1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
//
// Copyright 2020 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "../rfnoc_graph_mock_nodes.hpp"
#include <uhd/rfnoc/actions.hpp>
#include <uhd/rfnoc/defaults.hpp>
#include <uhd/rfnoc/mock_block.hpp>
#include <uhd/rfnoc/window_block_control.hpp>
#include <uhdlib/rfnoc/graph.hpp>
#include <uhdlib/rfnoc/node_accessor.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <boost/test/unit_test.hpp>
#include <iostream>
using namespace uhd::rfnoc;
// Redeclare this here, since it's only defined outside of UHD_API
noc_block_base::make_args_t::~make_args_t() = default;
/*
* This class extends mock_reg_iface_t by adding poke and peek hooks that
* monitor writes and reads to the registers implemented within the window
* RFNoC block hardware and emulating the expected behavior of the hardware
* when those registers are read and written. For instance, writes to the
* coefficient registers store the coefficients in a vector and track the
* position of the last write to the REG_WINDOW_LOAD_COEFF_LAST_OFFSET
* register to allow the unit test to gauge the proper operation of the
* block controller.
*/
class window_mock_reg_iface_t : public mock_reg_iface_t
{
public:
window_mock_reg_iface_t(size_t num_chans, std::vector<size_t> max_num_coeffs)
: last_coeff_write_pos(num_chans, 0)
, coeffs(num_chans)
, _num_chans(num_chans)
, _max_num_coeffs(max_num_coeffs)
{
reset();
}
void _poke_cb(
uint32_t addr, uint32_t data, uhd::time_spec_t /*time*/, bool /*ack*/) override
{
size_t chan = addr / window_block_control::REG_WINDOW_BLOCK_SIZE;
size_t offset = addr % window_block_control::REG_WINDOW_BLOCK_SIZE;
if (chan >= _num_chans) {
throw uhd::assertion_error("Invalid channel index");
}
if (offset == window_block_control::REG_WINDOW_MAX_LEN_OFFSET) {
throw uhd::assertion_error("Invalid write to read-only register");
} else if (offset == window_block_control::REG_WINDOW_LOAD_COEFF_OFFSET) {
coeffs.at(chan).push_back(uhd::narrow_cast<int16_t>(data));
} else if (offset == window_block_control::REG_WINDOW_LOAD_COEFF_LAST_OFFSET) {
last_coeff_write_pos[chan] = coeffs.at(chan).size();
coeffs.at(chan).push_back(uhd::narrow_cast<int16_t>(data));
} else {
throw uhd::assertion_error("Invalid write to out of bounds offset");
}
}
void _peek_cb(uint32_t addr, uhd::time_spec_t /*time*/) override
{
size_t chan = addr / window_block_control::REG_WINDOW_BLOCK_SIZE;
size_t offset = addr % window_block_control::REG_WINDOW_BLOCK_SIZE;
if (chan >= _num_chans) {
throw uhd::assertion_error("Invalid channel index");
}
if (offset == window_block_control::REG_WINDOW_MAX_LEN_OFFSET) {
read_memory[addr] = uhd::narrow_cast<int32_t>(_max_num_coeffs.at(chan));
} else {
throw uhd::assertion_error("Invalid read from out of bounds address");
}
}
void reset()
{
for (size_t chan = 0; chan < _num_chans; chan++) {
last_coeff_write_pos[chan] = 0;
coeffs.at(chan).clear();
}
}
std::vector<size_t> last_coeff_write_pos;
std::vector<std::vector<int16_t>> coeffs;
private:
const size_t _num_chans;
const std::vector<size_t> _max_num_coeffs;
};
/* window_block_fixture is a class which is instantiated before each test
* case is run. It sets up the block container, mock register interface,
* and window_block_control object, all of which are accessible to the test
* case. The instance of the object is destroyed at the end of each test
* case.
*/
constexpr size_t DEFAULT_MTU = 8000;
constexpr size_t NUM_CHANS = 4;
static const std::vector<size_t> MAX_LENS{3000, 2500, 15, 666};
struct window_block_fixture
{
window_block_fixture()
: reg_iface(std::make_shared<window_mock_reg_iface_t>(NUM_CHANS, MAX_LENS))
, block_container(get_mock_block(WINDOW_BLOCK,
NUM_CHANS,
NUM_CHANS,
uhd::device_addr_t(),
DEFAULT_MTU,
ANY_DEVICE,
reg_iface))
, test_window(block_container.get_block<window_block_control>())
{
node_accessor.init_props(test_window.get());
}
std::shared_ptr<window_mock_reg_iface_t> reg_iface;
mock_block_container block_container;
std::shared_ptr<window_block_control> test_window;
node_accessor_t node_accessor{};
};
/*
* This test case ensures that the hardware is programmed correctly with
* defaults when the window block is constructed.
*/
BOOST_FIXTURE_TEST_CASE(window_test_construction, window_block_fixture)
{
for (size_t chan = 0; chan < NUM_CHANS; chan++) {
// Check that the number of coefficients is expected
BOOST_CHECK_EQUAL(reg_iface->coeffs.at(chan).size(), MAX_LENS.at(chan));
// Check that all coefficients are the maximum positive int16_t
// value (rectangular window)
for (size_t i = 0; i < reg_iface->coeffs.at(chan).size(); i++) {
BOOST_CHECK_EQUAL(
reg_iface->coeffs.at(chan).at(i), std::numeric_limits<int16_t>::max());
}
// Check that the LOAD_COEFF_LAST register was written at the right
// time (i.e. with the last value)
BOOST_CHECK_EQUAL(
reg_iface->last_coeff_write_pos.at(chan), MAX_LENS.at(chan) - 1);
}
}
/*
* This test case exercises the get_max_num_coefficients() API.
*/
BOOST_FIXTURE_TEST_CASE(window_test_max_num_coeffs, window_block_fixture)
{
for (size_t chan = 0; chan < NUM_CHANS; chan++) {
BOOST_CHECK_EQUAL(test_window->get_max_num_coefficients(chan), MAX_LENS.at(chan));
}
}
/*
* This test case exercises the set_coefficients() API and get_coefficients()
* APIs and ensures that the hardware registers are programmed appropriately
* when new coefficients are specified.
*/
BOOST_FIXTURE_TEST_CASE(window_test_set_get_coefficients, window_block_fixture)
{
// Reset state of mock window register interface
reg_iface->reset();
for (size_t chan = 0; chan < NUM_CHANS; chan++) {
// Generate some dummy data that is half the maximum length allowed by
// the channel
const size_t num_coeffs_chan = test_window->get_max_num_coefficients(chan) / 2;
std::vector<int16_t> coeffs(num_coeffs_chan, chan);
test_window->set_coefficients(coeffs, chan);
// Check that all coefficients were written
BOOST_CHECK_EQUAL(reg_iface->coeffs.at(chan).size(), num_coeffs_chan);
// Check correctness of coefficients
for (size_t i = 0; i < coeffs.size(); i++) {
BOOST_CHECK_EQUAL(reg_iface->coeffs.at(chan).at(i), chan);
}
// Check that the LOAD_COEFF_LAST register was written at the right
// time (i.e. with the last value)
BOOST_CHECK_EQUAL(reg_iface->last_coeff_write_pos.at(chan), num_coeffs_chan - 1);
// Verify that get_coefficients() returns what we expect
std::vector<int16_t> received_coeffs = test_window->get_coefficients(chan);
BOOST_CHECK_EQUAL(received_coeffs.size(), num_coeffs_chan);
// Check correctness of returned coefficients
for (size_t i = 0; i < coeffs.size(); i++) {
BOOST_CHECK_EQUAL(received_coeffs.at(i), coeffs.at(i));
}
}
}
/*
* This test case exercises the coefficient length checking of
* set_coefficients().
*/
BOOST_FIXTURE_TEST_CASE(window_test_length_error, window_block_fixture)
{
for (size_t chan = 0; chan < NUM_CHANS; chan++) {
size_t num_coeffs = test_window->get_max_num_coefficients(chan);
std::vector<int16_t> coeffs(num_coeffs * 2);
BOOST_CHECK_THROW(test_window->set_coefficients(coeffs, chan), uhd::value_error);
}
}
/*
* This test case ensures that the window block can be added to
* an RFNoC graph.
*/
BOOST_FIXTURE_TEST_CASE(window_test_graph, window_block_fixture)
{
detail::graph_t graph{};
detail::graph_t::graph_edge_t edge_port_info;
edge_port_info.src_port = 0;
edge_port_info.dst_port = 0;
edge_port_info.property_propagation_active = true;
edge_port_info.edge = detail::graph_t::graph_edge_t::DYNAMIC;
mock_radio_node_t mock_radio_block{0};
mock_ddc_node_t mock_ddc_block{};
mock_terminator_t mock_sink_term(1, {}, "MOCK_SINK");
UHD_LOG_INFO("TEST", "Priming mock block properties");
node_accessor.init_props(&mock_radio_block);
node_accessor.init_props(&mock_ddc_block);
mock_sink_term.set_edge_property<std::string>(
"type", "sc16", {res_source_info::INPUT_EDGE, 0});
mock_sink_term.set_edge_property<std::string>(
"type", "sc16", {res_source_info::INPUT_EDGE, 1});
UHD_LOG_INFO("TEST", "Creating graph...");
graph.connect(&mock_radio_block, &mock_ddc_block, edge_port_info);
graph.connect(&mock_ddc_block, test_window.get(), edge_port_info);
graph.connect(test_window.get(), &mock_sink_term, edge_port_info);
UHD_LOG_INFO("TEST", "Committing graph...");
graph.commit();
UHD_LOG_INFO("TEST", "Commit complete.");
}
|