aboutsummaryrefslogtreecommitdiffstats
path: root/host/utils/usrp_gen_db_cal_table.cpp
blob: 50f4738092b3289de21ddb4a81337901db825100 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/paths.hpp>
#include <uhd/property_tree.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/usrp/dboard_eeprom.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
#include <boost/thread/thread.hpp>
#include <boost/filesystem.hpp>
#include <boost/math/special_functions/round.hpp>
#include <iostream>
#include <fstream>
#include <complex>
#include <cmath>
#include <ctime>

namespace po = boost::program_options;
namespace fs = boost::filesystem;

/***********************************************************************
 * Constants
 **********************************************************************/
static const double e = 2.71828183;
static const double tau = 6.28318531;
static const double alpha = 0.0001; //very tight iir filter
static const size_t wave_table_len = 8192;

/***********************************************************************
 * Sinusoid wave table
 **********************************************************************/
static std::vector<std::complex<float> > gen_table(void){
    std::vector<std::complex<float> > wave_table(wave_table_len);
    std::vector<double> real_wave_table(wave_table_len);
    for (size_t i = 0; i < wave_table_len; i++)
        real_wave_table[i] = std::sin((tau*i)/wave_table_len);

    //compute i and q pairs with 90% offset and scale to amplitude
    for (size_t i = 0; i < wave_table_len; i++){
        const size_t q = (i+(3*wave_table_len)/4)%wave_table_len;
        wave_table[i] = std::complex<float>(real_wave_table[i], real_wave_table[q]);
    }

    return wave_table;
}

static std::complex<float> wave_table_lookup(size_t &index){
    static const std::vector<std::complex<float> > wave_table = gen_table();
    index %= wave_table_len;
    return wave_table[index];
}

/***********************************************************************
 * Compute power of a tone
 **********************************************************************/
static double compute_tone_dbrms(
    const std::vector<std::complex<float> > &samples,
    const double freq //freq is fractional
){
    //shift the samples so the tone at freq is down at DC
    std::vector<std::complex<double> > shifted(samples.size());
    for (size_t i = 0; i < shifted.size(); i++){
        shifted[i] = std::complex<double>(samples[i]) * std::pow(e, std::complex<double>(0, -freq*tau*i));
    }

    //filter the samples with a narrow low pass
    std::complex<double> iir_output = 0, iir_last = 0;
    double output = 0;
    for (size_t i = 0; i < shifted.size(); i++){
        iir_output = alpha * shifted[i] + (1-alpha)*iir_last;
        iir_last = iir_output;
        output += std::abs(iir_output);
    }

    return 20*std::log10(output/shifted.size());
}

/***********************************************************************
 * Transmit thread
 **********************************************************************/
static void tx_thread(uhd::usrp::multi_usrp::sptr usrp, const double tx_wave_freq, const double tx_wave_ampl){
    uhd::set_thread_priority_safe();

    //create a transmit streamer
    uhd::stream_args_t stream_args("fc32"); //complex floats
    uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);

    //setup variables and allocate buffer
    uhd::tx_metadata_t md;
    md.has_time_spec = false;
    std::vector<std::complex<float> > buff(tx_stream->get_max_num_samps()*10);

    //values for the wave table lookup
    size_t index = 0;
    const double tx_rate = usrp->get_tx_rate();
    const size_t step = boost::math::iround(wave_table_len * tx_wave_freq/tx_rate);

    //fill buff and send until interrupted
    while (not boost::this_thread::interruption_requested()){
        for (size_t i = 0; i < buff.size(); i++){
            buff[i] = float(tx_wave_ampl) * wave_table_lookup(index);
            index += step;
        }
        tx_stream->send(&buff.front(), buff.size(), md);
    }

    //send a mini EOB packet
    md.end_of_burst = true;
    tx_stream->send("", 0, md);
}

/***********************************************************************
 * Tune RX and TX routine
 **********************************************************************/
static void tune_rx_and_tx(uhd::usrp::multi_usrp::sptr usrp, const double tx_lo_freq, const double rx_offset){
    //tune the transmitter with no cordic
    uhd::tune_request_t tx_tune_req(tx_lo_freq);
    tx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
    tx_tune_req.dsp_freq = 0;
    usrp->set_tx_freq(tx_tune_req);

    //tune the receiver
    usrp->set_rx_freq(usrp->get_tx_freq() - rx_offset);

    //wait for the LOs to become locked
    boost::system_time start = boost::get_system_time();
    while (not usrp->get_tx_sensor("lo_locked").to_bool() or not usrp->get_rx_sensor("lo_locked").to_bool()){
        if (boost::get_system_time() > start + boost::posix_time::milliseconds(100)){
            throw std::runtime_error("timed out waiting for TX and/or RX LO to lock");
        }
    }
}

/***********************************************************************
 * Data capture routine
 **********************************************************************/
static void capture_samples(uhd::usrp::multi_usrp::sptr usrp, uhd::rx_streamer::sptr rx_stream, std::vector<std::complex<float> > &buff){
    uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
    stream_cmd.num_samps = buff.size();
    stream_cmd.stream_now = true;
    usrp->issue_stream_cmd(stream_cmd);
    uhd::rx_metadata_t md;
    const size_t num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md);

    //validate the received data
    if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE){
        throw std::runtime_error(str(boost::format(
            "Unexpected error code 0x%x"
        ) % md.error_code));
    }
    if (num_rx_samps != buff.size()){
        throw std::runtime_error("did not get all the samples requested");
    }
}

/***********************************************************************
 * Store data to file
 **********************************************************************/
struct result_t{double freq, real_corr, imag_corr, sup;};
static void store_results(uhd::usrp::multi_usrp::sptr usrp, const std::vector<result_t> &results){
    //extract eeprom serial
    uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
    const uhd::fs_path db_path = "/mboards/0/dboards/A/tx_eeprom";
    const uhd::usrp::dboard_eeprom_t db_eeprom = tree->access<uhd::usrp::dboard_eeprom_t>(db_path).get();
    if (db_eeprom.serial.empty()) throw std::runtime_error("TX dboard has empty serial!");

    //make the calibration file path
    fs::path cal_data_path = fs::path(uhd::get_app_path()) / ".uhd";
    fs::create_directory(cal_data_path);
    cal_data_path = cal_data_path / "cal";
    fs::create_directory(cal_data_path);
    cal_data_path = cal_data_path / ("tx_fe_cal_v0.1_" + db_eeprom.serial + ".csv");

    //fill the calibration file
    std::ofstream cal_data(cal_data_path.string().c_str());
    cal_data << boost::format("name, TX Frontend Calibration\n");
    cal_data << boost::format("serial, %s\n") % db_eeprom.serial;
    cal_data << boost::format("timestamp, %d\n") % time(NULL);
    cal_data << boost::format("version, 0, 1\n");
    cal_data << boost::format("DATA STARTS HERE\n");
    cal_data << "tx_lo_frequency, tx_iq_correction_real, tx_iq_correction_imag, measured_suppression\n";

    for (size_t i = 0; i < results.size(); i++){
        cal_data
            << results[i].freq << ", "
            << results[i].real_corr << ", "
            << results[i].imag_corr << ", "
            << results[i].sup << "\n"
        ;
    }

    std::cout << "wrote cal data to " << cal_data_path << std::endl;
}

/***********************************************************************
 * Main
 **********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
    std::string args;
    double rate, tx_wave_freq, tx_wave_ampl, rx_offset, freq_step;
    size_t nsamps;

    po::options_description desc("Allowed options");
    desc.add_options()
        ("help", "help message")
        ("args", po::value<std::string>(&args)->default_value(""), "device address args [default = \"\"]")
        ("rate", po::value<double>(&rate)->default_value(12.5e6), "RX and TX sample rate in Hz")
        ("tx_wave_freq", po::value<double>(&tx_wave_freq)->default_value(507.123e3), "Transmit wave frequency in Hz")
        ("tx_wave_ampl", po::value<double>(&tx_wave_ampl)->default_value(0.7), "Transmit wave amplitude in counts")
        ("rx_offset", po::value<double>(&rx_offset)->default_value(.9344e6), "RX LO offset from the TX LO in Hz")
        ("freq_step", po::value<double>(&freq_step)->default_value(20e6), "Step size for LO sweep in Hz")
        ("nsamps", po::value<size_t>(&nsamps)->default_value(10000), "Samples per data capture")
    ;

    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, desc), vm);
    po::notify(vm);

    //print the help message
    if (vm.count("help")){
        std::cout << boost::format("USRP Generate Daughterboard Calibration Table %s") % desc << std::endl;
        std::cout <<
            "This application measures leakage between RX and TX on an XCVR daughterboard to self-calibrate.\n"
            << std::endl;
        return ~0;
    }

    //create a usrp device
    std::cout << std::endl;
    std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
    uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);

    //set the sample rates
    usrp->set_rx_rate(rate);
    usrp->set_tx_rate(rate);

    //set max receiver gain
    usrp->set_rx_gain(usrp->get_rx_gain_range().stop());

    //create a receive streamer
    uhd::stream_args_t stream_args("fc32"); //complex floats
    uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);

    //create a transmitter thread
    boost::thread_group threads;
    threads.create_thread(boost::bind(&tx_thread, usrp, tx_wave_freq, tx_wave_ampl));

    //re-usable buffer for samples
    std::vector<std::complex<float> > buff(nsamps);

    const uhd::meta_range_t freq_range = usrp->get_tx_freq_range();
    std::vector<result_t> results;

    for (double tx_lo = freq_range.start()+freq_step; tx_lo < freq_range.stop()-freq_step; tx_lo += freq_step){

        tune_rx_and_tx(usrp, tx_lo, rx_offset);

        double phase_corr_start = -.3;
        double phase_corr_stop = .3;
        double phase_corr_step;

        double ampl_corr_start = -.3;
        double ampl_corr_stop = .3;
        double ampl_corr_step;

        std::complex<double> best_correction;
        double best_suppression = 0;
        double best_phase_corr = 0;
        double best_ampl_corr = 0;

        for (size_t i = 0; i < 7; i++){

            phase_corr_step = (phase_corr_stop - phase_corr_start)/4;
            ampl_corr_step = (ampl_corr_stop - ampl_corr_start)/4;

            for (double phase_corr = phase_corr_start; phase_corr <= phase_corr_stop; phase_corr += phase_corr_step){
            for (double ampl_corr = ampl_corr_start; ampl_corr <= ampl_corr_stop; ampl_corr += ampl_corr_step){

                const std::complex<double> correction = std::polar(ampl_corr+1, phase_corr*tau);
                usrp->set_tx_iq_balance(correction);

                //receive some samples
                capture_samples(usrp, rx_stream, buff);

                const double actual_rx_rate = usrp->get_rx_rate();
                const double actual_tx_freq = usrp->get_tx_freq();
                const double actual_rx_freq = usrp->get_rx_freq();
                const double bb_tone_freq = actual_tx_freq + tx_wave_freq - actual_rx_freq;
                const double bb_imag_freq = actual_tx_freq - tx_wave_freq - actual_rx_freq;

                const double tone_dbrms = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate);
                const double imag_dbrms = compute_tone_dbrms(buff, bb_imag_freq/actual_rx_rate);
                const double suppression = tone_dbrms - imag_dbrms;

                //std::cout << "bb_tone_freq " << bb_tone_freq << std::endl;
                //std::cout << "bb_imag_freq " << bb_imag_freq << std::endl;
                //std::cout << "tone_dbrms " << tone_dbrms << std::endl;
                //std::cout << "imag_dbrms " << imag_dbrms << std::endl;
                //std::cout << "suppression " << (tone_dbrms - imag_dbrms) << std::endl;

                if (suppression > best_suppression){
                    best_correction = correction;
                    best_suppression = suppression;
                    best_phase_corr = phase_corr;
                    best_ampl_corr = ampl_corr;
                    //std::cout << "   suppression! " << suppression << std::endl;
                }

            }}

            //std::cout << "best_phase_corr " << best_phase_corr << std::endl;
            //std::cout << "best_ampl_corr " << best_ampl_corr << std::endl;
            //std::cout << "best_suppression " << best_suppression << std::endl;

            phase_corr_start = best_phase_corr - phase_corr_step;
            phase_corr_stop = best_phase_corr + phase_corr_step;
            ampl_corr_start = best_ampl_corr - ampl_corr_step;
            ampl_corr_stop = best_ampl_corr + ampl_corr_step;
        }

        if (best_suppression > 30){ //most likely valid, keep result
            result_t result;
            result.freq = tx_lo;
            result.real_corr = best_correction.real();
            result.imag_corr = best_correction.imag();
            result.sup = best_suppression;
            results.push_back(result);
        }
        std::cout << "." << std::flush;

    }
    std::cout << std::endl;

    //stop the transmitter
    threads.interrupt_all();
    threads.join_all();

    store_results(usrp, results);

    return 0;
}