1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#define _USE_MATH_DEFINES
#include "../rfnoc_graph_mock_nodes.hpp"
#include <uhd/rfnoc/actions.hpp>
#include <uhd/rfnoc/defaults.hpp>
#include <uhd/rfnoc/mock_block.hpp>
#include <uhd/rfnoc/multichan_register_iface.hpp>
#include <uhd/rfnoc/register_iface_holder.hpp>
#include <uhd/rfnoc/siggen_block_control.hpp>
#include <uhdlib/rfnoc/graph.hpp>
#include <uhdlib/rfnoc/node_accessor.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <boost/test/unit_test.hpp>
#include <cmath>
#include <iostream>
using namespace uhd::rfnoc;
// Redeclare this here, since it's only defined outside of UHD_API
noc_block_base::make_args_t::~make_args_t() = default;
constexpr size_t NUM_PORTS = 4;
constexpr size_t DEFAULT_MTU = 8000;
/*
* This class extends mock_reg_iface_t, handling three particular registers
*/
class siggen_mock_reg_iface_t : public mock_reg_iface_t
{
public:
siggen_mock_reg_iface_t(size_t num_ports)
: _num_ports(num_ports)
, enables(_num_ports, false)
, spps(_num_ports, 0)
, waveforms(_num_ports, siggen_waveform::CONSTANT)
, gains(_num_ports, 0)
, constants(_num_ports, 0)
, phase_increments(_num_ports, 0)
, phasors(_num_ports, 0)
{
}
virtual void _poke_cb(
uint32_t addr, uint32_t data, uhd::time_spec_t /*time*/, bool /*ack*/)
{
const size_t port = addr / siggen_block_control::REG_BLOCK_SIZE;
if (port >= _num_ports) {
throw uhd::assertion_error("Invalid port index");
}
const size_t offset = addr % siggen_block_control::REG_BLOCK_SIZE;
if (offset == siggen_block_control::REG_ENABLE_OFFSET) {
enables[port] = (data > 0);
} else if (offset == siggen_block_control::REG_SPP_OFFSET) {
spps[port] = data;
} else if (offset == siggen_block_control::REG_WAVEFORM_OFFSET) {
waveforms[port] = static_cast<siggen_waveform>(data);
} else if (offset == siggen_block_control::REG_GAIN_OFFSET) {
gains[port] = data;
} else if (offset == siggen_block_control::REG_CONSTANT_OFFSET) {
constants[port] = data;
} else if (offset == siggen_block_control::REG_PHASE_INC_OFFSET) {
phase_increments[port] = data;
} else if (offset == siggen_block_control::REG_CARTESIAN_OFFSET) {
phasors[port] = data;
} else {
throw uhd::assertion_error("Invalid write to out of bounds offset");
}
}
virtual void _peek_cb(uint32_t addr, uhd::time_spec_t /*time*/)
{
const size_t port = addr / siggen_block_control::REG_BLOCK_SIZE;
if (port >= _num_ports) {
throw uhd::assertion_error("Invalid port index");
}
const size_t offset = addr % siggen_block_control::REG_BLOCK_SIZE;
if (offset == siggen_block_control::REG_ENABLE_OFFSET) {
read_memory[addr] = enables[port] ? 1 : 0;
} else if (offset == siggen_block_control::REG_SPP_OFFSET) {
read_memory[addr] = spps[port];
} else if (offset == siggen_block_control::REG_WAVEFORM_OFFSET) {
read_memory[addr] = static_cast<uint32_t>(waveforms[port]);
} else if (offset == siggen_block_control::REG_GAIN_OFFSET) {
read_memory[addr] = gains[port];
} else if (offset == siggen_block_control::REG_CONSTANT_OFFSET) {
read_memory[addr] = constants[port];
} else if (offset == siggen_block_control::REG_PHASE_INC_OFFSET) {
read_memory[addr] = phase_increments[port];
} else if (offset == siggen_block_control::REG_CARTESIAN_OFFSET) {
read_memory[addr] = phasors[port];
} else {
throw uhd::assertion_error("Invalid read from out of bounds offset");
}
}
template <class T>
static const T clamp(const double v)
{
constexpr T min_t = std::numeric_limits<T>::min();
constexpr T max_t = std::numeric_limits<T>::max();
return (v < min_t) ? min_t : (v > max_t) ? max_t : T(v);
}
static uint32_t gain_to_register(double gain)
{
const int16_t gain_fp = clamp<int16_t>(gain * 32768.0);
return static_cast<uint32_t>(gain_fp) & 0xffff;
}
static uint32_t constant_to_register(std::complex<double> constant)
{
const int16_t constant_i_fp = clamp<int16_t>(constant.real() * 32768.0);
const int16_t constant_q_fp = clamp<int16_t>(constant.imag() * 32768.0);
return (uint32_t(constant_i_fp) << 16) | (uint32_t(constant_q_fp) & 0xffff);
}
static uint32_t phase_increment_to_register(double phase_inc)
{
const int16_t phase_inc_scaled_rads_fp =
clamp<int16_t>((phase_inc / M_PI) * 8192.0);
return static_cast<uint32_t>(phase_inc_scaled_rads_fp) & 0xffff;
}
static uint32_t phasor_to_register(std::complex<double> phasor)
{
phasor /= 1.164435344782938; /* CORDIC scale value--see siggen_block_control */
const int16_t phasor_i_fp = clamp<int16_t>(phasor.real() * 32767.0);
const int16_t phasor_q_fp = clamp<int16_t>(phasor.imag() * 32767.0);
return (uint32_t(phasor_i_fp) << 16) | (uint32_t(phasor_q_fp) & 0xffff);
}
private:
const size_t _num_ports;
public:
std::vector<bool> enables;
std::vector<uint32_t> spps;
std::vector<siggen_waveform> waveforms;
std::vector<uint32_t> gains;
std::vector<uint32_t> constants;
std::vector<uint32_t> phase_increments;
std::vector<uint32_t> phasors;
};
/*
* siggen_block_fixture is a class which is instantiated before each test
* case is run. It sets up the block container, mock register interface,
* and siggen_block_control object, all of which are accessible to the test
* case. The instance of the object is destroyed at the end of each test
* case.
*/
struct siggen_block_fixture
{
siggen_block_fixture()
: reg_iface(std::make_shared<siggen_mock_reg_iface_t>(NUM_PORTS))
, block_container(get_mock_block(SIGGEN_BLOCK,
NUM_PORTS,
NUM_PORTS,
uhd::device_addr_t(),
DEFAULT_MTU,
ANY_DEVICE,
reg_iface))
, test_siggen(block_container.get_block<siggen_block_control>())
{
node_accessor.init_props(test_siggen.get());
}
std::shared_ptr<siggen_mock_reg_iface_t> reg_iface;
mock_block_container block_container;
std::shared_ptr<siggen_block_control> test_siggen;
node_accessor_t node_accessor{};
};
/*
* This test case ensures that the hardware is programmed correctly with
* defaults when the siggen block is constructed.
*/
BOOST_FIXTURE_TEST_CASE(siggen_test_construction, siggen_block_fixture)
{
for(size_t port = 0; port < NUM_PORTS; port++) {
BOOST_CHECK_EQUAL(reg_iface->enables.at(port), 0);
BOOST_CHECK(reg_iface->waveforms.at(port) == siggen_waveform::CONSTANT);
BOOST_CHECK_EQUAL(reg_iface->gains.at(port), siggen_mock_reg_iface_t::gain_to_register(1.0));
BOOST_CHECK_EQUAL(reg_iface->constants.at(port), siggen_mock_reg_iface_t::constant_to_register({1.0, 1.0}));
BOOST_CHECK_EQUAL(reg_iface->phase_increments.at(port), siggen_mock_reg_iface_t::phase_increment_to_register(1.0));
BOOST_CHECK_EQUAL(reg_iface->phasors.at(port),
siggen_mock_reg_iface_t::phasor_to_register({0.0, 0.0}));
BOOST_CHECK_EQUAL(reg_iface->spps.at(port), DEFAULT_SPP);
}
}
/*
* This test case exercises the API and ensures that the registers are
* programmed appropriately.
*/
BOOST_FIXTURE_TEST_CASE(siggen_test_api, siggen_block_fixture)
{
for(size_t port = 0; port < NUM_PORTS; port++) {
test_siggen->set_enable(true, port);
BOOST_CHECK_EQUAL(reg_iface->enables.at(port), 1);
BOOST_CHECK_EQUAL(test_siggen->get_enable(port), true);
// Set constant mode on the function generator, and then make sure
// that the gain register stays fixed at 1 and that changing the
// amplitude has no effect on the register or the attribute value
// (which should always return 1 in this mode).
const double amplitude = 0.25 + (port * 0.1);
test_siggen->set_waveform(siggen_waveform::CONSTANT, port);
BOOST_CHECK(reg_iface->waveforms.at(port) == siggen_waveform::CONSTANT);
BOOST_CHECK(test_siggen->get_waveform(port) == siggen_waveform::CONSTANT);
test_siggen->set_amplitude(amplitude, port);
BOOST_CHECK_EQUAL(
reg_iface->gains.at(port), siggen_mock_reg_iface_t::gain_to_register(1.0));
BOOST_CHECK_EQUAL(test_siggen->get_amplitude(port), 1.0);
// Set sine wave mode on the function generator, and then make sure
// that the gain register stays fixed at 1, but that the Cartesian
// register changes to reflect the desired sinusoidal amplitude.
test_siggen->set_waveform(siggen_waveform::SINE_WAVE, port);
BOOST_CHECK(reg_iface->waveforms.at(port) == siggen_waveform::SINE_WAVE);
test_siggen->set_amplitude(amplitude, port);
BOOST_CHECK_EQUAL(
reg_iface->gains.at(port), siggen_mock_reg_iface_t::gain_to_register(1.0));
BOOST_CHECK_EQUAL(reg_iface->phasors.at(port),
siggen_mock_reg_iface_t::phasor_to_register({amplitude, 0.0}));
BOOST_CHECK_EQUAL(test_siggen->get_amplitude(port), amplitude);
// Set noise mode on the function generator, and then make sure
// that the gain register changes according to the amplitude.
test_siggen->set_waveform(siggen_waveform::NOISE, port);
BOOST_CHECK(reg_iface->waveforms.at(port) == siggen_waveform::NOISE);
BOOST_CHECK(test_siggen->get_waveform(port) == siggen_waveform::NOISE);
test_siggen->set_amplitude(amplitude, port);
BOOST_CHECK_EQUAL(reg_iface->gains.at(port),
siggen_mock_reg_iface_t::gain_to_register(amplitude));
BOOST_CHECK_EQUAL(test_siggen->get_amplitude(port), amplitude);
const std::complex<double> constant{-0.5 - (port * 0.05), 0.5 + (port * 0.05)};
test_siggen->set_constant(constant, port);
BOOST_CHECK_EQUAL(reg_iface->constants.at(port), siggen_mock_reg_iface_t::constant_to_register(constant));
BOOST_CHECK_EQUAL(test_siggen->get_constant(port), constant);
const double phase_inc = (port * M_PI / 16.0);
test_siggen->set_sine_phase_increment(phase_inc, port);
BOOST_CHECK_EQUAL(reg_iface->phase_increments.at(port), siggen_mock_reg_iface_t::phase_increment_to_register(phase_inc));
BOOST_CHECK_EQUAL(test_siggen->get_sine_phase_increment(port), phase_inc);
const double freq = 1000 + (100 * port);
const double samp_rate = 1e6;
test_siggen->set_sine_frequency(freq, samp_rate, port);
const double calculated_phase_inc = freq / samp_rate * 2.0 * M_PI;
BOOST_CHECK_EQUAL(reg_iface->phase_increments.at(port),
siggen_mock_reg_iface_t::phase_increment_to_register(calculated_phase_inc));
BOOST_CHECK_EQUAL(
test_siggen->get_sine_phase_increment(port), calculated_phase_inc);
size_t spp = 100 + (200 * port);
test_siggen->set_samples_per_packet(spp, port);
BOOST_CHECK_EQUAL(reg_iface->spps.at(port), spp);
BOOST_CHECK_EQUAL(test_siggen->get_samples_per_packet(port), spp);
}
}
/*
* This test case exercises the range checking performed on the siggen
* settings, ensuring that the appropriate exception is thrown when out of
* range.
*/
BOOST_FIXTURE_TEST_CASE(siggen_test_ranges, siggen_block_fixture)
{
for(size_t port = 0; port < NUM_PORTS; port++) {
BOOST_CHECK_THROW(test_siggen->set_property<int>("waveform", 100, port), uhd::value_error);
const double bad_amplitude = 100 + (port * 100);
// I got a bad amplitude!
BOOST_CHECK_THROW(
test_siggen->set_amplitude(bad_amplitude, port), uhd::value_error);
BOOST_CHECK_THROW(
test_siggen->set_amplitude(-bad_amplitude, port), uhd::value_error);
const std::complex<double> bad_constant_i{-100.0 + (port * 100), 0.1};
BOOST_CHECK_THROW(test_siggen->set_constant(bad_constant_i, port), uhd::value_error);
BOOST_CHECK_THROW(test_siggen->set_constant(-bad_constant_i, port), uhd::value_error);
const std::complex<double> bad_constant_q{-0.1, 100.0 + (port * 100)};
BOOST_CHECK_THROW(test_siggen->set_constant(bad_constant_q, port), uhd::value_error);
BOOST_CHECK_THROW(test_siggen->set_constant(-bad_constant_q, port), uhd::value_error);
const double bad_phase_inc = 5 * M_PI;
BOOST_CHECK_THROW(
test_siggen->set_sine_phase_increment(bad_phase_inc, port), uhd::value_error);
BOOST_CHECK_THROW(test_siggen->set_sine_phase_increment(-bad_phase_inc, port),
uhd::value_error);
const double bad_samp_rate_zero = 0.0;
BOOST_CHECK_THROW(test_siggen->set_sine_frequency(10.0, bad_samp_rate_zero, port),
uhd::value_error);
const double bad_samp_rate = 30.0 + (port * 10);
const double bad_freq = bad_samp_rate * 10.0;
BOOST_CHECK_THROW(test_siggen->set_sine_frequency(bad_freq, bad_samp_rate, port),
uhd::value_error);
}
}
/*
* This test case exercises the coercion of the SPP parameter to ensure that
* it does not surpass the MTU.
*/
BOOST_FIXTURE_TEST_CASE(siggen_test_spp_coercion, siggen_block_fixture)
{
constexpr size_t mtu_in_samps = DEFAULT_MTU / 4 /* bytes/samp */;
size_t high_spp = mtu_in_samps + 10;
test_siggen->set_samples_per_packet(high_spp, 0);
BOOST_CHECK_EQUAL(test_siggen->get_samples_per_packet(0), mtu_in_samps);
}
/*
* This test case ensures that the siggen block controller can be added
* to a graph.
*/
BOOST_FIXTURE_TEST_CASE(siggen_test_graph, siggen_block_fixture)
{
detail::graph_t graph{};
detail::graph_t::graph_edge_t edge_info{
0, 0, detail::graph_t::graph_edge_t::DYNAMIC, true};
mock_terminator_t mock_sink_term(NUM_PORTS, {}, "MOCK_SINK");
mock_sink_term.set_edge_property<std::string>(
"type", "sc16", {res_source_info::INPUT_EDGE, 0});
UHD_LOG_INFO("TEST", "Creating graph...");
for(size_t port = 0; port < NUM_PORTS; port++) {
graph.connect(test_siggen.get(), &mock_sink_term, {port, port, detail::graph_t::graph_edge_t::DYNAMIC, true});
}
UHD_LOG_INFO("TEST", "Committing graph...");
graph.commit();
UHD_LOG_INFO("TEST", "Commit complete.");
}
|