1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
//
// Copyright 2020 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "../rfnoc_graph_mock_nodes.hpp"
#include <uhd/rfnoc/actions.hpp>
#include <uhd/rfnoc/defaults.hpp>
#include <uhd/rfnoc/duc_block_control.hpp>
#include <uhd/rfnoc/mock_block.hpp>
#include <uhdlib/rfnoc/graph.hpp>
#include <uhdlib/rfnoc/node_accessor.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <boost/test/unit_test.hpp>
#include <iostream>
using namespace uhd::rfnoc;
// Redeclare this here, since it's only defined outside of UHD_API
noc_block_base::make_args_t::~make_args_t() = default;
namespace {
constexpr size_t DEFAULT_MTU = 8000;
} // namespace
BOOST_AUTO_TEST_CASE(test_duc_block)
{
node_accessor_t node_accessor{};
constexpr uint32_t num_hb = 2;
constexpr uint32_t max_cic = 128;
constexpr size_t num_chans = 4;
constexpr noc_id_t noc_id = DUC_BLOCK;
constexpr int TEST_INTERP = 20; // 2 halfbands, CIC==5
constexpr double DEFAULT_RATE = 200e6; // Matches typical MCR of X310
auto block_container = get_mock_block(noc_id, num_chans, num_chans);
auto& duc_reg_iface = block_container.reg_iface;
duc_reg_iface->read_memory[duc_block_control::RB_COMPAT_NUM] =
(duc_block_control::MAJOR_COMPAT << 16) | duc_block_control::MINOR_COMPAT;
duc_reg_iface->read_memory[duc_block_control::RB_NUM_HB] = num_hb;
duc_reg_iface->read_memory[duc_block_control::RB_CIC_MAX_INTERP] = max_cic;
auto test_duc = block_container.get_block<duc_block_control>();
BOOST_REQUIRE(test_duc);
node_accessor.init_props(test_duc.get());
UHD_LOG_DEBUG("TEST", "Init done.");
test_duc->set_property<int>("interp", TEST_INTERP, 0);
BOOST_REQUIRE(duc_reg_iface->write_memory.count(duc_block_control::SR_INTERP_ADDR));
BOOST_CHECK_EQUAL(
duc_reg_iface->write_memory.at(duc_block_control::SR_INTERP_ADDR), 2 << 8 | 5);
BOOST_CHECK_EQUAL(test_duc->get_mtu({res_source_info::INPUT_EDGE, 0}), DEFAULT_MTU);
// Now plop it in a graph
detail::graph_t graph{};
detail::graph_t::graph_edge_t edge_info;
edge_info.src_port = 0;
edge_info.dst_port = 0;
edge_info.property_propagation_active = true;
edge_info.edge = detail::graph_t::graph_edge_t::DYNAMIC;
mock_terminator_t mock_source_term(1, {ACTION_KEY_STREAM_CMD});
mock_terminator_t mock_sink_term(1, {ACTION_KEY_STREAM_CMD});
UHD_LOG_INFO("TEST", "Priming mock source node props");
mock_source_term.set_edge_property<std::string>(
"type", "sc16", {res_source_info::OUTPUT_EDGE, 0});
mock_source_term.set_edge_property<double>(
"scaling", 1.0, {res_source_info::OUTPUT_EDGE, 0});
mock_source_term.set_edge_property<double>(
"samp_rate", DEFAULT_RATE / TEST_INTERP, {res_source_info::OUTPUT_EDGE, 0});
UHD_LOG_INFO("TEST", "Priming mock sink node props");
mock_sink_term.set_edge_property<std::string>(
"type", "sc16", {res_source_info::INPUT_EDGE, 0});
mock_sink_term.set_edge_property<double>(
"scaling", 1.0, {res_source_info::INPUT_EDGE, 0});
mock_sink_term.set_edge_property<double>(
"samp_rate", DEFAULT_RATE, {res_source_info::INPUT_EDGE, 0});
#define CHECK_OUTPUT_RATE(req_rate) \
BOOST_REQUIRE_CLOSE(mock_sink_term.get_edge_property<double>( \
"samp_rate", {res_source_info::INPUT_EDGE, 0}), \
req_rate, \
1e-6);
UHD_LOG_INFO("TEST", "Creating graph...");
graph.connect(&mock_source_term, test_duc.get(), edge_info);
graph.connect(test_duc.get(), &mock_sink_term, edge_info);
UHD_LOG_INFO("TEST", "Committing graph...");
graph.commit();
UHD_LOG_INFO("TEST", "Commit complete.");
CHECK_OUTPUT_RATE(DEFAULT_RATE);
// We need to set the interpation again, because the rates will screw it
// change it w.r.t. to the previous setting
test_duc->set_property<int>("interp", TEST_INTERP, 0);
BOOST_CHECK_EQUAL(test_duc->get_property<int>("interp", 0), TEST_INTERP);
BOOST_CHECK(mock_source_term.get_edge_property<double>(
"samp_rate", {res_source_info::OUTPUT_EDGE, 0})
* TEST_INTERP
== mock_sink_term.get_edge_property<double>(
"samp_rate", {res_source_info::INPUT_EDGE, 0}));
// Output rate should remain unchanged
CHECK_OUTPUT_RATE(DEFAULT_RATE);
const double initial_input_scaling = mock_source_term.get_edge_property<double>(
"scaling", {res_source_info::OUTPUT_EDGE, 0});
const double initial_output_scaling = mock_sink_term.get_edge_property<double>(
"scaling", {res_source_info::INPUT_EDGE, 0});
// Our chosen interpolation value will cause some scaling issues, so
// this value needs to be off from 1.0
BOOST_CHECK(initial_input_scaling != 1.0);
BOOST_CHECK(initial_output_scaling == 1.0);
// The DUC will not let us set the scaling on its input, so the following
// call to set property should have no effect
mock_source_term.set_edge_property<double>(
"scaling", 42.0, {res_source_info::OUTPUT_EDGE, 0});
BOOST_CHECK(initial_input_scaling
== mock_source_term.get_edge_property<double>(
"scaling", {res_source_info::OUTPUT_EDGE, 0}));
BOOST_CHECK(initial_output_scaling
== mock_sink_term.get_edge_property<double>(
"scaling", {res_source_info::INPUT_EDGE, 0}));
// However, if we change the scaling on the DUC's output, that will
// propagate to its input
UHD_LOG_INFO("TEST", "Testing doubling the output scaling...");
mock_sink_term.set_edge_property<double>(
"scaling", 2.0, {res_source_info::INPUT_EDGE, 0});
const double doubled_input_scaling = mock_source_term.get_edge_property<double>(
"scaling", {res_source_info::OUTPUT_EDGE, 0});
BOOST_CHECK_EQUAL(doubled_input_scaling, 2 * initial_input_scaling);
BOOST_CHECK_CLOSE(test_duc->get_frequency_range(0).start(), -DEFAULT_RATE / 2, 1e-6);
BOOST_CHECK_CLOSE(test_duc->get_frequency_range(0).stop(), DEFAULT_RATE / 2, 1e-6);
UHD_LOG_INFO("TEST",
"Setting freq to 1/8 of input rate (to " << (DEFAULT_RATE / 8) / 1e6 << " MHz)");
constexpr double TEST_FREQ = DEFAULT_RATE / 8;
test_duc->set_property<double>("freq", TEST_FREQ, 0);
const uint32_t freq_word_1 =
duc_reg_iface->write_memory.at(duc_block_control::SR_FREQ_ADDR);
BOOST_REQUIRE(freq_word_1 != 0);
UHD_LOG_INFO(
"TEST", "Doubling input rate (to " << (DEFAULT_RATE / 4) / 1e6 << " MHz)");
// Now this should change the freq word, but not the absolute frequency
mock_sink_term.set_edge_property<double>("samp_rate",
2
* mock_sink_term.get_edge_property<double>(
"samp_rate", {res_source_info::INPUT_EDGE, 0}),
{res_source_info::INPUT_EDGE, 0});
const double freq_word_2 =
duc_reg_iface->write_memory.at(duc_block_control::SR_FREQ_ADDR);
// The frequency word is the phase increment, which will halve. We skirt
// around fixpoint/floating point accuracy issues by using CLOSE.
BOOST_CHECK_CLOSE(double(freq_word_1) / double(freq_word_2), 2.0, 1e-6);
// Reset the interpolation
test_duc->set_property<int>("interp", TEST_INTERP, 0);
BOOST_REQUIRE_EQUAL(test_duc->get_property<int>("interp", 0), TEST_INTERP);
UHD_LOG_INFO("TEST", "DUC: Testing action forwarding");
auto new_stream_cmd_action =
stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
new_stream_cmd_action->stream_cmd.num_samps = 1000;
node_accessor.post_action(
&mock_sink_term, {res_source_info::INPUT_EDGE, 0}, new_stream_cmd_action);
BOOST_REQUIRE(!mock_source_term.received_actions.empty());
auto stream_cmd_recv_by_src = std::dynamic_pointer_cast<stream_cmd_action_info>(
mock_source_term.received_actions.back());
BOOST_CHECK(stream_cmd_recv_by_src);
BOOST_CHECK_EQUAL(stream_cmd_recv_by_src->stream_cmd.num_samps, 1000 / TEST_INTERP);
auto new_stream_cmd_action2 =
stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
node_accessor.post_action(
&mock_sink_term, {res_source_info::INPUT_EDGE, 0}, new_stream_cmd_action2);
BOOST_REQUIRE(!mock_source_term.received_actions.empty());
auto stream_cmd_recv_by_src2 = std::dynamic_pointer_cast<stream_cmd_action_info>(
mock_source_term.received_actions.back());
BOOST_CHECK_EQUAL(stream_cmd_recv_by_src2->stream_cmd.stream_mode,
uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
auto new_stream_cmd_action3 =
stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
new_stream_cmd_action3->stream_cmd.num_samps = 100;
node_accessor.post_action(
&mock_source_term, {res_source_info::OUTPUT_EDGE, 0}, new_stream_cmd_action3);
BOOST_REQUIRE(!mock_sink_term.received_actions.empty());
auto stream_cmd_recv_by_src3 = std::dynamic_pointer_cast<stream_cmd_action_info>(
mock_sink_term.received_actions.back());
BOOST_CHECK(stream_cmd_recv_by_src3);
BOOST_CHECK_EQUAL(stream_cmd_recv_by_src3->stream_cmd.num_samps, 100 * TEST_INTERP);
}
|