1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
|
//
// Copyright 2020 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "../rfnoc_graph_mock_nodes.hpp"
#include <uhd/convert.hpp>
#include <uhd/rfnoc/actions.hpp>
#include <uhd/rfnoc/ddc_block_control.hpp>
#include <uhd/rfnoc/defaults.hpp>
#include <uhd/rfnoc/mock_block.hpp>
#include <uhd/rfnoc/replay_block_control.hpp>
#include <uhdlib/rfnoc/graph.hpp>
#include <uhdlib/rfnoc/node_accessor.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <boost/test/unit_test.hpp>
#include <iostream>
using namespace uhd::rfnoc;
// Redeclare this here, since it's only defined outside of UHD_API
noc_block_base::make_args_t::~make_args_t() = default;
static const size_t CMD_Q_MAX = 32;
/*
* This class extends mock_reg_iface_t by adding a constructor that initializes some of
* the read memory to contain the memory size for the replay block. This is important,
* because upon construction in software, the Replay Block will read from the
* REG_MEM_SIZE_ADDR to determine the word size and memory address width. These constant
* read-only values are crucial for the initialization of the other properties.
* Additionally, the record fullness is initialized here. This read-only value changes
* during recording.
*/
class replay_mock_reg_iface_t : public mock_reg_iface_t
{
public:
replay_mock_reg_iface_t(size_t mem_addr_size, size_t word_size, size_t num_channels)
{
for (size_t chan = 0; chan < num_channels; chan++) {
const uint32_t base = chan * replay_block_control::REPLAY_BLOCK_OFFSET;
const uint32_t reg_compat = base +
replay_block_control::REG_COMPAT_ADDR;
const uint32_t reg_mem_size = base +
replay_block_control::REG_MEM_SIZE_ADDR;
const uint32_t reg_rec_fullness = base +
replay_block_control::REG_REC_FULLNESS_LO_ADDR;
const uint32_t reg_rec_position = base +
replay_block_control::REG_REC_POS_LO_ADDR;
const uint32_t reg_play_position = base +
replay_block_control::REG_PLAY_POS_LO_ADDR;
const uint32_t reg_play_fifo_space = base +
replay_block_control::REG_PLAY_CMD_FIFO_SPACE_ADDR;
read_memory[reg_compat] = (replay_block_control::MINOR_COMPAT
| (replay_block_control::MAJOR_COMPAT << 16));
read_memory[reg_mem_size] = (mem_addr_size | (word_size << 16));
read_memory[reg_rec_fullness] = 0x0010;
read_memory[reg_rec_fullness + 4] = 0x0000;
read_memory[reg_rec_position] = 0xBEEF;
read_memory[reg_rec_position + 4] = 0xDEAD;
read_memory[reg_play_position] = 0xCAFE;
read_memory[reg_play_position + 4] = 0xFEED;
read_memory[reg_play_fifo_space] = CMD_Q_MAX;
}
}
};
/*
* replay_block_fixture is a class which is instantiated before each test
* case is run. It sets up the block container, mock register interface,
* and replay_block_control object, all of which are accessible to the test
* case. The instance of the object is destroyed at the end of each test
* case.
*/
constexpr size_t DEFAULT_MTU = 8000;
struct replay_block_fixture
{
replay_block_fixture()
: num_channels(4)
, num_input_ports(num_channels)
, num_output_ports(num_channels)
, mem_addr_size(32)
, max_buffer_size(1ULL << mem_addr_size)
, default_item_size(4)
, word_size(8)
, reg_iface(std::make_shared<replay_mock_reg_iface_t>(
mem_addr_size, (word_size * 8), num_channels))
, block_container(get_mock_block(REPLAY_BLOCK,
num_channels,
num_channels,
uhd::device_addr_t("foo=bar"),
DEFAULT_MTU,
ANY_DEVICE,
reg_iface))
, test_replay(block_container.get_block<replay_block_control>())
{
node_accessor.init_props(test_replay.get());
}
size_t num_channels;
size_t num_input_ports;
size_t num_output_ports;
size_t mem_addr_size;
uint64_t max_buffer_size; // in bytes
size_t default_item_size; // in bytes
size_t word_size; // in bytes
std::shared_ptr<replay_mock_reg_iface_t> reg_iface;
mock_block_container block_container;
std::shared_ptr<replay_block_control> test_replay;
node_accessor_t node_accessor{};
};
inline uint32_t get_addr(uint32_t offset, size_t chan)
{
return offset + chan * replay_block_control::REPLAY_BLOCK_OFFSET;
}
/*
* This test case ensures that the hardware is programmed correctly with
* defaults when the replay block is constructed.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_construction, replay_block_fixture)
{
BOOST_REQUIRE(test_replay);
BOOST_CHECK_EQUAL(test_replay->get_block_args().get("foo"), "bar");
BOOST_CHECK_EQUAL(test_replay->get_mem_size(), max_buffer_size);
BOOST_CHECK_EQUAL(test_replay->get_word_size(), word_size);
for (size_t chan = 0; chan < num_channels; chan++) {
const uint32_t reg_compat = get_addr(replay_block_control::REG_COMPAT_ADDR, chan);
const uint32_t reg_mem_size =
get_addr(replay_block_control::REG_MEM_SIZE_ADDR, chan);
const uint32_t reg_rec_buff_size =
get_addr(replay_block_control::REG_REC_BUFFER_SIZE_LO_ADDR, chan);
const uint32_t reg_rec_base_addr =
get_addr(replay_block_control::REG_REC_BASE_ADDR_LO_ADDR, chan);
const uint32_t reg_play_buff_size =
get_addr(replay_block_control::REG_PLAY_BUFFER_SIZE_LO_ADDR, chan);
const uint32_t reg_play_base_addr =
get_addr(replay_block_control::REG_PLAY_BASE_ADDR_LO_ADDR, chan);
const uint32_t reg_words_per_pkt =
get_addr(replay_block_control::REG_PLAY_WORDS_PER_PKT_ADDR, chan);
const uint32_t reg_play_item_size =
get_addr(replay_block_control::REG_PLAY_ITEM_SIZE_ADDR, chan);
BOOST_CHECK_EQUAL(reg_iface->read_memory[reg_compat] & 0xFFFF,
replay_block_control::MINOR_COMPAT);
BOOST_CHECK_EQUAL((reg_iface->read_memory[reg_compat] >> 16) & 0xFFFF,
replay_block_control::MAJOR_COMPAT);
BOOST_CHECK_EQUAL(reg_iface->read_memory[reg_mem_size] & 0xFFFF, mem_addr_size);
BOOST_CHECK_EQUAL(
(reg_iface->read_memory[reg_mem_size] >> 16) & 0xFFFF, word_size * 8);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_rec_buff_size], max_buffer_size & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_rec_buff_size + 4],
(max_buffer_size >> 32) & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_rec_base_addr], 0);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_rec_base_addr + 4], 0);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_play_buff_size], max_buffer_size & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_play_buff_size + 4],
(max_buffer_size >> 32) & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_play_base_addr], 0);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_play_base_addr + 4], 0);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_words_per_pkt],
(DEFAULT_MTU - test_replay->get_chdr_hdr_len()) / word_size);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_play_item_size], default_item_size);
}
}
/**************************************************************************
* Record Buffer tests
*************************************************************************/
/*
* This test case ensures that the hardware is programmed correctly when a record restart
* occurs. Any value written to REG_REC_RESTART_ADDR triggers a record restart.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_record_restart, replay_block_fixture)
{
for (size_t port = 0; port < num_input_ports; port++) {
const uint32_t reg_rec_restart =
get_addr(replay_block_control::REG_REC_RESTART_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory.count(reg_rec_restart), 0);
test_replay->record_restart(port);
BOOST_CHECK_EQUAL(reg_iface->write_memory.count(reg_rec_restart), 1);
}
}
/*
* This test case ensures that the get_record_fullness() API call reads correctly from
* hardware.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_record_fullness, replay_block_fixture)
{
for (size_t port = 0; port < num_input_ports; port++) {
const uint64_t fullness = 0x123456789ABCDEF0 | port;
const uint32_t reg_rec_fullness =
get_addr(replay_block_control::REG_REC_FULLNESS_LO_ADDR, port);
reg_iface->read_memory[reg_rec_fullness] = fullness & 0xFFFFFFFF;
reg_iface->read_memory[reg_rec_fullness + 4] = (fullness >> 32) & 0xFFFFFFFF;
BOOST_CHECK_EQUAL(test_replay->get_record_fullness(port), fullness);
}
}
/*
* This test case ensures that the record type API calls interact correctly.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_record_type, replay_block_fixture)
{
for (size_t port = 0; port < num_input_ports; port++) {
// Test the defaults
const io_type_t default_type = IO_TYPE_SC16;
BOOST_CHECK_EQUAL(test_replay->get_record_type(port), default_type);
BOOST_CHECK_EQUAL(test_replay->get_record_item_size(port),
uhd::convert::get_bytes_per_item(default_type));
}
for (size_t port = 0; port < num_input_ports; port++) {
const io_type_t type = IO_TYPE_U8;
test_replay->set_record_type(type, port);
BOOST_CHECK_EQUAL(test_replay->get_record_type(port), type);
BOOST_CHECK_EQUAL(test_replay->get_record_item_size(port),
uhd::convert::get_bytes_per_item(type));
}
}
/*
* This test case ensures that the hardware is programmed correctly when the record buffer
* is configured. This includes testing that a record restart takes place. The test
* also ensures that any configuration of the base address and buffer size are word
* addressable. Additionally, it exercises the get_record_size() and
* get_record_offset() API calls.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_record, replay_block_fixture)
{
for (size_t port = 0; port < num_input_ports; port++) {
// Test the defaults
BOOST_CHECK_EQUAL(test_replay->get_record_size(port), max_buffer_size);
BOOST_CHECK_EQUAL(test_replay->get_record_offset(port), 0);
}
for (size_t port = 0; port < num_input_ports; port++) {
const uint32_t reg_rec_restart =
get_addr(replay_block_control::REG_REC_RESTART_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory.count(reg_rec_restart), 0);
const uint64_t base_addr = 16 + max_buffer_size / num_input_ports * port;
const uint64_t buffer_size = max_buffer_size / num_input_ports / 2;
test_replay->record(base_addr, buffer_size, port);
const uint32_t reg_rec_buff_size =
get_addr(replay_block_control::REG_REC_BUFFER_SIZE_LO_ADDR, port);
const uint32_t reg_rec_base_addr =
get_addr(replay_block_control::REG_REC_BASE_ADDR_LO_ADDR, port);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_rec_buff_size], buffer_size & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_rec_buff_size + 4],
(buffer_size >> 32) & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_rec_base_addr], base_addr & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_rec_base_addr + 4],
(base_addr >> 32) & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(test_replay->get_record_size(port), buffer_size);
BOOST_CHECK_EQUAL(test_replay->get_record_offset(port), base_addr);
// There should be a record restart on config
// (with any value written to the register)
BOOST_CHECK_EQUAL(reg_iface->write_memory.count(reg_rec_restart), 1);
// Valid base address and buffer size values are multiples of the word size
for (uint64_t offset = 1; offset <= word_size - 1; offset++) {
BOOST_CHECK_THROW(test_replay->record(base_addr + offset, buffer_size, port),
uhd::value_error);
}
for (uint64_t offset = 1; offset <= word_size - 1; offset++) {
BOOST_CHECK_THROW(test_replay->record(base_addr, buffer_size + offset, port),
uhd::value_error);
}
// The play buffer must be within the bounds of the Replay memory
BOOST_CHECK_THROW(
test_replay->record(max_buffer_size, buffer_size, port), uhd::value_error);
BOOST_CHECK_THROW(
test_replay->record(base_addr, max_buffer_size, port), uhd::value_error);
}
}
/*
* This test case checks the record position.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_record_position, replay_block_fixture)
{
for (size_t port = 0; port < num_input_ports; port++) {
const uint32_t reg_rec_position =
get_addr(replay_block_control::REG_REC_POS_LO_ADDR, port);
uint64_t rec_pos = reg_iface->read_memory[reg_rec_position] |
(uint64_t(reg_iface->read_memory[reg_rec_position + 4]) << 32);
BOOST_CHECK_EQUAL(test_replay->get_record_position(port), rec_pos);
}
}
/**************************************************************************
* Playback tests
*************************************************************************/
/*
* This test case ensures that the hardware is programmed correctly when the play buffer
* is configured. The test also ensures that any configuration of the base address and
* buffer size are word addressable. Additionally, it exercises the get_play_size() and
* get_play_offset() API calls.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_configure_play, replay_block_fixture)
{
for (size_t port = 0; port < num_output_ports; port++) {
// Test the defaults
BOOST_CHECK_EQUAL(test_replay->get_play_size(port), max_buffer_size);
BOOST_CHECK_EQUAL(test_replay->get_play_offset(port), 0);
}
for (size_t port = 0; port < num_output_ports; port++) {
const uint64_t base_addr = word_size + max_buffer_size / num_output_ports * port;
const uint64_t buffer_size = max_buffer_size / num_output_ports / 2;
test_replay->config_play(base_addr, buffer_size, port);
const uint32_t reg_play_buff_size =
get_addr(replay_block_control::REG_PLAY_BUFFER_SIZE_LO_ADDR, port);
const uint32_t reg_play_base_addr =
get_addr(replay_block_control::REG_PLAY_BASE_ADDR_LO_ADDR, port);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_play_buff_size], buffer_size & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_play_buff_size + 4],
(buffer_size >> 32) & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_play_base_addr], base_addr & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_play_base_addr + 4],
(base_addr >> 32) & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(test_replay->get_play_size(port), buffer_size);
BOOST_CHECK_EQUAL(test_replay->get_play_offset(port), base_addr);
// Valid base address and buffer size values are multiples of the word size
for (uint64_t offset = 1; offset <= word_size - 1; offset++) {
BOOST_CHECK_THROW(
test_replay->config_play(base_addr + offset, buffer_size, port),
uhd::value_error);
}
for (uint64_t offset = 1; offset <= word_size - 1; offset++) {
BOOST_CHECK_THROW(
test_replay->config_play(base_addr, buffer_size + offset, port),
uhd::value_error);
}
// Valid base address and buffer size values are multiples of the item size for
// playback
size_t item_size = test_replay->get_play_item_size(port);
for (uint64_t offset = 1; offset <= item_size - 1; offset++) {
BOOST_CHECK_THROW(
test_replay->config_play(base_addr + offset, buffer_size, port),
uhd::value_error);
}
for (uint64_t offset = 1; offset <= item_size - 1; offset++) {
BOOST_CHECK_THROW(
test_replay->config_play(base_addr, buffer_size + offset, port),
uhd::value_error);
}
// The play buffer must be within the bounds of the Replay memory
BOOST_CHECK_THROW(test_replay->config_play(max_buffer_size, buffer_size, port),
uhd::value_error);
BOOST_CHECK_THROW(
test_replay->config_play(base_addr, max_buffer_size, port), uhd::value_error);
}
}
/*
* This test case ensures that the hardware is programmed correctly through the playback
* packet API calls.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_packet_size, replay_block_fixture)
{
for (size_t port = 0; port < num_output_ports; port++) {
// Test the defaults
const uint32_t item_size = test_replay->get_play_item_size(port);
const uint32_t expected_ipp =
test_replay->get_max_payload_size({res_source_info::OUTPUT_EDGE, port})
/ item_size;
BOOST_CHECK_EQUAL(test_replay->get_max_items_per_packet(port), expected_ipp);
const uint32_t default_packet_size =
expected_ipp * item_size + test_replay->get_chdr_hdr_len();
BOOST_CHECK_EQUAL(test_replay->get_max_packet_size(port), default_packet_size);
}
for (size_t port = 0; port < num_output_ports; port++) {
const uint32_t ipp = 1024;
test_replay->set_max_items_per_packet(ipp, port);
BOOST_CHECK_EQUAL(test_replay->get_max_items_per_packet(port), ipp);
const uint32_t item_size = test_replay->get_play_item_size(port);
const uint32_t packet_size = ipp * item_size + test_replay->get_chdr_hdr_len();
BOOST_CHECK_EQUAL(test_replay->get_max_packet_size(port), packet_size);
const uint32_t wpp = ipp * item_size / word_size;
const uint32_t reg_words_per_pkt =
get_addr(replay_block_control::REG_PLAY_WORDS_PER_PKT_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_words_per_pkt], wpp);
}
}
/*
* This test case ensures that the play type and item size API calls interact correctly
* and program the hardware.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_play_type, replay_block_fixture)
{
for (size_t port = 0; port < num_output_ports; port++) {
// Test the defaults
const io_type_t default_type = IO_TYPE_SC16;
BOOST_CHECK_EQUAL(test_replay->get_play_type(port), default_type);
BOOST_CHECK_EQUAL(test_replay->get_play_item_size(port),
uhd::convert::get_bytes_per_item(default_type));
const uint32_t reg_play_item_size =
get_addr(replay_block_control::REG_PLAY_ITEM_SIZE_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_play_item_size],
uhd::convert::get_bytes_per_item(default_type));
}
for (size_t port = 0; port < num_output_ports; port++) {
const io_type_t type = IO_TYPE_U8;
test_replay->set_play_type(type, port);
BOOST_CHECK_EQUAL(test_replay->get_play_type(port), type);
BOOST_CHECK_EQUAL(test_replay->get_play_item_size(port),
uhd::convert::get_bytes_per_item(type));
const uint32_t reg_play_item_size =
get_addr(replay_block_control::REG_PLAY_ITEM_SIZE_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_play_item_size],
uhd::convert::get_bytes_per_item(type));
}
}
/*
* This test case ensures that the hardware is programmed correctly when a stream command
* is issued. Note that there is not a distinction between STREAM_MODE_NUM_SAMPS_AND_DONE
* and STREAM_MODE_NUM_SAMPS_AND_MORE in USRP3 devices and newer.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_issue_stream_cmd, replay_block_fixture)
{
for (size_t port = 0; port < num_output_ports; port++) {
uhd::stream_cmd_t cmd_stop(
uhd::stream_cmd_t::stream_mode_t::STREAM_MODE_STOP_CONTINUOUS);
test_replay->issue_stream_cmd(cmd_stop, port);
const uint32_t reg_stream_cmd =
get_addr(replay_block_control::REG_PLAY_CMD_ADDR, port);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_stream_cmd], replay_block_control::PLAY_CMD_STOP);
}
for (size_t port = 0; port < num_output_ports; port++) {
uhd::stream_cmd_t cmd_cont(
uhd::stream_cmd_t::stream_mode_t::STREAM_MODE_START_CONTINUOUS);
test_replay->issue_stream_cmd(cmd_cont, port);
const uint32_t reg_stream_cmd =
get_addr(replay_block_control::REG_PLAY_CMD_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_stream_cmd],
replay_block_control::PLAY_CMD_CONTINUOUS);
}
for (size_t port = 0; port < num_output_ports; port++) {
uhd::stream_cmd_t cmd_finite(
uhd::stream_cmd_t::stream_mode_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
const uint64_t num_words = 0x00123ABC;
cmd_finite.num_samps = num_words * word_size / 4;
test_replay->issue_stream_cmd(cmd_finite, port);
const uint32_t reg_stream_cmd =
get_addr(replay_block_control::REG_PLAY_CMD_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_stream_cmd],
replay_block_control::PLAY_CMD_FINITE);
// PLAY_CMD_FINITE writes the number of words to hardware
const uint32_t reg_num_words =
get_addr(replay_block_control::REG_PLAY_CMD_NUM_WORDS_LO_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_num_words], num_words & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_num_words + 4], (num_words >> 32) & 0xFFFFFFFF);
}
for (size_t port = 0; port < num_output_ports; port++) {
uhd::stream_cmd_t cmd_finite(
uhd::stream_cmd_t::stream_mode_t::STREAM_MODE_NUM_SAMPS_AND_MORE);
const uint64_t num_words = 0x00DEF456;
cmd_finite.num_samps = num_words * word_size / 4;
test_replay->issue_stream_cmd(cmd_finite, port);
const uint32_t reg_stream_cmd =
get_addr(replay_block_control::REG_PLAY_CMD_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_stream_cmd],
replay_block_control::PLAY_CMD_FINITE);
// PLAY_CMD_FINITE writes the number of words to hardware
const uint32_t reg_num_words =
get_addr(replay_block_control::REG_PLAY_CMD_NUM_WORDS_LO_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_num_words], num_words & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_num_words + 4], (num_words >> 32) & 0xFFFFFFFF);
}
}
/*
* This test case ensures that the hardware is programmed correctly when a stream command
* is issued with delay. Note that there is not a distinction between
* STREAM_MODE_NUM_SAMPS_AND_DONE and STREAM_MODE_NUM_SAMPS_AND_MORE in USRP3 devices and
* newer.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_issue_stream_cmd_timed, replay_block_fixture)
{
for (size_t port = 0; port < num_output_ports; port++) {
uhd::stream_cmd_t cmd_cont(
uhd::stream_cmd_t::stream_mode_t::STREAM_MODE_START_CONTINUOUS);
cmd_cont.stream_now = false;
test_replay->issue_stream_cmd(cmd_cont, port);
const uint32_t cmd_time_mask = 1 << 31;
const uint32_t reg_stream_cmd =
get_addr(replay_block_control::REG_PLAY_CMD_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_stream_cmd],
replay_block_control::PLAY_CMD_CONTINUOUS | cmd_time_mask);
const uint64_t num_ticks = 0;
const uint32_t reg_cmd_time =
get_addr(replay_block_control::REG_PLAY_CMD_TIME_LO_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_cmd_time], num_ticks & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_cmd_time + 4], (num_ticks >> 32) & 0xFFFFFFFF);
}
for (size_t port = 0; port < num_output_ports; port++) {
uhd::stream_cmd_t cmd_finite(
uhd::stream_cmd_t::stream_mode_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
const uint64_t num_words = 0x00123ABC;
cmd_finite.num_samps = num_words * word_size / 4;
cmd_finite.stream_now = false;
test_replay->issue_stream_cmd(cmd_finite, port);
const uint32_t cmd_time_mask = 1 << 31;
const uint32_t reg_stream_cmd =
get_addr(replay_block_control::REG_PLAY_CMD_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_stream_cmd],
replay_block_control::PLAY_CMD_FINITE | cmd_time_mask);
// PLAY_CMD_FINITE writes the number of words to hardware
const uint32_t reg_num_words =
get_addr(replay_block_control::REG_PLAY_CMD_NUM_WORDS_LO_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_num_words], num_words & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_num_words + 4], (num_words >> 32) & 0xFFFFFFFF);
const uint64_t num_ticks = 0;
const uint32_t reg_cmd_time =
get_addr(replay_block_control::REG_PLAY_CMD_TIME_LO_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_cmd_time], num_ticks & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_cmd_time + 4], (num_ticks >> 32) & 0xFFFFFFFF);
}
for (size_t port = 0; port < num_output_ports; port++) {
uhd::stream_cmd_t cmd_finite(
uhd::stream_cmd_t::stream_mode_t::STREAM_MODE_NUM_SAMPS_AND_MORE);
const uint64_t num_words = 0x00DEF456;
cmd_finite.num_samps = num_words * word_size / 4;
cmd_finite.stream_now = false;
test_replay->issue_stream_cmd(cmd_finite, port);
const uint32_t cmd_time_mask = 1 << 31;
const uint32_t reg_stream_cmd =
get_addr(replay_block_control::REG_PLAY_CMD_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_stream_cmd],
replay_block_control::PLAY_CMD_FINITE | cmd_time_mask);
// PLAY_CMD_FINITE writes the number of words to hardware
const uint32_t reg_num_words =
get_addr(replay_block_control::REG_PLAY_CMD_NUM_WORDS_LO_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_num_words], num_words & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_num_words + 4], (num_words >> 32) & 0xFFFFFFFF);
const uint64_t num_ticks = 0;
const uint32_t reg_cmd_time =
get_addr(replay_block_control::REG_PLAY_CMD_TIME_LO_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_cmd_time], num_ticks & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_cmd_time + 4], (num_ticks >> 32) & 0xFFFFFFFF);
}
}
/*
* This test case ensures that the hardware is programmed correctly when a stop command is
* issued to the replay block via an API call.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_stop, replay_block_fixture)
{
for (size_t port = 0; port < num_output_ports; port++) {
test_replay->stop(port);
const uint32_t reg_stream_cmd =
get_addr(replay_block_control::REG_PLAY_CMD_ADDR, port);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_stream_cmd], replay_block_control::PLAY_CMD_STOP);
}
}
/*
* This test case ensures that the hardware is programmed correctly when the record buffer
* is configured. This includes testing that a record restart takes place. The test
* also ensures that any configuration of the base address and buffer size are word
* addressable. Additionally, it exercises the get_play_size() and
* get_play_offset() API calls.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_play, replay_block_fixture)
{
// Configure play buffer
for (size_t port = 0; port < num_output_ports; port++) {
const uint64_t base_addr = word_size + max_buffer_size / num_output_ports * port;
const uint64_t buffer_size = max_buffer_size / num_output_ports / 2;
test_replay->play(base_addr, buffer_size, port);
const uint32_t reg_play_buff_size =
get_addr(replay_block_control::REG_PLAY_BUFFER_SIZE_LO_ADDR, port);
const uint32_t reg_play_base_addr =
get_addr(replay_block_control::REG_PLAY_BASE_ADDR_LO_ADDR, port);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_play_buff_size], buffer_size & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_play_buff_size + 4],
(buffer_size >> 32) & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_play_base_addr], base_addr & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_play_base_addr + 4],
(base_addr >> 32) & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(test_replay->get_play_size(port), buffer_size);
BOOST_CHECK_EQUAL(test_replay->get_play_offset(port), base_addr);
// Valid base address and buffer size values are multiples of the word size
for (uint64_t offset = 1; offset <= word_size - 1; offset++) {
BOOST_CHECK_THROW(test_replay->play(base_addr + offset, buffer_size, port),
uhd::value_error);
}
for (uint64_t offset = 1; offset <= word_size - 1; offset++) {
BOOST_CHECK_THROW(test_replay->play(base_addr, buffer_size + offset, port),
uhd::value_error);
}
// Valid base address and buffer size values are multiples of the item size for
// playback
size_t item_size = test_replay->get_play_item_size(port);
for (uint64_t offset = 1; offset <= item_size - 1; offset++) {
BOOST_CHECK_THROW(test_replay->play(base_addr + offset, buffer_size, port),
uhd::value_error);
}
for (uint64_t offset = 1; offset <= item_size - 1; offset++) {
BOOST_CHECK_THROW(test_replay->play(base_addr, buffer_size + offset, port),
uhd::value_error);
}
// The play buffer must be within the bounds of the Replay memory
BOOST_CHECK_THROW(
test_replay->play(max_buffer_size, buffer_size, port), uhd::value_error);
BOOST_CHECK_THROW(
test_replay->play(base_addr, max_buffer_size, port), uhd::value_error);
}
// Non-timed commands
for (size_t port = 0; port < num_output_ports; port++) {
const uint64_t base_addr =
2 * word_size + max_buffer_size / num_output_ports * port;
const uint64_t buffer_size = max_buffer_size / num_output_ports / 4;
uhd::stream_cmd_t cmd_cont(
uhd::stream_cmd_t::stream_mode_t::STREAM_MODE_START_CONTINUOUS);
test_replay->play(base_addr, buffer_size, port, 0.0, true);
const uint32_t reg_stream_cmd =
get_addr(replay_block_control::REG_PLAY_CMD_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_stream_cmd],
replay_block_control::PLAY_CMD_CONTINUOUS);
}
for (size_t port = 0; port < num_output_ports; port++) {
const uint64_t base_addr =
3 * word_size + max_buffer_size / num_output_ports * port;
const uint64_t buffer_size = 0x1230;
test_replay->play(base_addr, buffer_size, port);
const uint32_t reg_stream_cmd =
get_addr(replay_block_control::REG_PLAY_CMD_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_stream_cmd],
replay_block_control::PLAY_CMD_FINITE);
// PLAY_CMD_FINITE writes the number of words to hardware
const uint64_t num_words = buffer_size / word_size;
const uint32_t reg_num_words =
get_addr(replay_block_control::REG_PLAY_CMD_NUM_WORDS_LO_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_num_words], num_words & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_num_words + 4], (num_words >> 32) & 0xFFFFFFFF);
}
// Timed Commands
for (size_t port = 0; port < num_output_ports; port++) {
const uint64_t base_addr =
4 * word_size + max_buffer_size / num_output_ports * port;
const uint64_t buffer_size = max_buffer_size / num_output_ports / 4;
test_replay->play(base_addr, buffer_size, port, 1.23, true);
const uint32_t cmd_time_mask = 1 << 31;
const uint32_t reg_stream_cmd =
get_addr(replay_block_control::REG_PLAY_CMD_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_stream_cmd],
replay_block_control::PLAY_CMD_CONTINUOUS | cmd_time_mask);
const uint64_t num_ticks = 0;
const uint32_t reg_cmd_time =
get_addr(replay_block_control::REG_PLAY_CMD_TIME_LO_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_cmd_time], num_ticks & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_cmd_time + 4], (num_ticks >> 32) & 0xFFFFFFFF);
}
for (size_t port = 0; port < num_output_ports; port++) {
const uint64_t base_addr =
5 * word_size + max_buffer_size / num_output_ports * port;
const uint64_t buffer_size = 0xABC0;
test_replay->play(base_addr, buffer_size, port, 4.56, false);
const uint32_t cmd_time_mask = 1 << 31;
const uint32_t reg_stream_cmd =
get_addr(replay_block_control::REG_PLAY_CMD_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_stream_cmd],
replay_block_control::PLAY_CMD_FINITE | cmd_time_mask);
// PLAY_CMD_FINITE writes the number of words to hardware
const uint64_t num_words = buffer_size / word_size;
const uint32_t reg_num_words =
get_addr(replay_block_control::REG_PLAY_CMD_NUM_WORDS_LO_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_num_words], num_words & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_num_words + 4], (num_words >> 32) & 0xFFFFFFFF);
const uint64_t num_ticks = 0;
const uint32_t reg_cmd_time =
get_addr(replay_block_control::REG_PLAY_CMD_TIME_LO_ADDR, port);
BOOST_CHECK_EQUAL(reg_iface->write_memory[reg_cmd_time], num_ticks & 0xFFFFFFFF);
BOOST_CHECK_EQUAL(
reg_iface->write_memory[reg_cmd_time + 4], (num_ticks >> 32) & 0xFFFFFFFF);
}
}
/*
* This test case checks the play position.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_play_position, replay_block_fixture)
{
for (size_t port = 0; port < num_input_ports; port++) {
const uint32_t reg_play_position =
get_addr(replay_block_control::REG_PLAY_POS_LO_ADDR, port);
uint64_t play_pos = reg_iface->read_memory[reg_play_position] |
(uint64_t(reg_iface->read_memory[reg_play_position + 4]) << 32);
BOOST_CHECK_EQUAL(test_replay->get_play_position(port), play_pos);
}
}
/*
* This test case checks to make sure play commands throw an error if the
* command queue is full.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_play_cmd_limit, replay_block_fixture)
{
for (size_t port = 0; port < num_input_ports; port++) {
const uint32_t reg_play_cmd_fifo_space =
get_addr(replay_block_control::REG_PLAY_CMD_FIFO_SPACE_ADDR, port);
// Issue stop to clear command queue
test_replay->stop(port);
// Fill the command queue
for (size_t i = 0; i < CMD_Q_MAX; i++) {
test_replay->play(0, 0, port);
}
reg_iface->read_memory[reg_play_cmd_fifo_space] = 0;
// Make sure the next command throws
BOOST_CHECK_THROW(test_replay->play(0, 0, port), uhd::op_failed);
reg_iface->read_memory[reg_play_cmd_fifo_space] = CMD_Q_MAX;
// Issue stop to clear the queue and reset
test_replay->stop(port);
// Run once more to confirm no error is thrown
test_replay->play(0, 0, port);
// Issue stop to clear the queue and reset
test_replay->stop(port);
}
}
/*
* This test case ensures that the Replay Block can be added to an RFNoC graph.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_graph, replay_block_fixture)
{
detail::graph_t graph{};
detail::graph_t::graph_edge_t edge_port_info;
edge_port_info.src_port = 0;
edge_port_info.dst_port = 0;
edge_port_info.property_propagation_active = true;
edge_port_info.edge = detail::graph_t::graph_edge_t::DYNAMIC;
mock_radio_node_t mock_radio_block{0};
mock_ddc_node_t mock_ddc_block{};
mock_terminator_t mock_sink_term(1, {}, "MOCK_SINK");
UHD_LOG_INFO("TEST", "Priming mock block properties");
node_accessor.init_props(&mock_radio_block);
node_accessor.init_props(&mock_ddc_block);
mock_sink_term.set_edge_property<std::string>(
"type", "sc16", {res_source_info::INPUT_EDGE, 0});
UHD_LOG_INFO("TEST", "Creating graph...");
graph.connect(&mock_radio_block, &mock_ddc_block, edge_port_info);
graph.connect(&mock_ddc_block, test_replay.get(), edge_port_info);
graph.connect(test_replay.get(), &mock_sink_term, edge_port_info);
UHD_LOG_INFO("TEST", "Committing graph...");
graph.commit();
mock_sink_term.set_edge_property<double>(
"tick_rate", 1.0, {res_source_info::INPUT_EDGE, 0});
UHD_LOG_INFO("TEST", "Commit complete.");
mock_radio_block.generate_overrun(0);
uhd::rx_metadata_t rx_md;
BOOST_REQUIRE(test_replay->get_record_async_metadata(rx_md, 1.0));
BOOST_CHECK(rx_md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW);
mock_sink_term.post_action(res_source_info{res_source_info::INPUT_EDGE, 0},
tx_event_action_info::make(uhd::async_metadata_t::EVENT_CODE_UNDERFLOW, 1234ul));
uhd::async_metadata_t tx_md;
BOOST_REQUIRE(test_replay->get_play_async_metadata(tx_md, 1.0));
BOOST_CHECK(tx_md.event_code == uhd::async_metadata_t::EVENT_CODE_UNDERFLOW);
BOOST_CHECK(tx_md.has_time_spec);
BOOST_CHECK(tx_md.time_spec == 1234.0);
}
/*
* This test case ensures that the Replay Block can be added to an RFNoC graph
* in a loop.
*/
BOOST_FIXTURE_TEST_CASE(replay_test_graph_loop, replay_block_fixture)
{
detail::graph_t graph{};
detail::graph_t::graph_edge_t edge_port_info;
edge_port_info.src_port = 0;
edge_port_info.dst_port = 0;
edge_port_info.property_propagation_active = false;
edge_port_info.edge = detail::graph_t::graph_edge_t::DYNAMIC;
// Now create a DDC block
UHD_LOG_DEBUG("TEST", "Making DDC block control....");
node_accessor_t node_accessor{};
constexpr uint32_t num_hb = 2;
constexpr uint32_t max_cic = 128;
constexpr size_t num_chans = 1;
constexpr noc_id_t noc_id = DDC_BLOCK;
auto block_container =
get_mock_block(noc_id, num_chans, num_chans, uhd::device_addr_t(""));
auto& ddc_reg_iface = block_container.reg_iface;
ddc_reg_iface->read_memory[ddc_block_control::RB_COMPAT_NUM] =
(ddc_block_control::MAJOR_COMPAT << 16) | ddc_block_control::MINOR_COMPAT;
ddc_reg_iface->read_memory[ddc_block_control::RB_NUM_HB] = num_hb;
ddc_reg_iface->read_memory[ddc_block_control::RB_CIC_MAX_DECIM] = max_cic;
auto test_ddc = block_container.get_block<ddc_block_control>();
node_accessor.init_props(test_ddc.get());
UHD_LOG_DEBUG("TEST", "DDC done.");
UHD_LOG_INFO("TEST", "Creating graph...");
graph.connect(test_ddc.get(), test_replay.get(), edge_port_info);
// Graph must be DAG, disable prop prop on back-edge (normally,
// rfnoc_graph::connect() would do this for us if we declare a back-edge
edge_port_info.property_propagation_active = true;
graph.connect(test_replay.get(), test_ddc.get(), edge_port_info);
UHD_LOG_INFO("TEST", "Committing graph...");
graph.commit();
UHD_LOG_INFO("TEST", "Commit complete.");
}
|