1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
//
// Copyright 2011-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include <uhd/utils/paths.hpp>
#include <uhd/property_tree.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/usrp/dboard_eeprom.hpp>
#include <uhd/utils/paths.hpp>
#include <boost/filesystem.hpp>
#include <boost/format.hpp>
#include <iostream>
#include <vector>
#include <complex>
#include <cmath>
#include <cstdlib>
#include <fstream>
namespace fs = boost::filesystem;
struct result_t{double freq, real_corr, imag_corr, best, delta;};
typedef std::complex<float> samp_type;
/***********************************************************************
* Constants
**********************************************************************/
static const double tau = 6.28318531;
static const size_t wave_table_len = 8192;
static const size_t num_search_steps = 5;
static const size_t num_search_iters = 7;
static const double default_freq_step = 7.3e6;
static const size_t default_num_samps = 10000;
/***********************************************************************
* Set standard defaults for devices
**********************************************************************/
static inline void set_optimum_defaults(uhd::usrp::multi_usrp::sptr usrp){
uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
const uhd::fs_path mb_path = "/mboards/0";
const std::string mb_name = tree->access<std::string>(mb_path / "name").get();
if (mb_name.find("USRP2") != std::string::npos or mb_name.find("N200") != std::string::npos or mb_name.find("N210") != std::string::npos){
usrp->set_tx_rate(12.5e6);
usrp->set_rx_rate(12.5e6);
}
else if (mb_name.find("B100") != std::string::npos){
usrp->set_tx_rate(4e6);
usrp->set_rx_rate(4e6);
}
else if (mb_name.find("E100") != std::string::npos or mb_name.find("E110") != std::string::npos){
usrp->set_tx_rate(4e6);
usrp->set_rx_rate(8e6);
}
else{
throw std::runtime_error("self-calibration is not supported for this hardware");
}
const uhd::fs_path tx_fe_path = "/mboards/0/dboards/A/tx_frontends/0";
const std::string tx_name = tree->access<std::string>(tx_fe_path / "name").get();
if (tx_name.find("WBX") != std::string::npos){
usrp->set_tx_gain(0);
}
else if (tx_name.find("SBX") != std::string::npos){
usrp->set_tx_gain(0);
}
else if (tx_name.find("RFX") != std::string::npos){
usrp->set_tx_gain(0);
}
else{
throw std::runtime_error("self-calibration is not supported for this hardware");
}
const uhd::fs_path rx_fe_path = "/mboards/0/dboards/A/tx_frontends/0";
const std::string rx_name = tree->access<std::string>(rx_fe_path / "name").get();
if (rx_name.find("WBX") != std::string::npos){
usrp->set_rx_gain(25);
}
else if (rx_name.find("SBX") != std::string::npos){
usrp->set_rx_gain(25);
}
else if (rx_name.find("RFX") != std::string::npos){
usrp->set_rx_gain(25);
}
else{
throw std::runtime_error("self-calibration is not supported for this hardware");
}
}
/***********************************************************************
* Check for empty serial
**********************************************************************/
void check_for_empty_serial(
uhd::usrp::multi_usrp::sptr usrp,
std::string XX,
std::string xx,
std::string uhd_args
){
//extract eeprom
uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
const uhd::fs_path db_path = "/mboards/0/dboards/A/" + xx + "_eeprom";
const uhd::usrp::dboard_eeprom_t db_eeprom = tree->access<uhd::usrp::dboard_eeprom_t>(db_path).get();
std::string args_str = "";
if(uhd_args != "") args_str = str(boost::format(" --args=%s") % uhd_args);
std::string error_string = str(boost::format("This %s dboard has no serial!\n\nPlease see the Calibration documentation for details on how to fix this.") % XX);
if (db_eeprom.serial.empty()) throw std::runtime_error(error_string);
}
/***********************************************************************
* Sinusoid wave table
**********************************************************************/
class wave_table{
public:
wave_table(const double ampl){
_table.resize(wave_table_len);
for (size_t i = 0; i < wave_table_len; i++){
_table[i] = samp_type(std::polar(ampl, (tau*i)/wave_table_len));
}
}
inline samp_type operator()(const size_t index) const{
return _table[index % wave_table_len];
}
private:
std::vector<samp_type > _table;
};
/***********************************************************************
* Compute power of a tone
**********************************************************************/
static inline double compute_tone_dbrms(
const std::vector<samp_type > &samples,
const double freq //freq is fractional
){
//shift the samples so the tone at freq is down at DC
//and average the samples to measure the DC component
samp_type average = 0;
for (size_t i = 0; i < samples.size(); i++){
average += samp_type(std::polar(1.0, -freq*tau*i)) * samples[i];
}
return 20*std::log10(std::abs(average/float(samples.size())));
}
/***********************************************************************
* Write a dat file
**********************************************************************/
static inline void write_samples_to_file(
const std::vector<samp_type > &samples, const std::string &file
){
std::ofstream outfile(file.c_str(), std::ofstream::binary);
outfile.write((const char*)&samples.front(), samples.size()*sizeof(samp_type));
outfile.close();
}
/***********************************************************************
* Store data to file
**********************************************************************/
static void store_results(
uhd::usrp::multi_usrp::sptr usrp,
const std::vector<result_t> &results,
const std::string &XX,
const std::string &xx,
const std::string &what
){
//extract eeprom serial
uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
const uhd::fs_path db_path = "/mboards/0/dboards/A/" + xx + "_eeprom";
const uhd::usrp::dboard_eeprom_t db_eeprom = tree->access<uhd::usrp::dboard_eeprom_t>(db_path).get();
//make the calibration file path
fs::path cal_data_path = fs::path(uhd::get_app_path()) / ".uhd";
fs::create_directory(cal_data_path);
cal_data_path = cal_data_path / "cal";
fs::create_directory(cal_data_path);
cal_data_path = cal_data_path / str(boost::format("%s_%s_cal_v0.2_%s.csv") % xx % what % db_eeprom.serial);
if (fs::exists(cal_data_path)){
fs::rename(cal_data_path, cal_data_path.string() + str(boost::format(".%d") % time(NULL)));
}
//fill the calibration file
std::ofstream cal_data(cal_data_path.string().c_str());
cal_data << boost::format("name, %s Frontend Calibration\n") % XX;
cal_data << boost::format("serial, %s\n") % db_eeprom.serial;
cal_data << boost::format("timestamp, %d\n") % time(NULL);
cal_data << boost::format("version, 0, 1\n");
cal_data << boost::format("DATA STARTS HERE\n");
cal_data << "lo_frequency, correction_real, correction_imag, measured, delta\n";
for (size_t i = 0; i < results.size(); i++){
cal_data
<< results[i].freq << ", "
<< results[i].real_corr << ", "
<< results[i].imag_corr << ", "
<< results[i].best << ", "
<< results[i].delta << "\n"
;
}
std::cout << "wrote cal data to " << cal_data_path << std::endl;
}
/***********************************************************************
* Data capture routine
**********************************************************************/
static void capture_samples(
uhd::usrp::multi_usrp::sptr usrp,
uhd::rx_streamer::sptr rx_stream,
std::vector<samp_type > &buff,
const size_t nsamps_requested
){
buff.resize(nsamps_requested);
uhd::rx_metadata_t md;
uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
stream_cmd.num_samps = buff.size();
stream_cmd.stream_now = true;
usrp->issue_stream_cmd(stream_cmd);
const size_t num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md);
//validate the received data
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE){
throw std::runtime_error(str(boost::format(
"Unexpected error code 0x%x"
) % md.error_code));
}
//we can live if all the data didnt come in
if (num_rx_samps > buff.size()/2){
buff.resize(num_rx_samps);
return;
}
if (num_rx_samps != buff.size()){
throw std::runtime_error("did not get all the samples requested");
}
}
|