1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
//
// Copyright 2011-2012,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/cal/database.hpp>
#include <uhd/cal/iq_cal.hpp>
#include <uhd/property_tree.hpp>
#include <uhd/usrp/dboard_eeprom.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/math.hpp>
#include <uhd/utils/paths.hpp>
#include <uhd/utils/thread.hpp>
#include <atomic>
#include <chrono>
#include <complex>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <thread>
#include <vector>
struct result_t
{
double freq, real_corr, imag_corr, best, delta;
};
typedef std::complex<float> samp_type;
/***********************************************************************
* Constants
**********************************************************************/
static const double tau = 2 * uhd::math::PI;
static const size_t num_search_steps = 5;
static const double default_precision = 0.0001;
static const double default_freq_step = 7.3e6;
static const size_t default_fft_bin_size = 1000;
static constexpr size_t MAX_NUM_TX_ERRORS = 10;
/***********************************************************************
* Set standard defaults for devices
**********************************************************************/
static inline void set_optimum_defaults(uhd::usrp::multi_usrp::sptr usrp)
{
constexpr size_t chan = 0;
const auto rx_info = usrp->get_usrp_rx_info(chan);
const auto tx_info = usrp->get_usrp_tx_info(chan);
const std::string mb_name = rx_info["mboard_id"];
if (mb_name.find("USRP2") != std::string::npos
or mb_name.find("N200") != std::string::npos
or mb_name.find("N210") != std::string::npos
or mb_name.find("X300") != std::string::npos
or mb_name.find("X310") != std::string::npos
or mb_name.find("NI-2974") != std::string::npos
or mb_name.find("n3xx") != std::string::npos) {
usrp->set_tx_rate(12.5e6);
usrp->set_rx_rate(12.5e6);
} else if (mb_name.find("n320") != std::string::npos) {
usrp->set_tx_rate(12.288e6);
usrp->set_rx_rate(12.288e6);
} else if (mb_name.find("B100") != std::string::npos) {
usrp->set_tx_rate(4e6);
usrp->set_rx_rate(4e6);
} else {
throw std::runtime_error(
std::string("self-calibration is not supported for this device: ") + mb_name);
}
const std::string tx_name = tx_info["tx_subdev_name"];
if (tx_name.find("WBX") == std::string::npos
and tx_name.find("SBX") == std::string::npos
and tx_name.find("CBX") == std::string::npos
and tx_name.find("RFX") == std::string::npos
and tx_name.find("UBX") == std::string::npos
and tx_name.find("Rhodium") == std::string::npos) {
throw std::runtime_error(
std::string("self-calibration is not supported for this TX dboard :")
+ tx_name);
}
usrp->set_tx_gain(0);
const std::string rx_name = rx_info["rx_subdev_name"];
if (rx_name.find("WBX") == std::string::npos
and rx_name.find("SBX") == std::string::npos
and rx_name.find("CBX") == std::string::npos
and rx_name.find("RFX") == std::string::npos
and rx_name.find("UBX") == std::string::npos
and rx_name.find("Rhodium") == std::string::npos) {
throw std::runtime_error(
std::string("self-calibration is not supported for this RX dboard :")
+ rx_name);
}
usrp->set_rx_gain(0);
}
/***********************************************************************
* Retrieve d'board serial
**********************************************************************/
static std::string get_serial(uhd::usrp::multi_usrp::sptr usrp, const std::string& tx_rx)
{
const size_t chan = 0;
auto usrp_info = (tx_rx == "tx") ? usrp->get_usrp_tx_info(chan)
: usrp->get_usrp_rx_info(chan);
const std::string serial_key = tx_rx + "_serial";
if (!usrp_info.has_key(serial_key)) {
throw uhd::runtime_error("Cannot determine daughterboard serial!");
}
return usrp_info[serial_key];
}
/***********************************************************************
* Check for empty serial
**********************************************************************/
void check_for_empty_serial(uhd::usrp::multi_usrp::sptr usrp)
{
if (get_serial(usrp, "rx").empty()) {
std::string error_string =
"This dboard has no serial!\n\nPlease see the Calibration "
"documentation for details on how to fix this.";
throw std::runtime_error(error_string);
}
}
/***********************************************************************
* Compute power of a tone
**********************************************************************/
static inline double compute_tone_dbrms(const std::vector<samp_type>& samples,
const double freq) // freq is fractional
{
// shift the samples so the tone at freq is down at DC
// and average the samples to measure the DC component
samp_type average = 0;
for (size_t i = 0; i < samples.size(); i++)
average += samp_type(std::polar(1.0, -freq * tau * i)) * samples[i];
return 20 * std::log10(std::abs(average / float(samples.size())));
}
/***********************************************************************
* Write a dat file
**********************************************************************/
static inline void write_samples_to_file(
const std::vector<samp_type>& samples, const std::string& file)
{
std::ofstream outfile(file.c_str(), std::ofstream::binary);
outfile.write((const char*)&samples.front(), samples.size() * sizeof(samp_type));
outfile.close();
}
/***********************************************************************
* Store data to file
**********************************************************************/
static void store_results(const std::vector<result_t>& results,
const std::string& XX, // "TX" or "RX"
const std::string& xx, // "tx" or "rx"
const std::string& what, // Type of test, e.g. "iq",
const std::string& serial)
{
using namespace uhd::usrp::cal;
// Note: We could also load existing data and update it.
auto cal_data = iq_cal::make(XX + " Frontend Calibration", serial, time(NULL));
for (size_t i = 0; i < results.size(); i++) {
cal_data->set_cal_coeff(results[i].freq,
{results[i].real_corr, results[i].imag_corr},
results[i].best,
results[i].delta);
}
const std::string cal_key = xx + "_" + what;
database::write_cal_data(cal_key, serial, cal_data->serialize());
}
/***********************************************************************
* Data capture routine
**********************************************************************/
static void capture_samples(uhd::usrp::multi_usrp::sptr usrp,
uhd::rx_streamer::sptr rx_stream,
std::vector<samp_type>& buff,
const size_t nsamps_requested)
{
buff.resize(nsamps_requested);
uhd::rx_metadata_t md;
// Right after the stream is started, there will be transient data.
// That transient data is discarded and only "good" samples are returned.
size_t nsamps_to_discard = size_t(usrp->get_rx_rate() * 0.001); // 1ms to be discarded
std::vector<samp_type> discard_buff(nsamps_to_discard);
uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
stream_cmd.num_samps = buff.size() + nsamps_to_discard;
stream_cmd.stream_now = true;
usrp->issue_stream_cmd(stream_cmd);
size_t num_rx_samps = 0;
// Discard the transient samples.
rx_stream->recv(&discard_buff.front(), discard_buff.size(), md);
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
throw std::runtime_error(std::string("Receiver error: ") + md.strerror());
}
// Now capture the data we want
num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md);
// validate the received data
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
throw std::runtime_error(std::string("Receiver error: ") + md.strerror());
}
// we can live if all the data didnt come in
if (num_rx_samps > buff.size() / 2) {
buff.resize(num_rx_samps);
return;
}
if (num_rx_samps != buff.size())
throw std::runtime_error("did not get all the samples requested");
}
/***********************************************************************
* Setup function
**********************************************************************/
static uhd::usrp::multi_usrp::sptr setup_usrp_for_cal(
std::string& args, std::string& subdev, std::string& serial)
{
const std::string args_with_ignore = args + ",ignore_cal_file=1,ignore-cal-file=1";
std::cout << std::endl;
std::cout << "Creating the usrp device with: " << args_with_ignore << "..."
<< std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args_with_ignore);
// Configure subdev
if (!subdev.empty()) {
usrp->set_tx_subdev_spec(subdev);
usrp->set_rx_subdev_spec(subdev);
}
std::cout << "Running calibration for " << usrp->get_tx_subdev_name(0) << std::endl;
serial = get_serial(usrp, "tx");
std::cout << "Daughterboard serial: " << serial << std::endl;
// set the antennas to cal
if (not uhd::has(usrp->get_rx_antennas(), "CAL")
or not uhd::has(usrp->get_tx_antennas(), "CAL"))
throw std::runtime_error(
"This board does not have the CAL antenna option, cannot self-calibrate.");
usrp->set_rx_antenna("CAL");
usrp->set_tx_antenna("CAL");
// fail if daughterboard has no serial
check_for_empty_serial(usrp);
// set optimum defaults
set_optimum_defaults(usrp);
return usrp;
}
/***********************************************************************
* Function to find optimal RX gain setting (for the current frequency)
**********************************************************************/
UHD_INLINE void set_optimal_rx_gain(uhd::usrp::multi_usrp::sptr usrp,
uhd::rx_streamer::sptr rx_stream,
double wave_freq = 0.0,
double gain_step = 3.0)
{
const double gain_step_threshold = gain_step * 0.5;
const double actual_rx_rate = usrp->get_rx_rate();
const double actual_tx_freq = usrp->get_tx_freq();
const double actual_rx_freq = usrp->get_rx_freq();
const double bb_tone_freq = actual_tx_freq - actual_rx_freq + wave_freq;
const size_t nsamps = size_t(actual_rx_rate / default_fft_bin_size);
std::vector<samp_type> buff(nsamps);
uhd::gain_range_t rx_gain_range = usrp->get_rx_gain_range();
double rx_gain = rx_gain_range.start() + gain_step;
double curr_dbrms = 0.0;
double prev_dbrms = 0.0;
double delta = 0.0;
// No sense in setting the gain where this is no gain range
if (rx_gain_range.stop() - rx_gain_range.start() < gain_step)
return;
// The algorithm below cycles through the RX gain range
// looking for the point where the signal begins to get
// clipped and the gain begins to be compressed. It does
// this by looking for the gain setting where the increase
// in the tone is less than the gain step by more than the
// gain compression threshold (curr - prev < gain - threshold).
// This routine starts searching at the bottom of the gain range
// rather than the top in order to minimize the chances of
// exposing frontend components to a dangerous amount of power
// from the incoming signal.
// Initialize prev_dbrms value
usrp->set_rx_gain(rx_gain);
capture_samples(usrp, rx_stream, buff, nsamps);
prev_dbrms = compute_tone_dbrms(buff, bb_tone_freq / actual_rx_rate);
rx_gain += gain_step;
// First, get the signal above the noise floor
while (rx_gain <= rx_gain_range.stop()) {
usrp->set_rx_gain(rx_gain);
capture_samples(usrp, rx_stream, buff, nsamps);
curr_dbrms = compute_tone_dbrms(buff, bb_tone_freq / actual_rx_rate);
delta = curr_dbrms - prev_dbrms;
// Check that the signal power is not already high
if (curr_dbrms >= 0)
break;
// Check that the signal power has increased as the gain increases
if (delta >= gain_step - gain_step_threshold)
break;
prev_dbrms = curr_dbrms;
rx_gain += gain_step;
}
// Find RX gain where signal begins to clip
while (rx_gain <= rx_gain_range.stop()) {
usrp->set_rx_gain(rx_gain);
capture_samples(usrp, rx_stream, buff, nsamps);
curr_dbrms = compute_tone_dbrms(buff, bb_tone_freq / actual_rx_rate);
delta = curr_dbrms - prev_dbrms;
// check if the gain is compressed beyone the threshold
if (delta < gain_step - gain_step_threshold)
break; // if so, we are done
prev_dbrms = curr_dbrms;
rx_gain += gain_step;
}
// The rx_gain value at this point is the gain setting where clipping
// occurs or the gain setting that is just beyond the gain range.
// The gain is reduced by 2 steps to make sure it is within the range and
// under the point where it is clipped with enough room to make adjustments.
rx_gain -= 2 * gain_step;
// Make sure the gain is within the range.
rx_gain = rx_gain_range.clip(rx_gain);
// Finally, set the gain.
usrp->set_rx_gain(rx_gain);
}
/***********************************************************************
* Transmit thread
**********************************************************************/
static void tx_thread(std::atomic_flag* transmit,
uhd::usrp::multi_usrp::sptr usrp,
uhd::tx_streamer::sptr tx_stream,
const double tx_wave_freq,
const double tx_wave_ampl)
{
// increase thread priority for TX to prevent underruns
uhd::set_thread_priority();
// set max TX gain
usrp->set_tx_gain(usrp->get_tx_gain_range().stop());
// setup variables
uhd::tx_metadata_t md;
md.has_time_spec = false;
const double tx_rate = usrp->get_tx_rate();
const size_t frame_size = tx_stream->get_max_num_samps();
// set up buffer
// make buffer size of 1 second aligned to a complete wave
// to provide accuracy down to 1 Hz with no discontinuity
const size_t buff_size =
tx_wave_freq == 0.0
? frame_size
: static_cast<size_t>(tx_rate)
- static_cast<size_t>((tx_wave_freq - static_cast<size_t>(tx_wave_freq))
* tx_rate / tx_wave_freq);
// Since send calls are aligned to the frame size, make the buffer 1 frame
// larger to prevent an overrun when it reaches the end and wraps around.
std::vector<samp_type> buff(buff_size + frame_size);
// fill buffer
for (size_t i = 0; i < buff.size(); i++) {
if (tx_wave_freq == 0.0) {
// fill with constant value
buff[i] = samp_type(static_cast<float>(tx_wave_ampl), 0.0);
} else {
// fill with sine waves
buff[i] =
samp_type(std::polar(tx_wave_ampl, (tau * i * tx_wave_freq / tx_rate)));
}
}
// send until stopped
size_t index = 0;
while (transmit->test_and_set()) {
// send calls are aligned to the frame size for optimal performance
tx_stream->send(&buff[index], frame_size, md);
// increment index
index += frame_size;
// wrap around at end of buffer
// (actual buffer size is 1 frame larger to prevent overrun)
index %= buff_size;
}
// send a mini EOB packet
md.end_of_burst = true;
tx_stream->send("", 0, md);
}
/*! Returns true if any error on the TX stream has occurred
*/
bool has_tx_error(uhd::tx_streamer::sptr tx_stream)
{
uhd::async_metadata_t async_md;
if (!tx_stream->recv_async_msg(async_md, 0.0)) {
return false;
}
return async_md.event_code
& (0
// Any of these errors are considered a problematic TX error:
| uhd::async_metadata_t::EVENT_CODE_UNDERFLOW
| uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR
| uhd::async_metadata_t::EVENT_CODE_TIME_ERROR
| uhd::async_metadata_t::EVENT_CODE_UNDERFLOW_IN_PACKET
| uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR_IN_BURST);
}
void wait_for_lo_lock(uhd::usrp::multi_usrp::sptr usrp)
{
std::this_thread::sleep_for(std::chrono::milliseconds(50));
const auto timeout =
std::chrono::steady_clock::now() + std::chrono::milliseconds(100);
while (not usrp->get_tx_sensor("lo_locked").to_bool()
or not usrp->get_rx_sensor("lo_locked").to_bool()) {
if (std::chrono::steady_clock::now() > timeout) {
throw std::runtime_error("timed out waiting for TX and/or RX LO to lock");
}
}
}
|