1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
//
// Copyright 2014-2016 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <iostream>
#include <string>
#include <string.h>
#include <boost/algorithm/string.hpp>
#include <boost/asio.hpp>
#include <stdint.h>
#include <boost/format.hpp>
#include <boost/thread/thread.hpp>
#include <uhd/exception.hpp>
#include <uhd/utils/byteswap.hpp>
#include "common.h"
#include "octoclock_uart.hpp"
namespace asio = boost::asio;
using namespace uhd::transport;
#define NUM_WRAPS_EQUAL (_state.num_wraps == _device_state.num_wraps)
#define POS_EQUAL (_state.pos == _device_state.pos)
#define STATES_EQUAL (NUM_WRAPS_EQUAL && POS_EQUAL)
#define MAX_CACHE_AGE 256 //seconds
namespace uhd{
octoclock_uart_iface::octoclock_uart_iface(udp_simple::sptr udp, uint32_t proto_ver): uart_iface(){
_udp = udp;
_state.num_wraps = 0;
_state.pos = 0;
_device_state.num_wraps = 0;
_device_state.pos = 0;
_proto_ver = proto_ver;
// To avoid replicating sequence numbers between sessions
_sequence = uint32_t(std::rand());
size_t len = 0;
//Get pool size from device
octoclock_packet_t pkt_out;
pkt_out.sequence = uhd::htonx<uint32_t>(_sequence);
pkt_out.len = 0;
uint8_t octoclock_data[udp_simple::mtu];
const octoclock_packet_t *pkt_in = reinterpret_cast<octoclock_packet_t*>(octoclock_data);
UHD_OCTOCLOCK_SEND_AND_RECV(_udp, _proto_ver, SEND_POOLSIZE_CMD, pkt_out, len, octoclock_data);
if(UHD_OCTOCLOCK_PACKET_MATCHES(SEND_POOLSIZE_ACK, pkt_out, pkt_in, len)){
_poolsize = pkt_in->poolsize;
_cache.resize(_poolsize);
}
else throw uhd::runtime_error("Failed to communicate with GPSDO.");
}
void octoclock_uart_iface::write_uart(const std::string &buf){
size_t len = 0;
octoclock_packet_t pkt_out;
pkt_out.sequence = uhd::htonx<uint32_t>(++_sequence);
pkt_out.len = buf.size();
memcpy(pkt_out.data, buf.c_str(), buf.size());
uint8_t octoclock_data[udp_simple::mtu];
const octoclock_packet_t *pkt_in = reinterpret_cast<octoclock_packet_t*>(octoclock_data);
UHD_OCTOCLOCK_SEND_AND_RECV(_udp, _proto_ver, HOST_SEND_TO_GPSDO_CMD, pkt_out, len, octoclock_data);
if(not UHD_OCTOCLOCK_PACKET_MATCHES(HOST_SEND_TO_GPSDO_ACK, pkt_out, pkt_in, len)){
throw uhd::runtime_error("Failed to send commands to GPSDO.");
}
}
std::string octoclock_uart_iface::read_uart(double timeout){
std::string result;
boost::system_time exit_time = boost::get_system_time() + boost::posix_time::milliseconds(long(timeout*1e3));
while(true)
{
_update_cache();
for(char ch = _getchar(); ch != 0; ch = _getchar()){
_rxbuff += ch;
//If newline found, return string
if(ch == '\n'){
result.swap(_rxbuff);
return result;
}
}
if (boost::get_system_time() > exit_time)
{
break;
}
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
}
return result;
}
void octoclock_uart_iface::_update_cache(){
octoclock_packet_t pkt_out;
pkt_out.len = 0;
size_t len = 0;
uint8_t octoclock_data[udp_simple::mtu];
const octoclock_packet_t *pkt_in = reinterpret_cast<octoclock_packet_t*>(octoclock_data);
if(STATES_EQUAL){
boost::system_time time = boost::get_system_time();
boost::posix_time::time_duration age = time - _last_cache_update;
bool cache_expired = (age > boost::posix_time::seconds(MAX_CACHE_AGE));
pkt_out.sequence = uhd::htonx<uint32_t>(++_sequence);
UHD_OCTOCLOCK_SEND_AND_RECV(_udp, _proto_ver, SEND_GPSDO_CACHE_CMD, pkt_out, len, octoclock_data);
if(UHD_OCTOCLOCK_PACKET_MATCHES(SEND_GPSDO_CACHE_ACK, pkt_out, pkt_in, len)){
memcpy(&_cache[0], pkt_in->data, _poolsize);
_device_state = pkt_in->state;
_last_cache_update = time;
}
uint8_t delta_wraps = (_device_state.num_wraps - _state.num_wraps);
if(cache_expired or delta_wraps > 1 or
((delta_wraps == 1) and (_device_state.pos > _state.pos))){
_state.pos = _device_state.pos;
_state.num_wraps = (_device_state.num_wraps-1);
_rxbuff.clear();
while((_cache[_state.pos] != '\n')){
_state.pos = (_state.pos+1) % _poolsize;
//We may have wrapped around locally
if(_state.pos == 0) _state.num_wraps++;
if(STATES_EQUAL) break;
}
if (_cache[_state.pos] == '\n'){
_state.pos = (_state.pos+1) % _poolsize;
//We may have wrapped around locally
if(_state.pos == 0) _state.num_wraps++;
}
}
}
}
char octoclock_uart_iface::_getchar(){
if(STATES_EQUAL){
return 0;
}
char ch = _cache[_state.pos];
_state.pos = ((_state.pos+1) % _poolsize);
//We may have wrapped around locally
if(_state.pos == 0) _state.num_wraps++;
return ch;
}
uart_iface::sptr octoclock_make_uart_iface(udp_simple::sptr udp, uint32_t proto_ver){
return uart_iface::sptr(new octoclock_uart_iface(udp, proto_ver));
}
}
|