1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
|
//
// Copyright 2010-2011,2015-2016 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/device.hpp>
#include <uhd/property_tree.hpp>
#include <uhd/rfnoc/block_id.hpp>
#include <uhd/rfnoc_graph.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/usrp/dboard_eeprom.hpp>
#include <uhd/usrp/dboard_id.hpp>
#include <uhd/usrp/mboard_eeprom.hpp>
#include <uhd/utils/cast.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/version.hpp>
#include <boost/algorithm/string.hpp> //for split
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/program_options.hpp>
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <vector>
namespace po = boost::program_options;
using namespace uhd;
static std::string make_border(const std::string& text)
{
std::stringstream ss;
ss << boost::format(" _____________________________________________________")
<< std::endl;
ss << boost::format(" /") << std::endl;
std::vector<std::string> lines;
boost::split(lines, text, boost::is_any_of("\n"));
while (lines.back().empty())
lines.pop_back(); // strip trailing newlines
if (lines.size())
lines[0] = " " + lines[0]; // indent the title line
for (const std::string& line : lines) {
ss << boost::format("| %s") % line << std::endl;
}
// ss << boost::format(" \\_____________________________________________________") <<
// std::endl;
return ss.str();
}
static std::string get_dsp_pp_string(
const std::string& type, property_tree::sptr tree, const fs_path& path)
{
std::stringstream ss;
ss << boost::format("%s DSP: %s") % type % path.leaf() << std::endl;
ss << std::endl;
meta_range_t freq_range = tree->access<meta_range_t>(path / "freq/range").get();
ss << boost::format("Freq range: %.3f to %.3f MHz") % (freq_range.start() / 1e6)
% (freq_range.stop() / 1e6)
<< std::endl;
;
return ss.str();
}
static std::string prop_names_to_pp_string(const std::vector<std::string>& prop_names)
{
std::stringstream ss;
size_t count = 0;
for (const std::string& prop_name : prop_names) {
ss << ((count++) ? ", " : "") << prop_name;
}
return ss.str();
}
static std::string get_frontend_pp_string(
const std::string& type, property_tree::sptr tree, const fs_path& path)
{
std::stringstream ss;
ss << boost::format("%s Frontend: %s") % type % path.leaf() << std::endl;
// ss << std::endl;
ss << boost::format("Name: %s") % (tree->access<std::string>(path / "name").get())
<< std::endl;
ss << boost::format("Antennas: %s")
% prop_names_to_pp_string(
tree->access<std::vector<std::string>>(path / "antenna/options")
.get())
<< std::endl;
if (tree->exists(path / "sensors")) {
ss << boost::format("Sensors: %s")
% prop_names_to_pp_string(tree->list(path / "sensors"))
<< std::endl;
}
meta_range_t freq_range = tree->access<meta_range_t>(path / "freq/range").get();
ss << boost::format("Freq range: %.3f to %.3f MHz") % (freq_range.start() / 1e6)
% (freq_range.stop() / 1e6)
<< std::endl;
std::vector<std::string> gain_names = tree->list(path / "gains");
if (gain_names.size() == 0)
ss << "Gain Elements: None" << std::endl;
for (const std::string& name : gain_names) {
meta_range_t gain_range =
tree->access<meta_range_t>(path / "gains" / name / "range").get();
ss << boost::format("Gain range %s: %.1f to %.1f step %.1f dB") % name
% gain_range.start() % gain_range.stop() % gain_range.step()
<< std::endl;
}
if (tree->exists(path / "bandwidth" / "range")) {
meta_range_t bw_range =
tree->access<meta_range_t>(path / "bandwidth" / "range").get();
ss << boost::format("Bandwidth range: %.1f to %.1f step %.1f Hz")
% bw_range.start() % bw_range.stop() % bw_range.step()
<< std::endl;
}
ss << boost::format("Connection Type: %s")
% (tree->access<std::string>(path / "connection").get())
<< std::endl;
ss << boost::format("Uses LO offset: %s")
% ((tree->exists(path / "use_lo_offset")
and tree->access<bool>(path / "use_lo_offset").get())
? "Yes"
: "No")
<< std::endl;
return ss.str();
}
static std::string get_codec_pp_string(
const std::string& type, property_tree::sptr tree, const fs_path& path)
{
std::stringstream ss;
if (tree->exists(path / "name")) {
ss << boost::format("%s Codec: %s") % type % path.leaf() << std::endl;
ss << boost::format("Name: %s") % (tree->access<std::string>(path / "name").get())
<< std::endl;
std::vector<std::string> gain_names = tree->list(path / "gains");
if (gain_names.size() == 0)
ss << "Gain Elements: None" << std::endl;
for (const std::string& name : gain_names) {
meta_range_t gain_range =
tree->access<meta_range_t>(path / "gains" / name / "range").get();
ss << boost::format("Gain range %s: %.1f to %.1f step %.1f dB") % name
% gain_range.start() % gain_range.stop() % gain_range.step()
<< std::endl;
}
}
return ss.str();
}
static std::string get_dboard_pp_string(
const std::string& type, property_tree::sptr tree, const fs_path& path)
{
std::stringstream ss;
ss << boost::format("%s Dboard: %s") % type % path.leaf() << std::endl;
// ss << std::endl;
const std::string prefix = (type == "RX") ? "rx" : "tx";
if (tree->exists(path / (prefix + "_eeprom"))) {
usrp::dboard_eeprom_t db_eeprom =
tree->access<usrp::dboard_eeprom_t>(path / (prefix + "_eeprom")).get();
if (db_eeprom.id != usrp::dboard_id_t::none())
ss << boost::format("ID: %s") % db_eeprom.id.to_pp_string() << std::endl;
if (not db_eeprom.serial.empty())
ss << boost::format("Serial: %s") % db_eeprom.serial << std::endl;
if (type == "TX" and tree->exists(path / "gdb_eeprom")) {
usrp::dboard_eeprom_t gdb_eeprom =
tree->access<usrp::dboard_eeprom_t>(path / "gdb_eeprom").get();
if (gdb_eeprom.id != usrp::dboard_id_t::none())
ss << boost::format("ID: %s") % gdb_eeprom.id.to_pp_string() << std::endl;
if (not gdb_eeprom.serial.empty())
ss << boost::format("Serial: %s") % gdb_eeprom.serial << std::endl;
}
}
if (tree->exists(path / (prefix + "_frontends"))) {
for (const std::string& name : tree->list(path / (prefix + "_frontends"))) {
ss << make_border(get_frontend_pp_string(
type, tree, path / (prefix + "_frontends") / name));
}
}
ss << make_border(get_codec_pp_string(type,
tree,
path.branch_path().branch_path() / (prefix + "_codecs") / path.leaf()));
return ss.str();
}
static std::string get_rfnoc_blocks_pp_string(rfnoc::rfnoc_graph::sptr graph)
{
std::stringstream ss;
ss << "RFNoC blocks on this device:" << std::endl << std::endl;
for (const std::string& name : graph->find_blocks("")) {
ss << "* " << name << std::endl;
}
return ss.str();
}
static std::string get_rfnoc_connections_pp_string(rfnoc::rfnoc_graph::sptr graph)
{
std::stringstream ss;
ss << "Static connections on this device:" << std::endl << std::endl;
for (const auto& edge : graph->enumerate_static_connections()) {
ss << "* " << edge.to_string() << std::endl;
}
return ss.str();
}
static std::string get_rfnoc_pp_string(rfnoc::rfnoc_graph::sptr graph)
{
std::stringstream ss;
ss << make_border(get_rfnoc_blocks_pp_string(graph));
ss << make_border(get_rfnoc_connections_pp_string(graph));
return ss.str();
}
static std::string get_mboard_pp_string(property_tree::sptr tree, const fs_path& path)
{
std::stringstream ss;
ss << boost::format("Mboard: %s") % (tree->access<std::string>(path / "name").get())
<< std::endl;
if (tree->exists(path / "eeprom")) {
usrp::mboard_eeprom_t mb_eeprom =
tree->access<usrp::mboard_eeprom_t>(path / "eeprom").get();
for (const std::string& key : mb_eeprom.keys()) {
if (not mb_eeprom[key].empty())
ss << boost::format("%s: %s") % key % mb_eeprom[key] << std::endl;
}
} else {
ss << "No mboard EEPROM found." << std::endl;
}
if (tree->exists(path / "fw_version")) {
ss << "FW Version: " << tree->access<std::string>(path / "fw_version").get()
<< std::endl;
}
if (tree->exists(path / "mpm_version")) {
ss << "MPM Version: " << tree->access<std::string>(path / "mpm_version").get()
<< std::endl;
}
if (tree->exists(path / "fpga_version")) {
ss << "FPGA Version: " << tree->access<std::string>(path / "fpga_version").get()
<< std::endl;
}
if (tree->exists(path / "fpga_version_hash")) {
ss << "FPGA git hash: "
<< tree->access<std::string>(path / "fpga_version_hash").get() << std::endl;
}
if (tree->exists(path / "xbar")) {
ss << "RFNoC capable: Yes" << std::endl;
}
ss << std::endl;
try {
if (tree->exists(path / "time_source" / "options")) {
const std::vector<std::string> time_sources =
tree->access<std::vector<std::string>>(path / "time_source" / "options")
.get();
ss << "Time sources: " << prop_names_to_pp_string(time_sources) << std::endl;
}
if (tree->exists(path / "clock_source" / "options")) {
const std::vector<std::string> clock_sources =
tree->access<std::vector<std::string>>(path / "clock_source" / "options")
.get();
ss << "Clock sources: " << prop_names_to_pp_string(clock_sources)
<< std::endl;
}
if (tree->exists(path / "sensors")) {
ss << "Sensors: " << prop_names_to_pp_string(tree->list(path / "sensors"))
<< std::endl;
}
if (tree->exists(path / "rx_dsps")) {
for (const std::string& name : tree->list(path / "rx_dsps")) {
ss << make_border(get_dsp_pp_string("RX", tree, path / "rx_dsps" / name));
}
}
if (tree->exists(path / "dboards")) {
for (const std::string& name : tree->list(path / "dboards")) {
ss << make_border(
get_dboard_pp_string("RX", tree, path / "dboards" / name));
}
if (tree->exists(path / "tx_dsps")) {
for (const std::string& name : tree->list(path / "tx_dsps")) {
ss << make_border(
get_dsp_pp_string("TX", tree, path / "tx_dsps" / name));
}
}
for (const std::string& name : tree->list(path / "dboards")) {
ss << make_border(
get_dboard_pp_string("TX", tree, path / "dboards" / name));
}
}
} catch (const uhd::lookup_error& ex) {
std::cout << "Exited device probe on " << ex.what() << std::endl;
}
return ss.str();
}
static std::string get_device_pp_string(property_tree::sptr tree)
{
std::stringstream ss;
ss << boost::format("Device: %s") % (tree->access<std::string>("/name").get())
<< std::endl;
// ss << std::endl;
for (const std::string& name : tree->list("/mboards")) {
ss << make_border(get_mboard_pp_string(tree, "/mboards/" + name));
}
return ss.str();
}
void print_tree(const uhd::fs_path& path, uhd::property_tree::sptr tree)
{
std::cout << path << std::endl;
for (const std::string& name : tree->list(path)) {
print_tree(path / name, tree);
}
}
namespace {
uint32_t str2uint32(const std::string& str)
{
if (str.find("0x") == 0) {
return cast::hexstr_cast<uint32_t>(str);
}
return boost::lexical_cast<uint32_t>(str);
}
void shell_print_help()
{
std::cout << "Commands:\n\n"
<< "poke32 $addr $data : Write $data to $addr\n"
<< "peek32 $addr : Read from $addr and print\n"
<< "help : Show this\n"
<< "quit : Terminate shell\n"
<< std::endl;
}
void run_interactive_regs_shell(rfnoc::noc_block_base::sptr blk_ctrl)
{
std::cout << "<<< Interactive Block Peeker/Poker >>>" << std::endl;
std::cout << "Type 'help' to get a list of commands." << std::endl;
while (true) {
std::string input;
std::cout << ">>> " << std::flush;
std::getline(std::cin, input);
std::stringstream ss(input);
std::string command;
ss >> command;
if (command == "poke32") {
std::string addr_s, data_s;
uint32_t addr, data;
try {
ss >> addr_s >> data_s;
addr = str2uint32(addr_s);
data = str2uint32(data_s);
} catch (std::exception&) {
std::cout << "Usage: poke32 $addr $data" << std::endl;
continue;
}
blk_ctrl->regs().poke32(addr, data);
}
if (command == "peek32") {
std::string addr_s;
uint32_t addr;
try {
ss >> addr_s;
addr = str2uint32(addr_s);
} catch (std::exception&) {
std::cout << "Usage: peek32 $addr" << std::endl;
continue;
}
std::cout << "==> " << std::hex << blk_ctrl->regs().peek32(addr) << std::dec
<< std::endl;
}
if (input == "help") {
shell_print_help();
}
if (input == "quit") {
return;
}
}
}
} // namespace
int UHD_SAFE_MAIN(int argc, char* argv[])
{
po::options_description desc("Allowed options");
// clang-format off
desc.add_options()
("help", "help message")
("version", "print the version string and exit")
("args", po::value<std::string>()->default_value(""), "device address args")
("tree", "specify to print a complete property tree")
("string", po::value<std::string>(), "query a string value from the property tree")
("double", po::value<std::string>(), "query a double precision floating point value from the property tree")
("int", po::value<std::string>(), "query a integer value from the property tree")
("sensor", po::value<std::string>(), "query a sensor value from the property tree")
("range", po::value<std::string>(), "query a range (gain, bandwidth, frequency, ...) from the property tree")
("vector", "when querying a string, interpret that as std::vector")
("init-only", "skip all queries, only initialize device")
("interactive-reg-iface", po::value<std::string>(), "RFNoC devices only: Spawn a shell to interactively peek and poke registers on RFNoC blocks")
;
// clang-format on
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
// print the help message
if (vm.count("help")) {
std::cout << boost::format("UHD USRP Probe %s") % desc << std::endl;
return EXIT_FAILURE;
}
if (vm.count("version")) {
std::cout << uhd::get_version_string() << std::endl;
return EXIT_SUCCESS;
}
device::sptr dev = device::make(vm["args"].as<std::string>());
property_tree::sptr tree = dev->get_tree();
rfnoc::rfnoc_graph::sptr graph;
try {
graph = rfnoc::rfnoc_graph::make(vm["args"].as<std::string>());
} catch (uhd::key_error&) {
// pass
}
if (vm.count("string")) {
if (vm.count("vector")) {
std::vector<std::string> str_vector =
tree->access<std::vector<std::string>>(vm["string"].as<std::string>())
.get();
std::cout << "(";
for (const std::string& str : str_vector) {
std::cout << str << ",";
}
std::cout << ")" << std::endl;
} else {
std::cout << tree->access<std::string>(vm["string"].as<std::string>()).get()
<< std::endl;
}
return EXIT_SUCCESS;
}
if (vm.count("double")) {
std::cout << tree->access<double>(vm["double"].as<std::string>()).get()
<< std::endl;
return EXIT_SUCCESS;
}
if (vm.count("int")) {
std::cout << tree->access<int>(vm["int"].as<std::string>()).get() << std::endl;
return EXIT_SUCCESS;
}
if (vm.count("sensor")) {
std::cout << tree->access<uhd::sensor_value_t>(vm["sensor"].as<std::string>())
.get()
.value
<< std::endl;
return EXIT_SUCCESS;
}
if (vm.count("range")) {
meta_range_t range =
tree->access<meta_range_t>(vm["range"].as<std::string>()).get();
std::cout << boost::format("%.1f:%.1f:%.1f") % range.start() % range.step()
% range.stop()
<< std::endl;
return EXIT_SUCCESS;
}
if (vm.count("interactive-reg-iface")) {
if (!graph) {
std::cout << "ERROR: --interactive-reg-iface requires an RFNoC device!"
<< std::endl;
return EXIT_FAILURE;
}
const rfnoc::block_id_t block_id(vm["interactive-reg-iface"].as<std::string>());
auto block_ctrl = graph->get_block(block_id);
run_interactive_regs_shell(block_ctrl);
return EXIT_SUCCESS;
}
if (vm.count("tree") != 0) {
print_tree("/", tree);
} else if (not vm.count("init-only")) {
std::string device_pp_string = get_device_pp_string(tree);
if (graph) {
device_pp_string += get_rfnoc_pp_string(graph);
}
std::cout << make_border(device_pp_string) << std::endl;
}
return EXIT_SUCCESS;
}
|