1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
//
// Copyright 2010,2012,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "usrp_cal_utils.hpp"
#include <uhd/utils/thread.hpp>
#include <uhd/utils/safe_main.hpp>
#include <boost/program_options.hpp>
#include <boost/thread/thread.hpp>
#include <boost/math/special_functions/round.hpp>
#include <iostream>
#include <complex>
#include <ctime>
#include <cstdlib>
namespace po = boost::program_options;
/***********************************************************************
* Transmit thread
**********************************************************************/
static void tx_thread(uhd::usrp::multi_usrp::sptr usrp, const double tx_wave_freq, const double tx_wave_ampl)
{
uhd::set_thread_priority_safe();
// set max TX gain
usrp->set_tx_gain(usrp->get_tx_gain_range().stop());
//create a transmit streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);
//setup variables and allocate buffer
uhd::tx_metadata_t md;
md.has_time_spec = false;
std::vector<samp_type> buff(tx_stream->get_max_num_samps()*10);
//values for the wave table lookup
size_t index = 0;
const double tx_rate = usrp->get_tx_rate();
const size_t step = boost::math::iround(wave_table_len * tx_wave_freq / tx_rate);
wave_table table(tx_wave_ampl);
//fill buff and send until interrupted
while (not boost::this_thread::interruption_requested())
{
for (size_t i = 0; i < buff.size(); i++)
buff[i] = table(index += step);
tx_stream->send(&buff.front(), buff.size(), md);
}
//send a mini EOB packet
md.end_of_burst = true;
tx_stream->send("", 0, md);
}
/***********************************************************************
* Tune RX and TX routine
**********************************************************************/
static double tune_rx_and_tx(uhd::usrp::multi_usrp::sptr usrp, const double tx_lo_freq, const double rx_offset)
{
//tune the transmitter with no cordic
uhd::tune_request_t tx_tune_req(tx_lo_freq);
tx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
tx_tune_req.dsp_freq = 0;
usrp->set_tx_freq(tx_tune_req);
//tune the receiver
double rx_freq = usrp->get_tx_freq() - rx_offset;
double min_fe_rx_freq = usrp->get_fe_rx_freq_range().start();
double max_fe_rx_freq = usrp->get_fe_rx_freq_range().stop();
uhd::tune_request_t rx_tune_req(rx_freq);
rx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
rx_tune_req.dsp_freq = 0;
if (rx_freq < min_fe_rx_freq)
rx_tune_req.dsp_freq = rx_freq - min_fe_rx_freq;
else if (rx_freq > max_fe_rx_freq)
rx_tune_req.dsp_freq = rx_freq - max_fe_rx_freq;
usrp->set_rx_freq(rx_tune_req);
//wait for the LOs to become locked
boost::this_thread::sleep(boost::posix_time::milliseconds(50));
boost::system_time start = boost::get_system_time();
while (not usrp->get_tx_sensor("lo_locked").to_bool() or not usrp->get_rx_sensor("lo_locked").to_bool())
{
if (boost::get_system_time() > start + boost::posix_time::milliseconds(100))
throw std::runtime_error("timed out waiting for TX and/or RX LO to lock");
}
return usrp->get_tx_freq();
}
/***********************************************************************
* Main
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[])
{
std::string args, subdev, serial;
double tx_wave_freq, tx_wave_ampl, rx_offset;
double freq_start, freq_stop, freq_step;
size_t nsamps;
double precision;
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("verbose", "enable some verbose")
("args", po::value<std::string>(&args)->default_value(""), "device address args [default = \"\"]")
("subdev", po::value<std::string>(&subdev), "Subdevice specification (default: first subdevice, often 'A')")
("tx_wave_freq", po::value<double>(&tx_wave_freq)->default_value(507.123e3), "Transmit wave frequency in Hz")
("tx_wave_ampl", po::value<double>(&tx_wave_ampl)->default_value(0.7), "Transmit wave amplitude")
("rx_offset", po::value<double>(&rx_offset)->default_value(.9344e6), "RX LO offset from the TX LO in Hz")
("freq_start", po::value<double>(&freq_start), "Frequency start in Hz (do not specify for default)")
("freq_stop", po::value<double>(&freq_stop), "Frequency stop in Hz (do not specify for default)")
("freq_step", po::value<double>(&freq_step)->default_value(default_freq_step), "Step size for LO sweep in Hz")
("nsamps", po::value<size_t>(&nsamps), "Samples per data capture")
("precision", po::value<double>(&precision)->default_value(default_precision), "Correction precision (default=0.0001)")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help"))
{
std::cout << boost::format("USRP Generate TX IQ Balance Calibration Table %s") % desc << std::endl;
std::cout <<
"This application measures leakage between RX and TX on a transceiver daughterboard to self-calibrate.\n"
"Note: Not all daughterboards support this feature. Refer to the UHD manual for details.\n"
<< std::endl;
return EXIT_FAILURE;
}
// Create a USRP device
uhd::usrp::multi_usrp::sptr usrp = setup_usrp_for_cal(args, subdev, serial);
if (not vm.count("nsamps"))
nsamps = size_t(usrp->get_rx_rate() / default_fft_bin_size);
//create a receive streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
//create a transmitter thread
boost::thread_group threads;
threads.create_thread(boost::bind(&tx_thread, usrp, tx_wave_freq, tx_wave_ampl));
//re-usable buffer for samples
std::vector<samp_type> buff;
//store the results here
std::vector<result_t> results;
if (not vm.count("freq_start")) freq_start = usrp->get_fe_tx_freq_range().start();
if (not vm.count("freq_stop")) freq_stop = usrp->get_fe_tx_freq_range().stop();
//check start and stop frequencies
if (freq_start < usrp->get_fe_tx_freq_range().start())
{
std::cerr << "freq_start must be " << usrp->get_fe_tx_freq_range().start() << " or greater for this daughter board" << std::endl;
return EXIT_FAILURE;
}
if (freq_stop > usrp->get_fe_tx_freq_range().stop())
{
std::cerr << "freq_stop must be " << usrp->get_fe_tx_freq_range().stop() << " or less for this daughter board" << std::endl;
return EXIT_FAILURE;
}
//check rx_offset
double min_rx_offset = usrp->get_rx_freq_range().start() - usrp->get_fe_tx_freq_range().start();
double max_rx_offset = usrp->get_rx_freq_range().stop() - usrp->get_fe_tx_freq_range().stop();
if (rx_offset < min_rx_offset or rx_offset > max_rx_offset)
{
std::cerr << "rx_offset must be between " << min_rx_offset << " and "
<< max_rx_offset << " for this daughter board" << std::endl;
return EXIT_FAILURE;
}
std::cout << boost::format("Calibration frequency range: %d MHz -> %d MHz") % (freq_start/1e6) % (freq_stop/1e6) << std::endl;
for (double tx_lo_i = freq_start; tx_lo_i <= freq_stop; tx_lo_i += freq_step)
{
const double tx_lo = tune_rx_and_tx(usrp, tx_lo_i, rx_offset);
//frequency constants for this tune event
const double actual_rx_rate = usrp->get_rx_rate();
const double actual_tx_freq = usrp->get_tx_freq();
const double actual_rx_freq = usrp->get_rx_freq();
const double bb_tone_freq = actual_tx_freq + tx_wave_freq - actual_rx_freq;
const double bb_imag_freq = actual_tx_freq - tx_wave_freq - actual_rx_freq;
//reset TX IQ balance
usrp->set_tx_iq_balance(0.0);
//set optimal RX gain setting for this frequency
set_optimal_rx_gain(usrp, rx_stream, tx_wave_freq);
//capture initial uncorrected value
capture_samples(usrp, rx_stream, buff, nsamps);
const double initial_suppression = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate) - compute_tone_dbrms(buff, bb_imag_freq/actual_rx_rate);
//bounds and results from searching
double phase_corr_start = -1.0;
double phase_corr_stop = 1.0;
double phase_corr_step = (phase_corr_stop - phase_corr_start)/(num_search_steps+1);
double ampl_corr_start = -1.0;
double ampl_corr_stop = 1.0;
double ampl_corr_step = (ampl_corr_stop - ampl_corr_start)/(num_search_steps+1);
double best_suppression = 0;
double best_phase_corr = 0;
double best_ampl_corr = 0;
while (phase_corr_step >= precision or ampl_corr_step >= precision)
{
for (double phase_corr = phase_corr_start + phase_corr_step; phase_corr <= phase_corr_stop - phase_corr_step; phase_corr += phase_corr_step)
{
for (double ampl_corr = ampl_corr_start + ampl_corr_step; ampl_corr <= ampl_corr_stop - ampl_corr_step; ampl_corr += ampl_corr_step)
{
const std::complex<double> correction(ampl_corr, phase_corr);
usrp->set_tx_iq_balance(correction);
//receive some samples
capture_samples(usrp, rx_stream, buff, nsamps);
const double tone_dbrms = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate);
const double imag_dbrms = compute_tone_dbrms(buff, bb_imag_freq/actual_rx_rate);
const double suppression = tone_dbrms - imag_dbrms;
if (suppression > best_suppression)
{
best_suppression = suppression;
best_phase_corr = phase_corr;
best_ampl_corr = ampl_corr;
}
}
}
phase_corr_start = best_phase_corr - phase_corr_step;
phase_corr_stop = best_phase_corr + phase_corr_step;
phase_corr_step = (phase_corr_stop - phase_corr_start)/(num_search_steps+1);
ampl_corr_start = best_ampl_corr - ampl_corr_step;
ampl_corr_stop = best_ampl_corr + ampl_corr_step;
ampl_corr_step = (ampl_corr_stop - ampl_corr_start)/(num_search_steps+1);
}
if (best_suppression > initial_suppression) //keep result
{
result_t result;
result.freq = tx_lo;
result.real_corr = best_ampl_corr;
result.imag_corr = best_phase_corr;
result.best = best_suppression;
result.delta = best_suppression - initial_suppression;
results.push_back(result);
if (vm.count("verbose"))
std::cout << boost::format("TX IQ: %f MHz: best suppression %f dB, corrected %f dB") % (tx_lo/1e6) % result.best % result.delta << std::endl;
else
std::cout << "." << std::flush;
}
}
std::cout << std::endl;
//stop the transmitter
threads.interrupt_all();
boost::this_thread::sleep(boost::posix_time::milliseconds(500)); //wait for threads to finish
threads.join_all();
store_results(results, "TX", "tx", "iq", serial);
return EXIT_SUCCESS;
}
|