aboutsummaryrefslogtreecommitdiffstats
path: root/host/tests/streaming_performance/batch_run_benchmark_rate.py
blob: ad47cfd5cdd753a51761e65285ce981e9f230a22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/usr/bin/env python3
"""
Copyright 2019 Ettus Research, A National Instrument Brand

SPDX-License-Identifier: GPL-3.0-or-later

Runs the benchmark rate C++ example for a specified number of iterations and
aggregates results.

Example usage:
batch_run_benchmark_rate.py --path <benchmark_rate_dir>/benchmark_rate --iterations 1 --args "addr=192.168.30.2" --rx_rate 1e6
"""
import argparse
import collections
import parse_benchmark_rate
import run_benchmark_rate

Results = collections.namedtuple(
    'Results',
    """
    avg_vals
    min_vals
    max_vals
    non_zero_vals
    """
)

def calculate_stats(results):
    """
    Calculates performance metrics from list of parsed benchmark rate results.
    """
    result_avg = parse_benchmark_rate.average(results)
    result_min = parse_benchmark_rate.min_vals(results)
    result_max = parse_benchmark_rate.max_vals(results)
    result_nz  = parse_benchmark_rate.non_zero_vals(results)
    return Results(
        avg_vals      = result_avg,
        min_vals      = result_min,
        max_vals      = result_max,
        non_zero_vals = result_nz)

def run(path, iterations, benchmark_rate_params, stop_on_error=True):
    """
    Runs benchmark rate multiple times and returns a list of parsed results.
    """
    print("Running benchmark rate {} times with the following arguments: ".format(iterations))
    for key, val in benchmark_rate_params.items():
        print("{:14} {}".format(key, val))

    parsed_results = []
    iteration = 0
    while iteration < iterations:
        proc = run_benchmark_rate.run(path, benchmark_rate_params)
        result = parse_benchmark_rate.parse(proc.stdout.decode('ASCII'))
        if result != None:
            parsed_results.append(result)
            iteration += 1
        else:
            if stop_on_error:
                msg = "Could not parse results of benchmark_rate\n"
                msg += "Benchmark rate arguments:\n"
                msg += str(proc.args) + "\n"
                msg += "Stderr capture:\n"
                msg += proc.stderr.decode('ASCII')
                msg += "Stdout capture:\n"
                msg += proc.stdout.decode('ASCII')
                raise RuntimeError(msg)
            else:
                print("Failed to parse benchmark rate results")
                print(proc.stderr.decode('ASCII'))

    return parsed_results

def get_summary_string(summary, params=None):
    """
    Returns summary info in a string resembling benchmark_rate output.
    """
    statistics_msg = """
Benchmark rate summary:
    Num received samples:     avg {}, min {}, max {}, non-zero {}
    Num dropped samples:      avg {}, min {}, max {}, non-zero {}
    Num overruns detected:    avg {}, min {}, max {}, non-zero {}
    Num transmitted samples:  avg {}, min {}, max {}, non-zero {}
    Num sequence errors (Tx): avg {}, min {}, max {}, non-zero {}
    Num sequence errors (Rx): avg {}, min {}, max {}, non-zero {}
    Num underruns detected:   avg {}, min {}, max {}, non-zero {}
    Num late commands:        avg {}, min {}, max {}, non-zero {}
    Num timeouts (Tx):        avg {}, min {}, max {}, non-zero {}
    Num timeouts (Rx):        avg {}, min {}, max {}, non-zero {}
""".format(
        summary.avg_vals.received_samps,
        summary.min_vals.received_samps,
        summary.max_vals.received_samps,
        summary.non_zero_vals.received_samps,
        summary.avg_vals.dropped_samps,
        summary.min_vals.dropped_samps,
        summary.max_vals.dropped_samps,
        summary.non_zero_vals.dropped_samps,
        summary.avg_vals.overruns,
        summary.min_vals.overruns,
        summary.max_vals.overruns,
        summary.non_zero_vals.overruns,
        summary.avg_vals.transmitted_samps,
        summary.min_vals.transmitted_samps,
        summary.max_vals.transmitted_samps,
        summary.non_zero_vals.transmitted_samps,
        summary.avg_vals.tx_seq_errs,
        summary.min_vals.tx_seq_errs,
        summary.max_vals.tx_seq_errs,
        summary.non_zero_vals.tx_seq_errs,
        summary.avg_vals.rx_seq_errs,
        summary.min_vals.rx_seq_errs,
        summary.max_vals.rx_seq_errs,
        summary.non_zero_vals.rx_seq_errs,
        summary.avg_vals.underruns,
        summary.min_vals.underruns,
        summary.max_vals.underruns,
        summary.non_zero_vals.underruns,
        summary.avg_vals.late_cmds,
        summary.min_vals.late_cmds,
        summary.max_vals.late_cmds,
        summary.non_zero_vals.late_cmds,
        summary.avg_vals.tx_timeouts,
        summary.min_vals.tx_timeouts,
        summary.max_vals.tx_timeouts,
        summary.non_zero_vals.tx_timeouts,
        summary.avg_vals.rx_timeouts,
        summary.min_vals.rx_timeouts,
        summary.max_vals.rx_timeouts,
        summary.non_zero_vals.rx_timeouts)

    if params is not None:
        duration = 10
        if "duration" in params:
            duration = int(params["duration"])

        num_rx_channels = summary.min_vals.num_rx_channels
        rx_rate =  summary.min_vals.rx_rate

        if num_rx_channels != 0:
            avg_samps = summary.avg_vals.received_samps
            expected_samps = num_rx_channels * duration * rx_rate
            percent = (avg_samps) / expected_samps * 100
            statistics_msg += "    Expected samps (Rx):      {}\n".format(expected_samps)
            statistics_msg += "    Actual samps % (Rx):      {}\n".format(round(percent, 1))

        num_tx_channels = summary.min_vals.num_tx_channels
        tx_rate =  summary.min_vals.tx_rate

        if num_tx_channels != 0:
            avg_samps = summary.avg_vals.transmitted_samps
            expected_samps = num_tx_channels * duration * tx_rate
            percent = (avg_samps) / expected_samps * 100
            statistics_msg += "    Expected samps (Tx):      {}\n".format(expected_samps)
            statistics_msg += "    Actual samps % (Tx):      {}\n".format(round(percent, 1))

    return statistics_msg

def parse_args():
    """
    Parse the command line arguments for batch run benchmark rate.
    """
    benchmark_rate_params, rest = run_benchmark_rate.parse_known_args()
    parser = argparse.ArgumentParser()
    parser.add_argument("--path", type=str, required=True, help="path to benchmark rate example")
    parser.add_argument("--iterations", type=int, default=100, help="number of iterations to run")
    params = parser.parse_args(rest)
    return params.path, params.iterations, benchmark_rate_params

if __name__ == "__main__":
    path, iterations, params = parse_args();
    results = run(path, iterations, params)
    summary = calculate_stats(results)
    print(get_summary_string(summary, params))