1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
//
// Copyright 2022 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#pragma once
#include "../../lib/usrp/x400/x400_radio_control.hpp"
#include "x4xx_zbx_mpm_mock.hpp"
#include <uhd/rfnoc/mock_block.hpp>
#include <uhd/utils/log.hpp>
#include <uhdlib/rfnoc/node_accessor.hpp>
#include <iostream>
using namespace uhd;
using namespace uhd::rfnoc;
using namespace std::chrono_literals;
using namespace uhd::usrp::zbx;
using namespace uhd::experts;
// Redeclare this here, since it's only defined outside of UHD_API
noc_block_base::make_args_t::~make_args_t() = default;
namespace {
/* This class extends mock_reg_iface_t by adding a constructor that initializes
* some of the read memory to contain the memory size for the radio block.
*/
class x4xx_radio_mock_reg_iface_t : public mock_reg_iface_t
{
// Start address of CPLD register space
static constexpr uint32_t cpld_offset = radio_control_impl::regmap::PERIPH_BASE;
// Start address of RFDC control register space
static constexpr uint32_t rfdc_offset =
radio_control_impl::regmap::PERIPH_BASE + 0x8000;
static constexpr uint32_t spi_offset =
radio_control_impl::regmap::PERIPH_BASE
+ 0xC000 /*DIO Window*/ + 0x2000 /*DIO Regmap*/;
static constexpr uint32_t gpio_offset =
radio_control_impl::regmap::PERIPH_BASE
+ 0xC000 /*DIO Window*/ + 0x1000 /*GPIO Regmap*/;
public:
x4xx_radio_mock_reg_iface_t(size_t num_channels)
{
for (size_t chan = 0; chan < num_channels; chan++) {
const uint32_t reg_compat =
radio_control_impl::regmap::REG_COMPAT_NUM
+ chan * radio_control_impl::regmap::REG_CHAN_OFFSET;
read_memory[reg_compat] = (radio_control_impl::MINOR_COMPAT
| (radio_control_impl::MAJOR_COMPAT << 16));
}
read_memory[radio_control_impl::regmap::REG_RADIO_WIDTH] =
(32 /* bits per sample */ << 16) | 1 /* sample per clock */;
// Ensure that the SPI Status is always SPI_READY
read_memory[spi_offset + 0x18] |= 1 << 24;
// Setup the GPIO addresses
read_memory[gpio_offset + 0x4] = 0;
}
void _poke_cb(uint32_t addr, uint32_t data, uhd::time_spec_t, bool) override
{
// Are we on the peripheral?
if (addr >= radio_control_impl::regmap::PERIPH_BASE) {
// handle all the periphs stuff that is not CPLD here
} else {
return;
}
// Are we on the CPLD?
if (addr >= cpld_offset && addr < rfdc_offset) {
_poke_cpld_cb(addr, data);
return;
}
// Are we poking the RFDC controls?
if (addr >= rfdc_offset) {
_poke_rfdc_cb(addr, data);
return;
}
}
void _poke_cpld_cb(const uint32_t addr, const uint32_t data)
{
switch (addr - cpld_offset) {
/// CURRENT_CONFIG_REG
case 0x1000:
// FIXME: We write to all regs during init
// BOOST_REQUIRE(false); // Not a write-register
break;
/// SW_CONFIG
case 0x1008: {
// This register is RW so update read_memory
read_memory[addr] = data;
// If we're in SW-defined mode, also update CURRENT_CONFIG_REG
uint32_t& rf_opt = read_memory[cpld_offset + 0x1004];
uint32_t& ccr = read_memory[cpld_offset + 0x1000];
// Check if RF0_OPTION is SW_DEFINED
if ((rf_opt & 0x00FF) == 0) {
ccr = (ccr & 0xFF00) | (data & 0x00FF);
}
// Check if RF1_OPTION is SW_DEFINED
if ((rf_opt & 0xFF00) == 0) {
ccr = (ccr & 0x00FF) | (data & 0xFF00);
}
} break;
/// LO SPI transactions
case 0x1020:
_poke_lo_spi(addr, data);
return;
/// LO SYNC
case 0x1024:
// We make these bits sticky, because they might get strobed in
// multiple calls. In order to see what was strobed within an
// API call, we keep bits as they are.
read_memory[addr] |= data;
return;
// TX0 Table Select
case 0x4000:
case 0x4004:
case 0x4008:
case 0x400C:
case 0x4010:
case 0x4014: {
read_memory[addr] = data;
const uint32_t src_table_offset = data * 4;
const uint32_t dst_table_offset = (addr - cpld_offset) - 0x4000;
// Now we fake the transaction that copies ?X?_TABLE_* to
// ?X?_DSA*
read_memory[cpld_offset + 0x3000 + dst_table_offset] =
read_memory[cpld_offset + 0x5000 + src_table_offset];
}
return;
// RX0 Table Select
case 0x4800:
case 0x4804:
case 0x4808:
case 0x480C:
case 0x4810:
case 0x4814: {
read_memory[addr] = data;
const uint32_t src_table_offset = data * 4;
const uint32_t dst_table_offset = (addr - cpld_offset) - 0x4800;
// Now we fake the transaction that copies ?X?_TABLE_* to
// ?X?_DSA*
read_memory[cpld_offset + 0x3800 + dst_table_offset] =
read_memory[cpld_offset + 0x5800 + src_table_offset];
}
return;
default: // All other CPLD registers are read-write
read_memory[addr] = data;
return;
}
}
void _poke_rfdc_cb(const uint32_t addr, const uint32_t data)
{
read_memory[addr] |= data;
}
void _poke_lo_spi(const uint32_t addr, const uint32_t data)
{
// UHD_LOG_INFO("TEST", "Detected LO SPI transaction!");
const uint16_t spi_data = data & 0xFFFF;
const uint8_t spi_addr = (data >> 16) & 0x7F;
const bool read = bool(data & (1 << 23));
const uint8_t lo_sel = (data >> 24) & 0x7;
const bool start_xact = bool(data & (1 << 28));
// UHD_LOG_INFO("TEST",
// "Transaction record: Read: "
// << (read ? "yes" : "no") << " Address: " << int(spi_addr) << std::hex
// << " Data: 0x" << spi_data << " LO sel: " << int(lo_sel) << std::dec
// << " Start Transaction: " << start_xact);
if (!start_xact) {
// UHD_LOG_INFO("TEST", "Register probably just initialized. Ignoring.");
return;
}
switch (spi_addr) {
case 0:
_muxout_to_lock = spi_data & (1 << 2);
break;
case 125:
BOOST_REQUIRE(read);
read_memory[addr] = 0x2288;
break;
default:
break;
}
if (read) {
read_memory[addr] = (read_memory[addr] & 0xFFFF) | (spi_addr << 16)
| (lo_sel << 24) | (1 << 31);
}
if (_muxout_to_lock) {
// UHD_LOG_INFO("TEST", "Muxout set to lock. Returning all ones.");
read_memory[addr] = 0xFFFF;
return;
}
return;
}
bool _muxout_to_lock = false;
}; // class x4xx_radio_mock_reg_iface_t
/*
* x400_radio_fixture is a class which is instantiated before each test
* case is run. It sets up the block container, mock register interface,
* and x400_radio_control object, all of which are accessible to the test
* case. The instance of the object is destroyed at the end of each test
* case.
*/
constexpr size_t DEFAULT_MTU = 8000;
//! Helper class to make sure we get the most logging. The logging level can be
// overridden using a special test-specific environment variable,
// `UHD_UNITTEST_LOG_LEVEL`.
struct uhd_log_enabler
{
uhd_log_enabler(uhd::log::severity_level level)
{
const char* env_p = std::getenv("UHD_UNITTEST_LOG_LEVEL");
if (env_p) {
auto parsed_level = uhd::log::parse_log_level_from_string(env_p);
if (parsed_level) {
level = *parsed_level;
} else {
std::cout << "Unable to parse UHD_UNITTEST_LOG_LEVEL " << env_p << std::endl;
}
}
std::cout << "Setting log level to " << level << "..." << std::endl;
uhd::log::set_log_level(level);
uhd::log::set_console_level(level);
std::this_thread::sleep_for(10ms);
}
};
struct x400_radio_fixture
{
x400_radio_fixture()
: ule(uhd::log::trace) // Note: When debugging this test, either set
// this to a lower level, or create a
// uhd_log_enabler in the test-under-test
, num_channels(uhd::usrp::zbx::ZBX_NUM_CHANS)
, num_input_ports(num_channels)
, num_output_ports(num_channels)
, reg_iface(std::make_shared<x4xx_radio_mock_reg_iface_t>(num_channels))
, rpcs(std::make_shared<uhd::test::x4xx_mock_rpc_server>(device_info))
, mbc(std::make_shared<mpmd_mb_controller>(rpcs, device_info))
, block_container(get_mock_block(RADIO_BLOCK,
num_channels,
num_channels,
device_info,
DEFAULT_MTU,
X400,
reg_iface,
mbc))
, test_radio(block_container.get_block<x400_radio_control_impl>())
{
node_accessor.init_props(test_radio.get());
}
~x400_radio_fixture() {}
// Must remain the first member so we make sure the log level is high
uhd_log_enabler ule;
const size_t num_channels;
const size_t num_input_ports;
const size_t num_output_ports;
uhd::device_addr_t device_info = uhd::device_addr_t("master_clock_rate=122.88e6");
std::shared_ptr<x4xx_radio_mock_reg_iface_t> reg_iface;
std::shared_ptr<uhd::test::x4xx_mock_rpc_server> rpcs;
mpmd_mb_controller::sptr mbc;
mock_block_container block_container;
std::shared_ptr<x400_radio_control_impl> test_radio;
node_accessor_t node_accessor{};
};
} // namespace
|