanXbar structure member is set */
if (device->obsRx->framer->enableAutoChanXbar)
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_CONFIG_LOOPBACK_XBAR_REV, 0x01, 0x04, 2);
}
/* Setup submap registers */
SUBCLASSV = 1; /* JESD subclass 1 */
JESDV = 1; /* Version: JESD204B */
DID = device->obsRx->framer->deviceId;
BID = device->obsRx->framer->bankId;
LID0 = device->obsRx->framer->lane0Id;
LID1 = device->obsRx->framer->lane0Id + 1;
LID2 = device->obsRx->framer->lane0Id + 2;
LID3 = device->obsRx->framer->lane0Id + 3;
CS = 0;
N = 0x0F;
Np = 0x0F;
S = 0;
CF = 0;
K = device->obsRx->framer->K - 1;
HD = 0;
FramerL = L - 1;
FramerM = device->obsRx->framer->M - 1;
FramerF = (2 * device->obsRx->framer->M / L) - 1;
if (ML == 11)
{
regE0 = 0x1;
regE2 = 0x1;
}
else if (ML == 12)
{
regE0 = 0x1;
regE2 = 0x3;
HD = 1;
}
else if (ML == 21)
{
regE0 = 0x3;
regE2 = 0x1;
}
else if (ML == 22)
{
regE0 = 0x3;
regE2 = 0x3;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBSRX_FRAMER_INV_M_PARM,
getMykonosErrorMessage(MYKONOS_ERR_OBSRX_FRAMER_INV_M_PARM));
return MYKONOS_ERR_OBSRX_FRAMER_INV_M_PARM;
}
/* setting K offset for framer */
if (device->obsRx->framer->lmfcOffset < device->rx->framer->K)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_LMFC_K_OFFSET, device->obsRx->framer->lmfcOffset);
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBSRX_FRAMER_INV_K_OFFSET_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_OBSRX_FRAMER_INV_K_OFFSET_PARAM));
return MYKONOS_ERR_OBSRX_FRAMER_INV_K_OFFSET_PARAM;
}
subaddr[0] = 0x00;
subdata[0] = (DID & 0xFF); /* Device ID */
subaddr[1] = 0x01;
subdata[1] = (BID & 0x0F); /* Bank ID */
subaddr[2] = 0x02;
subdata[2] = (LID0 & 0x1F); /* Lane 0 ID */
subaddr[3] = 0x03;
subdata[3] = (device->obsRx->framer->scramble << 7) | (FramerL & 0x1F); /* [7] Scramble, #Lanes[4:0]-1 */
subaddr[4] = 0x04;
subdata[4] = (FramerF & 0xFF); /* F[7:0]-1 */
subaddr[5] = 0x05;
subdata[5] = (K & 0x1F); /* K[4:0]-1 */
subaddr[6] = 0x06;
subdata[6] = (FramerM & 0xFF); /* M[7:0]-1 */
subaddr[7] = 0x07;
subdata[7] = ((CS & 0x3) << 6) | (N & 0x1F); /* [7:6] = CS[1:0], N[4:0]-1 */
subaddr[8] = 0x08;
subdata[8] = ((SUBCLASSV & 7) << 5) | (Np & 0x1F); /* NP[4:0] -1 */
subaddr[9] = 0x09;
subdata[9] = ((JESDV & 7) << 5) | (S & 0x1F); /* S[4:0]-1 */
subaddr[10] = 0x0a;
subdata[10] = ((HD & 1) << 7) | (CF & 0x1F); /* [7] = HD, CF[4:0] */
subaddr[11] = 0x0b;
subdata[11] = 0x00; /* reserved */
subaddr[12] = 0x0c;
subdata[12] = 0x00; /* reserved */
CheckSum = (DID & 0xFF) + (BID & 0xF) + (LID0 & 0x1F) + (device->obsRx->framer->scramble) + (FramerL & 0x1F) + (FramerF & 0xFF) + (K & 0x1F) + (FramerM & 0xFF)
+ (CS & 0x3) + (N & 0x1F) + (Np & 0x1F) + (S & 0x1F) + (HD & 1) + (CF & 0x1F) + (SUBCLASSV & 7) + (JESDV & 7);
/* Checksum Lane 0 */
subaddr[13] = 0x0d;
subdata[13] = CheckSum & 0xFF;
/* Lane 1 ID */
subaddr[14] = 0x12;
subdata[14] = LID1;
CheckSum = (DID & 0xFF) + (BID & 0xF) + (LID1 & 0x1F) + (device->obsRx->framer->scramble) + (FramerL & 0x1F) + (FramerF & 0xFF) + (K & 0x1F) + (FramerM & 0xFF)
+ (CS & 0x3) + (N & 0x1F) + (Np & 0x1F) + (S & 0x1F) + (HD & 1) + (CF & 0x1F) + (SUBCLASSV & 7) + (JESDV & 7);
/* Checksum Lane 1 */
subaddr[15] = 0x15;
subdata[15] = CheckSum & 0xFF;
/* Lane 2 ID */
subaddr[16] = 0x1a;
subdata[16] = LID2;
CheckSum = (DID & 0xFF) + (BID & 0xF) + (LID2 & 0x1F) + (device->obsRx->framer->scramble) + (FramerL & 0x1F) + (FramerF & 0xFF) + (K & 0x1F) + (FramerM & 0xFF)
+ (CS & 0x3) + (N & 0x1F) + (Np & 0x1F) + (S & 0x1F) + (HD & 1) + (CF & 0x1F) + (SUBCLASSV & 7) + (JESDV & 7);
/* Checksum Lane 2 */
subaddr[17] = 0x1d;
subdata[17] = CheckSum & 0xFF;
/* Lane 3 ID */
subaddr[18] = 0x22;
subdata[18] = LID3;
CheckSum = (DID & 0xFF) + (BID & 0xF) + (LID3 & 0x1F) + (device->obsRx->framer->scramble) + (FramerL & 0x1F) + (FramerF & 0xFF) + (K & 0x1F) + (FramerM & 0xFF)
+ (CS & 0x3) + (N & 0x1F) + (Np & 0x1F) + (S & 0x1F) + (HD & 1) + (CF & 0x1F) + (SUBCLASSV & 7) + (JESDV & 7);
subaddr[19] = 0x25;
subdata[19] = CheckSum & 0xFF;
subaddr[20] = 0xe0;
subdata[20] = regE0; /* Enable converter n logic */
subaddr[21] = 0xe2;
subdata[21] = regE2; /* Enable Lane n logic */
subaddr[22] = 0xe4;
subdata[22] = 0x00;
subaddr[23] = 0xe6;
subdata[23] = 0x00;
subaddr[24] = 0xf0;
subdata[24] = 0x00; /* #multiframes in ILAS */
subaddr[25] = 0xf2;
subdata[25] = 0x00;
subaddr[26] = 0xf3;
subdata[26] = 0x00;
subaddr[27] = 0xf4;
subdata[27] = 0x00;
subaddr[28] = 0xc0;
subdata[28] = 0x03; /* Framer enable, both sides perform lane sync */
for (i = 0; i <= 28; i++)
{
/* Set framer sub register map address */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_ADDR, subaddr[i]);
/* Set framer sub register map data word */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_DATA, subdata[i]);
/* Write enable */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_WRITE_EN, 0x01);
}
if (device->obsRx->framer->externalSysref > 0)
{
/* Framer: Enable lane FIFO sync (Enable CGS) */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_SYSREF_FIFO_EN, 0x30);
}
else
{
/* Framer: Enable lane FIFO sync (Enable CGS) */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_SYSREF_FIFO_EN, 0x10);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Enables/Disables the JESD204B Rx Framer
*
* This function is normally not necessary. In the event that the link needs to be reset, this
* function allows the Rx framer to be disabled and re-enabled.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->rx->framer->serializerLanesEnabled
*
* \param device is a pointer to the device settings structure
* \param enable 0 = Disable the selected framer, 1 = enable the selected framer link
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_ENFRAMERLINK_INV_LANESEN_PARM Invalid serializerLanesEnabled parameter in device data structure
*/
mykonosErr_t MYKONOS_enableRxFramerLink(mykonosDevice_t *device, uint8_t enable)
{
uint8_t enableLink = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableFramerLink()\n");
#endif
enableLink = (enable > 0) ? 1 : 0;
if (enableLink)
{
/* Power Up serializer lanes */
if (device->rx->framer->serializerLanesEnabled > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ENFRAMERLINK_INV_LANESEN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_ENFRAMERLINK_INV_LANESEN_PARM));
return MYKONOS_ERR_ENFRAMERLINK_INV_LANESEN_PARM;
}
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_SERIALIZER_CTL_1, ((~device->rx->framer->serializerLanesEnabled) & 0x0F),
device->rx->framer->serializerLanesEnabled, 0);
/* Enable Clocks to Framer */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_FRAMER_CLK_EN, 3, 0x03, 0);
/* Release reset to framer and lane FIFOs */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_RESET, 0x00);
}
else
{
/* Disable Link */
/* Hold Rx framer in reset */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_RESET, 0x03);
/* Disable Clocks to Framer */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_FRAMER_CLK_EN, 0, 0x03, 0);
/* Power down serializer lanes */
if (device->rx->framer->serializerLanesEnabled > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ENFRAMERLINK_INV_LANESEN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_ENFRAMERLINK_INV_LANESEN_PARM));
return MYKONOS_ERR_ENFRAMERLINK_INV_LANESEN_PARM;
}
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_SERIALIZER_CTL_1, device->rx->framer->serializerLanesEnabled, device->rx->framer->serializerLanesEnabled, 0);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Enables/Disables the JESD204B ObsRx Framer
*
* This function is normally not necessary. In the event that the link needs to be reset, this
* function allows the ObsRx framer to be disabled and re-enabled.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->obsRx->framer->serializerLanesEnabled
*
* \param device is a pointer to the device settings structure
* \param enable 0 = Disable the selected framer, 1 = enable the selected framer link
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_ENFRAMERLINK_INV_LANESEN_PARM Invalid serializerLanesEnabled parameter in device data structure (Valid 0-15)
*/
mykonosErr_t MYKONOS_enableObsRxFramerLink(mykonosDevice_t *device, uint8_t enable)
{
uint8_t enableLink = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableObsRxFramerLink()\n");
#endif
enableLink = (enable > 0) ? 1 : 0;
if (enableLink)
{
/* Power Up serializer lanes */
if (device->rx->framer->serializerLanesEnabled > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ENOBSFRAMERLINK_INV_LANESEN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_ENOBSFRAMERLINK_INV_LANESEN_PARM));
return MYKONOS_ERR_ENOBSFRAMERLINK_INV_LANESEN_PARM;
}
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_SERIALIZER_CTL_1, ((~device->obsRx->framer->serializerLanesEnabled) & 0x0F),
device->obsRx->framer->serializerLanesEnabled, 0);
/* Enable Clocks to Framer */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_CLK_EN, 3, 0x03, 0);
/* Release reset to framer and lane FIFOs */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_RESET, 0x00);
}
else
{
/* Disable Link */
/* Hold Rx framer in reset */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_RESET, 0x03);
/* Disable Clocks to Framer */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_CLK_EN, 0, 0x03, 0);
/* Power down serializer lanes */
if (device->obsRx->framer->serializerLanesEnabled > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ENOBSFRAMERLINK_INV_LANESEN_PARM,
getMykonosErrorMessage(MYKONOS_ERR_ENOBSFRAMERLINK_INV_LANESEN_PARM));
return MYKONOS_ERR_ENOBSFRAMERLINK_INV_LANESEN_PARM;
}
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_SERIALIZER_CTL_1, device->obsRx->framer->serializerLanesEnabled,
device->obsRx->framer->serializerLanesEnabled, 0);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Sets up the JESD204B Deframer
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->tx->deframer->M
* - device->tx->deframer->bankId
* - device->tx->deframer->lane0Id
* - device->tx->deframer->K
* - device->tx->deframer->deserializerLanesEnabled
* - device->tx->deframer->externalSysref
* - device->tx->deframer->newSysrefOnRelink
* - device->tx->deframer->enableAutoChanXbar
* - device->tx->deframer->lmfcOffset
* - device->tx->deframer->scramble
*
* \param device Pointer to device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_DEFRAMER_INV_M_PARM Invalid M parameter in deframer structure
* \retval MYKONOS_ERR_DEFRAMER_INV_BANKID_PARM Invalid BankId parameter in deframer structure (Valid 0-15)
* \retval MYKONOS_ERR_ERR_DEFRAMER_INV_LANEID_PARM Invalid Lane0Id parameter in deframer structure (Valid 0-31)
* \retval MYKONOS_ERR_DEFRAMER_INV_K_PARAM Invalid K parameter in deframer structure (valid 1-32 with other constraints)
* \retval MYKONOS_ERR_DEFRAMER_INV_FK_PARAM Invalid F*K parameter (Valid F*K > 20, F*K must be divisible by 4), K must be <= 32
* \retval MYKONOS_ERR_DEFRAMER_INV_K_OFFSET_PARAM Invalid K offset parameter in deframer structure (must be less than K)
*/
mykonosErr_t MYKONOS_setupJesd204bDeframer(mykonosDevice_t *device)
{
uint8_t i = 0;
uint8_t temp = 0;
uint8_t reg080 = 0;
uint8_t laneXbar = 0;
uint8_t L = 0;
uint8_t ML = 0;
/* Setup submap registers */
uint8_t SUBCLASSV = 1;
uint8_t JESDV = 1;
uint8_t DID = 0;
uint8_t BID = 0;
uint8_t LID0 = 0;
uint8_t CS = 2; /* 2 control bits */
uint8_t N = 0x0D; /* 14 bits */
uint8_t Np = 0x0F; /* 16 bits */
uint8_t S = 0;
uint8_t CF = 0;
uint8_t K = 0x1F;
uint16_t FK = 0;
uint8_t HD = 0; /* only one case has HD == 1 */
uint8_t CTRLREG0 = 0;
uint8_t DeframerL = 1;
uint8_t DeframerM = 2;
uint8_t DeframerF = 0;
uint8_t CTRLREG1 = 0;
uint8_t CTRLREG2 = 0;
uint8_t DeframerLaneEnable = 0x00;
uint16_t CheckSum = 0;
uint8_t subaddr[25] = {0};
uint8_t subdata[25] = {0};
uint8_t deframerInput = 0;
uint8_t lane = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setupJesd204bDeframer()\n");
#endif
if (device->tx->deframer->M != 0 && device->tx->deframer->M != 2 && device->tx->deframer->M != 4)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DEFRAMER_INV_M_PARM, getMykonosErrorMessage(MYKONOS_ERR_DEFRAMER_INV_M_PARM));
return MYKONOS_ERR_DEFRAMER_INV_M_PARM;
}
if (device->tx->deframer->bankId > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DEFRAMER_INV_BANKID_PARM,
getMykonosErrorMessage(MYKONOS_ERR_DEFRAMER_INV_BANKID_PARM));
return MYKONOS_ERR_DEFRAMER_INV_BANKID_PARM;
}
if (device->tx->deframer->lane0Id > 31)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ERR_DEFRAMER_INV_LANEID_PARM,
getMykonosErrorMessage(MYKONOS_ERR_ERR_DEFRAMER_INV_LANEID_PARM));
return MYKONOS_ERR_ERR_DEFRAMER_INV_LANEID_PARM;
}
//count number of lanes
L = 0;
ML = 0;
for (i = 0; i < 4; i++)
{
L += ((device->tx->deframer->deserializerLanesEnabled >> i) & 0x01);
}
ML = device->tx->deframer->M * 10 + L;
if (device->tx->deframer->K > 32)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DEFRAMER_INV_K_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_DEFRAMER_INV_K_PARAM));
return MYKONOS_ERR_DEFRAMER_INV_K_PARAM;
}
FK = (uint16_t)device->tx->deframer->K * 2 * device->tx->deframer->M / L;
if (FK < 20 || FK > 256 || FK % 4 != 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DEFRAMER_INV_FK_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_DEFRAMER_INV_FK_PARAM));
return MYKONOS_ERR_DEFRAMER_INV_FK_PARAM;
}
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_DEFRAMER_SYNC_REQ_RETIME, (device->tx->deframer->K - 1), 0x1F, 0x00);
if (!device->tx->deframer->externalSysref)
{
/* Deframer: Generate SYSREF internally */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_TEST, 0x02);
}
/* enabling the SYSREF for relink if newSysrefOnRelink is set */
if (device->tx->deframer->newSysrefOnRelink)
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_DEFRAMER_SYSREF_FIFO_EN, 0x01, 0x40, 6);
}
/* enabling auto channel if the enableAutoChanXbar structure member is set */
if (device->tx->deframer->enableAutoChanXbar)
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_DEFRAMER_DET_FIFO_WR_STRT_DAC_XBAR_REV, 0x01, 0x04, 2);
}
/* Fix bad default bit to allow deterministic latency on deframer (Clear bit 4)*/
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_DEFRAMER_DET_FIFO_WR_STRT_DAC_XBAR_REV, 0x00, 0x10, 4);
/* Deframer: Set DAC Crossbar */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_DAC_XBAR_SEL, 0xB1);
/* Lane crossbar - Allow user to reorder lanes in deframer->deserializerLaneCrossbar, but this code still */
/* maps used lanes to deframer inputs */
deframerInput = 0;
for (lane = 0; lane < 4; lane++)
{
if ((device->tx->deframer->deserializerLanesEnabled >> lane) & 1)
{
laneXbar |= (((device->tx->deframer->deserializerLaneCrossbar >> (lane << 1)) & 3) << (deframerInput << 1));
deframerInput += 1;
}
}
if (ML == 42)
{
/* M4L2 uses internal deframer ports 0 and 2 */
/* swap bits 3:2 and 5:4, keep 1:0 and 7:6 in place */
laneXbar = (laneXbar & 0xC3U) | ((laneXbar & 0x30) >> 2) | ((laneXbar & 0x0C) << 2);
}
/* Deframer: Set Lane Crossbar */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_LANE_XBAR_SEL, laneXbar);
//Find value for Framer F depending on M and L
switch (ML)
{
case 21:
reg080 = 0x04;
break;
case 22:
reg080 = 0x22;
break;
case 24:
reg080 = 0x41;
break;
case 41:
reg080 = 0x18;
break;
case 42:
reg080 = 0x34;
break;
case 44:
reg080 = 0x52;
break;
default:
reg080 = 0x04;
break;
}
/* Deframer: Set F (Octets in Frame) */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_CONFIG_F, reg080);
/* Deframer: Enable clocks and lane clocks */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_CLK_EN, 0x03);
/* Set deframer lane FIFO enable for each lane enabled */
temp = (device->tx->deframer->deserializerLanesEnabled & 0x0F);
/* Deframer: Enable Lane FIFOs */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_LANE_FIFO_CTL, temp);
/* Setup submap registers */
SUBCLASSV = 1; /* JESD subclass 1 */
JESDV = 1; /* Version: JESD204B */
DID = device->tx->deframer->deviceId;
BID = device->tx->deframer->bankId;
LID0 = device->tx->deframer->lane0Id;
CS = 2; /* 2 control bits */
N = 0x0D; /* 14 bits */
Np = 0x0F;
S = 0;
CF = 0;
K = device->tx->deframer->K - 1;
HD = 0; /* only one case has HD = 1 */
CTRLREG0 = 1;
DeframerL = L - 1;
DeframerM = device->tx->deframer->M - 1;
DeframerF = (2 * device->tx->deframer->M / L) - 1;
CheckSum = 0;
if (ML == 21)
{
CTRLREG1 = 4;
CTRLREG2 = 0x14;
DeframerLaneEnable = 1;
}
else if (ML == 22)
{
CTRLREG1 = 2;
CTRLREG2 = 4;
DeframerLaneEnable = 3;
}
else if (ML == 24)
{
HD = 1;
CTRLREG1 = 1;
CTRLREG2 = 0;
DeframerLaneEnable = 0x0F;
}
else if (ML == 41)
{
CTRLREG1 = 8;
CTRLREG2 = 0;
DeframerLaneEnable = 1;
}
else if (ML == 42)
{
CTRLREG1 = 4;
CTRLREG2 = 0;
DeframerLaneEnable = 5;
}
else if (ML == 44)
{
CTRLREG1 = 2;
CTRLREG2 = 0;
DeframerLaneEnable = 0x0F;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DEFRAMER_INV_M_PARM, getMykonosErrorMessage(MYKONOS_ERR_DEFRAMER_INV_M_PARM));
return MYKONOS_ERR_DEFRAMER_INV_M_PARM;
}
/* LMFC offset limit check */
if (device->tx->deframer->lmfcOffset < device->tx->deframer->K)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_LMFC_K_OFFSET, device->tx->deframer->lmfcOffset);
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DEFRAMER_INV_K_OFFSET_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_DEFRAMER_INV_K_OFFSET_PARAM));
return MYKONOS_ERR_DEFRAMER_INV_K_OFFSET_PARAM;
}
subaddr[0] = 0x50;
subdata[0] = DID & 0xFFU; /* Device ID */
subaddr[1] = 0x51;
subdata[1] = BID & 0x0F; /* Bank ID */
subaddr[2] = 0x52;
subdata[2] = LID0 & 0x1F; /* Lane 0 ID */
subaddr[3] = 0x53;
subdata[3] = (device->tx->deframer->scramble << 7) | (DeframerL & 0x1F); /* [7] = Scramble Enable, #Lanes[4:0] */
subaddr[4] = 0x54;
subdata[4] = DeframerF & 0xFFU; /* F[7:0] */
subaddr[5] = 0x55;
subdata[5] = K & 0x1F; /* K[4:0] */
subaddr[6] = 0x56;
subdata[6] = DeframerM & 0xFFU; /* M[7:0] */
subaddr[7] = 0x57;
subdata[7] = ((CS & 0x3) << 6) | (N & 0x1F); /* [7:6] = CS[1:0], N[4:0] */
subaddr[8] = 0x58;
subdata[8] = ((SUBCLASSV & 7) << 5) | (Np & 0x1F); /* Np[4:0] */
subaddr[9] = 0x59;
subdata[9] = ((JESDV & 7) << 5) | (S & 0x1F); /* S[4:0] */
subaddr[10] = 0x5A;
subdata[10] = ((HD & 1) << 7) | (CF & 0x1F); /* [7]=HD, CF[4:0] */
subaddr[11] = 0x5B;
subdata[11] = 0x00; /* reserved */
subaddr[12] = 0x5C;
subdata[12] = 0x00; /* reserved */
CheckSum = (DID & 0xFF) + (BID & 0xF) + (LID0 & 0x1F) + (device->tx->deframer->scramble) + (DeframerL & 0x1F) + (DeframerF & 0xFF) + (K & 0x1F) + (DeframerM & 0xFF)
+ (CS & 0x3) + (N & 0x1F) + (Np & 0x1F) + (S & 0x1F) + (HD & 1) + (CF & 0x1F) + (SUBCLASSV & 7) + (JESDV & 7);
subaddr[13] = 0x5D;
subdata[13] = CheckSum & 0xFFU; /* Checksum Lane 0 */
subaddr[14] = 0x6D;
subdata[14] = 0xA0U; /* Bad Disparity setup */
subaddr[15] = 0x6E;
subdata[15] = 0xA0U; /* Not in Table setup */
subaddr[16] = 0x6F;
subdata[16] = 0xA0U; /* UnExpected K character setup */
subaddr[17] = 0x75;
subdata[17] = CTRLREG0; /* CTRLREG 0 */
subaddr[18] = 0x76;
subdata[18] = CTRLREG1; /* CTRLREG 1 (Bytes per frame) */
subaddr[19] = 0x77;
subdata[19] = CTRLREG2; /* CTRLREG 2 */
subaddr[20] = 0x78;
subdata[20] = 0x01; /* # 4*K multiframes during ILAS */
subaddr[21] = 0x7A;
subdata[21] = 0xE0U; /* Setup JESD interrupt sources */
subaddr[22] = 0x7B;
subdata[22] = 0x08U; /* Sync assertion setup */
subaddr[23] = 0x7C;
subdata[23] = 0xFFU; /* Error count threshold */
subaddr[24] = 0x7D;
subdata[24] = DeframerLaneEnable & 0xFFU; /* Lane enable */
for (i = 0; i <= 24; i++)
{
/* Set deframer sub-register map address */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_ADDR, subaddr[i]);
/* Set deframer sub-register map data word */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_DATA, subdata[i]);
/* Set write enable to latch data into deframer sub register map */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_WR_EN, 0x01);
}
/* Deframer: Enable lane FIFO sync */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_SYSREF_FIFO_EN, 0x10);
return MYKONOS_ERR_OK;
}
/**
* \brief Sets up the chip for multichip sync, and cleans up after MCS.
*
* When working with multiple transceivers or even only one transceiver that requires deterministic
* latency between the Tx and observation and or main Rx JESD204B data path, Multichip sync is
* necessary. This function should be run after all transceivers are initialized.
*
* After the SYSREF pulses have been sent, call the MYKONOS_enableMultichipSync() function again with the
* enableMcs parameter set to 0. When enableMcs = 0, the MCS status will be returned in the mcsStatus
* parameter.
*
* Typical sequence:
* 1) Initialize all Mykonos devices in system using MYKONOS_initialize()
* 2) Run MYKONOS_enableMultichipSync with enableMcs = 1
* 3) Send at least 3 SYSREF pulses
* 4) Run MYKONOS_enableMultichipSync with enableMcs = 0
* 5) Load ARM, run ARM cals and continue to active Transmit/Receive
*
* mcsStatus | bit Description
* -----------|--------------------------------------------------------
* [0] | MCS JESD SYSREF Status (1 = sync occurred)
* [1] | MCS Digital Clocks Sync Status (1 = sync occurred)
* [2] | MCS CLKPLL SDM Sync Status (1 = sync occurred)
* [3] | MCS Device Clock divider Sync Status (1 = sync occurred)
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
* \param enableMcs =1 will enable the MCS state machine, =0 will allow reading back MCS status
* \param mcsStatus optional parameter, if pointer is not null the function Which will be populated with the mcsStatus word described in the table above.
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_enableMultichipSync(mykonosDevice_t *device, uint8_t enableMcs, uint8_t *mcsStatus)
{
uint8_t clkPllSdmBypass = 0;
uint8_t mcsEnable = 0x9B; /* [7] Keeps RF LO divider enabled, Enable MCS[4] and reset Device Clock divider[3], Digital clocks[1], and JESD204 SYSREF[0] */
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableMultichipSync()\n");
#endif
if (enableMcs)
{
/* If CLKPLL SDM not bypassed, reset CLKPLL SDM as well. */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_CLK_SYNTH_DIVIDER_INT_BYTE1, &clkPllSdmBypass, 0x40, 6);
if (clkPllSdmBypass == 0)
{
mcsEnable |= 0x04; /* enable MCS for CLKPLL SDM */
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_MCS_CONTROL, mcsEnable);
}
/* if mcsStatus is a valid pointer, return the MCS status */
if (mcsStatus != NULL)
{
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_MCS_STATUS, mcsStatus);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Enables or disables SYSREF to the transceiver's RX framer
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
* \param enable = '1' enables SYSREF to RX framer, '0' disables SYSREF to framer
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_enableSysrefToRxFramer(mykonosDevice_t *device, uint8_t enable)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableSysrefToRxFramer()\n");
#endif
if (enable)
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_FRAMER_SYSREF_FIFO_EN, 0x01, 0x01, 0);
}
else
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_FRAMER_SYSREF_FIFO_EN, 0x00, 0x01, 0);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Enables or disables SYSREF to the transceiver's Observation RX framer
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
* \param enable = '1' enables SYSREF to OBSRX framer, '0' disables SYSREF to framer
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_enableSysrefToObsRxFramer(mykonosDevice_t *device, uint8_t enable)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableSysrefToObsRxFramer()\n");
#endif
if (enable)
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_SYSREF_FIFO_EN, 0x01, 0x01, 0);
}
else
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_SYSREF_FIFO_EN, 0x00, 0x01, 0);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Enables or disables SYSREF to the transceiver's deframer
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
* \param enable = '1' enables SYSREF to deframer, '0' disables SYSREF to deframer
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_enableSysrefToDeframer(mykonosDevice_t *device, uint8_t enable)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableSysrefToDeframer()\n");
#endif
if (enable)
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_DEFRAMER_SYSREF_FIFO_EN, 0x01, 0x01, 0);
}
else
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_DEFRAMER_SYSREF_FIFO_EN, 0x00, 0x01, 0);
}
return MYKONOS_ERR_OK;
}
/**
* \brief Reads the transceiver's RX framer status
*
* <B>Dependencies</B>
* - device->spiSettings
*
* framerStatus | Description
* -------------|-----------------------------------------------------------------------------
* [7] | SYSREF phase error � a new SYSREF had different timing than the first that set the LMFC timing.
* [6] | Framer lane FIFO read/write pointer delta has changed. Can help debug issues with deterministic latency.
* [5] | Framer has received the SYSREF and has retimed its LMFC
* [4:2] | Framer ILAS state: 0=CGS, 1= 1st Multframe, 2= 2nd Multiframe, 3= 3rd Multiframe, 4= 4th multiframe, 5= Last multiframe, 6=invalid, 7= ILAS complete
* [1:0] | Framer Tx state: 0=CGS, 1= ILAS, 2 = ADC Data
*
* \param device is a pointer to the device settings structure
* \param framerStatus is the RX framer status byte read
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_READ_RXFRAMERSTATUS_NULL_PARAM Function parameter framerStatus has NULL pointer
*/
mykonosErr_t MYKONOS_readRxFramerStatus(mykonosDevice_t *device, uint8_t *framerStatus)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_readRxFramerStatus()\n");
#endif
if (framerStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READ_RXFRAMERSTATUS_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_READ_RXFRAMERSTATUS_NULL_PARAM));
return MYKONOS_ERR_READ_RXFRAMERSTATUS_NULL_PARAM;
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_STATUS_STRB, 0x01);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_STATUS_STRB, 0x00);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_FRAMER_STATUS, framerStatus);
return MYKONOS_ERR_OK;
}
/**
* \brief Reads the transceiver's Observation RX framer status
*
* <B>Dependencies</B>
* * - device->spiSettings
*
* obsFramerStatus | Description
* ----------------|-----------------------------------------------------------------------------
* [7] | SYSREF phase error � a new SYSREF had different timing than the first that set the LMFC timing.
* [6] | Framer lane FIFO read/write pointer delta has changed. Can help debug issues with deterministic latency.
* [5] | Framer has received the SYSREF and has retimed its LMFC
* [4:2] | Framer ILAS state: 0=CGS, 1= 1st Multframe, 2= 2nd Multiframe, 3= 3rd Multiframe, 4= 4th multiframe, 5= Last multiframe, 6=invalid, 7= ILAS complete
* [1:0] | Framer Tx state: 0=CGS, 1= ILAS, 2 = ADC Data
*
* \param device is a pointer to the device settings structure
* \param obsFramerStatus is the OBSRX framer status byte read
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_READ_ORXFRAMERSTATUS_NULL_PARAM Function parameter obsFramerStatus has NULL pointer
*/
mykonosErr_t MYKONOS_readOrxFramerStatus(mykonosDevice_t *device, uint8_t *obsFramerStatus)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_readOrxFramerStatus()\n");
#endif
if (obsFramerStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READ_ORXFRAMERSTATUS_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_READ_ORXFRAMERSTATUS_NULL_PARAM));
return MYKONOS_ERR_READ_ORXFRAMERSTATUS_NULL_PARAM;
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_STATUS_STRB, 0x01);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_STATUS_STRB, 0x00);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_STATUS, obsFramerStatus);
return MYKONOS_ERR_OK;
}
/**
* \brief Reads the transceiver's deframer status
*
* <B>Dependencies</B>
* - device->spiSettings
*
* deframerStatus | Bit Name | Description
* ----------------|--------------------------|---------------------------------------------
* [7] | Unused | Unused
* [6] | Deframer IRQ | This bit indicates that the IRQ interrupt was asserted.
* [5] | Deframer SYSREF Received | When this bit is set, it indicates that the SYSREF pulse was received by the deframer IP
* [4] | Deframer Receiver Error | This bit is set when PRBS has received an error.
* [3] | Valid Checksum | This bit is set when the received ILAS checksum is valid.
* [2] | EOF Event | This bit captures the internal status of the framer End of Frame event. Value =1 if framing error during ILAS
* [1] | EOMF Event | This bit captures the internal status of the framer End of Multi-Frame event. Value =1 if framing error during ILAS
* [0] | FS Lost | This bit captures the internal status of the framer Frame Symbol event. Value =1 if framing error during ILAS or user data (invalid replacement characters)
*
*
* \param device is a pointer to the device settings structure
* \param deframerStatus is the deframer status byte read
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_READ_DEFRAMERSTATUS_NULL_PARAM Function parameter deframerStatus has NULL pointer
*/
mykonosErr_t MYKONOS_readDeframerStatus(mykonosDevice_t *device, uint8_t *deframerStatus)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_readDeframerStatus()\n");
#endif
if (deframerStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READ_DEFRAMERSTATUS_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_READ_DEFRAMERSTATUS_NULL_PARAM));
return MYKONOS_ERR_READ_DEFRAMERSTATUS_NULL_PARAM;
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_STAT_STRB, 0x01);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_STAT_STRB, 0x00);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_STAT, deframerStatus);
return MYKONOS_ERR_OK;
}
/**
* \brief Reads the Mykonos JESD204b Deframer determinstic FIFO depth
*
* To verify that the deterministic latency FIFO is not close to a underflow or
* overflow condition, it is recommended to check the FIFO depth. If the FIFO
* is close to an overflow or underflow condition, it is possible that from
* power up to powerup, deterministic latency may not be met. If a underflow
* or overflow occurred, the data would still be correct, but would possibly
* slip by 1 multiframe (losing deterministic latency). To correct for an
* overflow/underflow, the BBIC would need to add delay from SYSREF until
* the first symbol in a multiframe
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
* \param fifoDepth Return value that describes the depth of the Mykonos
* deterministic latency deframer FIFO.
* \param readEnLmfcCount Returns the LMFC count value when the deterministic FIFO read enable was asserted.
* Counts at the Mykonos internal deframer PCLK frequency.
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_READ_DEFFIFODEPTH_NULL_PARAM Error: function parameter fifoDepth is a NULL pointer
* \retval MYKONOS_ERR_READ_DEFFIFODEPTH_LMFCCOUNT_NULL_PARAM Error: function parameter readEnLmfcCount is a NULL pointer
*
*/
mykonosErr_t MYKONOS_getDeframerFifoDepth(mykonosDevice_t *device, uint8_t *fifoDepth, uint8_t *readEnLmfcCount)
{
uint8_t fifoReadPtr = 0;
uint8_t fifoWritePtr = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getDeframerFifoDepth()\n");
#endif
if (fifoDepth == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READ_DEFFIFODEPTH_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_READ_DEFFIFODEPTH_NULL_PARAM));
return MYKONOS_ERR_READ_DEFFIFODEPTH_NULL_PARAM;
}
if (readEnLmfcCount == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READ_DEFFIFODEPTH_LMFCCOUNT_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_READ_DEFFIFODEPTH_LMFCCOUNT_NULL_PARAM));
return MYKONOS_ERR_READ_DEFFIFODEPTH_LMFCCOUNT_NULL_PARAM;
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_STAT_STRB, 0x01);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_STAT_STRB, 0x00);
/* read/write pointers are 7 bits, (0 - 127) */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_DEFRAMER_DET_FIFO_RD_ADDR, &fifoReadPtr, 0x7F, 0);
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_DEFRAMER_DET_FIFO_WR_ADDR, &fifoWritePtr, 0x7F, 0);
/* Adding 128 and modulus 128 handle the wrap cases where the read pointer
* is less than write pointer
*/
*fifoDepth = (((fifoReadPtr + 128) - fifoWritePtr) % 128);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_DET_FIFO_PHASE, readEnLmfcCount);
return MYKONOS_ERR_OK;
}
/**
* \brief Selects the PRBS type and enables or disables RX Framer PRBS20 generation
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
* \param polyOrder selects the PRBS type based on a two-bit value range from 0-3
* \param enable '1' = enables PRBS RX framer PRBS generator, '0' = disables PRBS generator
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_RX_FRAMER_INV_PRBS_POLYORDER_PARAM Invalid polyOrder parameter, use ENUM
*
*/
mykonosErr_t MYKONOS_enableRxFramerPrbs(mykonosDevice_t *device, mykonosPrbsOrder_t polyOrder, uint8_t enable)
{
uint8_t wrmask = 0;
uint8_t enableBit = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableRxFramerPrbs()\n");
#endif
enableBit = (enable > 0) ? 1 : 0;
if ((polyOrder == MYK_PRBS7) || (polyOrder == MYK_PRBS15) || (polyOrder == MYK_PRBS31))
{
wrmask = (polyOrder << 1) | enableBit;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RX_FRAMER_INV_PRBS_POLYORDER_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_RX_FRAMER_INV_PRBS_POLYORDER_PARAM));
return MYKONOS_ERR_RX_FRAMER_INV_PRBS_POLYORDER_PARAM;
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_PRBS20_CTL, wrmask);
return MYKONOS_ERR_OK;
}
/**
* \brief Selects the PRBS type and enables or disables OBSRX Framer PRBS20 generation
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
* \param polyOrder selects the PRBS type based on a two-bit value range from 0-3
* \param enable '1' = enables PRBS OBSRX framer PRBS generator, '0' = disables PRBS generator
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_OBSRX_FRAMER_INV_PRBS_POLYORDER_PARAM polyOrder parameter is not a valid value - use ENUM
*/
mykonosErr_t MYKONOS_enableObsRxFramerPrbs(mykonosDevice_t *device, mykonosPrbsOrder_t polyOrder, uint8_t enable)
{
uint8_t wrmask = 0;
uint8_t enableBit = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableObsRxFramerPrbs()\n");
#endif
enableBit = (enable > 0) ? 1 : 0;
if ((polyOrder == MYK_PRBS7) || (polyOrder == MYK_PRBS15) || (polyOrder == MYK_PRBS31))
{
wrmask = (polyOrder << 1) | enableBit;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OBSRX_FRAMER_INV_PRBS_POLYORDER_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_OBSRX_FRAMER_INV_PRBS_POLYORDER_PARAM));
return MYKONOS_ERR_OBSRX_FRAMER_INV_PRBS_POLYORDER_PARAM;
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_PRBS20_CTL, wrmask);
return MYKONOS_ERR_OK;
}
/**
* \brief Injects a PRBS error into the RX data path
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_rxInjectPrbsError(mykonosDevice_t *device)
{
uint8_t prbsControl = 0x00;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_rxInjectPrbsError()\n");
#endif
/* reading current PRBS20 control register contents */
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_FRAMER_PRBS20_CTL, &prbsControl);
/* setting bit 4 in framer PRBS20 control register and then clearing it for error injection */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_PRBS20_CTL, prbsControl |= 0x10);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_FRAMER_PRBS20_CTL, prbsControl &= ~0x10);
return MYKONOS_ERR_OK;
}
/**
* \brief Initiates a PRBS error injection into the Observation RX data path
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_obsRxInjectPrbsError(mykonosDevice_t *device)
{
uint8_t prbsControl = 0x00;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_obsRxInjectPrbsError()\n");
#endif
/* reading current PRBS20 control register contents */
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_PRBS20_CTL, &prbsControl);
/* setting bit 4 in framer PRBS20 control register and then clearing it for error injection */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_PRBS20_CTL, prbsControl |= 0x10);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_PRBS20_CTL, prbsControl &= ~0x10);
return MYKONOS_ERR_OK;
}
/**
* \brief Configures and enables or disables the transceiver's deframer PRBS checker
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
* \param lanes selects the lane for PRBS checking based on a 4-bit mask, where each weighted bit
* corresponds with a different lane selection as such: '1' = lane 0, '2' = lane 1, '4' = lane 2, '8' = lane 3
* \param polyOrder selects the PRBS type based on enum values (MYK_PRBS7, MYK_PRBS15, MYK_PRBS31)
* \param enable '1' = enables checking, '0' = disables checking
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_DEFRAMER_INV_PRBS_POLYORDER_PARAM Invalid polyOrder parameter - use ENUM
* \retval MYKONOS_ERR_DEFRAMER_INV_PRBS_ENABLE_PARAM Invalid enable (valid 0-1) or lanes (valid 0-15) parameter
*/
mykonosErr_t MYKONOS_enableDeframerPrbsChecker(mykonosDevice_t *device, uint8_t lanes, mykonosPrbsOrder_t polyOrder, uint8_t enable)
{
uint8_t wrmask = 0x00;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableDeframerPrbsChecker()\n");
#endif
if ((enable <= 0x01) && (lanes <= 0x0F))
{
if ((polyOrder == MYK_PRBS7) || (polyOrder == MYK_PRBS15) || (polyOrder == MYK_PRBS31))
{
wrmask = (lanes << 4) | (polyOrder << 1) | enable;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DEFRAMER_INV_PRBS_POLYORDER_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_DEFRAMER_INV_PRBS_POLYORDER_PARAM));
return MYKONOS_ERR_DEFRAMER_INV_PRBS_POLYORDER_PARAM;
}
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DEFRAMER_INV_PRBS_ENABLE_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_DEFRAMER_INV_PRBS_ENABLE_PARAM));
return MYKONOS_ERR_DEFRAMER_INV_PRBS_ENABLE_PARAM;
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_PRBS20_CTL, wrmask);
return MYKONOS_ERR_OK;
}
/**
* \brief Reads the deframer PRBS counters
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
* \param counterSelect selects the PRBS error counter to be read based on values between 0-3
* If counterSelect exceeds this value an error is thrown.
*
* \param prbsErrorCount is return value after reading the PRBS error count
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_READ_DEFRAMERPRBS_NULL_PARAM Function parameter prbsErrorCount has NULL pointer
* \retval MYKONOS_ERR_DEFRAMER_INV_PRBS_CNTR_SEL_PARAM if counterSelect is out of bounds
*/
mykonosErr_t MYKONOS_readDeframerPrbsCounters(mykonosDevice_t *device, uint8_t counterSelect, uint32_t *prbsErrorCount)
{
uint8_t wrmask = 0x00;
uint8_t errorCnt[3];
const uint8_t COUNTER_SATURATE = 0x40;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_readDeframerPrbsCounters()\n");
#endif
if (prbsErrorCount == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READ_DEFRAMERPRBS_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_READ_DEFRAMERPRBS_NULL_PARAM));
return MYKONOS_ERR_READ_DEFRAMERPRBS_NULL_PARAM;
}
if (counterSelect & ~0x03)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_DEFRAMER_INV_PRBS_CNTR_SEL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_DEFRAMER_INV_PRBS_CNTR_SEL_PARAM));
return MYKONOS_ERR_DEFRAMER_INV_PRBS_CNTR_SEL_PARAM;
}
else
{
wrmask = COUNTER_SATURATE | (counterSelect << 4);
*prbsErrorCount = 0x00000000;
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_PRBS20_STRB_CHKSUM_TYPE, wrmask);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_PRBS20_STRB_CHKSUM_TYPE, wrmask |= 0x01);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_PRBS20_STRB_CHKSUM_TYPE, wrmask &= ~0x01);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_PRBS20_ERR_CNTR_7_TO_0, &errorCnt[0]);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_PRBS20_ERR_CNTR_15_TO_8, &errorCnt[1]);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_PRBS20_ERR_CNTR_23_TO_16, &errorCnt[2]);
*prbsErrorCount = (uint32_t)(errorCnt[2] << 16) | (uint32_t)(errorCnt[1] << 8) | (uint32_t)(errorCnt[0]);
return MYKONOS_ERR_OK;
}
/**
* \brief Clears the deframer/deserializer PRBS counters
*
* <B>Dependencies</B>
* - device->spiSettings
*
* \param device is a pointer to the device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_clearDeframerPrbsCounters(mykonosDevice_t *device)
{
uint8_t spiReg = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_clearDeframerPrbsCounters()\n");
#endif
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_PRBS20_CTL, &spiReg);
spiReg &= ~0x08; //make sure PRBS clear bit is 0
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_PRBS20_CTL, (spiReg | 0xF8)); //clear counters for all lanes
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_PRBS20_CTL, spiReg); //set reg back to previous value
return MYKONOS_ERR_OK;
}
/**
* \brief Reads the lane 0 JESD204B deframer configuration and compares it against the ILAS received values
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is a pointer to the device settings structure
* \param mismatch [15-0] is a bit-encoded word which for mismatch[15] = '0' = no mismatch, '1' = mismatch for one or more parameters
* mismatch bits [14-0] are aligned with the mykonosJesd204bLane0Config_t structure members starting at '0' = DID. The aligned bit is set to
* '1' if the configuration parameter does not agree with its corresponding received ILAS value, otherwise '0' if they agree.
*
* The bit assignments for the 16-bit word are:
* mismatch | bit description
* -----------|--------------------------------------------------------
* [0] | JESD204B DID: device ID
* [1] | JESD204B BID: bank ID
* [2] | JESD204B LID0: lane ID
* [3] | JESD204B L: lanes per data converter
* [4] | JESD204B SCR: scramble setting
* [5] | JESD204B F: octets per frame
* [6] | JESD204B K: frames per multiframe
* [7] | JESD204B M: number of data converters
* [8] | JESD204B N: data converter sample resolution
* [9] | JESD204B CS: number of control bits transferred per sample per frame
* [10] | JESD204B NP: JESD204B word size based on the highest data converter resolution
* [11] | JESD204B S: number of samples per converter per frame
* [12] | JESD204B CF: '0' = control bits appended to each sample, '1' = control bits appended to end of frame
* [13] | JESD204B HD: high density bit, where '0' = samples are contained with single lane, '1' = samples are divided over more than one lane
* [14] | JESD204B FCHK0: configuration checksum OK bit. where '1' = fail, '0' = pass
* [15] | MISMATCH DETECTED BIT: bits 0-14 are ored together to set this bit
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_JESD204B_ILAS_MISMATCH_NULLPARAM Function parameter mismatch has NULL pointer
*/
mykonosErr_t MYKONOS_jesd204bIlasCheck(mykonosDevice_t *device, uint16_t *mismatch)
{
uint8_t i = 0;
uint8_t ilasdata[15] = {0};
uint8_t cfgdata[15] = {0};
mykonosJesd204bLane0Config_t lane0ILAS;
mykonosJesd204bLane0Config_t lane0Cfg;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_jesd204bIlasCheck()\n");
#endif
if (mismatch == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_JESD204B_ILAS_MISMATCH_NULLPARAM,
getMykonosErrorMessage(MYKONOS_ERR_JESD204B_ILAS_MISMATCH_NULLPARAM));
return MYKONOS_ERR_JESD204B_ILAS_MISMATCH_NULLPARAM;
}
*mismatch = 0;
/* setting deframer read received ILAS data */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_WR_EN, 0x00);
/* reading deframer received ILAS register contents into array */
for (i = 0; i < 15; i++)
{
/* setting the deframer sub-address for received ilas data */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_ADDR, MYKONOS_SUBADDR_DEFRAMER_LANE0_ILAS_RECVD + i);
/* reading the received ILAS data into byte array */
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_DATA, &ilasdata[i]);
}
/* reading deframer config register contents into array */
for (i = 0; i < 15; i++)
{
/* setting the deframer sub-address for received ilas data */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_ADDR, MYKONOS_SUBADDR_DEFRAMER_LANE0_ILAS_CFG + i);
/* reading the received ILAS data into byte array */
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_DEFRAMER_DATA, &cfgdata[i]);
}
/* loading the structures with the read values for easier reading when doing compares */
lane0ILAS.DID = ilasdata[0];
lane0ILAS.BID = ilasdata[1] & 0x0F;
lane0ILAS.LID0 = ilasdata[2] & 0x1F;
lane0ILAS.L = ilasdata[3] & 0x1F;
lane0ILAS.SCR = ilasdata[3] >> 7;
lane0ILAS.F = ilasdata[4];
lane0ILAS.K = ilasdata[5] & 0x1F;
lane0ILAS.M = ilasdata[6];
lane0ILAS.N = ilasdata[7] & 0x1F;
lane0ILAS.CS = ilasdata[7] >> 6;
lane0ILAS.NP = ilasdata[8] & 0x1F;
lane0ILAS.S = ilasdata[9] & 0x1F;
lane0ILAS.CF = ilasdata[10] & 0x1F;
lane0ILAS.HD = ilasdata[10] >> 7;
lane0ILAS.FCHK0 = ilasdata[13];
lane0Cfg.DID = cfgdata[0];
lane0Cfg.BID = cfgdata[1] & 0x0F;
lane0Cfg.LID0 = cfgdata[2] & 0x0F;
lane0Cfg.L = cfgdata[3] & 0x1F;
lane0Cfg.SCR = cfgdata[3] >> 7;
lane0Cfg.F = cfgdata[4];
lane0Cfg.K = cfgdata[5] & 0x1F;
lane0Cfg.M = cfgdata[6];
lane0Cfg.N = cfgdata[7] & 0x1F;
lane0Cfg.CS = cfgdata[7] >> 6;
lane0Cfg.NP = cfgdata[8] & 0x1F;
lane0Cfg.S = cfgdata[9] & 0x1F;
lane0Cfg.CF = cfgdata[10] & 0x1F;
lane0Cfg.HD = cfgdata[10] >> 7;
lane0Cfg.FCHK0 = cfgdata[13];
/* performing ILAS mismatch check */
if (lane0ILAS.DID != lane0Cfg.DID)
{
*mismatch |= 0x0001;
}
if (lane0ILAS.BID != lane0Cfg.BID)
{
*mismatch |= 0x0002;
}
if (lane0ILAS.LID0 != lane0Cfg.LID0)
{
*mismatch |= 0x0004;
}
if (lane0ILAS.L != lane0Cfg.L)
{
*mismatch |= 0x0008;
}
if (lane0ILAS.SCR != lane0Cfg.SCR)
{
*mismatch |= 0x0010;
}
if (lane0ILAS.F != lane0Cfg.F)
{
*mismatch |= 0x0020;
}
if (lane0ILAS.K != lane0Cfg.K)
{
*mismatch |= 0x0040;
}
if (lane0ILAS.M != lane0Cfg.M)
{
*mismatch |= 0x0080;
}
if (lane0ILAS.N != lane0Cfg.N)
{
*mismatch |= 0x0100;
}
if (lane0ILAS.CS != lane0Cfg.CS)
{
*mismatch |= 0x0200;
}
if (lane0ILAS.NP != lane0Cfg.NP)
{
*mismatch |= 0x0400;
}
if (lane0ILAS.S != lane0Cfg.S)
{
*mismatch |= 0x0800;
}
if (lane0ILAS.CF != lane0Cfg.CF)
{
*mismatch |= 0x1000;
}
if (lane0ILAS.HD != lane0Cfg.HD)
{
*mismatch |= 0x2000;
}
if (lane0ILAS.FCHK0 != lane0Cfg.FCHK0)
{
*mismatch |= 0x4000;
}
if (*mismatch)
{
*mismatch |= 0x8000;
CMB_writeToLog(ADIHAL_LOG_WARNING, device->spiSettings->chipSelectIndex, MYKONOS_ERR_JESD204B_ILAS_MISMATCH,
getMykonosErrorMessage(MYKONOS_ERR_JESD204B_ILAS_MISMATCH));
}
return MYKONOS_ERR_OK;
}
/**
* \brief Select data to inject into the Rx framer input (ADC data or Loopback data from deframer output)
*
* This function allows inputting deframed data (IQ samples) from the Tx data path into the Rx framer.
* For this to work correctly, the IQ data rate of the Tx data path must match the Rx IQ data rate.
* Framer/Deframer JESD204 config parameters can vary as long as the Rx and Tx IQ rates match.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device A pointer to the device settings structure
* \param dataSource 0 = ADC data at Rx Framer input, 1 = Deframed Tx JESD204 IQ samples input into Rx framer
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_setRxFramerDataSource(mykonosDevice_t *device, uint8_t dataSource)
{
uint8_t enableLoopBack = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setRxFramerDataSource()\n");
#endif
enableLoopBack = (dataSource > 0) ? 1 : 0;
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_FRAMER_CONFIG_LOOPBACK_XBAR_REV, enableLoopBack, 0x10, 4);
return MYKONOS_ERR_OK;
}
/**
* \brief Select data to inject into the ObsRx framer input (ADC data or Loopback data from deframer output)
*
* This function allows inputting deframed data (IQ samples) from the Tx data path into the Obs Rx framer.
* For this to work correctly, the IQ data rate of the Tx data path must match the ORx IQ data rate.
* Framer/Deframer JESD204 config parameters can vary as long as the Obs Rx and Tx IQ rates match.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device A pointer to the device settings structure
* \param dataSource 0 = ADC data at ObsRx Framer input, 1 = Deframed Tx JESD204 IQ samples input into Obs Rx framer
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_setObsRxFramerDataSource(mykonosDevice_t *device, uint8_t dataSource)
{
uint8_t enableLoopBack = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setObsRxFramerDataSource()\n");
#endif
enableLoopBack = (dataSource > 0) ? 1 : 0;
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_OBS_FRAMER_CONFIG_LOOPBACK_XBAR_REV, enableLoopBack, 0x10, 4);
return MYKONOS_ERR_OK;
}
/**
* \brief Runs the Mykonos initialization calibrations
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* ENUM mykonosInitCalibrations_t can be used to OR together to generate the calMask parameter.
*
* calMask Bit | Calibration
* ------------|----------------------
* 0 | Tx BB Filter
* 1 | ADC Tuner
* 2 | TIA 3dB Corner
* 3 | DC Offset
* 4 | Tx Attenuation Delay
* 5 | Rx Gain Delay
* 6 | Flash Cal
* 7 | Path Delay
* 8 | Tx LO Leakage Internal
* 9 | Tx LO Leakage External
* 10 | Tx QEC Init
* 11 | LoopBack Rx LO Delay
* 12 | LoopBack Rx Rx QEC Init
* 13 | Rx LO Delay
* 14 | Rx QEC Init
* 15 | DPD Init
* 16 | Tx CLGC (Closed Loop Gain Control)
* 17 | Tx VSWR Init
* [31-18] | Ignored - Future space for new calibrations
*
* \param device A pointer to the device settings structure
* \param calMask A bitmask that informs the Mykonos ARM processor which calibrations to run
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_runInitCals(mykonosDevice_t *device, uint32_t calMask)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
const uint8_t RUNINITCALS_OPCODE = 0x02;
uint8_t payload[4] = {0, 0, 0, 0};
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_runInitCals()\n");
#endif
payload[0] = (uint8_t)(calMask & 0xFF);
payload[1] = (uint8_t)((calMask >> 8) & 0xFF);
payload[2] = (uint8_t)((calMask >> 16) & 0xFF);
payload[3] = (uint8_t)((calMask >> 24) & 0xFF);
retVal = MYKONOS_sendArmCommand(device, RUNINITCALS_OPCODE, &payload[0], sizeof(payload));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Blocking waits for the Mykonos initialization calibrations to complete
*
* The *errorFlag and *errorCode parameters are optional. If the pointers are
* set to null, no values will be returned. If the function returns an error
* that the init calibration failed, use the MYKONOS_getInitCalStatus() function
* to get more detailed information about why the init cal failed.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device A pointer to the device settings structure
* \param timeoutMs A timeout value in Ms to wait for the calibrations to complete
* \param errorFlag A 3bit error flag that helps identify what went wrong in the ARM. 0=No Error
* \param errorCode The value represents the init calibration object ID that caused a failure.
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_WAIT_INITCALS_ARMERROR ARM returned error unrelated to init cals
*/
mykonosErr_t MYKONOS_waitInitCals(mykonosDevice_t *device, uint32_t timeoutMs, uint8_t *errorFlag, uint8_t *errorCode)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
mykonosErr_t retValCalStatus = MYKONOS_ERR_OK;
uint8_t cmdStatusByte = 0;
uint8_t _errorFlag = 0; /* Local version of parameter */
mykonosInitCalStatus_t initCalStatus = {0};
const uint8_t INITCALS_CAL_ERROR = 0x07;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_waitInitCals()\n");
#endif
/* Clear before making any calls that can throw errors */
if (errorFlag != NULL)
{
*errorFlag = 0;
}
/* Clear before making any calls that can throw errors */
if (errorCode != NULL)
{
*errorCode = 0;
}
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_RUNINIT_OPCODE, timeoutMs, &cmdStatusByte);
_errorFlag = cmdStatusByte >> 1; /* remove pending bit in [0], error flag is in bits [3:1] */
if (errorFlag != NULL)
{
*errorFlag = _errorFlag;
}
if (retVal != MYKONOS_ERR_OK)
{
if (_errorFlag == INITCALS_CAL_ERROR)
{
/* return Error code if a calibration had an error */
retValCalStatus = MYKONOS_getInitCalStatus(device, &initCalStatus);
if (retValCalStatus == MYKONOS_ERR_OK)
{
if (errorCode != NULL)
{
*errorCode = initCalStatus.initErrCal;
}
}
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_WAIT_INITCALS_CALFAILED,
getMykonosErrorMessage(MYKONOS_ERR_WAIT_INITCALS_CALFAILED));
return MYKONOS_ERR_WAIT_INITCALS_CALFAILED;
}
else if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_WAIT_INITCALS_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_WAIT_INITCALS_ARMERROR));
return MYKONOS_ERR_WAIT_INITCALS_ARMERROR;
}
}
/* Same logic if MYKONOS_waitArmCmdStatus() did not return an error, but cmdStatusByte shows an ARM error */
if (_errorFlag == INITCALS_CAL_ERROR)
{
/* return Error code if a calibration had an error */
retValCalStatus = MYKONOS_getInitCalStatus(device, &initCalStatus);
if (retValCalStatus == MYKONOS_ERR_OK)
{
if (errorCode != NULL)
{
*errorCode = initCalStatus.initErrCal;
}
}
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_WAIT_INITCALS_CALFAILED,
getMykonosErrorMessage(MYKONOS_ERR_WAIT_INITCALS_CALFAILED));
return MYKONOS_ERR_WAIT_INITCALS_CALFAILED;
}
else if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_WAIT_INITCALS_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_WAIT_INITCALS_ARMERROR));
return MYKONOS_ERR_WAIT_INITCALS_ARMERROR;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Aborts from an on going ARM init calibration operation.
*
* The ARM init calibrations can take several seconds. If for any reason the Baseband processor
* needs to stop the running ARM calibration sequence, call this function. The *calsCompleted
* parameter is an option parameter that will return which cals completed before the abort
* command was received. If *calsCompleted is a null pointer, no value will be returned.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device A pointer to the device settings structure
* \param calsCompleted A bitmask is returned which describes which cals completed during the previous
* MYKONOS_runInitCals() call.
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_ABORT_INITCALS_NULL_PARAM Function parameter calsCompleted has NULL pointer
*/
mykonosErr_t MYKONOS_abortInitCals(mykonosDevice_t *device, uint32_t *calsCompleted)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint32_t timeoutMs = 1000; //1 second timeout
uint8_t cmdStatusByte = 0;
uint8_t payload = 0x43; /* object ID to get INIT_CAL_DONE status */
uint8_t calCompleteBitField[4] = {0, 0, 0, 0};
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_ABORT_OPCODE, 0, 0);
if (retVal != MYKONOS_ERR_OK)
{
return retVal; /* Will return if mailbox busy bit is busy for more than 2 seconds */
}
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_ABORT_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
return retVal; /* Will return if timeout occurred */
}
/* Read back Calibration Completion status */
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &payload, sizeof(payload));
if (retVal != MYKONOS_ERR_OK)
{
return retVal; /* Will return if mailbox busy bit is busy for more than 2 seconds */
}
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
return retVal; /* Will return if timeout occurred */
}
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_DATA_ADDR + 4), &calCompleteBitField[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
if (calsCompleted != NULL)
{
*calsCompleted = ((uint32_t)(calCompleteBitField[3]) << 24) | ((uint32_t)(calCompleteBitField[2]) << 16) | ((uint32_t)(calCompleteBitField[1]) << 8)
| ((uint32_t)(calCompleteBitField[0]));
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ABORT_INITCALS_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_ABORT_INITCALS_NULL_PARAM));
return MYKONOS_ERR_ABORT_INITCALS_NULL_PARAM;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Gets the device initialization calibration status
*
* This function requests the init cal status information from the Mykonos ARM
* processor. The ARM returns information including a bitmask that describes
* which calibrations have completed during the last cal of runInitCals, as
* well as the init cals that have run successfully since loading the ARM. If
* an ARM error does occur during one of the init calibrations, the initErrCal
* member returns the object ID of the failing calibration. The initErrCode
* returns the specific ARM error code that caused that calibration to fail.
* The calsMinimum structure member describes the minimum set of init calibrations
* required to complete by the ARM before it will allow the device to move to
* the radioOn state.
*
* <B>Dependencies</B>
* - device->spiSettings
* - device->spiSettings->chipSelectIndex
*
* \param device A pointer to the device settings structure
* \param initCalStatus Pointer to a structure that returns cal status information such as cals completed since last run, and init error codes
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETINITCALSTATUS_NULL_PARAM if initCalStatus parameter is a NULL pointer
* \retval MYKONOS_ERR_GETINITCALSTATUS_ARMERROR if ARM returned an error while requesting the init cal status information
*/
mykonosErr_t MYKONOS_getInitCalStatus(mykonosDevice_t *device, mykonosInitCalStatus_t *initCalStatus)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t cmdStatusByte = 0;
uint8_t calStatusArray[14] = {0};
uint8_t payload[1] = {MYKONOS_ARM_OBJECTID_INIT_CAL_DONE};
uint32_t timeoutMs = 1000;
/* Verify function parameter pointer is not NULL */
if (initCalStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETINITCALSTATUS_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETINITCALSTATUS_NULL_PARAM));
return MYKONOS_ERR_GETINITCALSTATUS_NULL_PARAM;
}
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &payload[0], sizeof(payload));
if (retVal != MYKONOS_ERR_OK)
{
return retVal; /* Will return if mailbox busy bit is busy for more than 2 seconds */
}
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETINITCALSTATUS_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_GETINITCALSTATUS_ARMERROR));
return MYKONOS_ERR_GETINITCALSTATUS_ARMERROR;
}
return retVal; /* Will return if timeout occurred */
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETINITCALSTATUS_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_GETINITCALSTATUS_ARMERROR));
return MYKONOS_ERR_GETINITCALSTATUS_ARMERROR;
}
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR, &calStatusArray[0], sizeof(calStatusArray), 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
initCalStatus->calsDoneLifetime = ((uint32_t)(calStatusArray[3]) << 24) | ((uint32_t)(calStatusArray[2]) << 16) | ((uint32_t)(calStatusArray[1]) << 8)
| ((uint32_t)(calStatusArray[0]));
initCalStatus->calsDoneLastRun = ((uint32_t)(calStatusArray[7]) << 24) | ((uint32_t)(calStatusArray[6]) << 16) | ((uint32_t)(calStatusArray[5]) << 8)
| ((uint32_t)(calStatusArray[4]));
initCalStatus->calsMinimum = ((uint32_t)(calStatusArray[11]) << 24) | ((uint32_t)(calStatusArray[10]) << 16) | ((uint32_t)(calStatusArray[9]) << 8)
| ((uint32_t)(calStatusArray[8]));
initCalStatus->initErrCal = calStatusArray[12];
initCalStatus->initErrCode = calStatusArray[13];
return MYKONOS_ERR_OK;
}
/**
* \brief Instructs the ARM processor to move the radio state to the Radio ON state
*
* When the ARM to the Radio On state, the enabled Rx and Tx signal chains will power up,
* and the ARM tracking calibrations will begin. To exit this state back to a low power,
* offline state, call the MYKONOS_radioOff() function.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_ARM_RADIOON_FAILED ARM returned error running this command
*/
mykonosErr_t MYKONOS_radioOn(mykonosDevice_t *device)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint32_t timeoutMs = 1000; //1 second timeout
uint8_t cmdStatusByte = 0;
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_RADIOON_OPCODE, 0, 0);
if (retVal != MYKONOS_ERR_OK)
{
return retVal; /* Will return if mailbox busy bit is busy for more than 2 seconds */
}
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_RADIOON_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ARM_RADIOON_FAILED,
getMykonosErrorMessage(MYKONOS_ERR_ARM_RADIOON_FAILED));
return MYKONOS_ERR_ARM_RADIOON_FAILED;
}
return retVal; /* Will return if timeout occurred */
}
/* If ARM command error flag is 2, the command was not accepted, RUN_INIT must complete first */
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ARM_RADIOON_FAILED, getMykonosErrorMessage(MYKONOS_ERR_ARM_RADIOON_FAILED));
return MYKONOS_ERR_ARM_RADIOON_FAILED;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Instructs the ARM processor to move the radio state to the off state
*
* When the ARM moves from the Radio On state to Radio Off (Idle) the ARM tracking calibrations
* are stopped and the TxEnable/RxEnable, etc GPIO control pins will be ignored. This will also
* keep the receive and transmit chains powered down until the MYKONOS_radioOn() function
* is called again.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_ARM_RADIOOFF_FAILED ARM returned error running this command
*/
mykonosErr_t MYKONOS_radioOff(mykonosDevice_t *device)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
const uint8_t ABORTCAL_OPCODE = 0x00;
uint32_t timeoutMs = 1000; //1 second timeout
uint8_t cmdStatusByte = 0;
retVal = MYKONOS_sendArmCommand(device, ABORTCAL_OPCODE, 0, 0);
if (retVal != MYKONOS_ERR_OK)
{
return retVal; /* Will return if mailbox busy bit is busy for more than 2 seconds */
}
retVal = MYKONOS_waitArmCmdStatus(device, ABORTCAL_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ARM_RADIOOFF_FAILED,
getMykonosErrorMessage(MYKONOS_ERR_ARM_RADIOOFF_FAILED));
return MYKONOS_ERR_ARM_RADIOOFF_FAILED;
}
return retVal; /* Will return if timeout occurred */
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ARM_RADIOOFF_FAILED, getMykonosErrorMessage(MYKONOS_ERR_ARM_RADIOOFF_FAILED));
return MYKONOS_ERR_ARM_RADIOOFF_FAILED;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Reads the current ARM radio state
*
* Currently, *radioStatus only returns data in the lower 8 bits, but
* is defined as a 32bit status to allow for more information to be returned
* in the future.
*
* radioStatus | Bitfield
* -------------|------------------
* [1:0] | State[1:0], 0=POWERUP, 1=READY, 2=INIT, 3=RADIO ON
* [3:2] | unused
* [4] | TDD_nFDD , 1= TDD, 0=FDD
* [7:5] | unused
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
* \param radioStatus The current ARM radio state is returned in this parameter
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETRADIOSTATE_NULL_PARAM Function parameter radioStatus has a NULL pointer
*/
mykonosErr_t MYKONOS_getRadioState(mykonosDevice_t *device, uint32_t *radioStatus)
{
uint8_t status = 0;
/* if radioStatus is not null */
if (radioStatus != NULL)
{
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_ARM_OPCODE_STATE_0, &status);
*radioStatus = (uint32_t)status;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETRADIOSTATE_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETRADIOSTATE_NULL_PARAM));
return MYKONOS_ERR_GETRADIOSTATE_NULL_PARAM;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Sets which ARM tracking cals are enabled during the radioOn state.
*
* This command must be called during radioOff state. If called during radioOn,
* an error will be returned. The enum mykonosTrackingCalibrations_t can be used to
* OR together to form the enableMask parameter.
*
* enableMask | Bit description
* ------------|------------
* [0] | TRACK_RX1_QEC
* [1] | TRACK_RX2_QEC
* [2] | TRACK_ORX1_QEC
* [3] | TRACK_ORX2_QEC
* [4] | TRACK_TX1_LOL
* [5] | TRACK_TX2_LOL
* [6] | TRACK_TX1_QEC
* [7] | TRACK_TX2_QEC
* [8] | TRACK_TX1_DPD
* [9] | TRACK_TX2_DPD
* [10] | TRACK_TX1_CLGC
* [11] | TRACK_TX2_CLGC
* [12] | TRACK_TX1_VSWR
* [13] | TRACK_TX2_VSWR
* [16] | TRACK_ORX1_QEC_SNLO
* [17] | TRACK_ORX2_QEC_SNLO
* [18] | TRACK_SRX_QEC
*
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
* \param enableMask A bitmask that selects which cals to run during radioOn state.
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_EN_TRACKING_CALS_ARMSTATE_ERROR Error: Tracking cals can only be enabled in the radioOff state.
* \retval MYKONOS_ERR_EN_TRACKING_CALS_ARMERROR ARM returned error when executing this command
*/
mykonosErr_t MYKONOS_enableTrackingCals(mykonosDevice_t *device, uint32_t enableMask)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t armData[4] = {0, 0, 0, 0};
uint8_t extData[4] = {MYKONOS_ARM_OBJECTID_CALSCHEDULER, 0x00, 0x00, 0x04}; //Target ARM Object ID, Offset LSB, Offset MSB, Length
uint32_t timeoutMs = 0;
uint8_t cmdStatusByte = 0;
uint32_t radioStatus = 0;
uint8_t allowTx1AttenUpdates = 0;
uint8_t allowTx2AttenUpdates = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableTrackingCals()\n");
#endif
/* read radio state to make sure ARM is in radioOff /IDLE */
retVal = MYKONOS_getRadioState(device, &radioStatus);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* throw error if not in radioOff/IDLE state */
if ((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_IDLE)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_EN_TRACKING_CALS_ARMSTATE_ERROR,
getMykonosErrorMessage(MYKONOS_ERR_EN_TRACKING_CALS_ARMSTATE_ERROR));
return MYKONOS_ERR_EN_TRACKING_CALS_ARMSTATE_ERROR;
}
/* In the ARM, DPD tracking and CLGC tracking share the same cal. Must
* set extra enable bits in ARM Memory to tell which cal to run. */
retVal = enableDpdTracking(device, ((enableMask & TRACK_TX1_DPD) ? 1 : 0), ((enableMask & TRACK_TX2_DPD) ? 1 : 0));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
if (((device->profilesValid & TX_PROFILE_VALID) > 0) && (device->tx->clgcConfig != NULL))
{
allowTx1AttenUpdates = device->tx->clgcConfig->allowTx1AttenUpdates;
allowTx2AttenUpdates = device->tx->clgcConfig->allowTx2AttenUpdates;
}
else
{
allowTx1AttenUpdates = 0;
allowTx2AttenUpdates = 0;
}
retVal = enableClgcTracking(device, ((allowTx1AttenUpdates > 0) ? 1 : 0), ((allowTx2AttenUpdates > 0) ? 1 : 0));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armData[0] = (uint8_t)(enableMask & 0xFF);
armData[1] = (uint8_t)((enableMask >> 8) & 0xFF);
armData[2] = (uint8_t)((enableMask >> 16) & 0xFF);
armData[3] = (uint8_t)((enableMask >> 24) & 0xFF);
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR, &armData[0], sizeof(armData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_WRITECFG_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000;
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_WRITECFG_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_EN_TRACKING_CALS_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_EN_TRACKING_CALS_ARMERROR));
return MYKONOS_ERR_EN_TRACKING_CALS_ARMERROR;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_EN_TRACKING_CALS_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_EN_TRACKING_CALS_ARMERROR));
return MYKONOS_ERR_EN_TRACKING_CALS_ARMERROR;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Reschedules a tracking calibration to run. Can be used to
* override the tracking calibration timer and force a tracking calibration to run.
* Can be used to reschedule a tracking calibration after a tracking calibration
* error has been detected. Only one tracking calibration object can be scheduled
* per channel per function call.
*
* \pre Command can be called in either Radio On or Radio Off state. ARM must be
* initialized.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
* \param trackingCal Selects the tracking calibration to schedule.
*
* \retval MYKONOS_ERR_RESCHEDULE_TRACK_CAL_INV Not valid calibration passed
* \retval MYKONOS_ERR_RESCHEDULE_TRACK_ARMERRFLAG ARM error
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_rescheduleTrackingCal(mykonosDevice_t *device, mykonosTrackingCalibrations_t trackingCal)
{
uint32_t retVal = MYKONOS_ERR_OK;
uint8_t extData[3] = {0};
uint8_t cmdStatusByte = 0;
uint32_t timeoutMs = 1000;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_rescheduleTrackingCal()\n");
#endif
switch (trackingCal)
{
case TRACK_RX1_QEC:
extData[1] = MYKONOS_ARM_OBJECTID_RXQEC_TRACKING;
extData[2] = 0;
break;
case TRACK_RX2_QEC:
extData[1] = MYKONOS_ARM_OBJECTID_RXQEC_TRACKING;
extData[2] = 1;
break;
case TRACK_ORX1_QEC:
extData[1] = MYKONOS_ARM_OBJECTID_ORXQEC_TRACKING;
extData[2] = 0;
break;
case TRACK_ORX2_QEC:
extData[1] = MYKONOS_ARM_OBJECTID_ORXQEC_TRACKING;
extData[2] = 1;
break;
case TRACK_TX1_LOL:
extData[1] = MYKONOS_ARM_OBJECTID_TXLOL_TRACKING;
extData[2] = 0;
break;
case TRACK_TX2_LOL:
extData[1] = MYKONOS_ARM_OBJECTID_TXLOL_TRACKING;
extData[2] = 1;
break;
case TRACK_TX1_QEC:
extData[1] = MYKONOS_ARM_OBJECTID_TXQEC_TRACKING;
extData[2] = 0;
break;
case TRACK_TX2_QEC:
extData[1] = MYKONOS_ARM_OBJECTID_TXQEC_TRACKING;
extData[2] = 1;
break;
case TRACK_TX1_DPD:
extData[1] = MYKONOS_ARM_OBJECTID_DPDCONFIG;
extData[2] = 0;
break;
case TRACK_TX2_DPD:
extData[1] = MYKONOS_ARM_OBJECTID_DPDCONFIG;
extData[2] = 1;
break;
case TRACK_TX1_CLGC:
extData[1] = MYKONOS_ARM_OBJECTID_CLGCCONFIG;
extData[2] = 0;
break;
case TRACK_TX2_CLGC:
extData[1] = MYKONOS_ARM_OBJECTID_CLGCCONFIG;
extData[2] = 1;
break;
case TRACK_TX1_VSWR:
extData[1] = MYKONOS_ARM_OBJECTID_VSWRCONFIG;
extData[2] = 0;
break;
case TRACK_TX2_VSWR:
extData[1] = MYKONOS_ARM_OBJECTID_VSWRCONFIG;
extData[2] = 1;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESCHEDULE_TRACK_CAL_INV,
getMykonosErrorMessage(MYKONOS_ERR_RESCHEDULE_TRACK_CAL_INV));
return MYKONOS_ERR_RESCHEDULE_TRACK_CAL_INV;
}
extData[0] = MYKONOS_ARM_OBJECTID_TRACKING_CAL_PENDING;
/* sending ARM command */
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_SET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* check for completion */
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_SET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESCHEDULE_TRACK_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_RESCHEDULE_TRACK_ARMERRFLAG));
return MYKONOS_ERR_RESCHEDULE_TRACK_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESCHEDULE_TRACK_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_RESCHEDULE_TRACK_ARMERRFLAG));
return MYKONOS_ERR_RESCHEDULE_TRACK_ARMERRFLAG;
}
return retVal;
}
/**
* \brief Suspend or resume tracking calibrations in RADIO_ON.
*
* This function is used to suspend or resume active tracking calibrations based on the passed mask trackingCals.
*
* \pre Command can be called in Radio On.
*
* trackCals[bit] | Bit description
* ----------------|------------
* [0] | TRACK_RX1_QEC
* [1] | TRACK_RX2_QEC
* [2] | TRACK_ORX1_QEC
* [3] | TRACK_ORX2_QEC
* [4] | TRACK_TX1_LOL
* [5] | TRACK_TX2_LOL
* [6] | TRACK_TX1_QEC
* [7] | TRACK_TX2_QEC
* [8] | TRACK_TX1_DPD
* [9] | TRACK_TX2_DPD
* [10] | TRACK_TX1_CLGC
* [11] | TRACK_TX2_CLGC
* [12] | TRACK_TX1_VSWR
* [13] | TRACK_TX2_VSWR
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
* \param trackCals Selects the tracking calibrations to suspend or resume during the radio ON state.
* mykonosTrackingCalibrations_t enumerated types are or'd together to form the tracking calibration
* mask word. If the bit is high the calibration will resume, if the bit is low the calibration will be suspended.
*
* \retval MYKONOS_ERR_SETSTATEALL_TRACK_CAL_INV Not valid calibration mask passed for trackCals
* \retval MYKONOS_ERR_SETSTATEALL_TRACK_ARMERRFLAG ARM error
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_setAllTrackCalState(mykonosDevice_t *device, uint32_t trackCals)
{
uint32_t retVal = MYKONOS_ERR_OK;
uint8_t cfgData[4] = {0};
uint8_t extData[3] = {MYKONOS_ARM_OBJECTID_TRACKING_CAL_SUSPEND_RESUME, 0x0F, 0};
uint8_t cmdStatusByte = 0;
uint32_t enTrackCal = 0x00;
uint32_t timeoutMs = 1000;
const uint32_t TRACKING_MASK = 0x3FFF;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setAllTrackCalState()\n");
#endif
/* reading enabled tracking calibrations */
retVal = MYKONOS_getEnabledTrackingCals(device, &enTrackCal);
/* trackingCalMask check */
if (((trackCals | enTrackCal) > enTrackCal) || (trackCals > TRACKING_MASK))
{
/* invalid cal mask error return, tracking cal not enable so we can not resume it */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETSTATEALL_TRACK_CAL_INV,
getMykonosErrorMessage(MYKONOS_ERR_SETSTATEALL_TRACK_CAL_INV));
return MYKONOS_ERR_SETSTATEALL_TRACK_CAL_INV;
}
/* convert tracking mask to array of uint8_t type */
cfgData[0] = (uint8_t)(trackCals & 0xFF);
cfgData[1] = (uint8_t)((trackCals >> 8) & 0xFF);
cfgData[2] = (uint8_t)((trackCals >> 16) & 0x0FF);
cfgData[3] = (uint8_t)((trackCals >> 24) & 0xFF);
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR, &cfgData[0], sizeof(cfgData));
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_SET_OPCODE, &extData[0], sizeof(extData));
/* check for completion */
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_SET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETSTATEALL_TRACK_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_SETSTATEALL_TRACK_ARMERRFLAG));
return MYKONOS_ERR_SETSTATEALL_TRACK_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETSTATEALL_TRACK_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_SETSTATEALL_TRACK_ARMERRFLAG));
return MYKONOS_ERR_SETSTATEALL_TRACK_ARMERRFLAG;
}
return retVal;
}
/**
* \brief Get the Suspended or Resumed state for tracking calibrations
*
* This function is used to get the suspend or resume state of all active tracking calibrations and the state is stored in trackCals.
*
* \pre Command can be called in Radio On.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
* \param trackCals pointer to store the tracking calibration state.
* If the bit is set then the tracking calibration is resumed and if not set then the tracking cal is suspended, the bit field follows:
*
* trackCals[bit] | Bit description
* ---------------|------------
* [0] | TRACK_RX1_QEC
* [1] | TRACK_RX2_QEC
* [2] | TRACK_ORX1_QEC
* [3] | TRACK_ORX2_QEC
* [4] | TRACK_TX1_LOL
* [5] | TRACK_TX2_LOL
* [6] | TRACK_TX1_QEC
* [7] | TRACK_TX2_QEC
* [8] | TRACK_TX1_DPD
* [9] | TRACK_TX2_DPD
* [10] | TRACK_TX1_CLGC
* [11] | TRACK_TX2_CLGC
* [12] | TRACK_TX1_VSWR
* [13] | TRACK_TX2_VSWR
*
* \retval MYKONOS_ERR_GETSTATEALL_TRACK_NULL_PARAM Null parameter passed for trackCals
* \retval MYKONOS_ERR_GETSTATEALL_TRACK_ARMERRFLAG ARM error flag set.
* \retval MYKONOS_ERR_GETSTATEALL_TRACK_ARMERROR ARM command error.
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getAllTrackCalState(mykonosDevice_t *device, uint32_t *trackCals)
{
uint32_t retVal = MYKONOS_ERR_OK;
uint8_t extData = MYKONOS_ARM_OBJECTID_TRACKING_CAL_SUSPEND_RESUME;
uint8_t armData[4] = {0};
uint8_t cmdStatusByte = 0;
uint32_t timeoutMs = 1000;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getAllTrackCalState()\n");
#endif
/* Check for passed parameter */
if (trackCals == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETSTATEALL_TRACK_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETSTATEALL_TRACK_NULL_PARAM));
return MYKONOS_ERR_GETSTATEALL_TRACK_NULL_PARAM;
}
/* sending ARM command */
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &extData, sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* check for completion */
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETSTATEALL_TRACK_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETSTATEALL_TRACK_ARMERRFLAG));
return MYKONOS_ERR_GETSTATEALL_TRACK_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETSTATEALL_TRACK_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETSTATEALL_TRACK_ARMERRFLAG));
return MYKONOS_ERR_GETSTATEALL_TRACK_ARMERRFLAG;
}
/* read 32-bit tracking state from ARM memory */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR, &armData[0], sizeof(armData), 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETSTATEALL_TRACK_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_GETSTATEALL_TRACK_ARMERROR));
return MYKONOS_ERR_GETSTATEALL_TRACK_ARMERROR;
}
*trackCals = (uint32_t)armData[0] | ((uint32_t)armData[1] << 8) | ((uint32_t)armData[2] << 16) | ((uint32_t)armData[3] << 24);
return retVal;
}
/**
* \brief Suspend or resume individual tracking calibration
*
* \pre The tracking calibration must have been enabled with MYKONOS_enableTrackingCals(), this command can be called in Radio On.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
* \param trackingCal Selects the tracking calibration to resume or suspend.
* \param trackCalState if set then the selected tracking calibration will be resumed and if not set then the tracking cal will be suspended
*
* \retval MYKONOS_ERR_SETSTATE_TRACK_CAL_INV Not valid calibration passed
* \retval MYKONOS_ERR_SETSTATE_TRACK_ARMERRFLAG ARM error
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_setTrackingCalState(mykonosDevice_t *device, mykonosTrackingCalibrations_t trackingCal, uint8_t trackCalState)
{
uint32_t retVal = MYKONOS_ERR_OK;
uint8_t extData[2] = {0};
uint8_t cmdStatusByte = 0;
uint8_t suspendTrack = 0x0F;
uint32_t timeoutMs = 1000;
uint32_t enTrackCal = 0x00;
const uint8_t CHANNEL_1 = 0x00;
const uint8_t CHANNEL_2 = 0x10;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setTrackingCalState()\n");
#endif
if (trackCalState > 0)
{
suspendTrack = 0x2F;
}
/* reading enabled tracking calibrations */
retVal = MYKONOS_getEnabledTrackingCals(device, &enTrackCal);
/* trackingCalMask check */
if ((trackingCal & enTrackCal) != trackingCal)
{
/* invalid cal mask error return, tracking cal not enable so we can not resume or suspend it */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETSTATE_TRACK_CAL_INV,
getMykonosErrorMessage(MYKONOS_ERR_SETSTATE_TRACK_CAL_INV));
return MYKONOS_ERR_SETSTATE_TRACK_CAL_INV;
}
switch (trackingCal)
{
case TRACK_RX1_QEC:
extData[1] = MYKONOS_ARM_OBJECTID_RXQEC_TRACKING & suspendTrack;
extData[1] |= CHANNEL_1;
break;
case TRACK_RX2_QEC:
extData[1] = MYKONOS_ARM_OBJECTID_RXQEC_TRACKING & suspendTrack;
extData[1] |= CHANNEL_2;
break;
case TRACK_ORX1_QEC:
extData[1] = MYKONOS_ARM_OBJECTID_ORXQEC_TRACKING & suspendTrack;
extData[1] |= CHANNEL_1;
break;
case TRACK_ORX2_QEC:
extData[1] = MYKONOS_ARM_OBJECTID_ORXQEC_TRACKING & suspendTrack;
extData[1] |= CHANNEL_2;
break;
case TRACK_TX1_LOL:
extData[1] = MYKONOS_ARM_OBJECTID_TXLOL_TRACKING & suspendTrack;
extData[1] |= CHANNEL_1;
break;
case TRACK_TX2_LOL:
extData[1] = MYKONOS_ARM_OBJECTID_TXLOL_TRACKING & suspendTrack;
extData[1] |= CHANNEL_2;
break;
case TRACK_TX1_QEC:
extData[1] = MYKONOS_ARM_OBJECTID_TXQEC_TRACKING & suspendTrack;
extData[1] |= CHANNEL_1;
break;
case TRACK_TX2_QEC:
extData[1] = MYKONOS_ARM_OBJECTID_TXQEC_TRACKING & suspendTrack;
extData[1] |= CHANNEL_2;
break;
case TRACK_TX1_DPD:
extData[1] = MYKONOS_ARM_OBJECTID_DPDCONFIG & suspendTrack;
extData[1] |= CHANNEL_1;
break;
case TRACK_TX2_DPD:
extData[1] = MYKONOS_ARM_OBJECTID_DPDCONFIG & suspendTrack;
extData[1] |= CHANNEL_2;
break;
case TRACK_TX1_CLGC:
extData[1] = MYKONOS_ARM_OBJECTID_CLGCCONFIG & suspendTrack;
extData[1] |= CHANNEL_1;
break;
case TRACK_TX2_CLGC:
extData[1] = MYKONOS_ARM_OBJECTID_CLGCCONFIG & suspendTrack;
extData[1] |= CHANNEL_2;
break;
case TRACK_TX1_VSWR:
extData[1] = MYKONOS_ARM_OBJECTID_VSWRCONFIG & suspendTrack;
extData[1] |= CHANNEL_1;
break;
case TRACK_TX2_VSWR:
extData[1] = MYKONOS_ARM_OBJECTID_VSWRCONFIG & suspendTrack;
extData[1] |= CHANNEL_2;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETSTATE_TRACK_CAL_INV,
getMykonosErrorMessage(MYKONOS_ERR_SETSTATE_TRACK_CAL_INV));
return MYKONOS_ERR_SETSTATE_TRACK_CAL_INV;
}
extData[0] = MYKONOS_ARM_OBJECTID_TRACKING_CAL_SUSPEND_RESUME;
/* sending ARM command */
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_SET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* check for completion */
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_SET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETSTATE_TRACK_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_SETSTATE_TRACK_ARMERRFLAG));
return MYKONOS_ERR_SETSTATE_TRACK_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETSTATE_TRACK_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_SETSTATE_TRACK_ARMERRFLAG));
return MYKONOS_ERR_SETSTATE_TRACK_ARMERRFLAG;
}
return retVal;
}
/**
* \brief Get the Suspended or Resumed state for individual tracking calibration
*
* \pre Command can be called in Radio On.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
* \param trackingCal Selects the tracking calibration to get the resumed or suspended state.
* \param trackCalState pointer to store the tracking calibration state,
* if set then the selected tracking calibration is resumed and if not set then the tracking cal is suspended
*
* \retval MYKONOS_ERR_GETSTATE_TRACK_NULL_PARAM Null parameter passed to trackCalState
* \retval MYKONOS_ERR_GETSTATE_TRACK_ARMERRFLAG ARM command error flag set.
* \retval MYKONOS_ERR_GETSTATE_TRACK_ARMERROR ARM command error.
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getTrackingCalState(mykonosDevice_t *device, mykonosTrackingCalibrations_t trackingCal, uint8_t *trackCalState)
{
uint32_t retVal = MYKONOS_ERR_OK;
uint8_t extData = MYKONOS_ARM_OBJECTID_TRACKING_CAL_SUSPEND_RESUME;
uint8_t armData[4] = {0};
uint8_t cmdStatusByte = 0;
uint32_t timeoutMs = 1000;
uint32_t trackMask = 0x00;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getTrackingCalState()\n");
#endif
/* Check for passed parameter */
if (trackCalState == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETSTATE_TRACK_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETSTATE_TRACK_NULL_PARAM));
return MYKONOS_ERR_GETSTATE_TRACK_NULL_PARAM;
}
/* sending ARM command */
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &extData, sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* check for completion */
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETSTATE_TRACK_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETSTATE_TRACK_ARMERRFLAG));
return MYKONOS_ERR_GETSTATE_TRACK_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETSTATE_TRACK_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETSTATE_TRACK_ARMERRFLAG));
return MYKONOS_ERR_GETSTATE_TRACK_ARMERRFLAG;
}
/* read 32-bit tracking state from ARM memory */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR, &armData[0], sizeof(armData), 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETSTATE_TRACK_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_GETSTATE_TRACK_ARMERROR));
return MYKONOS_ERR_GETSTATE_TRACK_ARMERROR;
}
trackMask = (uint32_t)armData[0] | ((uint32_t)armData[1] << 8) | ((uint32_t)armData[2] << 16) | ((uint32_t)armData[3] << 24);
if (trackMask & trackingCal)
{
*trackCalState = 1;
}
else
{
*trackCalState = 0;
}
return retVal;
}
/**
* \brief Reads back which ARM tracking cals are enabled
*
* enableMask | Bit description
* ------------|----------------------
* [0] | TRACK_RX1_QEC
* [1] | TRACK_RX2_QEC
* [2] | TRACK_ORX1_QEC
* [3] | TRACK_ORX2_QEC
* [4] | TRACK_TX1_LOL
* [5] | TRACK_TX2_LOL
* [6] | TRACK_TX1_QEC
* [7] | TRACK_TX2_QEC
* [8] | TRACK_TX1_DPD
* [9] | TRACK_TX2_DPD
* [10] | TRACK_TX1_CLGC
* [11] | TRACK_TX2_CLGC
* [12] | TRACK_TX1_VSWR
* [13] | TRACK_TX2_VSWR
* [16] | TRACK_ORX1_QEC_SNLO
* [17] | TRACK_ORX1_QEC_SNLO
* [18] | TRACK_SRX_QEC
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
* \param enableMask Returned bitmask that shows which tracking cals are enabled
* to run during radioOn state. See mykonosTrackingCalibrations_t enum of tracking cals.
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getEnabledTrackingCals(mykonosDevice_t *device, uint32_t *enableMask)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t armData[4] = {0};
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getEnabledTrackingCals()\n");
#endif
/* Ask ARM to read tracking cal enable bits and place in mailbox buffer memory */
retVal = MYKONOS_readArmConfig(device, MYKONOS_ARM_OBJECTID_CALSCHEDULER, 0, &armData[0], 4);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
*enableMask = ((uint32_t)(armData[0]) | ((uint32_t)(armData[1]) << 8) | ((uint32_t)(armData[2]) << 16) | ((uint32_t)(armData[3]) << 24));
return MYKONOS_ERR_OK;
}
/**
* \brief Returns the tracking calibration pending and error status.
*
* When in radioOn state, the enabled tracking calibrations will set the pending
* flag when the particular calibration is ready to be run, but has not completed
* yet. For Tx tracking cals to complete, the BBIC must set the ObsRx path to
* the INTERNAL CALS mode. If a tracking calibration had an error, the corresponding
* error flag will be asserted.
*
* pendingCalMask | bit Description
* ----------------|--------------------------------------------------------
* [0] | Rx1 QEC tracking pending
* [1] | Rx1 QEC tracking error
* [2] | Rx2 QEC tracking pending
* [3] | Rx2 QEC tracking error
* [4] | ORx1 QEC tracking pending
* [5] | ORx1 QEC tracking error
* [6] | ORx2 QEC tracking pending
* [7] | ORx2 QEC tracking error
* [8] | Tx1 LOL tracking pending
* [9] | Tx1 LOL tracking error
* [10] | Tx2 LOL tracking pending
* [11] | Tx2 LOL tracking error
* [12] | Tx1 QEC tracking pending
* [13] | Tx1 QEC tracking error
* [14] | Tx2 QEC tracking pending
* [15] | Tx2 QEC tracking error
* [16] | Tx1 DPD tracking pending
* [17] | Tx1 DPD tracking error
* [18] | Tx2 DPD tracking pending
* [19] | Tx2 DPD tracking error
* [20] | Tx1 CLGC tracking pending
* [21] | Tx1 CLGC tracking error
* [22] | Tx2 CLGC tracking pending
* [23] | Tx2 CLGC tracking error
* [24] | Tx1 VSWR tracking pending
* [25] | Tx1 VSWR tracking error
* [26] | Tx2 VSWR tracking pending
* [27] | Tx2 VSWR tracking error
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
* \param pendingCalMask Bit mask that describes which tracking cals are pending
* or had errors
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETPENDTRKCALS_NULL_PARAM Function parameter pendingCalMask is a NULL pointer
*/
mykonosErr_t MYKONOS_getPendingTrackingCals(mykonosDevice_t *device, uint32_t *pendingCalMask)
{
uint8_t readData[4] = {0};
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getPendingTrackingCals()\n");
#endif
if (pendingCalMask == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETPENDTRKCALS_NULL_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETPENDTRKCALS_NULL_PARAM));
return MYKONOS_ERR_GETPENDTRKCALS_NULL_PARAM;
}
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_ARM_OPCODE_STATE_3, &readData[0]);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_ARM_OPCODE_STATE_4, &readData[1]);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_ARM_OPCODE_STATE_5, &readData[2]);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_ARM_OPCODE_STATE_6, &readData[3]);
*pendingCalMask = ((uint32_t)readData[3] << 24) | ((uint32_t)readData[2] << 16) | ((uint32_t)readData[1] << 8) | ((uint32_t)readData[0]);
return MYKONOS_ERR_OK;
}
/**
* \brief Returns the status of the TxLOL external tracking calibration
*
* The Tx LOL external tracking calibration is run during the radioOn state.
* The function can be called to read back the status of the TxLOL external
* calibration including metrics like error codes, percentage of data
* collected for current cal, the performance of the cal and the number of
* times the cal has run and updated the hardware.
*
* \pre Before the function is called, the device must be initialized, the ARM
* loaded, and init cals run. These functions can be called in radioOff or
* radioOn state.
*
* \param device Pointer to the device settings structure
* \param txChannel The channel (Tx1/Tx2) whose status is to be read back
* \param txLolStatus Status of the TxLOL external calibration, as a structure
* of type mykonosTxLolStatus_t is returned to this pointer address
*
* \retval MYKONOS_ERR_GETTXLOLSTATUS_NULLPARAM Function parameter mykonosTxLolStatus_t is a NULL pointer
* \retval MYKONOS_ERR_GETTXLOLSTATUS_INV_CH Channel selection not valid
* \retval MYKONOS_ERR_GETTXLOLSTATUS_ARMERRFLAG ARM command error
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getTxLolStatus(mykonosDevice_t *device, mykonosTxChannels_t txChannel, mykonosTxLolStatus_t *txLolStatus)
{
uint8_t extData[3] = {MYKONOS_ARM_OBJECTID_CAL_STATUS, MYKONOS_ARM_OBJECTID_TXLOL_TRACKING, 0};
uint8_t cmdStatusByte = 0;
uint32_t offset = 0;
uint32_t timeoutMs = 0;
uint8_t armReadBack[20] = {0};
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getTxLolStatus()\n");
#endif
if (txLolStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETTXLOLSTATUS_NULLPARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETTXLOLSTATUS_NULLPARAM));
return MYKONOS_ERR_GETTXLOLSTATUS_NULLPARAM;
}
switch (txChannel)
{
case TX1:
extData[2] = 0;
break;
case TX2:
extData[2] = 1;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETTXLOLSTATUS_INV_CH,
getMykonosErrorMessage(MYKONOS_ERR_GETTXLOLSTATUS_INV_CH));
return MYKONOS_ERR_GETTXLOLSTATUS_INV_CH;
}
}
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000;
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETTXLOLSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETTXLOLSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETTXLOLSTATUS_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETTXLOLSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETTXLOLSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETTXLOLSTATUS_ARMERRFLAG;
}
/* read status from ARM memory */
offset = 0;
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_DATA_ADDR + offset), &armReadBack[0], sizeof(armReadBack), 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Assign to data structure */
txLolStatus->errorCode = (((uint32_t)armReadBack[3]) << 24) | (((uint32_t)armReadBack[2]) << 16) | (((uint32_t)armReadBack[1]) << 8) | ((uint32_t)armReadBack[0]);
txLolStatus->percentComplete = (((uint32_t)armReadBack[7]) << 24) | (((uint32_t)armReadBack[6]) << 16) | (((uint32_t)armReadBack[5]) << 8)
| ((uint32_t)armReadBack[4]);
txLolStatus->performanceMetric = (((uint32_t)armReadBack[11]) << 24) | (((uint32_t)armReadBack[10]) << 16) | (((uint32_t)armReadBack[9]) << 8)
| ((uint32_t)armReadBack[8]);
txLolStatus->iterCount = (((uint32_t)armReadBack[15]) << 24) | (((uint32_t)armReadBack[14]) << 16) | (((uint32_t)armReadBack[13]) << 8) | ((uint32_t)armReadBack[12]);
txLolStatus->updateCount = (((uint32_t)armReadBack[19]) << 24) | (((uint32_t)armReadBack[18]) << 16) | (((uint32_t)armReadBack[17]) << 8)
| ((uint32_t)armReadBack[16]);
return MYKONOS_ERR_OK;
}
/**
* \brief Returns the status of the TxQEC tracking calibration
*
* The Tx QEC tracking calibration is run during the radioOn state.
* The function can be called to read back the status of the TxQEC
* calibration including metrics like error codes, percentage of data
* collected for current cal, the performance of the cal and the number of
* times the cal has run and updated the hardware.
*
* \pre Before the function is called, the device must be initialized, the ARM
* loaded, and init cals run. These functions can be called in radioOff or
* radioOn state.
*
* \param device Pointer to the device settings structure
* \param txChannel The channel (Tx1/Tx2) whose status is to be read back
* \param txQecStatus Status of the TxQEC external calibration, as a structure
* of type mykonosTxQecStatus_t is returned to this pointer address
*
* \retval MYKONOS_ERR_GETTXQECSTATUS_NULLPARAM Function parameter txQecStatus is a NULL pointer
* \retval MYKONOS_ERR_GETTXQECSTATUS_INV_CH Channel selection not valid
* \retval MYKONOS_ERR_GETTXQECSTATUS_ARMERRFLAG ARM command error
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getTxQecStatus(mykonosDevice_t *device, mykonosTxChannels_t txChannel, mykonosTxQecStatus_t *txQecStatus)
{
uint8_t extData[3] = {MYKONOS_ARM_OBJECTID_CAL_STATUS, MYKONOS_ARM_OBJECTID_TXQEC_TRACKING, 0};
uint8_t cmdStatusByte = 0;
uint32_t offset = 0;
uint32_t timeoutMs = 0;
uint8_t armReadBack[20] = {0};
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getTxQecStatus()\n");
#endif
if (txQecStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETTXQECSTATUS_NULLPARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETTXQECSTATUS_NULLPARAM));
return MYKONOS_ERR_GETTXQECSTATUS_NULLPARAM;
}
switch (txChannel)
{
case TX1:
extData[2] = 0;
break;
case TX2:
extData[2] = 1;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETTXQECSTATUS_INV_CH,
getMykonosErrorMessage(MYKONOS_ERR_GETTXQECSTATUS_INV_CH));
return MYKONOS_ERR_GETTXQECSTATUS_INV_CH;
}
}
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000;
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETTXQECSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETTXQECSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETTXQECSTATUS_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETTXQECSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETTXQECSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETTXQECSTATUS_ARMERRFLAG;
}
/* read status from ARM memory */
offset = 0;
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_DATA_ADDR + offset), &armReadBack[0], sizeof(armReadBack), 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Assign to data structure */
txQecStatus->errorCode = (((uint32_t)armReadBack[3]) << 24) | (((uint32_t)armReadBack[2]) << 16) | (((uint32_t)armReadBack[1]) << 8) | ((uint32_t)armReadBack[0]);
txQecStatus->percentComplete = (((uint32_t)armReadBack[7]) << 24) | (((uint32_t)armReadBack[6]) << 16) | (((uint32_t)armReadBack[5]) << 8)
| ((uint32_t)armReadBack[4]);
txQecStatus->performanceMetric = (((uint32_t)armReadBack[11]) << 24) | (((uint32_t)armReadBack[10]) << 16) | (((uint32_t)armReadBack[9]) << 8)
| ((uint32_t)armReadBack[8]);
txQecStatus->iterCount = (((uint32_t)armReadBack[15]) << 24) | (((uint32_t)armReadBack[14]) << 16) | (((uint32_t)armReadBack[13]) << 8) | ((uint32_t)armReadBack[12]);
txQecStatus->updateCount = (((uint32_t)armReadBack[19]) << 24) | (((uint32_t)armReadBack[18]) << 16) | (((uint32_t)armReadBack[17]) << 8)
| ((uint32_t)armReadBack[16]);
return MYKONOS_ERR_OK;
}
/**
* \brief Returns the status of the RxQEC tracking calibration
*
* The Rx QEC tracking calibration is run during the radioOn state.
* The function can be called to read back the status of the RxQEC external
* calibration including metrics like error codes, percentage of data
* collected for current cal, the performance of the cal and the number of
* times the cal has run and updated the hardware.
*
* \pre Before the function is called, the device must be initialized, the ARM
* loaded, and init cals run. These functions can be called in radioOff or
* radioOn state.
*
* \param device Pointer to the device settings structure
* \param rxChannel The channel (Rx1/Rx2) whose status is to be read back
* \param rxQecStatus Status of the RxQEC calibration, as a structure
* of type mykonosRxQecStatus_t is returned to this pointer address
*
* \retval MYKONOS_ERR_GETRXQECSTATUS_NULLPARAM Function parameter rxQecStatus is a NULL pointer
* \retval MYKONOS_ERR_GETRXQECSTATUS_INV_CH Channel selection not valid
* \retval MYKONOS_ERR_GETRXQECSTATUS_ARMERRFLAG ARM command error
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getRxQecStatus(mykonosDevice_t *device, mykonosRxChannels_t rxChannel, mykonosRxQecStatus_t *rxQecStatus)
{
uint8_t extData[3] = {MYKONOS_ARM_OBJECTID_CAL_STATUS, MYKONOS_ARM_OBJECTID_RXQEC_TRACKING, 0};
uint8_t cmdStatusByte = 0;
uint32_t offset = 0;
uint32_t timeoutMs = 0;
uint8_t armReadBack[20] = {0};
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getRxQecStatus()\n");
#endif
if (rxQecStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETRXQECSTATUS_NULLPARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETRXQECSTATUS_NULLPARAM));
return MYKONOS_ERR_GETRXQECSTATUS_NULLPARAM;
}
switch (rxChannel)
{
case RX1:
extData[2] = 0;
break;
case RX2:
extData[2] = 1;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETRXQECSTATUS_INV_CH,
getMykonosErrorMessage(MYKONOS_ERR_GETRXQECSTATUS_INV_CH));
return MYKONOS_ERR_GETRXQECSTATUS_INV_CH;
}
}
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000;
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETRXQECSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETRXQECSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETRXQECSTATUS_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETRXQECSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETRXQECSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETRXQECSTATUS_ARMERRFLAG;
}
/* read status from ARM memory */
offset = 0;
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_DATA_ADDR + offset), &armReadBack[0], sizeof(armReadBack), 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Assign to data structure */
rxQecStatus->errorCode = (((uint32_t)armReadBack[3]) << 24) | (((uint32_t)armReadBack[2]) << 16) | (((uint32_t)armReadBack[1]) << 8) | ((uint32_t)armReadBack[0]);
rxQecStatus->percentComplete = (((uint32_t)armReadBack[7]) << 24) | (((uint32_t)armReadBack[6]) << 16) | (((uint32_t)armReadBack[5]) << 8)
| ((uint32_t)armReadBack[4]);
rxQecStatus->selfcheckIrrDb = (((uint32_t)armReadBack[11]) << 24) | (((uint32_t)armReadBack[10]) << 16) | (((uint32_t)armReadBack[9]) << 8)
| ((uint32_t)armReadBack[8]);
rxQecStatus->iterCount = (((uint32_t)armReadBack[15]) << 24) | (((uint32_t)armReadBack[14]) << 16) | (((uint32_t)armReadBack[13]) << 8) | ((uint32_t)armReadBack[12]);
rxQecStatus->updateCount = (((uint32_t)armReadBack[19]) << 24) | (((uint32_t)armReadBack[18]) << 16) | (((uint32_t)armReadBack[17]) << 8)
| ((uint32_t)armReadBack[16]);
return MYKONOS_ERR_OK;
}
/**
* \brief Returns the status of the ORxQEC tracking calibration
*
* The ORx QEC tracking calibration is run during the radioOn state.
* The function can be called to read back the status of the ORxQEC external
* calibration including metrics like error codes, percentage of data
* collected for current cal, the performance of the cal and the number of
* times the cal has run and updated the hardware.
*
* \pre Before the function is called, the device must be initialized, the ARM
* loaded, and init cals run. These functions can be called in radioOff or
* radioOn state.
*
* \param device Pointer to the device settings structure
* \param orxChannel The channel whose status is to be read back
* \param orxQecStatus Status of the ORxQEC external calibration, as a structure
* of type mykonosOrxQecStatus_t is returned to this pointer address
*
* \retval MYKONOS_ERR_GETORXQECSTATUS_NULLPARAM Function parameter orxQecStatus is a NULL pointer
* \retval MYKONOS_ERR_GETORXQECSTATUS_INV_CH Channel selection not valid
* \retval MYKONOS_ERR_GETORXQECSTATUS_ARMERRFLAG ARM command error
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_getOrxQecStatus(mykonosDevice_t *device, mykonosObsRxChannels_t orxChannel, mykonosOrxQecStatus_t *orxQecStatus)
{
uint8_t extData[3] = {MYKONOS_ARM_OBJECTID_CAL_STATUS, MYKONOS_ARM_OBJECTID_ORXQEC_TRACKING, 0};
uint8_t cmdStatusByte = 0;
uint32_t offset = 0;
uint32_t timeoutMs = 0;
uint8_t armReadBack[20] = {0};
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getOrxQecStatus()\n");
#endif
if (orxQecStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETORXQECSTATUS_NULLPARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETORXQECSTATUS_NULLPARAM));
return MYKONOS_ERR_GETORXQECSTATUS_NULLPARAM;
}
switch (orxChannel)
{
case OBS_RX1_TXLO:
case OBS_RX1_SNIFFERLO:
extData[2] = 0;
break;
case OBS_RX2_TXLO:
case OBS_RX2_SNIFFERLO:
extData[2] = 1;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETORXQECSTATUS_INV_CH,
getMykonosErrorMessage(MYKONOS_ERR_GETORXQECSTATUS_INV_CH));
return MYKONOS_ERR_GETORXQECSTATUS_INV_CH;
}
}
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000;
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETORXQECSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETORXQECSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETORXQECSTATUS_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETORXQECSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETORXQECSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETORXQECSTATUS_ARMERRFLAG;
}
/* read status from ARM memory */
offset = 0;
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_DATA_ADDR + offset), &armReadBack[0], sizeof(armReadBack), 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Assign to data structure */
orxQecStatus->errorCode = (((uint32_t)armReadBack[3]) << 24) | (((uint32_t)armReadBack[2]) << 16) | (((uint32_t)armReadBack[1]) << 8) | ((uint32_t)armReadBack[0]);
orxQecStatus->percentComplete = (((uint32_t)armReadBack[7]) << 24) | (((uint32_t)armReadBack[6]) << 16) | (((uint32_t)armReadBack[5]) << 8)
| ((uint32_t)armReadBack[4]);
orxQecStatus->selfcheckIrrDb = (((uint32_t)armReadBack[11]) << 24) | (((uint32_t)armReadBack[10]) << 16) | (((uint32_t)armReadBack[9]) << 8)
| ((uint32_t)armReadBack[8]);
orxQecStatus->iterCount = (((uint32_t)armReadBack[15]) << 24) | (((uint32_t)armReadBack[14]) << 16) | (((uint32_t)armReadBack[13]) << 8)
| ((uint32_t)armReadBack[12]);
orxQecStatus->updateCount = (((uint32_t)armReadBack[19]) << 24) | (((uint32_t)armReadBack[18]) << 16) | (((uint32_t)armReadBack[17]) << 8)
| ((uint32_t)armReadBack[16]);
return MYKONOS_ERR_OK;
}
/**
* \brief Selects the Sniffer RF input to use for the observation receiver when in ObsRx pin mode and ORX_MODE = SNIFFER(4)
*
* This function is only valid when using the ObsRx Pin mode. In pin mode, 3 GPIO pins select an Observation Rx source.
* See mykonosObsRxChannels_t enum values less than 7. When the ORX_MODE GPIO pins are set to 4 for Sniffer, Sniffer inputs
* A, B, and C can be chosen by calling this function. This function can be called any time after the ARM is loaded and running.
* It can be called in radioOn or radioOff state.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
* \param snifferChannel Desired channel to set. This channel will be enabled when ORX_MODE = SNIFFER.
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_SET_ARMGPIO_PINS_ARMERROR ARM returned an error
*/
mykonosErr_t MYKONOS_setSnifferChannel(mykonosDevice_t *device, mykonosSnifferChannel_t snifferChannel)
{
uint8_t armData[2] = {0};
uint32_t timeoutMs = 0;
uint8_t cmdStatusByte = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
armData[0] = 0x6A; /* SET SRX_SOURCE ARM object ID */
armData[1] = (uint8_t)snifferChannel;
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_SET_OPCODE, &armData[0], sizeof(armData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000;
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_SET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SET_ARMGPIO_PINS_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_SET_ARMGPIO_PINS_ARMERROR));
return MYKONOS_ERR_SET_ARMGPIO_PINS_ARMERROR;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SET_ARMGPIO_PINS_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_SET_ARMGPIO_PINS_ARMERROR));
return MYKONOS_ERR_SET_ARMGPIO_PINS_ARMERROR;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Resets the ARM processor and performs initialization
*
* Sets ARM Run = 0, Disables parity checks, sets ARM and SPI reg clock selects,
* resets ARM, and enables ARM SPI register access
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->rx->rxProfile->iqRate_kHz
* - device->deviceClock_kHz
* - device->rx->rxProfile->rfBandwidth_Hz
* - device->tx->txProfile->rfBandwidth_Hz
* - device->rx->rxProfile->rxFirDecimation
* - device->rx->rxProfile->rhb1Decimation
* - device->spiSettings
*
* \param device Pointer to the device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_INITARM_INV_VCODIV
* \retval MYKONOS_ERR_INITARM_INV_REGCLK Could not calculate a valid ARM Register clock divider
* \retval MYKONOS_ERR_INITARM_INV_ARMCLK_PARAM Could not calculate a valid ARM clock divider
*/
mykonosErr_t MYKONOS_initArm(mykonosDevice_t *device)
{
uint8_t regClkSel = 0;
uint8_t armClkSel = 0;
uint32_t hsClkRateDiv4or5_Khz = 0;
uint32_t hb1Clk = 0;
uint32_t vcoDivTimes10 = 1;
uint8_t adcDiv = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_initArm()\n");
#endif
/* Finish init - this is part of init that must run after Multi Chip Sync */
retVal = MYKONOS_initSubRegisterTables(device);
if (retVal != MYKONOS_ERR_OK)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, retVal, getMykonosErrorMessage(retVal));
return retVal;
}
switch (device->clocks->clkPllVcoDiv)
{
case VCODIV_1:
vcoDivTimes10 = 10;
break;
case VCODIV_1p5:
vcoDivTimes10 = 15;
break;
case VCODIV_2:
vcoDivTimes10 = 20;
break;
case VCODIV_3:
vcoDivTimes10 = 30;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INITARM_INV_VCODIV,
getMykonosErrorMessage(MYKONOS_ERR_INITARM_INV_VCODIV));
return MYKONOS_ERR_INITARM_INV_VCODIV;
}
}
hsClkRateDiv4or5_Khz = device->clocks->clkPllVcoFreq_kHz * 10 / vcoDivTimes10 / 20;
/* If ADC divider is set, divide hsClkRateDiv4or5_kHz by 2 (ADC divider) */
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_CLOCK_CONTROL_1, &adcDiv, 0x01, 0);
hb1Clk = (adcDiv == 1) ? (hsClkRateDiv4or5_Khz >> 1) : (hsClkRateDiv4or5_Khz);
/* the ARM clock should not exceed 250 Mhz */
if (hb1Clk <= 250000)
{
armClkSel = 0x00;
}
else if (hb1Clk > 250000 && hb1Clk <= 500000)
{
armClkSel = 0x02;
}
else if (hb1Clk > 500000 && hb1Clk <= 1000000)
{
armClkSel = 0x04;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INITARM_INV_ARMCLK_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_INITARM_INV_ARMCLK_PARAM));
return MYKONOS_ERR_INITARM_INV_ARMCLK_PARAM;
}
/* the SPI read reg clock must be equal or less than 100MHz and the SPI write reg clock must be less equal or less than 200 Mhz*/
if (hb1Clk <= 100000)
{
regClkSel = 0x00;
}
else if (hb1Clk > 100000 && hb1Clk <= 200000)
{
regClkSel = 0x04;
}
else if (hb1Clk > 200000 && hb1Clk <= 400000)
{
regClkSel = 0x09;
}
else if (hb1Clk > 400000 && hb1Clk <= 800000)
{
regClkSel = 0x0E;
}
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_INITARM_INV_REGCLK, getMykonosErrorMessage(MYKONOS_ERR_INITARM_INV_REGCLK));
return MYKONOS_ERR_INITARM_INV_REGCLK;
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_CTL_1, 0x8C); /* arm_debug_enable[7]=1, mem_hresp_mask[3]=1, auto_incr[2]=1, arm_m3_run[0]=0 */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_CLK_CTL, armClkSel |= 0x41); /* setting the ARM clock rate, resetting the PC, and enabling the ARM clock */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_CLK_CTL, armClkSel &= ~0x40); /* maintaining the ARM clock rate, disabling the PC reset, and maintaining ARM clock enable */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_BRIDGE_CLK_CTL, regClkSel); /* setting the SPI read and write clock rates */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_AHB_SPI_BRIDGE, 0x13); /* blockout_window_size[4:1] = 9, ahb_spi_bridge_enable[0] = 1 */
retVal = MYKONOS_writeArmProfile(device);
if (retVal != MYKONOS_ERR_OK)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, retVal, getMykonosErrorMessage(retVal));
return retVal;
}
retVal = MYKONOS_loadAdcProfiles(device);
if (retVal != MYKONOS_ERR_OK)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, retVal, getMykonosErrorMessage(retVal));
return retVal;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Loads binary byte array into ARM program memory
*
* This function assumes the ARM auto increment bit is set in 0x0D00[2]. Valid memory
* addresses are: Program Memory (0x01000000 - 0x01017FFF)
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param binary is a byte array containing ARM program memory data bytes (directly from .bin file)
* \param count is the number of bytes in the byte array
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_LOADBIN_NULL_PARAM Function parameter binary has a NULL pointer
* \retval MYKONOS_ERR_LOADBIN_INVALID_BYTECOUNT Count parameter must be 98304 bytes
*/
mykonosErr_t MYKONOS_loadArmFromBinary(mykonosDevice_t *device, uint8_t *binary, uint32_t count)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t stackPtr[4] = {0};
uint8_t bootAddr[4] = {0};
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_loadArmFromBinary()\n");
#endif
if (binary == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOADBIN_NULL_PARAM, getMykonosErrorMessage(MYKONOS_ERR_LOADBIN_NULL_PARAM));
return MYKONOS_ERR_LOADBIN_NULL_PARAM;
}
if (count != 98304)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOADBIN_INVALID_BYTECOUNT,
getMykonosErrorMessage(MYKONOS_ERR_LOADBIN_INVALID_BYTECOUNT));
return MYKONOS_ERR_LOADBIN_INVALID_BYTECOUNT;
}
else
{
/* extraction of stack pointer and boot address from top of array */
stackPtr[0] = binary[0];
stackPtr[1] = binary[1];
stackPtr[2] = binary[2];
stackPtr[3] = binary[3];
bootAddr[0] = binary[4];
bootAddr[1] = binary[5];
bootAddr[2] = binary[6];
bootAddr[3] = binary[7];
/* writing binary data to ARM memory */
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_PROG_ADDR, &binary[0], count);
}
if (retVal != MYKONOS_ERR_OK)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, retVal, getMykonosErrorMessage(retVal));
return retVal;
}
else
{
/* writing the stack pointer address */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_STACK_PTR_BYTE_0, stackPtr[0]); /* stack pointer [7:0] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_STACK_PTR_BYTE_1, stackPtr[1]); /* stack pointer [15:8] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_STACK_PTR_BYTE_2, stackPtr[2]); /* stack pointer [23:16] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_STACK_PTR_BYTE_3, stackPtr[3]); /* stack pointer [31:24] */
/* writing the boot address */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_BOOT_ADDR_BYTE_0, bootAddr[0]); /* boot address [7:0] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_BOOT_ADDR_BYTE_1, bootAddr[1]); /* boot address [15:8] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_BOOT_ADDR_BYTE_2, bootAddr[2]); /* boot address [23:16] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_BOOT_ADDR_BYTE_3, bootAddr[3]); /* boot address [31:24] */
/* setting the ARM run bit */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_CTL_1, 0x8D); /* arm_debug_enable[7]=1, mem_hresp_mask[3]=1, auto_incr[2]=1, arm_m3_run[0]=1 */
}
/* verifying ARM checksum */
retVal = MYKONOS_verifyArmChecksum(device);
if (retVal != MYKONOS_ERR_OK)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, retVal, getMykonosErrorMessage(retVal));
return retVal;
}
/* verifying ARM state is in MYKONOS_ARM_READY state, otherwise return error */
retVal = MYKONOS_checkArmState(device, MYK_ARM_READY);
if (retVal != MYKONOS_ERR_OK)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, retVal, getMykonosErrorMessage(retVal));
return retVal;
}
/* Setup ARM GPIO pins and program ARMs radio control structure */
retVal = MYKONOS_setArmGpioPins(device);
if (retVal != MYKONOS_ERR_OK)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, retVal, getMykonosErrorMessage(retVal));
return retVal;
}
retVal = MYKONOS_setRadioControlPinMode(device);
if (retVal != MYKONOS_ERR_OK)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, retVal, getMykonosErrorMessage(retVal));
return retVal;
}
/* Set the default ObsRx Path source for when the device moves to RadioOn */
retVal = MYKONOS_setDefaultObsRxPath(device, device->obsRx->defaultObsRxChannel);
if (retVal != MYKONOS_ERR_OK)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, retVal, getMykonosErrorMessage(retVal));
return retVal;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Verifies the ARM checksum value
*
* The checksum which is written into the .hex file is verified with the calculated checksum
* in the Mykonos ARM after the hex file has been loaded
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is structure pointer to the Mykonos data structure containing settings
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_verifyArmChecksum(mykonosDevice_t *device)
{
uint32_t buildTimeChecksum = 0x00000000;
uint32_t calculatedChecksum = 0x00000000;
uint8_t buildData[4];
uint8_t calcData[4];
const uint8_t CHECKSUM_BYTES = 0x4;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_verifyArmChecksum()\n");
#endif
/* disabling auto increment and reading four (4) bytes at ARM checksum memory location */
MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_BUILD_CHKSUM_ADDR, buildData, CHECKSUM_BYTES, 0);
/* determining build time checksum */
buildTimeChecksum = (((uint32_t)buildData[3] << 24) | ((uint32_t)buildData[2] << 16) | ((uint32_t)buildData[1] << 8) | (uint32_t)buildData[0]);
/* using 200 msec timeout for exit out of while loop [maximum checksum calculation time = 5 ms] */
CMB_setTimeout_ms(device->spiSettings, 200);
/* determining calculated checksum */
do
{
MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_CALC_CHKSUM_ADDR, calcData, CHECKSUM_BYTES, 0);
calculatedChecksum = (((uint32_t)calcData[3] << 24) | ((uint32_t)calcData[2] << 16) | ((uint32_t)calcData[1] << 8) | (uint32_t)calcData[0]);
} while ((!calculatedChecksum) && (!CMB_hasTimeoutExpired(device->spiSettings)));
/* performing consistency check */
if (buildTimeChecksum == calculatedChecksum)
{
return MYKONOS_ERR_OK;
}
else
{
return MYKONOS_ERR_ARM_INVALID_BUILDCHKSUM;
}
}
/**
* \brief Verifies the ARM status once it is start running
*
* Wait for ARM to go into radio state, if takes longer there is and ARM error
* get error in Application layer calling MYKONOS_getRadioState()
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param armStateCheck if the ARM is not in this state it will return an error,
*
* \retval MYKONOS_ERR_ARMSTATE_EXCEPTION ARM system problem has been detected.
* \retval MYKONOS_ERR_ARMSTATE_CAL_ERROR ARM has detected an error in the tracking calibrations.
* \retval MYKONOS_ERR_ARMSTATE_EXCEPTION ARM has detected an illegal profile.
* \retval MYKONOS_ERR_WAITARMCSTATE_TIMEOUT Timeout occurred in check ARM state.
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_checkArmState(mykonosDevice_t *device, mykonosArmState_t armStateCheck)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint32_t armStatus = 0x00;
uint32_t timeoutMs = 500; /* 500ms timeOut */
uint8_t endCheck = 0x00;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_checkArmState()\n");
#endif
CMB_setTimeout_ms(device->spiSettings, timeoutMs);
do
{
retVal = MYKONOS_getRadioState(device, &armStatus);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
if (armStateCheck == armStatus)
{
retVal = MYKONOS_ERR_OK;
break;
}
if (CMB_hasTimeoutExpired(device->spiSettings))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_WAITARMCSTATE_TIMEOUT,
getMykonosErrorMessage(MYKONOS_ERR_WAITARMCSTATE_TIMEOUT));
retVal = MYKONOS_ERR_WAITARMCSTATE_TIMEOUT;
break;
}
switch (armStatus)
{
/* this cases are not ARM errors */
case MYK_ARM_POWERUP:
case MYK_ARM_READY:
case MYK_ARM_IDLE:
case MYK_ARM_RADIO_ON:
break;
case MYK_ARM_PROFILE_ERROR:
/* return error directly */
retVal = MYKONOS_ERR_ARMSTATE_PROFILE_ERROR;
endCheck = 1;
break;
case MYK_ARM_CAL_ERROR:
/* return error directly */
retVal = MYKONOS_ERR_ARMSTATE_CAL_ERROR;
endCheck = 1;
break;
case MYK_ARM_EXCEPTION:
/* return error directly */
retVal = MYKONOS_ERR_ARMSTATE_EXCEPTION;
endCheck = 1;
break;
case MYK_ARM_EXCEPTION | MYK_ARM_PROFILE_ERROR:
/* return error directly */
retVal = MYKONOS_ERR_ARMSTATE_EXCEPTION;
endCheck = 1;
break;
default:
endCheck = 0;
break;
}
} while (!endCheck);
return retVal;
}
/**
* \brief Reads back the version of the ARM binary loaded into the Mykonos ARM memory
*
* This function reads the ARM memory to read back the major.minor.releaseCandidate
* version for the ARM binary loaded into ARM memory.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param majorVer The Major version is returned in this parameter
* \param minorVer The Minor version is returned in this parameter
* \param rcVer The release candidate version (build number) is returned in this parameter
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETARMVER_NULL_PARM One of the function parameters has a NULL pointer
*/
mykonosErr_t MYKONOS_getArmVersion(mykonosDevice_t *device, uint8_t *majorVer, uint8_t *minorVer, uint8_t *rcVer)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t ver[4] = {0};
uint32_t fullVersion = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getArmVersion()\n");
#endif
if ((majorVer == NULL) || (minorVer == NULL) || (rcVer == NULL))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETARMVER_NULL_PARM, getMykonosErrorMessage(MYKONOS_ERR_GETARMVER_NULL_PARM));
return MYKONOS_ERR_GETARMVER_NULL_PARM;
}
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_VERSION, &ver[0], sizeof(ver), 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
fullVersion = ((uint32_t)(ver[0]) | ((uint32_t)(ver[1]) << 8) | ((uint32_t)(ver[2]) << 16) | ((uint32_t)(ver[3]) << 24));
*rcVer = (fullVersion % 100);
*minorVer = ((fullVersion / 100) % 100);
*majorVer = (fullVersion / 10000);
return MYKONOS_ERR_OK;
}
/**
* \brief This function, when called during RadioOff, will configure DPD settings
*
* A AD9373 device is required for DPD to be enabled. The DPD has several user
* adjustable settings that can be configured before running the runInitCals
* with the calMask set for the DPD init cal. Call this function with desired
* settings set before running the DPD init cal or enabling DPD tracking.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->profilesValid
* - device->tx->dpdConfig (All members)
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_CFGDPD_TXORX_PROFILE_INV ERROR: to use these features, a valid Tx and ORx profile must exist in the device data structure
* \retval MYKONOS_ERR_CFGDPD_NULL_DPDCFGSTRUCT ERROR: device->tx->dpdConfig is a NULL pointer
* \retval MYKONOS_ERR_CFGDPD_ARMSTATE_ERROR ERROR: To set these settings, the ARM must be in the radioOff (IDLE) state.
* \retval MYKONOS_ERR_CFGDPD_INV_DPDDAMPING ERROR: damping parameter is out of range
* \retval MYKONOS_ERR_CFGDPD_INV_DPDSAMPLES ERROR: samples parameter is out of range
* \retval MYKONOS_ERR_CFGDPD_INV_NUMWEIGHTS ERROR: numWeights parameter is out of range (0-3)
* \retval MYKONOS_ERR_CFGDPD_INV_MODELVERSION ERROR: modelVersion parameter is out of range (0-3)
* \retval MYKONOS_ERR_CFGDPD_INV_DPDOUTLIERTHRESH ERROR: outlierThreshold parameter is out of range
* \retval MYKONOS_ERR_CFGDPD_INV_DPD_ADDDELAY ERROR: additionalDelayOffset parameter is out of range
* \retval MYKONOS_ERR_CFGDPD_INV_PNSEQLEVEL ERROR: pathDelayPnSeqLevel parameter is out of range
*
*/
mykonosErr_t MYKONOS_configDpd(mykonosDevice_t *device)
{
uint32_t radioStatus = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t armFieldValue[6] = {0};
uint8_t byteOffset = 0;
uint16_t negPnLevel = 0;
uint8_t highPowerModelUpdate = 0;
uint8_t robustModeling = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_configDpd()\n");
#endif
/* DPD requires Tx and ORx enabled, throw error if both are not enabled */
if ((device->profilesValid & (TX_PROFILE_VALID | ORX_PROFILE_VALID)) != (TX_PROFILE_VALID | ORX_PROFILE_VALID))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGDPD_TXORX_PROFILE_INV,
getMykonosErrorMessage(MYKONOS_ERR_CFGDPD_TXORX_PROFILE_INV));
return MYKONOS_ERR_CFGDPD_TXORX_PROFILE_INV;
}
if (device->tx->dpdConfig == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGDPD_NULL_DPDCFGSTRUCT,
getMykonosErrorMessage(MYKONOS_ERR_CFGDPD_NULL_DPDCFGSTRUCT));
return MYKONOS_ERR_CFGDPD_NULL_DPDCFGSTRUCT;
}
/* read radio state to make sure ARM is in radioOff /IDLE */
retVal = MYKONOS_getRadioState(device, &radioStatus);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* throw error if not in radioOff/IDLE state */
if (((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_IDLE) && ((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_READY))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGDPD_ARMSTATE_ERROR,
getMykonosErrorMessage(MYKONOS_ERR_CFGDPD_ARMSTATE_ERROR));
return MYKONOS_ERR_CFGDPD_ARMSTATE_ERROR;
}
/* check DPD damping and samples parameters */
if (device->tx->dpdConfig->damping > 15)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGDPD_INV_DPDDAMPING,
getMykonosErrorMessage(MYKONOS_ERR_CFGDPD_INV_DPDDAMPING));
return MYKONOS_ERR_CFGDPD_INV_DPDDAMPING;
}
if ((device->tx->dpdConfig->samples < 64) || (device->tx->dpdConfig->samples > 32768))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGDPD_INV_DPDSAMPLES,
getMykonosErrorMessage(MYKONOS_ERR_CFGDPD_INV_DPDSAMPLES));
return MYKONOS_ERR_CFGDPD_INV_DPDSAMPLES;
}
if (device->tx->dpdConfig->numWeights > 3)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGDPD_INV_NUMWEIGHTS,
getMykonosErrorMessage(MYKONOS_ERR_CFGDPD_INV_NUMWEIGHTS));
return MYKONOS_ERR_CFGDPD_INV_NUMWEIGHTS;
}
if (device->tx->dpdConfig->modelVersion > 3)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGDPD_INV_MODELVERSION,
getMykonosErrorMessage(MYKONOS_ERR_CFGDPD_INV_MODELVERSION));
return MYKONOS_ERR_CFGDPD_INV_MODELVERSION;
}
highPowerModelUpdate = (device->tx->dpdConfig->highPowerModelUpdate > 0) ? 1 : 0;
robustModeling = (device->tx->dpdConfig->robustModeling > 0) ? 1 : 0;
armFieldValue[0] = (((device->tx->dpdConfig->numWeights & 3) << 4) | (device->tx->dpdConfig->damping & 0xF));
armFieldValue[1] = ((robustModeling << 3) | (highPowerModelUpdate << 2) | (device->tx->dpdConfig->modelVersion & 3));
armFieldValue[2] = (device->tx->dpdConfig->samples & 0xFF);
armFieldValue[3] = ((device->tx->dpdConfig->samples >> 8) & 0xFF);
byteOffset = 0;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_DPDCONFIG, byteOffset, &armFieldValue[0], 4);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* set DPD outlier threshold parameter */
if ((device->tx->dpdConfig->outlierThreshold < 1) || (device->tx->dpdConfig->outlierThreshold > 8192))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGDPD_INV_DPDOUTLIERTHRESH,
getMykonosErrorMessage(MYKONOS_ERR_CFGDPD_INV_DPDOUTLIERTHRESH));
return MYKONOS_ERR_CFGDPD_INV_DPDOUTLIERTHRESH;
}
armFieldValue[0] = (device->tx->dpdConfig->outlierThreshold & 0xFF);
armFieldValue[1] = ((device->tx->dpdConfig->outlierThreshold >> 8) & 0xFF);
byteOffset = 10;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_DPDCONFIG, byteOffset, &armFieldValue[0], 2);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* set DPD Model Prior Weight parameter */
if (device->tx->dpdConfig->modelPriorWeight > 32)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGDPD_INV_DPDPRIORWEIGHT,
getMykonosErrorMessage(MYKONOS_ERR_CFGDPD_INV_DPDPRIORWEIGHT));
return MYKONOS_ERR_CFGDPD_INV_DPDPRIORWEIGHT;
}
armFieldValue[0] = (device->tx->dpdConfig->modelPriorWeight & 0xFF);
armFieldValue[1] = 0;
byteOffset = 12;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_DPDCONFIG, byteOffset, &armFieldValue[0], 2);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* no need to verify weights min/max as all int8 values are valid */
armFieldValue[0] = (device->tx->dpdConfig->weights[0].real);
armFieldValue[1] = (device->tx->dpdConfig->weights[0].imag);
armFieldValue[2] = (device->tx->dpdConfig->weights[1].real);
armFieldValue[3] = (device->tx->dpdConfig->weights[1].imag);
armFieldValue[4] = (device->tx->dpdConfig->weights[2].real);
armFieldValue[5] = (device->tx->dpdConfig->weights[2].imag);
byteOffset = 14;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_DPDCONFIG, byteOffset, &armFieldValue[0], 6);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* set DPD additional delay offset parameter */
if ((device->tx->dpdConfig->additionalDelayOffset < -64) || (device->tx->dpdConfig->additionalDelayOffset > 64))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGDPD_INV_DPD_ADDDELAY,
getMykonosErrorMessage(MYKONOS_ERR_CFGDPD_INV_DPD_ADDDELAY));
return MYKONOS_ERR_CFGDPD_INV_DPD_ADDDELAY;
}
armFieldValue[0] = (device->tx->dpdConfig->additionalDelayOffset & 0xFF);
armFieldValue[1] = ((device->tx->dpdConfig->additionalDelayOffset >> 8) & 0xFF);
byteOffset = 2;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_DPDINIT_CONFIG, byteOffset, &armFieldValue[0], 2);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
if ((device->tx->dpdConfig->pathDelayPnSeqLevel < 1) || (device->tx->dpdConfig->pathDelayPnSeqLevel > 8191))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGDPD_INV_PNSEQLEVEL,
getMykonosErrorMessage(MYKONOS_ERR_CFGDPD_INV_PNSEQLEVEL));
return MYKONOS_ERR_CFGDPD_INV_PNSEQLEVEL;
}
/* Set Path Delay PN sequence amplitude - positive and negative */
armFieldValue[0] = (device->tx->dpdConfig->pathDelayPnSeqLevel & 0xFF);
armFieldValue[1] = ((device->tx->dpdConfig->pathDelayPnSeqLevel >> 8) & 0xFF);
negPnLevel = ((~device->tx->dpdConfig->pathDelayPnSeqLevel) + 1); /* times -1 */
armFieldValue[2] = (negPnLevel & 0xFF);
armFieldValue[3] = (((negPnLevel) >> 8) & 0xFF);
byteOffset = 10;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_DPDINIT_CONFIG, byteOffset, &armFieldValue[0], 4);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
return MYKONOS_ERR_OK;
}
/* \brief Reads the DPD config structure from ARM memory
*
* This function reads the DPD structure
* from ARM memory and returns in the device->tx->dpdConfig structure.
*
* A AD9373 device is required for DPD to be enabled.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->profilesValid
* - device->tx->dpdConfig (All members)
*
* \param device is structure pointer to the Mykonos data structure containing settings
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETDPDCFG_TXORX_PROFILE_INV Error: Tx and ORx profiles must be valid for DPD functions
* \retval MYKONOS_ERR_GETDPDCFG_NULL_DPDCFGSTRUCT Error: NULL pointer to device->tx->dpdConfig structure
*/
mykonosErr_t MYKONOS_getDpdConfig(mykonosDevice_t *device)
{
uint16_t byteOffset = 0;
uint8_t armMem[20] = {0};
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getDpdConfig()\n");
#endif
/* DPD requires Tx and ORx enabled, throw error if both are not enabled */
if ((device->profilesValid & (TX_PROFILE_VALID | ORX_PROFILE_VALID)) != (TX_PROFILE_VALID | ORX_PROFILE_VALID))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETDPDCFG_TXORX_PROFILE_INV,
getMykonosErrorMessage(MYKONOS_ERR_GETDPDCFG_TXORX_PROFILE_INV));
return MYKONOS_ERR_GETDPDCFG_TXORX_PROFILE_INV;
}
if (device->tx->dpdConfig == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETDPDCFG_NULL_DPDCFGSTRUCT,
getMykonosErrorMessage(MYKONOS_ERR_GETDPDCFG_NULL_DPDCFGSTRUCT));
return MYKONOS_ERR_GETDPDCFG_NULL_DPDCFGSTRUCT;
}
byteOffset = 0;
retVal = MYKONOS_readArmConfig(device, MYKONOS_ARM_OBJECTID_DPDCONFIG, byteOffset, &armMem[0], 20);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
device->tx->dpdConfig->damping = (armMem[0] & 0x0F);
device->tx->dpdConfig->numWeights = ((armMem[0] >> 4) & 0x03);
device->tx->dpdConfig->modelVersion = (armMem[1] & 0x03);
device->tx->dpdConfig->highPowerModelUpdate = ((armMem[1] >> 2) & 0x01);
device->tx->dpdConfig->robustModeling = ((armMem[1] >> 3) & 0x01);
device->tx->dpdConfig->samples = ((uint16_t)(armMem[3]) << 8) | (uint16_t)(armMem[2]);
device->tx->dpdConfig->outlierThreshold = ((uint16_t)(armMem[11]) << 8) | (uint16_t)(armMem[10]);
device->tx->dpdConfig->modelPriorWeight = armMem[12];
device->tx->dpdConfig->weights[0].real = (int8_t)(armMem[14]);
device->tx->dpdConfig->weights[0].imag = (int8_t)(armMem[15]);
device->tx->dpdConfig->weights[1].real = (int8_t)(armMem[16]);
device->tx->dpdConfig->weights[1].imag = (int8_t)(armMem[17]);
device->tx->dpdConfig->weights[2].real = (int8_t)(armMem[18]);
device->tx->dpdConfig->weights[2].imag = (int8_t)(armMem[19]);
byteOffset = 2;
retVal = MYKONOS_readArmConfig(device, MYKONOS_ARM_OBJECTID_DPDINIT_CONFIG, byteOffset, &armMem[0], 2);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
device->tx->dpdConfig->additionalDelayOffset = (int16_t)(((uint16_t)(armMem[1]) << 8) | (uint16_t)(armMem[0]));
byteOffset = 10;
retVal = MYKONOS_readArmConfig(device, MYKONOS_ARM_OBJECTID_DPDINIT_CONFIG, byteOffset, &armMem[0], 2);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
device->tx->dpdConfig->pathDelayPnSeqLevel = (((uint16_t)(armMem[1]) << 8) | (uint16_t)(armMem[0]));
return MYKONOS_ERR_OK;
}
/**
* \brief This function reads the DPD calibration status from the Mykonos ARM processor.
*
* The dpdStatus is read back from the ARM processor and returned in the function
* parameter dpdStatus.
*
* A AD9373 device is required for this feature to be enabled.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param txChannel Desired Transmit channel to read back DPD status for (Valid ENUM values: TX1 or TX2 only)
* \param dpdStatus Pointer to a structure to return the status information to
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETDPDSTATUS_NULLPARAM dpdStatus function parameter is a NULL pointer
* \retval MYKONOS_ERR_GETDPDSTATUS_INV_CH txChannel parameter is a non-supported value.
* \retval MYKONOS_ERR_GETDPDSTATUS_ARMERRFLAG ARM reported an error while processing the GET ARM command
*/
mykonosErr_t MYKONOS_getDpdStatus(mykonosDevice_t *device, mykonosTxChannels_t txChannel, mykonosDpdStatus_t *dpdStatus)
{
uint8_t extData[3] = {MYKONOS_ARM_OBJECTID_CAL_STATUS, MYKONOS_ARM_OBJECTID_DPDCONFIG, 0};
uint8_t armData[28] = {0};
uint32_t timeoutMs = 0;
uint8_t cmdStatusByte = 0;
uint8_t channelSelect = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getDpdStatus()\n");
#endif
if (dpdStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETDPDSTATUS_NULLPARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETDPDSTATUS_NULLPARAM));
return MYKONOS_ERR_GETDPDSTATUS_NULLPARAM;
}
switch (txChannel)
{
case TX1:
channelSelect = 0;
break;
case TX2:
channelSelect = 1;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETDPDSTATUS_INV_CH,
getMykonosErrorMessage(MYKONOS_ERR_GETDPDSTATUS_INV_CH));
return MYKONOS_ERR_GETDPDSTATUS_INV_CH;
}
}
extData[2] = channelSelect;
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000;
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETDPDSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETDPDSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETDPDSTATUS_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETDPDSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETDPDSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETDPDSTATUS_ARMERRFLAG;
}
/* read status from ARM memory */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR, &armData[0], 28, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
dpdStatus->dpdErrorStatus = ((uint32_t)(armData[1]) << 8) | (uint32_t)(armData[0]); /* Only lower 16 bits */
dpdStatus->dpdTrackCount = ((uint32_t)(armData[11]) << 24) | ((uint32_t)(armData[10]) << 16) | ((uint32_t)(armData[9]) << 8) | (uint32_t)(armData[8]);
dpdStatus->dpdModelErrorPercent = ((uint32_t)(armData[15]) << 24) | ((uint32_t)(armData[14]) << 16) | ((uint32_t)(armData[13]) << 8) | (uint32_t)(armData[12]);
dpdStatus->dpdExtPathDelay = ((uint32_t)(armData[26]) * 16) + (uint32_t)(armData[24]);
return MYKONOS_ERR_OK;
}
/**
* \brief This private helper function called during RadioOff, will allow DPD tracking to be scheduled
* by the ARM when back in the RadioOn state.
*
* This function sets a flag in the ARM memory that if the enableDpd tracking cal mask
* and this setting are both set, then the ARM will schedule DPD tracking to occur
* in the radioOn ARM state.
*
* A AD9373 device is required for DPD to be enabled.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->tx->dpdConfig
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param tx1Enable 0=disable DPD Tx1 tracking, 1= enable DPD Tx1 tracking
* \param tx2Enable 0=disable DPD Tx2 tracking, 1= enable DPD Tx2 tracking
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_EN_DPDTRACKING_ARMSTATE_ERROR ARM is not in the RadioOff state, call MYKONOS_radioOff()
*/
static mykonosErr_t enableDpdTracking(mykonosDevice_t *device, uint8_t tx1Enable, uint8_t tx2Enable)
{
uint32_t radioStatus = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t enableBit[4] = {0};
uint8_t byteOffset = 20;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableDpdTracking()\n");
#endif
/* read radio state to make sure ARM is in radioOff /IDLE */
retVal = MYKONOS_getRadioState(device, &radioStatus);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* throw error if not in radioOff/IDLE state */
if (((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_IDLE) && ((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_READY))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_EN_DPDTRACKING_ARMSTATE_ERROR,
getMykonosErrorMessage(MYKONOS_ERR_EN_DPDTRACKING_ARMSTATE_ERROR));
return MYKONOS_ERR_EN_DPDTRACKING_ARMSTATE_ERROR;
}
enableBit[0] = (tx1Enable > 0) ? 1 : 0;
enableBit[1] = 0;
enableBit[2] = (tx2Enable > 0) ? 1 : 0;
enableBit[3] = 0;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_DPDCONFIG, byteOffset, &enableBit[0], 4);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
return MYKONOS_ERR_OK;
}
/**
* \brief This function called during RadioOff, will allow loading of the DPD model file.
*
* This function writes a copy of the user's DPD model to ARM memory and instructs the ARM to install that DPD model
* into hardware. Note that initializing the device will over write DPD model data. Note that the DPD model being
* restored must match the PA for which it is configured. Restoring a DPD model to a different PA than for which it
* is configured will not yield the desired performance. The user is responsible to insure the DPD model matches the
* PA configuration.
*
* \param device Structure pointer to the Mykonos data structure containing settings
* \param txChannel Desired transmit channel to which to write the DPD model file (Valid ENUM type mykonosTxChannels_t: TX1 or TX2 or TX1_TX2)
* \param modelDataBuffer Pointer to the user buffer containing the history/model data to be loaded to a txChannel
* Valid sizes: 172 bytes for a single model/rms load to either TX1 or TX2.
* 344 bytes for a dual model/rms load to both TX1_TX2, where the TX1 model/rms data will occupy the first 172 bytes
* and TX2 model/rms data will occupy the second 172 bytes.
* \param modelNumberBytes Total buffer size of the user history/model data buffer. Allowed sizes are 172 bytes for TX1 or TX2 and
* 344 bytes for TX1_TX2.
*
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_RESTDPDMOD_ARMSTATE ARM is not in the RadioOff state, call MYKONOS_radioOff()
* \retval MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE User suppled modelNumberBytes size is incorrect. TX1 or TX2 = 172, TX1_TX2 = 344
* \retval MYKONOS_ERR_RESTDPDMOD_INVALID_TXCHANNEL User supplied txChannel does not match TX1 or TX2 or TX1_TX2
* \retval MYKONOS_ERR_RESTDPDMOD_ARMERRFLAG ARM returned error for Set ARM Command
*/
mykonosErr_t MYKONOS_restoreDpdModel(mykonosDevice_t *device, mykonosTxChannels_t txChannel, uint8_t *modelDataBuffer, uint32_t modelNumberBytes)
{
uint32_t radioStatus = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint16_t modelSize = 0;
uint16_t rmsSize = 0;
uint8_t armData[4] = {0};
uint32_t armBufferAddr = 0;
uint8_t *bufferPtr = 0;
uint8_t extendedData[4] = {0};
uint8_t cmdStatusByte = 0;
const uint32_t timeoutMs = 1000;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_restoreDpdModel()\n");
#endif
/* read radio state to make sure ARM is in radioOff /IDLE */
retVal = MYKONOS_getRadioState(device, &radioStatus);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* throw error if not in radioOff/IDLE state */
if (((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_IDLE) && ((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_READY))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESTDPDMOD_ARMSTATE, getMykonosErrorMessage(MYKONOS_ERR_RESTDPDMOD_ARMSTATE)); /* radio not off or initialized */
return MYKONOS_ERR_RESTDPDMOD_ARMSTATE;
}
/* retrieve the model buffer byte count */
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_DPD_MODEL_BUF_SIZE), &armData[0], 2, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
modelSize = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8));
/* retrieve the rms buffer byte count */
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_DPD_RMS_BUF_SIZE), &armData[0], 2, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
rmsSize = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8));
if (txChannel == TX1)
{
/* check for single valid provided buffer size */
if (modelNumberBytes != (modelSize + rmsSize))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE,
getMykonosErrorMessage(MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE));
return MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE;
}
/* retrieve the arm TX1 model buffer address */
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX1_DPD_MODEL_INDIRECT_PTR), &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* write the TX1 model data */
bufferPtr = modelDataBuffer;
retVal = MYKONOS_writeArmMem(device, armBufferAddr, bufferPtr, modelSize); /* write TX1 model */
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
bufferPtr += modelSize;
/* retrieve the arm TX1 rms buffer address */
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX1_DPD_RMS_INDIRECT_PTR), &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* write the TX1 rms */
retVal = MYKONOS_writeArmMem(device, armBufferAddr, bufferPtr, rmsSize);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}/*end TX1 */
else if (txChannel == TX2)
{
/* check for single valid provided buffer size */
if (modelNumberBytes != (modelSize + rmsSize))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE,
getMykonosErrorMessage(MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE));
return MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE;
}
/* retrieve the arm TX2 model buffer address */
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX2_DPD_MODEL_INDIRECT_PTR), &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* write the TX2 model data */
bufferPtr = modelDataBuffer;
retVal = MYKONOS_writeArmMem(device, armBufferAddr, bufferPtr, modelSize); /* write TX2 model */
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
bufferPtr += modelSize;
/* retrieve the arm TX2 rms buffer address */
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX2_DPD_RMS_INDIRECT_PTR), &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* write the TX2 rms */
retVal = MYKONOS_writeArmMem(device, armBufferAddr, bufferPtr, rmsSize);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}/* end TX2 */
/* check for dual txChannel type */
else if (txChannel == TX1_TX2)
{
/* check for single valid provided buffer size */
if (modelNumberBytes != (2 * (modelSize + rmsSize)))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE,
getMykonosErrorMessage(MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE));
return MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE;
}
/* retrieve the arm TX1 model buffer address */
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX1_DPD_MODEL_INDIRECT_PTR), &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* write the TX1 model data */
bufferPtr = modelDataBuffer;
retVal = MYKONOS_writeArmMem(device, armBufferAddr, bufferPtr, modelSize); /* write TX1 model */
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
bufferPtr += modelSize;
/* retrieve the arm TX1 rms buffer address */
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX1_DPD_RMS_INDIRECT_PTR), &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* write the TX1 rms */
retVal = MYKONOS_writeArmMem(device, armBufferAddr, bufferPtr, rmsSize);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
bufferPtr += rmsSize;
/* retrieve the arm TX2 model buffer address */
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX2_DPD_MODEL_INDIRECT_PTR), &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* write the TX2 model data */
retVal = MYKONOS_writeArmMem(device, armBufferAddr, bufferPtr, modelSize); /* write TX2 model */
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
bufferPtr += modelSize;
/* retrieve the arm TX2 rms buffer address */
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX2_DPD_RMS_INDIRECT_PTR), &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* write the TX2 rms */
retVal = MYKONOS_writeArmMem(device, armBufferAddr, bufferPtr, rmsSize);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}/*end two txChannel model data load */
/* invalid txChannel for this api command */
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESTDPDMOD_INVALID_TXCHANNEL,
getMykonosErrorMessage(MYKONOS_ERR_RESTDPDMOD_INVALID_TXCHANNEL));
return MYKONOS_ERR_RESTDPDMOD_INVALID_TXCHANNEL;
}/* end invalid txChannel check */
/* instruct ARM to load DPD Model */
extendedData[0] = MYKONOS_ARM_OBJECTID_GS_TRACKCALS;
extendedData[1] = MYKONOS_ARM_DPD_INIT_MODEL;
extendedData[2] = txChannel;
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_SET_OPCODE, &extendedData[0], sizeof(extendedData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* wait max of 1sec for command to complete */
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_SET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESTDPDMOD_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_RESTDPDMOD_ARMERRFLAG));
return MYKONOS_ERR_RESTDPDMOD_ARMERRFLAG;
}
return retVal;
}
return MYKONOS_ERR_OK;
}
/**
* \brief This function called during RadioOff, will allow retrevial of the DPD model file.
*
* This function reads a copy of the DPD model from ARM memory to user memory specified by the modelDataBuffer pointer.
* The user must provide the correct buffer size with the modelNumberBytes argument.
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param txChannel Desired Transmit channel to read back DPD status for (Valid ENUM type mykonosTxChannels_t: TX1 or TX2 or TX1_TX2)
* \param modelDataBuffer a pointer to the user buffer where the model/rms data is to be written.
* Valid sizes: 172 bytes for a single model load to either TX1 or TX2.
* 344 bytes for a dual model load to both TX1_TX2, where the TX1 model/rms data will occupy the first 172 bytes
* and TX2 model/rms data will occupy the second 172 bytes.
* \param modelNumberBytes is the total buffer size of the user rms/model data buffer. Allowed sizes are 172 bytes for TX1 or TX2 and
* 344 bytes for TX1_TX2.
*
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_SAVEDPDMODEL_ARMSTATE_ERROR ARM is not in the RadioOff state, call MYKONOS_radioOff()
* \retval MYKONOS_ERR_SAVEDPDMODEL_BUFFERSIZE_ERROR suppled modelNumberBytes size is incorrect. TX1 or TX2 = 172, TX1_TX2 = 344
* \retval MYKONOS_ERR_SAVEDPDMODEL_INVALID_TXCHANNEL_ERROR supplied txChannel does not match TX1 or TX2 or TX1_TX2
*/
mykonosErr_t MYKONOS_saveDpdModel(mykonosDevice_t *device, mykonosTxChannels_t txChannel, uint8_t *modelDataBuffer, uint32_t modelNumberBytes)
{
uint32_t radioStatus = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint16_t modelSize = 0;
uint16_t rmsSize = 0;
uint8_t armData[4] = {0};
uint32_t armBufferAddr = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_saveDpdModel()\n");
#endif
/* read radio state to make sure ARM is in radioOff /IDLE */
retVal = MYKONOS_getRadioState(device, &radioStatus);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* throw error if not in radioOff/IDLE state */
if (((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_IDLE) && ((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_READY))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SAVDPDMOD_ARMSTATE, getMykonosErrorMessage(MYKONOS_ERR_SAVDPDMOD_ARMSTATE)); /* radio not off or initialized */
return MYKONOS_ERR_SAVDPDMOD_ARMSTATE;
}
/* retrieve the model buffer byte count */
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_DPD_MODEL_BUF_SIZE), &armData[0], 2, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
modelSize = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8));
/* retrieve the rms buffer byte count */
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_DPD_RMS_BUF_SIZE), &armData[0], 2, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
rmsSize = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8));
if (txChannel == TX1)
{
/* check for single valid provided buffer size */
if (modelNumberBytes != (modelSize + rmsSize))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE,
getMykonosErrorMessage(MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE));
return MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE; /* wrong buffer size */
}
/* retrieve the arm TX1 model buffer address */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX1_DPD_MODEL_INDIRECT_PTR, &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* read the TX1 model */
retVal = MYKONOS_readArmMem(device, armBufferAddr, modelDataBuffer, modelSize, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
modelDataBuffer += modelSize;
/* retrieve the arm TX1 rms buffer address */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX1_DPD_RMS_INDIRECT_PTR, &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* read the TX1 rms */
retVal = MYKONOS_readArmMem(device, armBufferAddr, modelDataBuffer, rmsSize, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}/*end TX1 */
else if (txChannel == TX2)
{
/* check for single valid provided buffer size */
if (modelNumberBytes != (modelSize + rmsSize))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE,
getMykonosErrorMessage(MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE));
return MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE; /* wrong buffer size */
}
/* retrieve the arm TX2 model buffer address */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX2_DPD_MODEL_INDIRECT_PTR, &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* read the TX2 model */
retVal = MYKONOS_readArmMem(device, armBufferAddr, modelDataBuffer, modelSize, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
modelDataBuffer += modelSize;
/* retrieve the arm TX2 rms buffer address */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX2_DPD_RMS_INDIRECT_PTR, &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* read the TX2 rms */
retVal = MYKONOS_readArmMem(device, armBufferAddr, modelDataBuffer, rmsSize, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}/*end TX2 */
/* check for dual txChannel type */
else if (txChannel == TX1_TX2)
{
/* check for single valid provided buffer size */
if (modelNumberBytes != (2 * (modelSize + rmsSize)))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE,
getMykonosErrorMessage(MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE));
return MYKONOS_ERR_RESTDPDMOD_WRONGBUFFERSIZE; /* wrong buffer size */
}
/* retrieve the arm TX1 model buffer address */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX1_DPD_MODEL_INDIRECT_PTR, &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* read the TX1 model */
retVal = MYKONOS_readArmMem(device, armBufferAddr, modelDataBuffer, modelSize, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
modelDataBuffer += modelSize;
/* retrieve the arm TX1 rms buffer address */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX1_DPD_RMS_INDIRECT_PTR, &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* read the TX1 rms */
retVal = MYKONOS_readArmMem(device, armBufferAddr, modelDataBuffer, rmsSize, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
modelDataBuffer += rmsSize;
/* retrieve the arm TX2 model buffer address */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX2_DPD_MODEL_INDIRECT_PTR, &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* read the TX2 model */
retVal = MYKONOS_readArmMem(device, armBufferAddr, modelDataBuffer, modelSize, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
modelDataBuffer += modelSize;
/* retrieve the arm TX2 rms buffer address */
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_PROG_ADDR + MYKONOS_ADDR_TX2_DPD_RMS_INDIRECT_PTR, &armData[0], 4, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
armBufferAddr = (((uint32_t)armData[0]) | (((uint32_t)armData[1]) << 8) | (((uint32_t)armData[2]) << 16) | (((uint32_t)armData[3]) << 24));
/* read the TX2 rms */
retVal = MYKONOS_readArmMem(device, armBufferAddr, modelDataBuffer, rmsSize, 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
}/* end two txChannel */
/* invalid txChannel for this api command */
else
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SAVDPDMOD_INVALID_TXCHANNEL,
getMykonosErrorMessage(MYKONOS_ERR_SAVDPDMOD_INVALID_TXCHANNEL));
return MYKONOS_ERR_SAVDPDMOD_INVALID_TXCHANNEL; /* invalid txChannel */
}/* end invalid txChannel check */
return MYKONOS_ERR_OK;
}
/**
* \brief This function sets the state of the DPD actuator.
*
* This function can be called in either Radio On or Off state.
*
* \pre A AD9373 device is required for DPD to be enabled. DPD init cal has been run and DPD tracking enable.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param txChannel Desired Transmit channel to set the Actuator State (Valid ENUM values: TX1, TX2 or TX1_TX2)
* \param actState Desired actuator state for the DPD, valid states are 0-disable and 1-enable
*
* \retval MYKONOS_ERR_SETDPDACT_INV_TXCHANNEL ERROR: Tx channel is not valid (Valid ENUM values: TX1, TX2 or TX1_TX2)
* \retval MYKONOS_ERR_SETDPDACT_INV_STATE ERROR: Invalid Actuator state, valid states are 0-disable and 1-enable.
* \retval MYKONOS_ERR_SETDPDACT_ARMERRFLAG ERROR: ARM command flag error set
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_setDpdActState(mykonosDevice_t *device, mykonosTxChannels_t txChannel, uint8_t actState)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint32_t timeoutMs = 1000;
uint8_t extData[3] = {0};
uint8_t actuatorSet = 0x00;
uint8_t cmdStatusByte = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setDpdActuator()\n");
#endif
switch (txChannel)
{
case TX1:
break;
case TX2:
break;
case TX1_TX2:
break;
default:
/* this function allow single channel gain only */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETDPDACT_INV_TXCHANNEL,
getMykonosErrorMessage(MYKONOS_ERR_SETDPDACT_INV_TXCHANNEL));
return MYKONOS_ERR_SETDPDACT_INV_TXCHANNEL;
}
switch (actState)
{
case 0:
actuatorSet = DISABLE_DPD_ACTUATOR;
break;
case 1:
actuatorSet = ENABLE_DPD_ACTUATOR;
break;
default:
/* this function allow single channel gain only */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETDPDACT_INV_STATE,
getMykonosErrorMessage(MYKONOS_ERR_SETDPDACT_INV_STATE));
return MYKONOS_ERR_SETDPDACT_INV_STATE;
}
extData[0] = MYKONOS_ARM_OBJECTID_TRACKING_CAL_CONTROL;
extData[1] = actuatorSet;
extData[2] = (uint8_t)txChannel;
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_SET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* check for completion */
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_SET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETDPDACT_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_SETDPDACT_ARMERRFLAG));
return MYKONOS_ERR_SETDPDACT_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETDPDACT_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_SETDPDACT_ARMERRFLAG));
return MYKONOS_ERR_SETDPDACT_ARMERRFLAG;
}
return MYKONOS_ERR_OK;
}
/**
* \brief This function, when called during RadioOff, will configure CLGC settings
*
* A AD9373 device is required for CLGC to be enabled. The CLGC has several user
* adjustable settings that can be configured before running the runInitCals
* with the calMask set for the CLGC init cal. Call this function with desired
* settings set before running the CLGC init cal or enabling CLGC tracking.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->profilesValid
* - device->tx->clgcConfig (All members)
*
* \retval MYKONOS_ERR_CFGCLGC_TXORX_PROFILE_INV ERROR: Tx and ObsRx profiles must be valid to use the CLGC feature
* \retval MYKONOS_ERR_CFGCLGC_NULL_CLGCCFGSTRUCT ERROR: CLGC config structure pointer is null in device->tx->clgcConfig
* \retval MYKONOS_ERR_CFGCLGC_ARMSTATE_ERROR ERROR: ARM is not in the IDLE(radioOff) or Ready state.
* \retval MYKONOS_ERR_CFGCLGC_INV_DESIREDGAIN ERROR: CLGC tx1DesiredGain or tx2DesiredGain parameter is out of range
* \retval MYKONOS_ERR_CFGCLGC_INV_TXATTENLIMIT ERROR: CLGC tx1AttenLimit or tx2AttenLimit parameter is out of range
* \retval MYKONOS_ERR_CFGCLGC_INV_CLGC_CTRLRATIO ERROR: clgcControlRatio parameter is out of range
*/
mykonosErr_t MYKONOS_configClgc(mykonosDevice_t *device)
{
uint32_t radioStatus = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t armFieldValue[4] = {0};
uint8_t byteOffset = 0;
uint16_t negPnLevel = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_configClgc()\n");
#endif
/* CLGC requires Tx and ORx enabled, throw error if both are not enabled */
if ((device->profilesValid & (TX_PROFILE_VALID | ORX_PROFILE_VALID)) != (TX_PROFILE_VALID | ORX_PROFILE_VALID))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGCLGC_TXORX_PROFILE_INV,
getMykonosErrorMessage(MYKONOS_ERR_CFGCLGC_TXORX_PROFILE_INV));
return MYKONOS_ERR_CFGCLGC_TXORX_PROFILE_INV;
}
if (device->tx->clgcConfig == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGCLGC_NULL_CLGCCFGSTRUCT,
getMykonosErrorMessage(MYKONOS_ERR_CFGCLGC_NULL_CLGCCFGSTRUCT));
return MYKONOS_ERR_CFGCLGC_NULL_CLGCCFGSTRUCT;
}
/* read radio state to make sure ARM is in radioOff /IDLE */
retVal = MYKONOS_getRadioState(device, &radioStatus);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* throw error if not in radioOff/IDLE state */
if (((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_IDLE) && ((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_READY))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGCLGC_ARMSTATE_ERROR,
getMykonosErrorMessage(MYKONOS_ERR_CFGCLGC_ARMSTATE_ERROR));
return MYKONOS_ERR_CFGCLGC_ARMSTATE_ERROR;
}
/* set CLGC desired gain parameter */
if ((device->tx->clgcConfig->tx1DesiredGain < -10000) || (device->tx->clgcConfig->tx1DesiredGain > 10000) || (device->tx->clgcConfig->tx2DesiredGain < -10000)
|| (device->tx->clgcConfig->tx2DesiredGain > 10000))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGCLGC_INV_DESIREDGAIN,
getMykonosErrorMessage(MYKONOS_ERR_CFGCLGC_INV_DESIREDGAIN));
return MYKONOS_ERR_CFGCLGC_INV_DESIREDGAIN;
}
armFieldValue[0] = (device->tx->clgcConfig->tx1DesiredGain & 0xFF);
armFieldValue[1] = ((device->tx->clgcConfig->tx1DesiredGain >> 8) & 0xFF);
armFieldValue[2] = (device->tx->clgcConfig->tx2DesiredGain & 0xFF);
armFieldValue[3] = ((device->tx->clgcConfig->tx2DesiredGain >> 8) & 0xFF);
byteOffset = 0;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_CLGCCONFIG, byteOffset, &armFieldValue[0], 4);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* set CLGC Tx Atten limit parameter */
if ((device->tx->clgcConfig->tx1AttenLimit > 40) || (device->tx->clgcConfig->tx2AttenLimit > 40))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGCLGC_INV_TXATTENLIMIT,
getMykonosErrorMessage(MYKONOS_ERR_CFGCLGC_INV_TXATTENLIMIT));
return MYKONOS_ERR_CFGCLGC_INV_TXATTENLIMIT;
}
armFieldValue[0] = (device->tx->clgcConfig->tx1AttenLimit & 0xFF);
armFieldValue[1] = ((device->tx->clgcConfig->tx1AttenLimit >> 8) & 0xFF);
armFieldValue[2] = (device->tx->clgcConfig->tx2AttenLimit & 0xFF);
armFieldValue[3] = ((device->tx->clgcConfig->tx2AttenLimit >> 8) & 0xFF);
byteOffset = 8;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_CLGCCONFIG, byteOffset, &armFieldValue[0], 4);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* set CLGC Control Ratio parameter */
if ((device->tx->clgcConfig->tx1ControlRatio < 1) || (device->tx->clgcConfig->tx1ControlRatio > 100) || (device->tx->clgcConfig->tx2ControlRatio < 1)
|| (device->tx->clgcConfig->tx2ControlRatio > 100))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGCLGC_INV_CLGC_CTRLRATIO,
getMykonosErrorMessage(MYKONOS_ERR_CFGCLGC_INV_CLGC_CTRLRATIO));
return MYKONOS_ERR_CFGCLGC_INV_CLGC_CTRLRATIO;
}
armFieldValue[0] = (device->tx->clgcConfig->tx1ControlRatio & 0xFF);
armFieldValue[1] = ((device->tx->clgcConfig->tx1ControlRatio >> 8) & 0xFF);
armFieldValue[2] = (device->tx->clgcConfig->tx2ControlRatio & 0xFF);
armFieldValue[3] = ((device->tx->clgcConfig->tx2ControlRatio >> 8) & 0xFF);
byteOffset = 12;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_CLGCCONFIG, byteOffset, &armFieldValue[0], 4);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* set CLGC additional delay offset parameter (init cal)*/
if ((device->tx->clgcConfig->additionalDelayOffset < -64) || (device->tx->clgcConfig->additionalDelayOffset > 64))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGCLGC_INV_CLGC_ADDDELAY,
getMykonosErrorMessage(MYKONOS_ERR_CFGCLGC_INV_CLGC_ADDDELAY));
return MYKONOS_ERR_CFGCLGC_INV_CLGC_ADDDELAY;
}
armFieldValue[0] = (device->tx->clgcConfig->additionalDelayOffset & 0xFF);
armFieldValue[1] = ((device->tx->clgcConfig->additionalDelayOffset >> 8) & 0xFF);
byteOffset = 2;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_CLGCINIT_CONFIG, byteOffset, &armFieldValue[0], 2);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
if ((device->tx->clgcConfig->pathDelayPnSeqLevel < 1) || (device->tx->clgcConfig->pathDelayPnSeqLevel > 8191))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGCLGC_INV_PNSEQLEVEL,
getMykonosErrorMessage(MYKONOS_ERR_CFGCLGC_INV_PNSEQLEVEL));
return MYKONOS_ERR_CFGCLGC_INV_PNSEQLEVEL;
}
/* Set Path Delay PN sequence amplitude - positive and negative (init cal)*/
armFieldValue[0] = (device->tx->clgcConfig->pathDelayPnSeqLevel & 0xFF);
armFieldValue[1] = ((device->tx->clgcConfig->pathDelayPnSeqLevel >> 8) & 0xFF);
negPnLevel = ((~device->tx->clgcConfig->pathDelayPnSeqLevel) + 1); /* times -1 */
armFieldValue[2] = (negPnLevel & 0xFF);
armFieldValue[3] = (((negPnLevel) >> 8) & 0xFF);
byteOffset = 10;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_CLGCINIT_CONFIG, byteOffset, &armFieldValue[0], 4);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = enableClgcTracking(device, ((device->tx->clgcConfig->allowTx1AttenUpdates > 0) ? 1 : 0), ((device->tx->clgcConfig->allowTx2AttenUpdates > 0) ? 1 : 0));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
return MYKONOS_ERR_OK;
}
/* \brief Reads the CLGC config structure from ARM memory
*
* This function reads the Closed Loop Gain Control structure
* from ARM memory and returns in the device->tx->clgcConfig structure.
*
* A AD9373 device is required for CLGC to be enabled.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->profilesValid
* - device->tx->clgcConfig (All members)
*
* \param device is structure pointer to the Mykonos data structure containing settings
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETCLGCCFG_TXORX_PROFILE_INV Error: Tx and ORx profiles must be valid for CLGC functions
* \retval MYKONOS_ERR_GETCLGCCFG_NULL_CFGSTRUCT Error: NULL pointer to device->tx->clgcConfig structure
*/
mykonosErr_t MYKONOS_getClgcConfig(mykonosDevice_t *device)
{
uint16_t byteOffset = 0;
uint8_t armMem[16] = {0};
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getClgcConfig()\n");
#endif
/* CLGC requires Tx and ORx enabled, throw error if both are not enabled */
if ((device->profilesValid & (TX_PROFILE_VALID | ORX_PROFILE_VALID)) != (TX_PROFILE_VALID | ORX_PROFILE_VALID))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETCLGCCFG_TXORX_PROFILE_INV,
getMykonosErrorMessage(MYKONOS_ERR_GETCLGCCFG_TXORX_PROFILE_INV));
return MYKONOS_ERR_GETCLGCCFG_TXORX_PROFILE_INV;
}
if (device->tx->clgcConfig == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETCLGCCFG_NULL_CFGSTRUCT,
getMykonosErrorMessage(MYKONOS_ERR_GETCLGCCFG_NULL_CFGSTRUCT));
return MYKONOS_ERR_GETCLGCCFG_NULL_CFGSTRUCT;
}
byteOffset = 0;
retVal = MYKONOS_readArmConfig(device, MYKONOS_ARM_OBJECTID_CLGCCONFIG, byteOffset, &armMem[0], sizeof(armMem));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
device->tx->clgcConfig->tx1DesiredGain = (int16_t)(((uint16_t)(armMem[1]) << 8) | (uint16_t)(armMem[0]));
device->tx->clgcConfig->tx2DesiredGain = (int16_t)(((uint16_t)(armMem[3]) << 8) | (uint16_t)(armMem[2]));
device->tx->clgcConfig->tx1AttenLimit = (((uint16_t)(armMem[9]) << 8) | (uint16_t)(armMem[8]));
device->tx->clgcConfig->tx2AttenLimit = (((uint16_t)(armMem[11]) << 8) | (uint16_t)(armMem[10]));
device->tx->clgcConfig->tx1ControlRatio = (((uint16_t)(armMem[13]) << 8) | (uint16_t)(armMem[12]));
device->tx->clgcConfig->tx2ControlRatio = (((uint16_t)(armMem[15]) << 8) | (uint16_t)(armMem[14]));
byteOffset = 2;
retVal = MYKONOS_readArmConfig(device, MYKONOS_ARM_OBJECTID_CLGCINIT_CONFIG, byteOffset, &armMem[0], 2);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
device->tx->clgcConfig->additionalDelayOffset = (int16_t)(((uint16_t)(armMem[1]) << 8) | (uint16_t)(armMem[0]));
byteOffset = 10;
retVal = MYKONOS_readArmConfig(device, MYKONOS_ARM_OBJECTID_CLGCINIT_CONFIG, byteOffset, &armMem[0], 2);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
device->tx->clgcConfig->pathDelayPnSeqLevel = (((uint16_t)(armMem[1]) << 8) | (uint16_t)(armMem[0]));
return MYKONOS_ERR_OK;
}
/**
* \brief This function reads the CLGC calibration status from the Mykonos ARM processor.
*
* The Closed Loop Gain Control Status is read back from the ARM processor and
* returned in the function parameter clgcStatus.
*
* A AD9373 device is required for this feature to be enabled.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param txChannel Desired Transmit channel to read back CLGC status for (Valid ENUM values: TX1 or TX2 only)
* \param clgcStatus Pointer to a structure to return the status information to
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETCLGCSTATUS_NULLPARAM clgcStatus function parameter is a NULL pointer
* \retval MYKONOS_ERR_GETCLGCSTATUS_INV_CH txChannel parameter is a non supported value.
* \retval MYKONOS_ERR_GETCLGCSTATUS_ARMERRFLAG ARM reported an error while processing the GET ARM command
*/
mykonosErr_t MYKONOS_getClgcStatus(mykonosDevice_t *device, mykonosTxChannels_t txChannel, mykonosClgcStatus_t *clgcStatus)
{
uint8_t extData[3] = {MYKONOS_ARM_OBJECTID_CAL_STATUS, MYKONOS_ARM_OBJECTID_CLGCCONFIG, 0};
uint8_t armData[52] = {0};
uint32_t timeoutMs = 0;
uint8_t cmdStatusByte = 0;
uint32_t offset = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t channelSelect = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getClgcStatus()\n");
#endif
if (clgcStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETCLGCSTATUS_NULLPARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETCLGCSTATUS_NULLPARAM));
return MYKONOS_ERR_GETCLGCSTATUS_NULLPARAM;
}
switch (txChannel)
{
case TX1:
channelSelect = 0;
break;
case TX2:
channelSelect = 1;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETCLGCSTATUS_INV_CH,
getMykonosErrorMessage(MYKONOS_ERR_GETCLGCSTATUS_INV_CH));
return MYKONOS_ERR_GETCLGCSTATUS_INV_CH;
}
}
extData[2] = channelSelect;
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000;
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETCLGCSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETCLGCSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETCLGCSTATUS_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETCLGCSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETCLGCSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETCLGCSTATUS_ARMERRFLAG;
}
/* read status from ARM memory */
offset = 0;
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_DATA_ADDR + offset), &armData[0], sizeof(armData), 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
clgcStatus->errorStatus = ((uint32_t)(armData[3]) << 24) | ((uint32_t)(armData[2]) << 16) | ((uint32_t)(armData[1]) << 8) | (uint32_t)(armData[0]);
clgcStatus->desiredGain = (int32_t)(((uint32_t)(armData[23]) << 24) | ((uint32_t)(armData[22]) << 16) | ((uint32_t)(armData[21]) << 8) | (uint32_t)(armData[20]));
clgcStatus->currentGain = (int32_t)(((uint32_t)(armData[27]) << 24) | ((uint32_t)(armData[26]) << 16) | ((uint32_t)(armData[25]) << 8) | (uint32_t)(armData[24]));
clgcStatus->txGain = ((uint32_t)(armData[39]) << 24) | ((uint32_t)(armData[38]) << 16) | ((uint32_t)(armData[37]) << 8) | (uint32_t)(armData[36]);
clgcStatus->txRms = (int32_t)(((uint32_t)(armData[43]) << 24) | ((uint32_t)(armData[42]) << 16) | ((uint32_t)(armData[41]) << 8) | (uint32_t)(armData[40]));
clgcStatus->orxRms = (int32_t)(((uint32_t)(armData[47]) << 24) | ((uint32_t)(armData[46]) << 16) | ((uint32_t)(armData[45]) << 8) | (uint32_t)(armData[44]));
clgcStatus->trackCount = ((uint32_t)(armData[51]) << 24) | ((uint32_t)(armData[50]) << 16) | ((uint32_t)(armData[49]) << 8) | (uint32_t)(armData[48]);
return MYKONOS_ERR_OK;
}
/**
* \brief This private helper function called during RadioOff, will allow CLGC tracking to be scheduled
* by the ARM when back in the RadioOn state.
*
* This function sets a flag in the ARM memory that if the enableDpd tracking cal mask
* and this setting are both set, then the ARM will schedule closed loop gain control
* tracking to occur in the radioOn ARM state.
*
* A AD9373 device is required for this feature to be enabled.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->tx->dpdConfig
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param tx1Enable 0=disable CLGC Tx1 tracking, 1= enable CLGC Tx1 tracking
* \param tx2Enable 0=disable CLGC Tx2 tracking, 1= enable CLGC Tx2 tracking
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_EN_CLGCTRACKING_ARMSTATE_ERROR ARM is not in the RadioOff state, call MYKONOS_radioOff()
*/
static mykonosErr_t enableClgcTracking(mykonosDevice_t *device, uint8_t tx1Enable, uint8_t tx2Enable)
{
uint32_t radioStatus = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t enableBit[4] = {0};
uint8_t byteOffset = 4;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_enableClgcTracking()\n");
#endif
/* read radio state to make sure ARM is in radioOff /IDLE */
retVal = MYKONOS_getRadioState(device, &radioStatus);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* throw error if not in radioOff/IDLE state */
if (((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_IDLE) && ((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_READY))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_EN_CLGCTRACKING_ARMSTATE_ERROR,
getMykonosErrorMessage(MYKONOS_ERR_EN_CLGCTRACKING_ARMSTATE_ERROR));
return MYKONOS_ERR_EN_CLGCTRACKING_ARMSTATE_ERROR;
}
enableBit[0] = (tx1Enable > 0) ? 1 : 0;
enableBit[1] = 0;
enableBit[2] = (tx2Enable > 0) ? 1 : 0;
enableBit[3] = 0;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_CLGCCONFIG, byteOffset, &enableBit[0], 4);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
return MYKONOS_ERR_OK;
}
/**
* \brief This function updates the CLGC desired gain parameter.
*
* This function can be called in either Radio On or Off state.
*
* \pre A AD9373 device is required for CLGC to be enabled. CLGC init cal has been run and CLGC tracking enable.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param txChannel Desired Transmit channel to set the (Valid ENUM values: TX1 or TX2 only)
* \param gain Total gain and attenuation (dB * 100) for the selected channel txChannel
*
* \retval MYKONOS_ERR_SETCLGCGAIN_INV_TXCHANNEL ERROR: Tx channel is not valid (Valid ENUM values: TX1 or TX2 only)
* \retval MYKONOS_ERR_SETCLGCGAIN_TRACK_ARMERRFLAG ERROR: ARM command flag error set
* \retval MYKONOS_ERR_SETCLGCGAIN_INV_DESIREDGAIN ERROR: CLGC gain parameter is out of range, valid range is from -10000 to 10000.
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_setClgcGain(mykonosDevice_t *device, mykonosTxChannels_t txChannel, int16_t gain)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint32_t timeoutMs = 1000;
uint8_t extData[4] = {0};
uint8_t clcgChannel = 0x00;
uint8_t cmdStatusByte = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_setClgcGain()\n");
#endif
/* Range check for desired gain parameter */
if ((gain < -10000) || (gain > 10000))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETCLGCGAIN_INV_DESIREDGAIN,
getMykonosErrorMessage(MYKONOS_ERR_SETCLGCGAIN_INV_DESIREDGAIN));
return MYKONOS_ERR_SETCLGCGAIN_INV_DESIREDGAIN;
}
switch (txChannel)
{
case TX1:
clcgChannel = SET_CLGC_DESIRED_GAIN_1;
break;
case TX2:
clcgChannel = SET_CLGC_DESIRED_GAIN_2;
break;
default:
/* this function allow single channel gain only */
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETCLGCGAIN_INV_TXCHANNEL,
getMykonosErrorMessage(MYKONOS_ERR_SETCLGCGAIN_INV_TXCHANNEL));
return MYKONOS_ERR_SETCLGCGAIN_INV_TXCHANNEL;
}
extData[0] = MYKONOS_ARM_OBJECTID_TRACKING_CAL_CONTROL;
extData[1] = clcgChannel;
extData[2] = (gain & 0xFF);
extData[3] = ((gain >> 8) & 0xFF);
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_SET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* check for completion */
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_SET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETCLGCGAIN_TRACK_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_SETCLGCGAIN_TRACK_ARMERRFLAG));
return MYKONOS_ERR_SETCLGCGAIN_TRACK_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_SETCLGCGAIN_TRACK_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_SETCLGCGAIN_TRACK_ARMERRFLAG));
return MYKONOS_ERR_SETCLGCGAIN_TRACK_ARMERRFLAG;
}
return MYKONOS_ERR_OK;
}
/**
* \brief This function, when called during RadioOff, will configure VSWR settings
*
* A AD9373 device is required for VSWR to be enabled. The VSWR has several user
* adjustable settings that can be configured before running the runInitCals
* with the calMask set for the VSWR init cal. Call this function with desired
* settings set before running the VSWR init cal or enabling VSWR tracking.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->profilesValid
* - device->tx->vswrConfig (All members)
*
* \retval MYKONOS_ERR_CFGVSWR_TXORX_PROFILE_INV ERROR: Tx and ObsRx profiles must be valid to use the VSWR feature
* \retval MYKONOS_ERR_CFGVSWR_NULL_VSWRCFGSTRUCT ERROR: CLGC config structure pointer is null in device->tx->clgcConfig
* \retval MYKONOS_ERR_CFGVSWR_ARMSTATE_ERROR ERROR: ARM is not in the IDLE(radioOff) or Ready state.
*/
mykonosErr_t MYKONOS_configVswr(mykonosDevice_t *device)
{
uint32_t radioStatus = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t armFieldValue[16] = {0};
uint8_t byteOffset = 0;
uint16_t negPnLevel = 0;
const uint8_t ENABLE_VSWR = 1;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_configVswr()\n");
#endif
/* VSWR requires Tx and ORx enabled, throw error if both are not enabled */
if ((device->profilesValid & (TX_PROFILE_VALID | ORX_PROFILE_VALID)) != (TX_PROFILE_VALID | ORX_PROFILE_VALID))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGVSWR_TXORX_PROFILE_INV,
getMykonosErrorMessage(MYKONOS_ERR_CFGVSWR_TXORX_PROFILE_INV));
return MYKONOS_ERR_CFGVSWR_TXORX_PROFILE_INV;
}
if (device->tx->vswrConfig == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGVSWR_NULL_VSWRCFGSTRUCT,
getMykonosErrorMessage(MYKONOS_ERR_CFGVSWR_NULL_VSWRCFGSTRUCT));
return MYKONOS_ERR_CFGVSWR_NULL_VSWRCFGSTRUCT;
}
/* read radio state to make sure ARM is in radioOff /IDLE */
retVal = MYKONOS_getRadioState(device, &radioStatus);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* throw error if not in radioOff/IDLE state */
if (((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_IDLE) && ((radioStatus & 0x03) != MYKONOS_ARM_SYSTEMSTATE_READY))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGVSWR_ARMSTATE_ERROR,
getMykonosErrorMessage(MYKONOS_ERR_CFGVSWR_ARMSTATE_ERROR));
return MYKONOS_ERR_CFGVSWR_ARMSTATE_ERROR;
}
/* range check valid 3p3 GPIO pin */
if ((device->tx->vswrConfig->tx1VswrSwitchGpio3p3Pin > 11) || (device->tx->vswrConfig->tx2VswrSwitchGpio3p3Pin > 11))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGVSWR_INV_3P3GPIOPIN,
getMykonosErrorMessage(MYKONOS_ERR_CFGVSWR_INV_3P3GPIOPIN));
return MYKONOS_ERR_CFGVSWR_INV_3P3GPIOPIN;
}
armFieldValue[0] = ENABLE_VSWR;
armFieldValue[1] = 0;
armFieldValue[2] = ENABLE_VSWR;
armFieldValue[3] = 0;
armFieldValue[4] = (device->tx->vswrConfig->tx1VswrSwitchGpio3p3Pin & 0xFF);
armFieldValue[5] = 0;
armFieldValue[6] = (device->tx->vswrConfig->tx2VswrSwitchGpio3p3Pin & 0xFF);
armFieldValue[7] = 0;
armFieldValue[8] = (device->tx->vswrConfig->tx1VswrSwitchPolarity > 0) ? 1 : 0;
armFieldValue[9] = 0;
armFieldValue[10] = (device->tx->vswrConfig->tx2VswrSwitchPolarity > 0) ? 1 : 0;
armFieldValue[11] = 0;
armFieldValue[12] = device->tx->vswrConfig->tx1VswrSwitchDelay_ms; /* support full 0 to 255 ms range */
armFieldValue[13] = 0;
armFieldValue[14] = device->tx->vswrConfig->tx2VswrSwitchDelay_ms; /* support full 0 to 255 ms range */
armFieldValue[15] = 0;
byteOffset = 0;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_VSWRCONFIG, byteOffset, &armFieldValue[0], 16);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* set VSWR additional delay offset parameter (init cal)*/
if ((device->tx->vswrConfig->additionalDelayOffset < -64) || (device->tx->vswrConfig->additionalDelayOffset > 64))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGVSWR_INV_VSWR_ADDDELAY,
getMykonosErrorMessage(MYKONOS_ERR_CFGVSWR_INV_VSWR_ADDDELAY));
return MYKONOS_ERR_CFGVSWR_INV_VSWR_ADDDELAY;
}
armFieldValue[0] = (device->tx->vswrConfig->additionalDelayOffset & 0xFF);
armFieldValue[1] = ((device->tx->vswrConfig->additionalDelayOffset >> 8) & 0xFF);
byteOffset = 2;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_VSWRINIT_CONFIG, byteOffset, &armFieldValue[0], 2);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
if ((device->tx->vswrConfig->pathDelayPnSeqLevel < 1) || (device->tx->vswrConfig->pathDelayPnSeqLevel > 8191))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CFGVSWR_INV_PNSEQLEVEL,
getMykonosErrorMessage(MYKONOS_ERR_CFGVSWR_INV_PNSEQLEVEL));
return MYKONOS_ERR_CFGVSWR_INV_PNSEQLEVEL;
}
/* Set Path Delay PN sequence amplitude - positive and negative (init cal)*/
armFieldValue[0] = (device->tx->vswrConfig->pathDelayPnSeqLevel & 0xFF);
armFieldValue[1] = ((device->tx->vswrConfig->pathDelayPnSeqLevel >> 8) & 0xFF);
negPnLevel = ((~device->tx->vswrConfig->pathDelayPnSeqLevel) + 1); /* times -1 */
armFieldValue[2] = (negPnLevel & 0xFF);
armFieldValue[3] = (((negPnLevel) >> 8) & 0xFF);
byteOffset = 10;
/* Set for Tx1 channel */
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_VSWRINIT_CONFIG, byteOffset, &armFieldValue[0], 4);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
/* Set for Tx2 channel */
byteOffset = 30;
retVal = MYKONOS_writeArmConfig(device, MYKONOS_ARM_OBJECTID_VSWRINIT_CONFIG, byteOffset, &armFieldValue[0], 4);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
return MYKONOS_ERR_OK;
}
/* \brief Reads the VSWR config structure from ARM memory
*
* This function reads the VSWR structure
* from ARM memory and returns in the device->tx->vswrConfig structure.
*
* A AD9373 device is required for VSWR to be enabled.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->profilesValid
* - device->tx->vswrConfig (All members)
*
* \param device is structure pointer to the Mykonos data structure containing settings
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETVSWRCFG_TXORX_PROFILE_INV Error: Tx and ORx profiles must be valid for VSWR functions
* \retval MYKONOS_ERR_GETVSWRCFG_NULL_CFGSTRUCT Error: NULL pointer to device->tx->vswrConfig structure
*/
mykonosErr_t MYKONOS_getVswrConfig(mykonosDevice_t *device)
{
uint16_t byteOffset = 0;
uint8_t armMem[12] = {0};
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getVswrConfig()\n");
#endif
/* VSWR requires Tx and ORx enabled, throw error if both are not enabled */
if ((device->profilesValid & (TX_PROFILE_VALID | ORX_PROFILE_VALID)) != (TX_PROFILE_VALID | ORX_PROFILE_VALID))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETVSWRCFG_TXORX_PROFILE_INV,
getMykonosErrorMessage(MYKONOS_ERR_GETVSWRCFG_TXORX_PROFILE_INV));
return MYKONOS_ERR_GETVSWRCFG_TXORX_PROFILE_INV;
}
if (device->tx->vswrConfig == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETVSWRCFG_NULL_CFGSTRUCT,
getMykonosErrorMessage(MYKONOS_ERR_GETVSWRCFG_NULL_CFGSTRUCT));
return MYKONOS_ERR_GETVSWRCFG_NULL_CFGSTRUCT;
}
byteOffset = 4;
retVal = MYKONOS_readArmConfig(device, MYKONOS_ARM_OBJECTID_VSWRCONFIG, byteOffset, &armMem[0], sizeof(armMem));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
device->tx->vswrConfig->tx1VswrSwitchGpio3p3Pin = armMem[0];
device->tx->vswrConfig->tx2VswrSwitchGpio3p3Pin = armMem[2];
device->tx->vswrConfig->tx1VswrSwitchPolarity = armMem[4];
device->tx->vswrConfig->tx2VswrSwitchPolarity = armMem[6];
device->tx->vswrConfig->tx1VswrSwitchDelay_ms = armMem[8];
device->tx->vswrConfig->tx2VswrSwitchDelay_ms = armMem[10];
byteOffset = 2;
retVal = MYKONOS_readArmConfig(device, MYKONOS_ARM_OBJECTID_VSWRINIT_CONFIG, byteOffset, &armMem[0], 2);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
device->tx->vswrConfig->additionalDelayOffset = (int16_t)(((uint16_t)(armMem[1]) << 8) | (uint16_t)(armMem[0]));
byteOffset = 10;
retVal = MYKONOS_readArmConfig(device, MYKONOS_ARM_OBJECTID_VSWRINIT_CONFIG, byteOffset, &armMem[0], 2);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
device->tx->vswrConfig->pathDelayPnSeqLevel = (((uint16_t)(armMem[1]) << 8) | (uint16_t)(armMem[0]));
return MYKONOS_ERR_OK;
}
/**
* \brief This function reads the VSWR calibration status from the Mykonos ARM processor.
*
* The VSWR Status is read back from the ARM processor and
* returned in the function parameter vswrStatus.
*
* A AD9373 device is required for this feature to be enabled.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param txChannel Desired Transmit channel to read back VSWR status for (Valid ENUM values: TX1 or TX2 only)
* \param vswrStatus Pointer to a structure to return the status information to
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_GETVSWRSTATUS_NULLPARAM vswrStatus function parameter is a NULL pointer
* \retval MYKONOS_ERR_GETVSWRSTATUS_INV_CH txChannel parameter is a non supported value.
* \retval MYKONOS_ERR_GETVSWRSTATUS_ARMERRFLAG ARM reported an error while processing the GET ARM command
*/
mykonosErr_t MYKONOS_getVswrStatus(mykonosDevice_t *device, mykonosTxChannels_t txChannel, mykonosVswrStatus_t *vswrStatus)
{
uint8_t extData[3] = {MYKONOS_ARM_OBJECTID_CAL_STATUS, MYKONOS_ARM_OBJECTID_VSWRCONFIG, 0};
uint8_t armData[64] = {0};
uint32_t timeoutMs = 0;
uint8_t cmdStatusByte = 0;
uint32_t offset = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t channelSelect = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_getVswrStatus()\n");
#endif
if (vswrStatus == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETVSWRSTATUS_NULLPARAM,
getMykonosErrorMessage(MYKONOS_ERR_GETVSWRSTATUS_NULLPARAM));
return MYKONOS_ERR_GETVSWRSTATUS_NULLPARAM;
}
switch (txChannel)
{
case TX1:
channelSelect = 0;
break;
case TX2:
channelSelect = 1;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETVSWRSTATUS_INV_CH,
getMykonosErrorMessage(MYKONOS_ERR_GETVSWRSTATUS_INV_CH));
return MYKONOS_ERR_GETVSWRSTATUS_INV_CH;
}
}
extData[2] = channelSelect;
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_GET_OPCODE, &extData[0], sizeof(extData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
timeoutMs = 1000;
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_GET_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
/* throw more specific error message instead of returning error code from waitArmCmdStatus */
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETVSWRSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETVSWRSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETVSWRSTATUS_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_GETVSWRSTATUS_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_GETVSWRSTATUS_ARMERRFLAG));
return MYKONOS_ERR_GETVSWRSTATUS_ARMERRFLAG;
}
/* read status from ARM memory */
offset = 0;
retVal = MYKONOS_readArmMem(device, (MYKONOS_ADDR_ARM_START_DATA_ADDR + offset), &armData[0], sizeof(armData), 1);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
vswrStatus->errorStatus = ((uint32_t)(armData[3]) << 24) | ((uint32_t)(armData[2]) << 16) | ((uint32_t)(armData[1]) << 8) | (uint32_t)(armData[0]);
vswrStatus->forwardGainRms_dB =
(int32_t)(((uint32_t)(armData[23]) << 24) | ((uint32_t)(armData[22]) << 16) | ((uint32_t)(armData[21]) << 8) | (uint32_t)(armData[20]));
vswrStatus->forwardGainReal = (int32_t)(((uint32_t)(armData[27]) << 24) | ((uint32_t)(armData[26]) << 16) | ((uint32_t)(armData[25]) << 8) | (uint32_t)(armData[24]));
vswrStatus->forwardGainImag = (int32_t)(((uint32_t)(armData[31]) << 24) | ((uint32_t)(armData[30]) << 16) | ((uint32_t)(armData[29]) << 8) | (uint32_t)(armData[28]));
vswrStatus->reflectedGainRms_dB = (int32_t)(((uint32_t)(armData[35]) << 24) | ((uint32_t)(armData[34]) << 16) | ((uint32_t)(armData[33]) << 8)
| (uint32_t)(armData[32]));
vswrStatus->reflectedGainReal =
(int32_t)(((uint32_t)(armData[39]) << 24) | ((uint32_t)(armData[38]) << 16) | ((uint32_t)(armData[37]) << 8) | (uint32_t)(armData[36]));
vswrStatus->reflectedGainImag =
(int32_t)(((uint32_t)(armData[43]) << 24) | ((uint32_t)(armData[42]) << 16) | ((uint32_t)(armData[41]) << 8) | (uint32_t)(armData[40]));
vswrStatus->trackCount = ((uint32_t)(armData[63]) << 24) | ((uint32_t)(armData[62]) << 16) | ((uint32_t)(armData[61]) << 8) | (uint32_t)(armData[60]);
vswrStatus->vswr_forward_tx_rms = ((uint32_t)(armData[47]) << 24) | ((uint32_t)(armData[46]) << 16) | ((uint32_t)(armData[45]) << 8) | (uint32_t)(armData[44]);
vswrStatus->vswr_forward_orx_rms = ((uint32_t)(armData[51]) << 24) | ((uint32_t)(armData[50]) << 16) | ((uint32_t)(armData[49]) << 8) | (uint32_t)(armData[48]);
vswrStatus->vswr_reflection_tx_rms = ((uint32_t)(armData[55]) << 24) | ((uint32_t)(armData[54]) << 16) | ((uint32_t)(armData[53]) << 8) | (uint32_t)(armData[52]);
vswrStatus->vswr_reflection_orx_rms = ((uint32_t)(armData[59]) << 24) | ((uint32_t)(armData[58]) << 16) | ((uint32_t)(armData[57]) << 8) | (uint32_t)(armData[56]);
return MYKONOS_ERR_OK;
}
/**
* \brief Read from the Mykonos ARM program or data memory
*
* Valid memory addresses are: Program Memory (0x01000000 - 0x01017FFF),
* Data Memory (0x20000000 - 0x2000FFFF)
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param address The 32bit ARM address to read from.
* \param returnData Byte(uint8_t) array containing the data read from the ARM memory.
* \param bytesToRead Number of bytes in the returnData array.
* \param autoIncrement is boolean flag to enable or disable autoincrement of ARM register address
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_READARMMEM_INV_ADDR_PARM ARM memory address is out of range
*
*/
mykonosErr_t MYKONOS_readArmMem(mykonosDevice_t *device, uint32_t address, uint8_t *returnData, uint32_t bytesToRead, uint8_t autoIncrement)
{
uint8_t dataMem;
uint32_t i;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_readArmMem()\n");
#endif
/* check that start and stop address are in valid range */
if ((!(address >= MYKONOS_ADDR_ARM_START_PROG_ADDR && address <= MYKONOS_ADDR_ARM_END_PROG_ADDR))
&& !(address >= MYKONOS_ADDR_ARM_START_DATA_ADDR && address <= MYKONOS_ADDR_ARM_END_DATA_ADDR))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READARMMEM_INV_ADDR_PARM,
getMykonosErrorMessage(MYKONOS_ERR_READARMMEM_INV_ADDR_PARM));
return MYKONOS_ERR_READARMMEM_INV_ADDR_PARM;
}
if ((!(((address + bytesToRead - 1) >= MYKONOS_ADDR_ARM_START_PROG_ADDR) && (address + bytesToRead - 1) <= MYKONOS_ADDR_ARM_END_PROG_ADDR))
&& (!(((address + bytesToRead - 1) >= MYKONOS_ADDR_ARM_START_DATA_ADDR) && (address + bytesToRead - 1) <= MYKONOS_ADDR_ARM_END_DATA_ADDR)))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READARMMEM_INV_ADDR_PARM,
getMykonosErrorMessage(MYKONOS_ERR_READARMMEM_INV_ADDR_PARM));
return MYKONOS_ERR_READARMMEM_INV_ADDR_PARM;
}
if (address >= MYKONOS_ADDR_ARM_START_DATA_ADDR && address <= MYKONOS_ADDR_ARM_END_DATA_ADDR)
{
dataMem = 1;
}
else
{
dataMem = 0;
}
/* NOT assuming auto increment bit is already set from MYKONOS_initARM function call */
/* setting auto increment address bit if autoIncrement evaluates true */
if (autoIncrement)
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_ARM_CTL_1, 0x01, 0x04, 2);
}
else
{
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_ARM_CTL_1, 0x00, 0x04, 2);
}
/* setting up for ARM read */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_ARM_CTL_1, 0x01, 0x20, 5);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_ADDR_BYTE_0, (uint8_t)((address) >> 2)); /* write address[9:2] */
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_ADDR_BYTE_1, (uint8_t)(address >> 10) | (dataMem << 7)); /* write address[15:10] */
/* start read-back at correct byte offset */
/* read data is located at SPI address 0xD04=data[7:0], 0xD05=data[15:8], 0xD06=data[23:16], 0xD07=data[31:24]. */
/* with address auto increment set, after xD07 is read, the address will automatically increment */
/* without address auto increment set, 0x4 must be added to the address for correct indexing */
if (autoIncrement)
{
for (i = 0; i < bytesToRead; i++)
{
CMB_SPIReadByte(device->spiSettings, (MYKONOS_ADDR_ARM_DATA_BYTE_0 | (((address & 0x3) + i) % 4)), &returnData[i]);
}
}
else
{
for (i = 0; i < bytesToRead; i++)
{
CMB_SPIReadByte(device->spiSettings, (MYKONOS_ADDR_ARM_DATA_BYTE_0 | (((address & 0x3) + i) % 4)), &returnData[i]);
if ((MYKONOS_ADDR_ARM_DATA_BYTE_0 | (((address & 0x3) + i) % 4)) == MYKONOS_ADDR_ARM_DATA_BYTE_3)
{
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_ADDR_BYTE_0, (uint8_t)(((address + 0x4) & 0x3FF) >> 2));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_ADDR_BYTE_1, ((address + 0x4) & 0x1FC00U) >> 10 | (dataMem << 7));
}
}
}
return MYKONOS_ERR_OK;
}
/**
* \brief Write to the Mykonos ARM program or data memory
*
* Valid memory addresses are: Program Memory (0x01000000 - 0x01017FFF),
* Data Memory (0x20000000 - 0x2000FFFF)
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param address The 32bit ARM address to write to.
* \param data Byte(uint8_t) array containing the data to write to the ARM memory.
* \param byteCount Number of bytes in the data array.
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_WRITEARMMEM_NULL_PARM Function parameter data has NULL pointer when byteCount is >0
* \retval MYKONOS_ERR_WRITEARMMEM_INV_ADDR_PARM ARM memory address is out of range of valid ARM memory
*/
mykonosErr_t MYKONOS_writeArmMem(mykonosDevice_t *device, uint32_t address, uint8_t *data, uint32_t byteCount)
{
/* write address, then data with auto increment enabled. */
uint8_t dataMem;
uint32_t i;
#if MYK_ENABLE_SPIWRITEARRAY == 1
uint32_t addrIndex = 0;
uint32_t dataIndex = 0;
uint32_t spiBufferSize = MYK_SPIWRITEARRAY_BUFFERSIZE;
uint16_t addrArray[MYK_SPIWRITEARRAY_BUFFERSIZE] = {0};
#endif
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_writeArmMem()\n");
#endif
if ((data == NULL) && (byteCount > 0))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_WRITEARMMEM_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_WRITEARMMEM_NULL_PARM));
return MYKONOS_ERR_WRITEARMMEM_NULL_PARM;
}
if ((!(address >= MYKONOS_ADDR_ARM_START_PROG_ADDR && address <= MYKONOS_ADDR_ARM_END_PROG_ADDR))
&& !(address >= MYKONOS_ADDR_ARM_START_DATA_ADDR && address <= MYKONOS_ADDR_ARM_END_DATA_ADDR))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_WRITEARMMEM_INV_ADDR_PARM,
getMykonosErrorMessage(MYKONOS_ERR_WRITEARMMEM_INV_ADDR_PARM));
return MYKONOS_ERR_WRITEARMMEM_INV_ADDR_PARM;
}
if ((!(((address + byteCount - 1) >= MYKONOS_ADDR_ARM_START_PROG_ADDR) && ((address + byteCount - 1) <= MYKONOS_ADDR_ARM_END_PROG_ADDR)))
&& (!(((address + byteCount - 1) >= MYKONOS_ADDR_ARM_START_DATA_ADDR) && ((address + byteCount - 1) <= MYKONOS_ADDR_ARM_END_DATA_ADDR))))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_WRITEARMMEM_INV_ADDR_PARM,
getMykonosErrorMessage(MYKONOS_ERR_WRITEARMMEM_INV_ADDR_PARM));
return MYKONOS_ERR_WRITEARMMEM_INV_ADDR_PARM;
}
if (address >= MYKONOS_ADDR_ARM_START_DATA_ADDR && address <= MYKONOS_ADDR_ARM_END_DATA_ADDR)
{
dataMem = 1;
}
else
{
dataMem = 0;
}
/* set auto increment address bit */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_ARM_CTL_1, 0x01, 0x04, 2);
/* writing the address */
CMB_SPIWriteField(device->spiSettings, MYKONOS_ADDR_ARM_CTL_1, 0x00, 0x20, 5);
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_ADDR_BYTE_0, (uint8_t)((address) >> 2));
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_ADDR_BYTE_1, (uint8_t)(address >> 10) | (dataMem << 7));
/* start write at correct byte offset */
/* write data is located at SPI address 0xD04=data[7:0], 0xD05=data[15:8], 0xD06=data[23:16], 0xD07=data[31:24] */
/* with address auto increment set, after x407 is written, the address will automatically increment */
#if (MYK_ENABLE_SPIWRITEARRAY == 0)
for (i = 0; i < byteCount; i++)
{
CMB_SPIWriteByte(device->spiSettings, (MYKONOS_ADDR_ARM_DATA_BYTE_0 | (((address & 0x3) + i) % 4)), data[i]);
}
#elif (MYK_ENABLE_SPIWRITEARRAY == 1)
addrIndex = 0;
dataIndex = 0;
for (i = 0; i < byteCount; i++)
{
addrArray[addrIndex++] = (MYKONOS_ADDR_ARM_DATA_BYTE_0 | (((address & 0x3) + i) % 4));
if (addrIndex == spiBufferSize)
{
CMB_SPIWriteBytes(device->spiSettings, &addrArray[0], &data[dataIndex], addrIndex);
dataIndex = dataIndex + addrIndex;
addrIndex = 0;
}
}
if (addrIndex > 0)
{
CMB_SPIWriteBytes(device->spiSettings, &addrArray[0], &data[dataIndex], addrIndex);
}
#endif
return MYKONOS_ERR_OK;
}
/**
* \brief Low level helper function used by Mykonos API to write the ARM memory config structures
*
* Normally this function should not be required to be used directly by the BBIC. This is a helper
* function used by other Mykonos API commands to write settings into the ARM memory.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param objectId ARM id of a particular structure or setting in ARM memory
* \param offset Byte offset from the start of the objectId's memory location in ARM memory
* \param data A byte array containing data to write to the ARM memory buffer.
* \param byteCount Number of bytes in the data array (Valid size = 1-255 bytes)
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_WRITEARMCFG_ARMERRFLAG ARM write config command failed with a nonzero error code
*/
mykonosErr_t MYKONOS_writeArmConfig(mykonosDevice_t *device, uint8_t objectId, uint16_t offset, uint8_t *data, uint8_t byteCount)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t extendedData[4] = {0}; /* ARM Object id, byte offset LSB, offset MSB = 0, copy 2 bytes */
uint32_t timeoutMs = 1000;
uint8_t cmdStatusByte = 0;
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR, &data[0], byteCount);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
extendedData[0] = objectId;
extendedData[1] = (offset & 0xFF);
extendedData[2] = ((offset >> 8) & 0xFF);
extendedData[3] = byteCount;
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_WRITECFG_OPCODE, &extendedData[0], sizeof(extendedData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_WRITECFG_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_WRITEARMCFG_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_WRITEARMCFG_ARMERRFLAG));
return MYKONOS_ERR_WRITEARMCFG_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_WRITEARMCFG_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_WRITEARMCFG_ARMERRFLAG));
return MYKONOS_ERR_WRITEARMCFG_ARMERRFLAG;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Low level helper function used by Mykonos API to read the ARM memory config structures
*
* Normally this function should not be required to be used directly by the BBIC. This is a helper
* function used by other Mykonos API commands to read settings from the ARM memory.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param objectId ARM id of a particular structure or setting in ARM memory
* \param offset Byte offset from the start of the objectId's memory location in ARM memory
* \param data A byte array containing data to write to the ARM memory buffer.
* \param byteCount Number of bytes in the data array (Valid size = 1-255 bytes)
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_READARMCFG_ARMERRFLAG ARM read config command failed with a nonzero error code
*/
mykonosErr_t MYKONOS_readArmConfig(mykonosDevice_t *device, uint8_t objectId, uint16_t offset, uint8_t *data, uint8_t byteCount)
{
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t extendedData[4] = {0}; /* ARM Object id, byte offset LSB, offset MSB = 0, copy 2 bytes */
uint32_t timeoutMs = 1000;
uint8_t cmdStatusByte = 0;
const uint8_t AUTO_INCREMENT = 1;
extendedData[0] = objectId;
extendedData[1] = (offset & 0xFF);
extendedData[2] = ((offset >> 8) & 0xFF);
extendedData[3] = byteCount;
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_READCFG_OPCODE, &extendedData[0], sizeof(extendedData));
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_READCFG_OPCODE, timeoutMs, &cmdStatusByte);
if (retVal != MYKONOS_ERR_OK)
{
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READARMCFG_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_READARMCFG_ARMERRFLAG));
return MYKONOS_ERR_READARMCFG_ARMERRFLAG;
}
return retVal;
}
if (cmdStatusByte > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READARMCFG_ARMERRFLAG,
getMykonosErrorMessage(MYKONOS_ERR_READARMCFG_ARMERRFLAG));
return MYKONOS_ERR_READARMCFG_ARMERRFLAG;
}
retVal = MYKONOS_readArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR, &data[0], byteCount, AUTO_INCREMENT);
if (retVal != MYKONOS_ERR_OK)
{
return retVal;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Sends a command to the Mykonos ARM processor
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
* - device->spiSettings
*
* \param device is structure pointer to the Mykonos data structure containing settings
* \param opCode Value (0-30, even only) indicating the desired function to run in the ARM.
* \param extendedData A byte array containing extended data to write to the ARM command interface.
* \param extendedDataNumBytes Number of bytes in the extendedData array (Valid size = 0-4 bytes)
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_ARMCMD_NULL_PARM Function parameter extendedData is NULL and extendedDataNumBytes is positive
* \retval MYKONOS_ERR_ARMCMD_INV_OPCODE_PARM ARM opcode is out of range (valid 0-30, even only)
* \retval MYKONOS_ERR_ARMCMD_INV_NUMBYTES_PARM Number of extended bytes parameter is out of range (valid 0-4)
* \retval MYKONOS_ERR_TIMEDOUT_ARMMAILBOXBUSY ARM control interface is busy, command could not be executed by ARM
*/
mykonosErr_t MYKONOS_sendArmCommand(mykonosDevice_t *device, uint8_t opCode, uint8_t *extendedData, uint8_t extendedDataNumBytes)
{
uint8_t armCommandBusy = 0;
uint8_t i = 0;
uint16_t extCmdByteStartAddr = MYKONOS_ADDR_ARM_EXT_CMD_BYTE_1;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_sendArmCommand()\n");
#endif
if ((extendedData == NULL) && (extendedDataNumBytes > 0))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ARMCMD_NULL_PARM, getMykonosErrorMessage(MYKONOS_ERR_ARMCMD_NULL_PARM));
return MYKONOS_ERR_ARMCMD_NULL_PARM;
}
/* check for even-numbered opCodes only including opcode 0, but not must be greater than opCode 30 */
if ((opCode != 0) && ((opCode % 2) || (opCode > 30)))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ARMCMD_INV_OPCODE_PARM,
getMykonosErrorMessage(MYKONOS_ERR_ARMCMD_INV_OPCODE_PARM));
return MYKONOS_ERR_ARMCMD_INV_OPCODE_PARM;
}
/* the number of valid extended data bytes is from 0-4 */
if (extendedDataNumBytes > 4)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ARMCMD_INV_NUMBYTES_PARM,
getMykonosErrorMessage(MYKONOS_ERR_ARMCMD_INV_NUMBYTES_PARM));
return MYKONOS_ERR_ARMCMD_INV_NUMBYTES_PARM;
}
/* setting a 2 sec timeout for mailbox busy bit to be clear (can't send an arm mailbox command until mailbox is ready) */
CMB_setTimeout_ms(device->spiSettings, 2000);
do
{
CMB_SPIReadField(device->spiSettings, MYKONOS_ADDR_ARM_CMD, &armCommandBusy, 0x80, 7);
if (CMB_hasTimeoutExpired(device->spiSettings))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_TIMEDOUT_ARMMAILBOXBUSY,
getMykonosErrorMessage(MYKONOS_ERR_TIMEDOUT_ARMMAILBOXBUSY));
return MYKONOS_ERR_TIMEDOUT_ARMMAILBOXBUSY;
}
} while (armCommandBusy);
if (extendedDataNumBytes)
{
for (i = 0; i < extendedDataNumBytes; i++)
{
CMB_SPIWriteByte(device->spiSettings, extCmdByteStartAddr + i, extendedData[i]);
}
}
CMB_SPIWriteByte(device->spiSettings, MYKONOS_ADDR_ARM_CMD, opCode);
return MYKONOS_ERR_OK;
}
/**
* \brief Reads the Mykonos ARM 64-bit command status register
*
* A 64-bit status register consisting of a pending bit and three-bit error type is read one byte at
* a time for opcodes 0-30. The function parses the pending bits and error bits into
* two (2) separate 16-bit words containing pending bits, and error bits if the error type > 0
* The words are weighted according to each even-numbered opcode from 0-30,
* where, 0x0001 = opcode '0', 0x0002 = opcode '2', 0x0004 = opcode '4', 0x0008 = opcode '6' and so on.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is a pointer to the device settings structure
* \param errorWord 16-bit error word comprised of weighted bits according to each opcode number
* The weighted bit = '1' if error type > 0, '0' if OK
* \param statusWord 16-bit pending bits word comprised of weighted bits according to each opcode number
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_READARMCMDSTATUS_NULL_PARM Function parameters errorWord or statusWord have a NULL pointer
*/
mykonosErr_t MYKONOS_readArmCmdStatus(mykonosDevice_t *device, uint16_t *errorWord, uint16_t *statusWord)
{
uint8_t i = 0;
uint8_t bytes[8] = {0};
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_readArmCmdStatus()\n");
#endif
if (errorWord == NULL || statusWord == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READARMCMDSTATUS_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_READARMCMDSTATUS_NULL_PARM));
return MYKONOS_ERR_READARMCMDSTATUS_NULL_PARM;
}
/* making sure the errorWord and statusWord are clear */
*errorWord = 0;
*statusWord = 0;
/* read in the entire 64-bit status register into a byte array for parsing */
for (i = 0; i < 8; i++)
{
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_ARM_CMD_STATUS_0 + i, &bytes[i]);
}
/* parse the byte array for pending bits and error types and generate statusWord and errorWord bits */
for (i = 0; i < 8; i++)
{
*statusWord |= (uint16_t)(((bytes[i] & 0x10) >> 3) | (bytes[i] & 0x01)) << (i * 2);
if (bytes[i] & 0x0E)
{
*errorWord |= (0x0001 << (i * 2));
}
else if (bytes[i] & 0xE0)
{
*errorWord |= (0x0002 << (i * 2));
}
}
return MYKONOS_ERR_OK;
}
/**
* \brief Isolated byte read of the Mykonos ARM 64-bit command status register based on the opcode
*
* A single byte read is performed on the 64-bit command status register according to
* the opcode of interest. The pending bit and the error type are extracted from the status
* register and returned as a single byte in the lower nibble.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is a pointer to the device settings structure
* \param opCode Valid values are even increments from 0-30. The ARM opCode is used to determine which status register byte to read
* \param cmdStatByte returns cmdStatByte[3:1] = error type, cmdStatByte[0] = pending flag for selected opCode
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_READARMCMDSTATUSBYTE_NULL_PARM Function parameter cmdStatByte has NULL pointer
* \retval MYKONOS_ERR_READARMCMDSTATUS_INV_OPCODE_PARM ARM opcode is out of range (valid 0-30, even only)
*/
mykonosErr_t MYKONOS_readArmCmdStatusByte(mykonosDevice_t *device, uint8_t opCode, uint8_t *cmdStatByte)
{
uint8_t cmdByteIndex = 0;
uint8_t cmdByte = 0;
#if 0
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_readArmCmdStatByte()\n");
#endif
#endif
if (cmdStatByte == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READARMCMDSTATUSBYTE_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_READARMCMDSTATUSBYTE_NULL_PARM));
return MYKONOS_ERR_READARMCMDSTATUSBYTE_NULL_PARM;
}
/* check for even-numbered opCodes only including opcode 0, but not must be greater than opCode 30 */
if ((opCode != 0) && ((opCode % 2) || (opCode > 30)))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_READARMCMDSTATUS_INV_OPCODE_PARM,
getMykonosErrorMessage(MYKONOS_ERR_READARMCMDSTATUS_INV_OPCODE_PARM));
return MYKONOS_ERR_READARMCMDSTATUS_INV_OPCODE_PARM;
}
else
{
cmdByteIndex = (opCode / 4);
CMB_SPIReadByte(device->spiSettings, MYKONOS_ADDR_ARM_CMD_STATUS_0 + cmdByteIndex, &cmdByte);
if ((opCode / 2) % 2)
{
*cmdStatByte = ((cmdByte >> 4) & 0x0F);
}
else
{
*cmdStatByte = (cmdByte & 0x0F);
}
return MYKONOS_ERR_OK;
}
}
/**
* \brief Mykonos ARM command status wait function polls command status until opcode completes
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is a pointer to the device settings structure
* \param opCode Valid values are even increments from 0-30. The ARM opCode is used to determine which pending bit to wait for
* \param timeoutMs conveys the time-out period in milliseconds
* \param cmdStatByte returns cmdStatByte[3:1] = error type, cmdStatByte[0] = pending flag for selected opCode
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_ARMCMDSTATUS_NULL_PARM Function parameter cmdStatByte has NULL pointer
* \retval MYKONOS_ERR_ARMCMDSTATUS_INV_OPCODE_PARM Invalid ARM opcode (valid 0-30, even numbers only)
* \retval MYKONOS_ERR_ARMCMDSTATUS_ARMERROR ARM Mailbox error flag for requested opcode returned a nonzero error flag
* \retval MYKONOS_ERR_WAITARMCMDSTATUS_TIMEOUT Timeout occurred before ARM command completed
*/
mykonosErr_t MYKONOS_waitArmCmdStatus(mykonosDevice_t *device, uint8_t opCode, uint32_t timeoutMs, uint8_t *cmdStatByte)
{
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_waitArmCmdStatus()\n");
#endif
if (cmdStatByte == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ARMCMDSTATUS_NULL_PARM,
getMykonosErrorMessage(MYKONOS_ERR_ARMCMDSTATUS_NULL_PARM));
return MYKONOS_ERR_ARMCMDSTATUS_NULL_PARM;
}
/* check for even-numbered opCodes only including opcode 0, but not must be greater than opCode 30 */
if ((opCode != 0) && ((opCode % 2) || (opCode > 30)))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ARMCMDSTATUS_INV_OPCODE_PARM,
getMykonosErrorMessage(MYKONOS_ERR_ARMCMDSTATUS_INV_OPCODE_PARM));
return MYKONOS_ERR_ARMCMDSTATUS_INV_OPCODE_PARM;
}
/* start wait */
CMB_setTimeout_ms(device->spiSettings, timeoutMs);
do
{
MYKONOS_readArmCmdStatusByte(device, opCode, cmdStatByte);
/* If error flag is non zero in [3:1], - return error */
if ((*cmdStatByte & 0x0E) > 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_ARMCMDSTATUS_ARMERROR,
getMykonosErrorMessage(MYKONOS_ERR_ARMCMDSTATUS_ARMERROR));
return MYKONOS_ERR_ARMCMDSTATUS_ARMERROR;
}
if (CMB_hasTimeoutExpired(device->spiSettings))
{
return MYKONOS_ERR_WAITARMCMDSTATUS_TIMEOUT;
}
} while (*cmdStatByte & 0x01);
return MYKONOS_ERR_OK;
}
/**
* \brief Mykonos ARM configuration write
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device is a pointer to the device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_writeArmProfile(mykonosDevice_t *device)
{
const uint8_t length = 100;
int32_t i = 0;
uint8_t vcoDiv = 0;
uint8_t hsDiv = 0;
uint16_t channelsEnabled = 0;
uint8_t cfgData[100] = {0};
mykonosErr_t retVal = MYKONOS_ERR_OK;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_writeArmConfig()\n");
#endif
/* reading in required mykonosDevice_t structure data into array - not pretty but it works */
for (i = 0; i < 4; i++)
{
cfgData[i] = (uint8_t)(((device->clocks->deviceClock_kHz * 1000) >> (i * 8)) & 0x000000FF);
}
for (i = 4; i < 8; i++)
{
cfgData[i] = (uint8_t)(((device->clocks->clkPllVcoFreq_kHz) >> ((i - 4) * 8)) & 0x000000FF);
}
vcoDiv = (uint8_t)(device->clocks->clkPllVcoDiv);
hsDiv = device->clocks->clkPllHsDiv;
cfgData[8] = vcoDiv; /* uint8_t vco_div */
cfgData[9] = hsDiv; /* uint8_t hs_div */
channelsEnabled |= device->tx->txChannels & 0x03;
channelsEnabled |= ((device->rx->rxChannels & 0x03) << 2);
if (device->profilesValid & ORX_PROFILE_VALID)
{
channelsEnabled |= ((device->obsRx->obsRxChannelsEnable & 3) << 4);
}
if (device->profilesValid & SNIFF_PROFILE_VALID)
{
channelsEnabled |= (((device->obsRx->obsRxChannelsEnable >> 2) & 7) << 6);
}
for (i = 10; i < 12; i++)
{
cfgData[i] = (uint8_t)((channelsEnabled >> ((i - 10) * 8)) & 0xFF);
}
cfgData[12] = ((device->rx->rxPllUseExternalLo & 0x01) << 1) | (device->tx->txPllUseExternalLo & 0x01);
cfgData[13] = 0x00; /* Not used...padding */
cfgData[14] = 0x00; /* Not used...padding */
cfgData[15] = 0x00; /* Not used...padding */
if (device->profilesValid & TX_PROFILE_VALID)
{
/* start of Tx profile data */
cfgData[16] = device->tx->txProfile->dacDiv;
cfgData[17] = device->tx->txProfile->txFirInterpolation;
cfgData[18] = device->tx->txProfile->thb1Interpolation;
cfgData[19] = device->tx->txProfile->thb2Interpolation;
for (i = 20; i < 24; i++)
{
cfgData[i] = (uint8_t)(((device->tx->txProfile->iqRate_kHz * 1000) >> ((i - 20) * 8)) & 0x000000FF);
}
for (i = 24; i < 28; i++)
{
cfgData[i] = (uint8_t)(((device->tx->txProfile->primarySigBandwidth_Hz) >> ((i - 24) * 8)) & 0x000000FF);
}
for (i = 28; i < 32; i++)
{
cfgData[i] = (uint8_t)(((device->tx->txProfile->rfBandwidth_Hz) >> ((i - 28) * 8)) & 0x000000FF);
}
for (i = 32; i < 36; i++)
{
cfgData[i] = (uint8_t)(((device->tx->txProfile->txDac3dBCorner_kHz) >> ((i - 32) * 8)) & 0x000000FF);
}
for (i = 36; i < 40; i++)
{
cfgData[i] = (uint8_t)(((device->tx->txProfile->txBbf3dBCorner_kHz * 1000) >> ((i - 36) * 8)) & 0x000000FF);
}
}
else
{
cfgData[16] = 0;
cfgData[17] = 0;
cfgData[18] = 0;
cfgData[19] = 0;
cfgData[20] = 0;
cfgData[21] = 0;
cfgData[22] = 0;
cfgData[23] = 0;
cfgData[24] = 0;
cfgData[25] = 0;
cfgData[26] = 0;
cfgData[27] = 0;
cfgData[28] = 0;
cfgData[29] = 0;
cfgData[30] = 0;
cfgData[31] = 0;
cfgData[32] = 0;
cfgData[33] = 0;
cfgData[34] = 0;
cfgData[35] = 0;
cfgData[36] = 0;
cfgData[37] = 0;
cfgData[38] = 0;
cfgData[39] = 0;
}
if (device->profilesValid & RX_PROFILE_VALID)
{
/* start of Rx profile data */
cfgData[40] = device->rx->rxProfile->adcDiv;
cfgData[41] = device->rx->rxProfile->rxFirDecimation;
cfgData[42] = device->rx->rxProfile->rxDec5Decimation;
cfgData[43] = device->rx->rxProfile->rhb1Decimation;
for (i = 44; i < 48; i++)
{
cfgData[i] = (uint8_t)(((device->rx->rxProfile->iqRate_kHz * 1000) >> ((i - 44) * 8)) & 0x000000FF);
}
for (i = 48; i < 52; i++)
{
/* sig bw placeholder */
cfgData[i] = (uint8_t)(((device->rx->rxProfile->rfBandwidth_Hz) >> ((i - 48) * 8)) & 0x000000FF);
}
for (i = 52; i < 56; i++)
{
cfgData[i] = (uint8_t)(((device->rx->rxProfile->rfBandwidth_Hz) >> ((i - 52) * 8)) & 0x000000FF);
}
for (i = 56; i < 60; i++)
{
cfgData[i] = (uint8_t)(((device->rx->rxProfile->rxBbf3dBCorner_kHz * 1000) >> ((i - 56) * 8)) & 0x000000FF);
}
}
else
{
cfgData[40] = 0;
cfgData[41] = 0;
cfgData[42] = 0;
cfgData[43] = 0;
cfgData[44] = 0;
cfgData[45] = 0;
cfgData[46] = 0;
cfgData[47] = 0;
cfgData[48] = 0;
cfgData[49] = 0;
cfgData[50] = 0;
cfgData[51] = 0;
cfgData[52] = 0;
cfgData[53] = 0;
cfgData[54] = 0;
cfgData[55] = 0;
cfgData[56] = 0;
cfgData[57] = 0;
cfgData[58] = 0;
cfgData[59] = 0;
}
if (device->profilesValid & ORX_PROFILE_VALID)
{
/* start of ObsRx profile data */
cfgData[60] = device->obsRx->orxProfile->adcDiv;
cfgData[61] = device->obsRx->orxProfile->rxFirDecimation;
cfgData[62] = device->obsRx->orxProfile->rxDec5Decimation;
cfgData[63] = device->obsRx->orxProfile->rhb1Decimation;
for (i = 64; i < 68; i++)
{
cfgData[i] = (uint8_t)(((device->obsRx->orxProfile->iqRate_kHz * 1000) >> ((i - 64) * 8)) & 0x000000FF);
}
for (i = 68; i < 72; i++)
{
/* sig bw placeholder */
cfgData[i] = (uint8_t)(((device->obsRx->orxProfile->rfBandwidth_Hz) >> ((i - 68) * 8)) & 0x000000FF);
}
for (i = 72; i < 76; i++)
{
cfgData[i] = (uint8_t)(((device->obsRx->orxProfile->rfBandwidth_Hz) >> ((i - 72) * 8)) & 0x000000FF);
}
for (i = 76; i < 80; i++)
{
cfgData[i] = (uint8_t)(((device->obsRx->orxProfile->rxBbf3dBCorner_kHz * 1000) >> ((i - 76) * 8)) & 0x000000FF);
}
}
else
{
cfgData[60] = 0;
cfgData[61] = 0;
cfgData[62] = 0;
cfgData[63] = 0;
cfgData[64] = 0;
cfgData[65] = 0;
cfgData[66] = 0;
cfgData[67] = 0;
cfgData[68] = 0;
cfgData[69] = 0;
cfgData[70] = 0;
cfgData[71] = 0;
cfgData[72] = 0;
cfgData[73] = 0;
cfgData[74] = 0;
cfgData[75] = 0;
cfgData[76] = 0;
cfgData[77] = 0;
cfgData[78] = 0;
cfgData[79] = 0;
}
if (device->profilesValid & SNIFF_PROFILE_VALID)
{
/* start of SnRx profile data */
cfgData[80] = device->obsRx->snifferProfile->adcDiv;
cfgData[81] = device->obsRx->snifferProfile->rxFirDecimation;
cfgData[82] = device->obsRx->snifferProfile->rxDec5Decimation;
cfgData[83] = device->obsRx->snifferProfile->rhb1Decimation;
for (i = 84; i < 88; i++)
{
cfgData[i] = (uint8_t)(((device->obsRx->snifferProfile->iqRate_kHz * 1000) >> ((i - 84) * 8)) & 0x000000FF);
}
for (i = 88; i < 92; i++)
{
/* sig bw placeholder */
cfgData[i] = (uint8_t)(((device->obsRx->snifferProfile->rfBandwidth_Hz) >> ((i - 88) * 8)) & 0x000000FF);
}
for (i = 92; i < 96; i++)
{
cfgData[i] = (uint8_t)(((device->obsRx->snifferProfile->rfBandwidth_Hz) >> ((i - 92) * 8)) & 0x000000FF);
}
for (i = 96; i < 100; i++)
{
cfgData[i] = (uint8_t)(((device->obsRx->snifferProfile->rxBbf3dBCorner_kHz * 1000) >> ((i - 96) * 8)) & 0x000000FF);
}
}
else
{
cfgData[80] = 0;
cfgData[81] = 0;
cfgData[82] = 0;
cfgData[83] = 0;
cfgData[84] = 0;
cfgData[85] = 0;
cfgData[86] = 0;
cfgData[87] = 0;
cfgData[88] = 0;
cfgData[89] = 0;
cfgData[90] = 0;
cfgData[91] = 0;
cfgData[92] = 0;
cfgData[93] = 0;
cfgData[94] = 0;
cfgData[95] = 0;
cfgData[96] = 0;
cfgData[97] = 0;
cfgData[98] = 0;
cfgData[99] = 0;
}
/* writing to the ARM memory with the array data */
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR, &cfgData[0], length);
if (retVal)
{
return retVal;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Function called automatically that loads the ADC profiles into the ARM
*
* User should not need to call this function normally. It is called automatically
* during MYKONOS_initArm() to load the ADC profiles (tunes the ADC performance).
*
* Rx ADC profile is only loaded if the Rx Profile is valid, ORx ADC profile is
* only loaded if the ORx Profile is valid. Sniffer ADC profile is only loaded
* if the Sniffer profile is valid. The Loopback ADC profile is always
* loaded. If Tx profile is valid, the loopback ADC profile is chosen based
* on the Tx Primary Signal bandwidth. If no valid Tx Profile, the Rx profile
* is used to set the Loopback ADC profile. Else, ORx, then sniffer profiles
* are used to set the loopback ADC profile.
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the device settings structure
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_LOAD_ADCPROFILE_INV_VCODIV Mykonos CLKPLL has invalid VCO divider in the clocks structure
* \retval MYKONOS_ERR_LOAD_ADCPROFILE_MISSING_ORX_PROFILE When Tx Profile used, a matching ORx Profile must be provided with a valid ADC divider.
* The ORx digital filters and clock dividers are used with the Loopback Rx path for Tx calibrations.
* \retval MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_RXREQUIRED ADC Profile Lookup table does not have a match
* for current Rx Profile settings. Custom ADC profile required
* \retval MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_ORXREQUIRED ADC Profile Lookup table does not have a match
* for current ORx Profile settings. Custom ADC profile required
* \retval MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_SNRXREQUIRED ADC Profile Lookup table does not have a match
* for current Sniffer Rx Profile settings. Custom ADC profile required
* \retval MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_LBREQUIRED ADC Profile Lookup table does not have a match
* for Loopback passband BW and ADC Clock frequency settings. Custom ADC profile required
* \retval MYKONOS_ERR_LOAD_ADCPROFILE_RXADCDIV_ZERO Rx Profile has invalid ADC divider = 0, causing a divide by zero error
* \retval MYKONOS_ERR_LOAD_ADCPROFILE_ORXADCDIV_ZERO ORx profile has invalid ADC divider = 0, causing a divide by zero error
* \retval MYKONOS_ERR_LOAD_ADCPROFILE_SNRX_ADCDIV_ZERO Sniffer profile has invalid ADC divider = 0, causing a divide by zero error
* \retval MYKONOS_ERR_LOAD_RXADCPROFILE_ARMMEM_FAILED Error returned while trying to write Rx ADC profile to ARM memory
* \retval MYKONOS_ERR_LOAD_ORXADCPROFILE_ARMMEM_FAILED Error returned while trying to write ORx ADC profile to ARM memory
* \retval MYKONOS_ERR_LOAD_SNRXADCPROFILE_ARMMEM_FAILED Error returned while trying to write Sniffer ADC profile into ARM memory
* \retval MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED Error returned while trying to write Loopback ADC profile into ARM memory
*/
mykonosErr_t MYKONOS_loadAdcProfiles(mykonosDevice_t *device)
{
uint8_t adcProfile[32] = {0};
uint8_t i = 0;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint32_t hsDigClk_MHz = 0;
uint32_t adcClk_MHz = 0;
uint32_t vcoDiv = 0;
uint32_t vcoDivTimes10 = 10;
uint8_t profileIndex = 0;
const uint8_t ARM_CONFIG_OFFSET = 100; /* number of bytes written in MYKONOS_writeArmProfile() to ARM memory */
const uint8_t NUM_ADCPROFILE_COEFS = 16;
const uint8_t NUM_ADC_PROFILES = 20;
static const uint16_t adcProfileLut[20][18] = {
/* Max RFBW, ADCCLK_MHz, adcProfile[16] */
{ 20, 491, 1494, 564, 201, 98, 1280, 134, 945, 40, 529, 10, 326, 39, 30, 16, 9, 201},
{ 60, 983, 712, 462, 201, 98, 1280, 291, 1541, 149, 1054, 46, 645, 34, 48, 32, 18, 193},
{ 75, 983, 680, 477, 201, 98, 1280, 438, 1577, 242, 1046, 73, 636, 30, 48, 31, 18, 192},
{100, 983, 655, 446, 201, 98, 1280, 336, 1631, 334, 1152, 207, 733, 33, 48, 32, 21, 212},
{ 75, 1228, 569, 369, 201, 98, 1280, 291, 1541, 149, 1320, 58, 807, 34, 48, 40, 23, 189},
{100, 1228, 534, 386, 201, 98, 1280, 491, 1591, 279, 1306, 104, 792, 28, 48, 39, 23, 187},
{160, 1228, 491, 375, 201, 98, 1280, 514, 1728, 570, 1455, 443, 882, 27, 48, 39, 25, 205},
{200, 1228, 450, 349, 201, 98, 1280, 730, 1626, 818, 1476, 732, 834, 20, 41, 36, 24, 200},
{ 80, 1250, 555, 365, 201, 98, 1280, 317, 1547, 165, 1341, 65, 819, 33, 48, 40, 24, 188},
{102, 1250, 524, 379, 201, 98, 1280, 494, 1592, 281, 1328, 107, 805, 28, 48, 40, 23, 187},
{ 80, 1333, 526, 339, 201, 98, 1280, 281, 1539, 143, 1433, 60, 877, 35, 48, 43, 25, 188},
{217, 1333, 414, 321, 201, 98, 1280, 730, 1626, 818, 1603, 794, 905, 20, 41, 40, 26, 199},
{ 75, 1474, 486, 302, 199, 98, 1280, 206, 1523, 101, 1578, 47, 977, 37, 48, 48, 28, 186},
{100, 1474, 465, 311, 201, 98, 1280, 353, 1556, 187, 1581, 86, 964, 32, 48, 47, 28, 185},
{150, 1474, 436, 296, 190, 98, 1280, 336, 1631, 334, 1638, 293, 1102, 33, 48, 46, 31, 205},
{ 40, 1536, 479, 285, 190, 98, 1280, 112, 1505, 53, 1574, 25, 1026, 40, 48, 48, 29, 186},
{100, 1536, 450, 297, 193, 98, 1280, 328, 1550, 171, 1586, 79, 1006, 33, 48, 48, 29, 184},
{150, 1536, 421, 283, 182, 98, 1280, 313, 1620, 306, 1638, 269, 1153, 34, 48, 46, 33, 204},
{200, 1536, 392, 299, 180, 98, 1280, 514, 1728, 570, 1638, 498, 1104, 27, 48, 44, 32, 200},
{240, 1536, 366, 301, 178, 98, 1280, 686, 1755, 818, 1638, 742, 1056, 22, 45, 41, 31, 196}};
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_loadAdcProfiles\n");
#endif
vcoDiv = device->clocks->clkPllVcoDiv;
switch (vcoDiv)
{
case VCODIV_1:
vcoDivTimes10 = 10;
break;
case VCODIV_1p5:
vcoDivTimes10 = 15;
break;
case VCODIV_2:
vcoDivTimes10 = 20;
break;
case VCODIV_3:
vcoDivTimes10 = 30;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_ADCPROFILE_INV_VCODIV,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_ADCPROFILE_INV_VCODIV));
return MYKONOS_ERR_LOAD_ADCPROFILE_INV_VCODIV;
}
}
hsDigClk_MHz = device->clocks->clkPllVcoFreq_kHz / vcoDivTimes10 / 100 / device->clocks->clkPllHsDiv;
/* If Tx Profile is valid, set loopback ADC profile based on Tx primary signal BW */
if ((device->profilesValid & TX_PROFILE_VALID) > 0)
{
/* If custom profile, load it */
if (device->obsRx->customLoopbackAdcProfile != NULL)
{
for (i = 0; i < NUM_ADCPROFILE_COEFS; i++)
{
adcProfile[i * 2] = device->obsRx->customLoopbackAdcProfile[i] & 0xFF;
adcProfile[i * 2 + 1] = (device->obsRx->customLoopbackAdcProfile[i] >> 8) & 0xFF;
}
}
else
{
/* Tx requires ORx profile is configured */
if (((device->profilesValid & TX_PROFILE_VALID) > 0) && ((device->profilesValid & ORX_PROFILE_VALID) == 0))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_ADCPROFILE_MISSING_ORX_PROFILE,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_ADCPROFILE_MISSING_ORX_PROFILE));
return MYKONOS_ERR_LOAD_ADCPROFILE_MISSING_ORX_PROFILE;
}
if (device->obsRx->orxProfile->adcDiv == 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_ADCPROFILE_ORXADCDIV_ZERO,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_ADCPROFILE_ORXADCDIV_ZERO));
return MYKONOS_ERR_LOAD_ADCPROFILE_ORXADCDIV_ZERO;
}
adcClk_MHz = hsDigClk_MHz / device->obsRx->orxProfile->adcDiv;
/* find correct ADC profile in the LUT */
profileIndex = NUM_ADC_PROFILES;
for (i = 0; i < NUM_ADC_PROFILES; i++)
{
/* Find a row in the LUT that matches the ADC clock frequency */
if ((adcProfileLut[i][1] == adcClk_MHz) && (adcProfileLut[i][0] >= (device->tx->txProfile->primarySigBandwidth_Hz / 1000000)))
{
profileIndex = i;
break;
}
}
/* Verify that a profile was found in the LUT, if not return error */
/* In this case a custom profile would need to be passed in */
if (profileIndex >= NUM_ADC_PROFILES)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_LBREQUIRED,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_LBREQUIRED));
return MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_LBREQUIRED;
}
for (i = 0; i < NUM_ADCPROFILE_COEFS; i++)
{
adcProfile[i * 2] = adcProfileLut[profileIndex][i + 2] & 0xFF;
adcProfile[i * 2 + 1] = (adcProfileLut[profileIndex][i + 2] >> 8) & 0xFF;
}
}
/* writing to the ARM memory: Set Loopback ADC Profile based on Tx Primary signal Bandwidth */
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR + ARM_CONFIG_OFFSET + 96, &adcProfile[0], sizeof(adcProfile));
if (retVal)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED));
return MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED;
}
}
if ((device->profilesValid & RX_PROFILE_VALID) > 0)
{
/* If custom profile, load it */
if (device->rx->rxProfile->customAdcProfile != NULL)
{
for (i = 0; i < NUM_ADCPROFILE_COEFS; i++)
{
adcProfile[i * 2] = device->rx->rxProfile->customAdcProfile[i] & 0xFF;
adcProfile[i * 2 + 1] = (device->rx->rxProfile->customAdcProfile[i] >> 8) & 0xFF;
}
}
else
{
if (device->rx->rxProfile->adcDiv == 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_ADCPROFILE_RXADCDIV_ZERO,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_ADCPROFILE_RXADCDIV_ZERO));
return MYKONOS_ERR_LOAD_ADCPROFILE_RXADCDIV_ZERO;
}
adcClk_MHz = hsDigClk_MHz / device->rx->rxProfile->adcDiv;
/* find correct ADC profile in the LUT */
profileIndex = NUM_ADC_PROFILES;
for (i = 0; i < NUM_ADC_PROFILES; i++)
{
/* Find a row in the LUT that matches the ADC clock frequency */
if ((adcProfileLut[i][1] == adcClk_MHz) && (adcProfileLut[i][0] >= (device->rx->rxProfile->rfBandwidth_Hz / 1000000)))
{
profileIndex = i;
break;
}
}
/* Verify that a profile was found in the LUT, if not return error */
/* In this case a custom profile would need to be passed in */
if (profileIndex >= NUM_ADC_PROFILES)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_RXREQUIRED,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_RXREQUIRED));
return MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_RXREQUIRED;
}
for (i = 0; i < NUM_ADCPROFILE_COEFS; i++)
{
adcProfile[i * 2] = adcProfileLut[profileIndex][i + 2] & 0xFF;
adcProfile[i * 2 + 1] = (adcProfileLut[profileIndex][i + 2] >> 8) & 0xFF;
}
}
/* writing to the ARM memory with ADC Profile for Rx path */
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR + ARM_CONFIG_OFFSET, &adcProfile[0], sizeof(adcProfile));
if (retVal)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_RXADCPROFILE_ARMMEM_FAILED,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_RXADCPROFILE_ARMMEM_FAILED));
return MYKONOS_ERR_LOAD_RXADCPROFILE_ARMMEM_FAILED;
}
/* writing to the ARM memory: Set Loopback ADC Profile = Rx ADC Profile ONLY if Tx profile is not valid */
if ((device->profilesValid & TX_PROFILE_VALID) == 0)
{
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR + ARM_CONFIG_OFFSET + 96, &adcProfile[0], sizeof(adcProfile));
if (retVal)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED));
return MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED;
}
}
}
if ((device->profilesValid & ORX_PROFILE_VALID) > 0)
{
/* If custom profile, load it */
if (device->obsRx->orxProfile->customAdcProfile != NULL)
{
for (i = 0; i < NUM_ADCPROFILE_COEFS; i++)
{
adcProfile[i * 2] = device->obsRx->orxProfile->customAdcProfile[i] & 0xFF;
adcProfile[i * 2 + 1] = (device->obsRx->orxProfile->customAdcProfile[i] >> 8) & 0xFF;
}
}
else
{
if (device->obsRx->orxProfile->adcDiv == 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_ADCPROFILE_ORXADCDIV_ZERO,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_ADCPROFILE_ORXADCDIV_ZERO));
return MYKONOS_ERR_LOAD_ADCPROFILE_ORXADCDIV_ZERO;
}
adcClk_MHz = hsDigClk_MHz / device->obsRx->orxProfile->adcDiv;
/* find correct ADC profile in the LUT */
profileIndex = NUM_ADC_PROFILES;
for (i = 0; i < NUM_ADC_PROFILES; i++)
{
/* Find a row in the LUT that matches the ADC clock frequency */
if ((adcProfileLut[i][1] == adcClk_MHz) && (adcProfileLut[i][0] >= (device->obsRx->orxProfile->rfBandwidth_Hz / 1000000)))
{
profileIndex = i;
break;
}
}
/* Verify that a profile was found in the LUT, if not return error */
/* In this case a custom profile would need to be passed in */
if (profileIndex >= NUM_ADC_PROFILES)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_ORXREQUIRED,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_ORXREQUIRED));
return MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_ORXREQUIRED;
}
for (i = 0; i < NUM_ADCPROFILE_COEFS; i++)
{
adcProfile[i * 2] = adcProfileLut[profileIndex][i + 2] & 0xFF;
adcProfile[i * 2 + 1] = (adcProfileLut[profileIndex][i + 2] >> 8) & 0xFF;
}
}
/* writing to the ARM memory with ADC Profile for ORx path */
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR + ARM_CONFIG_OFFSET + 32, &adcProfile[0], sizeof(adcProfile));
if (retVal)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_ORXADCPROFILE_ARMMEM_FAILED,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_ORXADCPROFILE_ARMMEM_FAILED));
return MYKONOS_ERR_LOAD_ORXADCPROFILE_ARMMEM_FAILED;
}
/* If Rx and Tx Profiles are not valid, set Loopback ADC profile to ORx ADC Profile */
if (((device->profilesValid & TX_PROFILE_VALID) == 0) && ((device->profilesValid & RX_PROFILE_VALID) == 0))
{
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR + ARM_CONFIG_OFFSET + 96, &adcProfile[0], sizeof(adcProfile));
if (retVal)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED));
return MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED;
}
}
}
if ((device->profilesValid & SNIFF_PROFILE_VALID) > 0)
{
/* If custom profile, load it */
if (device->obsRx->snifferProfile->customAdcProfile != NULL)
{
for (i = 0; i < NUM_ADCPROFILE_COEFS; i++)
{
adcProfile[i * 2] = device->obsRx->orxProfile->customAdcProfile[i] & 0xFF;
adcProfile[i * 2 + 1] = (device->obsRx->orxProfile->customAdcProfile[i] >> 8) & 0xFF;
}
}
else
{
if (device->obsRx->snifferProfile->adcDiv == 0)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_ADCPROFILE_SNRX_ADCDIV_ZERO,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_ADCPROFILE_SNRX_ADCDIV_ZERO));
return MYKONOS_ERR_LOAD_ADCPROFILE_SNRX_ADCDIV_ZERO;
}
adcClk_MHz = hsDigClk_MHz / device->obsRx->snifferProfile->adcDiv;
/* find correct ADC profile in the LUT */
profileIndex = NUM_ADC_PROFILES;
for (i = 0; i < NUM_ADC_PROFILES; i++)
{
/* Find a row in the LUT that matches the ADC clock frequency */
if ((adcProfileLut[i][1] == adcClk_MHz) && (adcProfileLut[i][0] >= (device->obsRx->snifferProfile->rfBandwidth_Hz / 1000000)))
{
profileIndex = i;
break;
}
}
/* Verify that a profile was found in the LUT, if not return error */
/* In this case a custom profile would need to be passed in */
if (profileIndex >= NUM_ADC_PROFILES)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_SNRXREQUIRED,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_SNRXREQUIRED));
return MYKONOS_ERR_LOAD_ADCPROFILE_CUSTOM_SNRXREQUIRED;
}
for (i = 0; i < NUM_ADCPROFILE_COEFS; i++)
{
adcProfile[i * 2] = adcProfileLut[profileIndex][i + 2] & 0xFF;
adcProfile[i * 2 + 1] = (adcProfileLut[profileIndex][i + 2] >> 8) & 0xFF;
}
}
/* writing to the ARM memory with ADC Profile for sniffer Rx path */
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR + ARM_CONFIG_OFFSET + 64, &adcProfile[0], sizeof(adcProfile));
if (retVal)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_SNRXADCPROFILE_ARMMEM_FAILED,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_SNRXADCPROFILE_ARMMEM_FAILED));
return MYKONOS_ERR_LOAD_SNRXADCPROFILE_ARMMEM_FAILED;
}
/* If Tx, Rx, and ORx Profiles are not valid, set Loopback ADC profile to Sniffer Rx ADC Profile */
if (((device->profilesValid & TX_PROFILE_VALID) == 0) && ((device->profilesValid & RX_PROFILE_VALID) == 0) && ((device->profilesValid & ORX_PROFILE_VALID) == 0))
{
retVal = MYKONOS_writeArmMem(device, MYKONOS_ADDR_ARM_START_DATA_ADDR + ARM_CONFIG_OFFSET + 96, &adcProfile[0], sizeof(adcProfile));
if (retVal)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED,
getMykonosErrorMessage(MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED));
return MYKONOS_ERR_LOAD_LBADCPROFILE_ARMMEM_FAILED;
}
}
}
return MYKONOS_ERR_OK;
}
/**
* \brief Helper function to calculate commonly used digital clock frequencies in the device
*
* User should not need to call this function normally. It is called automatically
* within other API functions to calculate the main digital clock. If the pointers
* to the return parameters are NULL, that calculation will be skipped and not
* returned.
*
*
* <B>Dependencies</B>
* -device->clocks->clkPllVcoFreq_kHz;
* -device->clocks->clkPllVcoDiv;
* -device->clocks->clkPllHsDiv;
*
* \param device Pointer to the device settings structure
* \param hsDigClk_kHz Return value for the calculated Mykonos high speed Digital clock at the output of the CLKPLL in kHz
* \param hsDigClkDiv4or5_kHz Return value for the Mykonos high speed digital clock divided by 4 or 5 in kHz
*
* \retval MYKONOS_ERR_OK Function completed successfully
* \retval MYKONOS_ERR_CALCDIGCLK_NULLDEV_PARAM device parameter is a NULL pointer
* \retval MYKONOS_ERR_CALCDIGCLK_NULL_CLKSTRUCT device->clocks structure is a NULL pointer
* \retval MYKONOS_ERR_CLKPLL_INV_VCODIV Invalid CLKPLL VCO divider in device->clocks->clkPllVcoDiv
* \retval MYKONOS_ERR_CLKPLL_INV_HSDIV Invalid CLKPLL High speed divider in device->clocks->clkPllHsDiv
*/
static mykonosErr_t MYKONOS_calculateDigitalClocks(mykonosDevice_t *device, uint32_t *hsDigClk_kHz, uint32_t *hsDigClkDiv4or5_kHz)
{
uint32_t hsclkRate_kHz = 0;
uint32_t clkPllVcoFrequency_kHz = 0;
mykonosVcoDiv_t vcoDiv = VCODIV_1;
uint8_t hsDiv = 4;
if (device == NULL)
{
CMB_writeToLog(ADIHAL_LOG_ERROR, 0, MYKONOS_ERR_CALCDIGCLK_NULLDEV_PARAM, getMykonosErrorMessage(MYKONOS_ERR_CALCDIGCLK_NULLDEV_PARAM));
return MYKONOS_ERR_CALCDIGCLK_NULLDEV_PARAM;
}
if ((device->clocks == NULL))
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CALCDIGCLK_NULL_CLKSTRUCT,
getMykonosErrorMessage(MYKONOS_ERR_CALCDIGCLK_NULL_CLKSTRUCT));
return MYKONOS_ERR_CALCDIGCLK_NULL_CLKSTRUCT;
}
clkPllVcoFrequency_kHz = device->clocks->clkPllVcoFreq_kHz;
vcoDiv = device->clocks->clkPllVcoDiv;
hsDiv = device->clocks->clkPllHsDiv;
switch (vcoDiv)
{
case VCODIV_1:
hsclkRate_kHz = clkPllVcoFrequency_kHz;
break;
case VCODIV_1p5:
hsclkRate_kHz = (clkPllVcoFrequency_kHz / 15) * 10;
break;
case VCODIV_2:
hsclkRate_kHz = clkPllVcoFrequency_kHz >> 1;
break;
case VCODIV_3:
hsclkRate_kHz = (clkPllVcoFrequency_kHz / 30) * 10;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CLKPLL_INV_VCODIV, getMykonosErrorMessage(MYKONOS_ERR_CLKPLL_INV_VCODIV));
return MYKONOS_ERR_CLKPLL_INV_VCODIV;
}
}
switch (hsDiv)
{
case 4:
hsDiv = 4;
break;
case 5:
hsDiv = 5;
break;
default:
{
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_CLKPLL_INV_HSDIV, getMykonosErrorMessage(MYKONOS_ERR_CLKPLL_INV_HSDIV));
return MYKONOS_ERR_CLKPLL_INV_HSDIV;
}
}
if (hsDigClk_kHz != NULL)
{
*hsDigClk_kHz = hsclkRate_kHz / hsDiv;
}
if (hsDigClkDiv4or5_kHz != NULL)
{
/* This digital div 4 or 5 is always mutually exclusive with the HS Divider (4 or 5) to always
* create a /20 from the hsclk.
*/
*hsDigClkDiv4or5_kHz = hsclkRate_kHz / 20;
}
return MYKONOS_ERR_OK;
}
/**
* \brief Performs reset to the External Tx LO Leakage tracking calibration channel estimate
*
* <B>Dependencies</B>
* - device->spiSettings->chipSelectIndex
*
* \param device Pointer to the Mykonos device data structure containing settings
* \param channelSel Enum selects the channel to reset
*
* \retval MYKONOS_ERR_RESET_TXLOL_INV_PARAM Selected channel is not valid
* \retval MYKONOS_ERR_RESET_TXLOL_ARMERROR ARM error
* \retval MYKONOS_ERR_OK Function completed successfully
*/
mykonosErr_t MYKONOS_resetExtTxLolChannel(mykonosDevice_t *device, mykonosTxChannels_t channelSel)
{
const uint8_t TXLOL_RESET_CHANNEL_ESTIMATE = 0x01;
const uint32_t GETTXLOLSTATUS_TIMEOUT_MS = 1000;
mykonosErr_t retVal = MYKONOS_ERR_OK;
uint8_t extData[3] = {MYKONOS_ARM_OBJECTID_GS_TRACKCALS, TXLOL_RESET_CHANNEL_ESTIMATE, 0};
uint8_t cmdStatusByte = 0;
uint8_t armErrorFlag = 0;
#if (MYKONOS_VERBOSE == 1)
CMB_writeToLog(ADIHAL_LOG_MESSAGE, device->spiSettings->chipSelectIndex, MYKONOS_ERR_OK, "MYKONOS_resetExtTxLolChannel()\n");
#endif
/* Check Channel */
switch (channelSel)
{
case TX1:
extData[2] = 0x01;
break;
case TX2:
extData[2] = 0x02;
break;
case TX1_TX2:
extData[2] = 0x03;
break;
default:
CMB_writeToLog(ADIHAL_LOG_ERROR, device->spiSettings->chipSelectIndex, MYKONOS_ERR_RESET_TXLOL_INV_PARAM,
getMykonosErrorMessage(MYKONOS_ERR_RESET_TXLOL_INV_PARAM));
return MYKONOS_ERR_RESET_TXLOL_INV_PARAM;
}
/* throw error if not in radioOff/IDLE state */
retVal = MYKONOS_checkArmState(device, (MYK_ARM_IDLE | MYK_ARM_RADIO_ON));
if (retVal)
{
return retVal;
}
retVal = MYKONOS_sendArmCommand(device, MYKONOS_ARM_SET_OPCODE, &extData[0], sizeof(extData));
if (retVal)
{
return retVal;
}
retVal = MYKONOS_waitArmCmdStatus(device, MYKONOS_ARM_SET_OPCODE, GETTXLOLSTATUS_TIMEOUT_MS, &cmdStatusByte);
/* Error check WaitArmCmdStatus return */
armErrorFlag = (cmdStatusByte >> 1);
if (armErrorFlag > 0)
{
return MYKONOS_ERR_RESET_TXLOL_ARMERROR;
}
return retVal;
}
|