1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
//
// Copyright 2014,2016 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "octoclock_impl.hpp"
#include "common.h"
#include "octoclock_uart.hpp"
#include <uhd/device.hpp>
#include <uhd/exception.hpp>
#include <uhd/transport/if_addrs.hpp>
#include <uhd/transport/udp_simple.hpp>
#include <uhd/types/dict.hpp>
#include <uhd/usrp/gps_ctrl.hpp>
#include <uhd/usrp_clock/octoclock_eeprom.hpp>
#include <uhd/utils/byteswap.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/paths.hpp>
#include <uhd/utils/static.hpp>
#include <stdint.h>
#include <boost/asio.hpp>
#include <boost/assign.hpp>
#include <boost/filesystem.hpp>
#include <boost/format.hpp>
#include <boost/thread.hpp>
using namespace uhd;
using namespace uhd::usrp_clock;
using namespace uhd::transport;
namespace asio = boost::asio;
namespace fs = boost::filesystem;
/***********************************************************************
* Discovery
**********************************************************************/
device_addrs_t octoclock_find(const device_addr_t& hint)
{
// Handle the multi-device discovery
device_addrs_t hints = separate_device_addr(hint);
if (hints.size() > 1) {
device_addrs_t found_devices;
std::string error_msg;
for (const device_addr_t& hint_i : hints) {
device_addrs_t found_devices_i = octoclock_find(hint_i);
if (found_devices_i.size() != 1)
error_msg +=
str(boost::format(
"Could not resolve device hint \"%s\" to a single device.")
% hint_i.to_string());
else
found_devices.push_back(found_devices_i[0]);
}
if (found_devices.empty())
return device_addrs_t();
if (not error_msg.empty())
throw uhd::value_error(error_msg);
return device_addrs_t(1, combine_device_addrs(found_devices));
}
// Initialize the hint for a single device case
UHD_ASSERT_THROW(hints.size() <= 1);
hints.resize(1); // In case it was empty
device_addr_t _hint = hints[0];
device_addrs_t octoclock_addrs;
// return an empty list of addresses when type is set to non-OctoClock
if (hint.has_key("type") and hint["type"].find("octoclock") == std::string::npos)
return octoclock_addrs;
// Return an empty list of addresses when a resource is specified,
// since a resource is intended for a different, non-USB, device.
if (hint.has_key("resource"))
return octoclock_addrs;
// If no address was specified, send a broadcast on each interface
if (not _hint.has_key("addr")) {
for (const if_addrs_t& if_addrs : get_if_addrs()) {
// avoid the loopback device
if (if_addrs.inet == asio::ip::address_v4::loopback().to_string())
continue;
// create a new hint with this broadcast address
device_addr_t new_hint = hint;
new_hint["addr"] = if_addrs.bcast;
// call discover with the new hint and append results
device_addrs_t new_octoclock_addrs = octoclock_find(new_hint);
octoclock_addrs.insert(octoclock_addrs.begin(),
new_octoclock_addrs.begin(),
new_octoclock_addrs.end());
}
return octoclock_addrs;
}
// Create a UDP transport to communicate
udp_simple::sptr udp_transport = udp_simple::make_broadcast(
_hint["addr"], BOOST_STRINGIZE(OCTOCLOCK_UDP_CTRL_PORT));
// Send a query packet
auto pkt_out = make_octoclock_packet();
pkt_out.len = 0;
pkt_out.code = OCTOCLOCK_QUERY_CMD;
try {
udp_transport->send(boost::asio::buffer(&pkt_out, sizeof(pkt_out)));
} catch (const std::exception& ex) {
UHD_LOGGER_ERROR("OCTOCLOCK")
<< "OctoClock network discovery error - " << ex.what();
} catch (...) {
UHD_LOGGER_ERROR("OCTOCLOCK") << "OctoClock network discovery unknown error";
}
uint8_t octoclock_data[udp_simple::mtu];
const octoclock_packet_t* pkt_in =
reinterpret_cast<octoclock_packet_t*>(octoclock_data);
while (true) {
size_t len = udp_transport->recv(asio::buffer(octoclock_data));
if (UHD_OCTOCLOCK_PACKET_MATCHES(OCTOCLOCK_QUERY_ACK, pkt_out, pkt_in, len)) {
device_addr_t new_addr;
new_addr["addr"] = udp_transport->get_recv_addr();
// Attempt direct communication with OctoClock
udp_simple::sptr ctrl_xport = udp_simple::make_connected(
new_addr["addr"], BOOST_STRINGIZE(OCTOCLOCK_UDP_CTRL_PORT));
UHD_OCTOCLOCK_SEND_AND_RECV(ctrl_xport,
OCTOCLOCK_FW_COMPAT_NUM,
OCTOCLOCK_QUERY_CMD,
pkt_out,
len,
octoclock_data);
if (UHD_OCTOCLOCK_PACKET_MATCHES(OCTOCLOCK_QUERY_ACK, pkt_out, pkt_in, len)) {
// If the OctoClock is in its bootloader, don't ask for details
if (pkt_in->proto_ver == OCTOCLOCK_BOOTLOADER_PROTO_VER) {
new_addr["type"] = "octoclock-bootloader";
octoclock_addrs.push_back(new_addr);
} else {
new_addr["type"] = "octoclock";
if (pkt_in->proto_ver >= OCTOCLOCK_FW_MIN_COMPAT_NUM
and pkt_in->proto_ver <= OCTOCLOCK_FW_COMPAT_NUM) {
octoclock_eeprom_t oc_eeprom(ctrl_xport, pkt_in->proto_ver);
new_addr["name"] = oc_eeprom["name"];
new_addr["serial"] = oc_eeprom["serial"];
} else {
new_addr["name"] = "";
new_addr["serial"] = "";
}
// Filter based on optional keys (if any)
if ((not _hint.has_key("name") or (_hint["name"] == new_addr["name"]))
and (not _hint.has_key("serial")
or (_hint["serial"] == new_addr["serial"]))) {
octoclock_addrs.push_back(new_addr);
}
}
} else
continue;
}
if (len == 0)
break;
}
return octoclock_addrs;
}
device::sptr octoclock_make(const device_addr_t& device_addr)
{
return device::sptr(new octoclock_impl(device_addr));
}
UHD_STATIC_BLOCK(register_octoclock_device)
{
device::register_device(&octoclock_find, &octoclock_make, device::CLOCK);
}
/***********************************************************************
* Helpers
**********************************************************************/
octoclock_packet_t make_octoclock_packet()
{
octoclock_packet_t new_pkt;
memset(&new_pkt, 0, sizeof(octoclock_packet_t));
new_pkt.sequence = uint32_t(std::rand());
new_pkt.proto_ver = OCTOCLOCK_FW_COMPAT_NUM;
return new_pkt;
}
octoclock_packet_t make_octoclock_packet(const uint32_t sequence)
{
octoclock_packet_t new_pkt;
memset(&new_pkt, 0, sizeof(octoclock_packet_t));
new_pkt.sequence = sequence;
new_pkt.proto_ver = OCTOCLOCK_FW_COMPAT_NUM;
return new_pkt;
}
/***********************************************************************
* Structors
**********************************************************************/
octoclock_impl::octoclock_impl(const device_addr_t& _device_addr)
{
UHD_LOGGER_INFO("OCTOCLOCK") << "Opening an OctoClock device...";
_type = device::CLOCK;
device_addrs_t device_args = separate_device_addr(_device_addr);
// To avoid replicating sequence numbers between sessions
_sequence = uint32_t(std::rand());
////////////////////////////////////////////////////////////////////
// Initialize the property tree
////////////////////////////////////////////////////////////////////
_tree = property_tree::make();
_tree->create<std::string>("/name").set("OctoClock Device");
for (size_t oci = 0; oci < device_args.size(); oci++) {
const device_addr_t device_args_i = device_args[oci];
const std::string addr = device_args_i["addr"];
// Can't make a device out of an OctoClock in bootloader state
if (device_args_i["type"] == "octoclock-bootloader") {
throw uhd::runtime_error(
str(boost::format("\n\nThis device is in its bootloader state and cannot "
"be used by UHD.\n"
"This may mean the firmware on the device has been "
"corrupted and will\n"
"need to be burned again.\n\n"
"%s\n")
% _get_images_help_message(addr)));
}
const std::string oc = std::to_string(oci);
////////////////////////////////////////////////////////////////////
// Set up UDP transports
////////////////////////////////////////////////////////////////////
_oc_dict[oc].ctrl_xport =
udp_simple::make_connected(addr, BOOST_STRINGIZE(OCTOCLOCK_UDP_CTRL_PORT));
_oc_dict[oc].gpsdo_xport =
udp_simple::make_connected(addr, BOOST_STRINGIZE(OCTOCLOCK_UDP_GPSDO_PORT));
const fs_path oc_path = "/mboards/" + oc;
_tree->create<std::string>(oc_path / "name").set("OctoClock");
////////////////////////////////////////////////////////////////////
// Check the firmware compatibility number
////////////////////////////////////////////////////////////////////
_proto_ver = _get_fw_version(oc);
if (_proto_ver < OCTOCLOCK_FW_MIN_COMPAT_NUM
or _proto_ver > OCTOCLOCK_FW_COMPAT_NUM) {
throw uhd::runtime_error(str(
boost::format(
"\n\nPlease update your OctoClock's firmware.\n"
"Expected firmware compatibility number %d, but got %d:\n"
"The firmware build is not compatible with the host code build.\n\n"
"%s\n")
% int(OCTOCLOCK_FW_COMPAT_NUM) % int(_proto_ver)
% _get_images_help_message(addr)));
}
_tree->create<std::string>(oc_path / "fw_version")
.set(std::to_string(int(_proto_ver)));
////////////////////////////////////////////////////////////////////
// Set up EEPROM
////////////////////////////////////////////////////////////////////
_oc_dict[oc].eeprom = octoclock_eeprom_t(_oc_dict[oc].ctrl_xport, _proto_ver);
_tree->create<octoclock_eeprom_t>(oc_path / "eeprom")
.set(_oc_dict[oc].eeprom)
.add_coerced_subscriber(
std::bind(&octoclock_impl::_set_eeprom, this, oc, std::placeholders::_1));
////////////////////////////////////////////////////////////////////
// Initialize non-GPSDO sensors
////////////////////////////////////////////////////////////////////
_tree->create<uint32_t>(oc_path / "time")
.set_publisher(std::bind(&octoclock_impl::_get_time, this, oc));
_tree->create<sensor_value_t>(oc_path / "sensors/ext_ref_detected")
.set_publisher(std::bind(&octoclock_impl::_ext_ref_detected, this, oc));
_tree->create<sensor_value_t>(oc_path / "sensors/gps_detected")
.set_publisher(std::bind(&octoclock_impl::_gps_detected, this, oc));
_tree->create<sensor_value_t>(oc_path / "sensors/using_ref")
.set_publisher(std::bind(&octoclock_impl::_which_ref, this, oc));
_tree->create<sensor_value_t>(oc_path / "sensors/switch_pos")
.set_publisher(std::bind(&octoclock_impl::_switch_pos, this, oc));
////////////////////////////////////////////////////////////////////
// Check reference and GPSDO
////////////////////////////////////////////////////////////////////
std::string asterisk = (device_args.size() > 1) ? " * " : "";
if (device_args.size() > 1) {
UHD_LOGGER_INFO("OCTOCLOCK") << "Checking status of " << addr;
}
UHD_LOGGER_INFO("OCTOCLOCK")
<< boost::format("%sDetecting internal GPSDO...") % asterisk;
_get_state(oc);
if (_oc_dict[oc].state.gps_detected) {
try {
_oc_dict[oc].gps = gps_ctrl::make(
octoclock_make_uart_iface(_oc_dict[oc].gpsdo_xport, _proto_ver));
if (_oc_dict[oc].gps and _oc_dict[oc].gps->gps_detected()) {
for (const std::string& name : _oc_dict[oc].gps->get_sensors()) {
_tree->create<sensor_value_t>(oc_path / "sensors" / name)
.set_publisher(
std::bind(&gps_ctrl::get_sensor, _oc_dict[oc].gps, name));
}
} else {
// If GPSDO communication failed, set gps_detected to false
_oc_dict[oc].state.gps_detected = 0;
UHD_LOGGER_WARNING("OCTOCLOCK")
<< "Device reports that it has a GPSDO, but we cannot "
"communicate with it.";
}
} catch (std::exception& e) {
UHD_LOGGER_ERROR("OCTOCLOCK")
<< "An error occurred making GPSDO control: " << e.what();
}
} else
UHD_LOGGER_INFO("OCTOCLOCK") << "No GPSDO found";
UHD_LOGGER_INFO("OCTOCLOCK")
<< boost::format("%sDetecting external reference...%s") % asterisk
% _ext_ref_detected(oc).value;
UHD_LOGGER_INFO("OCTOCLOCK") << boost::format("%sDetecting switch position...%s")
% asterisk % _switch_pos(oc).value;
std::string ref = _which_ref(oc).value;
if (ref == "none")
UHD_LOGGER_INFO("OCTOCLOCK")
<< boost::format("%sDevice is not using any reference") % asterisk;
else
UHD_LOGGER_INFO("OCTOCLOCK")
<< boost::format("%sDevice is using %s reference") % asterisk
% _which_ref(oc).value;
}
}
rx_streamer::sptr octoclock_impl::get_rx_stream(UHD_UNUSED(const stream_args_t& args))
{
throw uhd::not_implemented_error("This function is incompatible with this device.");
}
tx_streamer::sptr octoclock_impl::get_tx_stream(UHD_UNUSED(const stream_args_t& args))
{
throw uhd::not_implemented_error("This function is incompatible with this device.");
}
bool octoclock_impl::recv_async_msg(
UHD_UNUSED(uhd::async_metadata_t&), UHD_UNUSED(double))
{
throw uhd::not_implemented_error("This function is incompatible with this device.");
}
void octoclock_impl::_set_eeprom(
const std::string& oc, const octoclock_eeprom_t& oc_eeprom)
{
/*
* The OctoClock needs a full octoclock_eeprom_t so as to not erase
* what it currently has in the EEPROM, so store the relevant values
* from the user's input and send that instead.
*/
for (const std::string& key : oc_eeprom.keys()) {
if (_oc_dict[oc].eeprom.has_key(key))
_oc_dict[oc].eeprom[key] = oc_eeprom[key];
}
_oc_dict[oc].eeprom.commit();
}
uint32_t octoclock_impl::_get_fw_version(const std::string& oc)
{
auto pkt_out = make_octoclock_packet(uhd::htonx<uint32_t>(++_sequence));
size_t len;
uint8_t octoclock_data[udp_simple::mtu];
const octoclock_packet_t* pkt_in =
reinterpret_cast<octoclock_packet_t*>(octoclock_data);
UHD_OCTOCLOCK_SEND_AND_RECV(_oc_dict[oc].ctrl_xport,
OCTOCLOCK_FW_COMPAT_NUM,
OCTOCLOCK_QUERY_CMD,
pkt_out,
len,
octoclock_data);
if (UHD_OCTOCLOCK_PACKET_MATCHES(OCTOCLOCK_QUERY_ACK, pkt_out, pkt_in, len)) {
return pkt_in->proto_ver;
} else
throw uhd::runtime_error("Failed to retrieve firmware version from OctoClock.");
}
void octoclock_impl::_get_state(const std::string& oc)
{
auto pkt_out = make_octoclock_packet(uhd::htonx<uint32_t>(++_sequence));
size_t len = 0;
uint8_t octoclock_data[udp_simple::mtu];
const octoclock_packet_t* pkt_in =
reinterpret_cast<octoclock_packet_t*>(octoclock_data);
UHD_OCTOCLOCK_SEND_AND_RECV(_oc_dict[oc].ctrl_xport,
_proto_ver,
SEND_STATE_CMD,
pkt_out,
len,
octoclock_data);
if (UHD_OCTOCLOCK_PACKET_MATCHES(SEND_STATE_ACK, pkt_out, pkt_in, len)) {
const octoclock_state_t* state =
reinterpret_cast<const octoclock_state_t*>(pkt_in->data);
_oc_dict[oc].state = *state;
} else
throw uhd::runtime_error("Failed to retrieve state information from OctoClock.");
}
uhd::dict<ref_t, std::string> _ref_strings = boost::assign::map_list_of(NO_REF, "none")(
INTERNAL, "internal")(EXTERNAL, "external");
uhd::dict<switch_pos_t, std::string> _switch_pos_strings = boost::assign::map_list_of(
PREFER_INTERNAL, "Prefer internal")(PREFER_EXTERNAL, "Prefer external");
sensor_value_t octoclock_impl::_ext_ref_detected(const std::string& oc)
{
_get_state(oc);
return sensor_value_t("External reference detected",
(_oc_dict[oc].state.external_detected > 0),
"true",
"false");
}
sensor_value_t octoclock_impl::_gps_detected(const std::string& oc)
{
// Don't check, this shouldn't change once device is turned on
return sensor_value_t(
"GPSDO detected", (_oc_dict[oc].state.gps_detected > 0), "true", "false");
}
sensor_value_t octoclock_impl::_which_ref(const std::string& oc)
{
_get_state(oc);
if (not _ref_strings.has_key(ref_t(_oc_dict[oc].state.which_ref))) {
throw uhd::runtime_error("Invalid reference detected.");
}
return sensor_value_t(
"Using reference", _ref_strings[ref_t(_oc_dict[oc].state.which_ref)], "");
}
sensor_value_t octoclock_impl::_switch_pos(const std::string& oc)
{
_get_state(oc);
if (not _switch_pos_strings.has_key(switch_pos_t(_oc_dict[oc].state.switch_pos))) {
throw uhd::runtime_error("Invalid switch position detected.");
}
return sensor_value_t("Switch position",
_switch_pos_strings[switch_pos_t(_oc_dict[oc].state.switch_pos)],
"");
}
uint32_t octoclock_impl::_get_time(const std::string& oc)
{
if (_oc_dict[oc].state.gps_detected) {
std::string time_str = _oc_dict[oc].gps->get_sensor("gps_time").value;
return boost::lexical_cast<uint32_t>(time_str);
} else
throw uhd::runtime_error("This device cannot return a time.");
}
std::string octoclock_impl::_get_images_help_message(const std::string& addr)
{
const std::string image_name = "octoclock_r4_fw.hex";
// Check to see if image is in default location
std::string image_location;
try {
image_location = uhd::find_image_path(image_name);
} catch (const std::exception&) {
return str(boost::format("Could not find %s in your images path.\n%s")
% image_name % uhd::print_utility_error("uhd_images_downloader.py"));
}
// Get escape character
#ifdef UHD_PLATFORM_WIN32
const std::string ml = "^\n ";
#else
const std::string ml = "\\\n ";
#endif
// Get burner command
const std::string burner_path =
(fs::path(uhd::get_pkg_path()) / "bin" / "uhd_image_loader").string();
const std::string burner_cmd =
str(boost::format("%s %s--addr=\"%s\"") % burner_path % ml % addr);
return str(boost::format("%s\n%s")
% uhd::print_utility_error("uhd_images_downloader.py") % burner_cmd);
}
|