1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
|
//
// Copyright 2020 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "x400_radio_control.hpp"
#include "x400_gpio_control.hpp"
#include <uhd/rfnoc/registry.hpp>
#include <uhd/types/serial.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <uhdlib/rfnoc/reg_iface_adapter.hpp>
#include <uhdlib/usrp/common/x400_rfdc_control.hpp>
#include <uhdlib/usrp/cores/spi_core_4000.hpp>
#include <uhdlib/usrp/dboard/debug_dboard.hpp>
#include <uhdlib/usrp/dboard/null_dboard.hpp>
#include <uhdlib/usrp/dboard/zbx/zbx_dboard.hpp>
namespace uhd { namespace rfnoc {
x400_radio_control_impl::fpga_onload::fpga_onload(size_t num_channels,
uhd::features::adc_self_calibration_iface::sptr adc_self_cal,
std::string unique_id)
: _num_channels(num_channels), _adc_self_cal(adc_self_cal), _unique_id(unique_id)
{
}
void x400_radio_control_impl::fpga_onload::onload()
{
for (size_t channel = 0; channel < _num_channels; channel++) {
if (_adc_self_cal) {
try {
_adc_self_cal->run(channel);
} catch (uhd::runtime_error& e) {
RFNOC_LOG_WARNING("Failure while running self cal on channel "
<< channel << ": " << e.what());
}
}
}
}
x400_radio_control_impl::x400_radio_control_impl(make_args_ptr make_args)
: radio_control_impl(std::move(make_args))
{
RFNOC_LOG_TRACE("Initializing x400_radio_control");
UHD_ASSERT_THROW(get_block_id().get_block_count() < 2);
constexpr char radio_slot_name[2] = {'A', 'B'};
_radio_slot = radio_slot_name[get_block_id().get_block_count()];
_rpc_prefix = get_block_id().get_block_count() == 1 ? "db_1_" : "db_0_";
UHD_ASSERT_THROW(get_mb_controller());
_mb_control = std::dynamic_pointer_cast<mpmd_mb_controller>(get_mb_controller());
UHD_ASSERT_THROW(_mb_control)
_x4xx_timekeeper = std::dynamic_pointer_cast<mpmd_mb_controller::mpmd_timekeeper>(
_mb_control->get_timekeeper(0));
UHD_ASSERT_THROW(_x4xx_timekeeper);
_rpcc = _mb_control->dynamic_cast_rpc_as<uhd::usrp::x400_rpc_iface>();
if (!_rpcc) {
_rpcc = std::make_shared<uhd::usrp::x400_rpc>(_mb_control->get_rpc_client());
}
_db_rpcc = _mb_control->dynamic_cast_rpc_as<uhd::usrp::dboard_base_rpc_iface>();
if (!_db_rpcc) {
_db_rpcc = std::make_shared<uhd::usrp::dboard_base_rpc>(
_mb_control->get_rpc_client(), _rpc_prefix);
}
const auto all_dboard_info = _rpcc->get_dboard_info();
RFNOC_LOG_TRACE("Hardware detected " << all_dboard_info.size() << " daughterboards.");
// If we have two radio blocks, but there is only one dboard plugged in,
// we skip initialization. The board needs to be in slot A
if (all_dboard_info.size() <= get_block_id().get_block_count()) {
RFNOC_LOG_WARNING("The number of discovered daughterboards did not match the "
"number of radio blocks. Skipping front end initialization.");
_daughterboard = std::make_shared<null_dboard_impl>();
return;
}
const double master_clock_rate = _rpcc->get_master_clock_rate();
set_tick_rate(master_clock_rate);
_x4xx_timekeeper->update_tick_rate(master_clock_rate);
radio_control_impl::set_rate(master_clock_rate);
for (auto& samp_rate_prop : _samp_rate_in) {
set_property(samp_rate_prop.get_id(), get_rate(), samp_rate_prop.get_src_info());
}
for (auto& samp_rate_prop : _samp_rate_out) {
set_property(samp_rate_prop.get_id(), get_rate(), samp_rate_prop.get_src_info());
}
_validate_master_clock_rate_args();
_init_mpm();
RFNOC_LOG_TRACE("Initializing RFDC controls...");
_rfdcc = std::make_shared<x400::rfdc_control>(
// clang-format off
uhd::memmap32_iface_timed{
[this](const uint32_t addr, const uint32_t data, const uhd::time_spec_t& time_spec) {
regs().poke32(addr + x400_regs::RFDC_CTRL_BASE, data, time_spec);
},
[this](const uint32_t addr) {
return regs().peek32(addr + x400_regs::RFDC_CTRL_BASE);
}
},
// clang-format on
get_unique_id() + "::RFDC");
const auto& dboard = all_dboard_info[get_block_id().get_block_count()];
const std::string pid(dboard.at("pid").begin(), dboard.at("pid").end());
RFNOC_LOG_TRACE("Initializing daughterboard driver for PID " << pid);
// We may have physical daughterboards in the system, but no GPIO interface to the
// daughterboard in the FPGA. In this case, just instantiate the null daughterboard.
if (!_rpcc->is_db_gpio_ifc_present(get_block_id().get_block_count())) {
RFNOC_LOG_WARNING(
"Skipping daughterboard initialization, no GPIO interface in FPGA");
_daughterboard = std::make_shared<null_dboard_impl>();
return;
}
if (std::stol(pid) == uhd::usrp::zbx::ZBX_PID) {
auto zbx_rpc_sptr = _mb_control->dynamic_cast_rpc_as<uhd::usrp::zbx_rpc_iface>();
if (!zbx_rpc_sptr) {
zbx_rpc_sptr = std::make_shared<uhd::usrp::zbx_rpc>(
_mb_control->get_rpc_client(), _rpc_prefix);
}
_daughterboard = std::make_shared<uhd::usrp::zbx::zbx_dboard_impl>(
regs(),
regmap::PERIPH_BASE,
[this](const size_t instance) { return get_command_time(instance); },
get_block_id().get_block_count(),
_radio_slot,
_rpc_prefix,
get_unique_id(),
_rpcc,
zbx_rpc_sptr,
_rfdcc,
get_tree());
} else if (std::stol(pid) == uhd::rfnoc::DEBUG_DB_PID) {
_daughterboard = std::make_shared<debug_dboard_impl>();
} else if (std::stol(pid) == uhd::rfnoc::IF_TEST_DBOARD_PID) {
_daughterboard =
std::make_shared<if_test_dboard_impl>(get_block_id().get_block_count(),
_rpc_prefix,
get_unique_id(),
_mb_control,
get_tree());
} else if (std::stol(pid) == uhd::rfnoc::EMPTY_DB_PID) {
_daughterboard = std::make_shared<empty_slot_dboard_impl>();
set_num_output_ports(0);
set_num_input_ports(0);
} else {
RFNOC_LOG_WARNING("Skipping Daughterboard initialization for unsupported PID "
<< "0x" << std::hex << std::stol(pid));
_daughterboard = std::make_shared<null_dboard_impl>();
return;
}
_init_prop_tree();
_rx_pwr_mgr = _daughterboard->get_pwr_mgr(uhd::RX_DIRECTION);
_tx_pwr_mgr = _daughterboard->get_pwr_mgr(uhd::TX_DIRECTION);
_tx_gain_profile_api = _daughterboard->get_tx_gain_profile_api();
_rx_gain_profile_api = _daughterboard->get_rx_gain_profile_api();
if (_daughterboard->is_adc_self_cal_supported()) {
_adc_self_calibration =
std::make_shared<uhd::features::adc_self_calibration>(_rpcc,
_rpc_prefix,
get_unique_id(),
get_block_id().get_block_count(),
_daughterboard);
register_feature(_adc_self_calibration);
}
_fpga_onload = std::make_shared<fpga_onload>(
get_num_output_ports(), _adc_self_calibration, get_unique_id());
register_feature(_fpga_onload);
_mb_control->_fpga_onload->request_cb(_fpga_onload);
auto mpm_rpc = _mb_control->dynamic_cast_rpc_as<uhd::usrp::mpmd_rpc_iface>();
if (mpm_rpc->get_gpio_banks().size() > 0) {
_gpios = std::make_shared<x400::gpio_control>(
_rpcc, _mb_control, RFNOC_MAKE_WB_IFACE(regmap::PERIPH_BASE + 0xC000, 0));
auto gpio_port_mapper = std::shared_ptr<uhd::mapper::gpio_port_mapper>(
new uhd::rfnoc::x400::x400_gpio_port_mapping);
// Check if SPI is available as GPIO source, otherwise don't register
// SPI_GETTER_IFace
auto gpio_srcs = _mb_control->get_gpio_srcs("GPIO0");
if (std::count(gpio_srcs.begin(), gpio_srcs.end(), "DB0_SPI") > 0) {
auto spicore = uhd::cores::spi_core_4000::make(
[this](const uint32_t addr, const uint32_t data) {
regs().poke32(addr, data, get_command_time(0));
},
[this](const uint32_t addr) {
return regs().peek32(addr, get_command_time(0));
},
x400_regs::SPI_SLAVE_CFG,
x400_regs::SPI_TRANSACTION_CFG_REG,
x400_regs::SPI_TRANSACTION_GO_REG,
x400_regs::SPI_STATUS_REG,
x400_regs::SPI_CONTROLLER_INFO_REG,
gpio_port_mapper);
_spi_getter_iface = std::make_shared<x400_spi_getter>(spicore);
register_feature(_spi_getter_iface);
} else {
UHD_LOG_INFO("x400_radio_control",
"SPI functionality not available in this FPGA image. Please update to at "
"least version 7.7 to use SPI.");
}
}
}
void x400_radio_control_impl::_init_prop_tree()
{
auto subtree = get_tree()->subtree(fs_path("mboard"));
for (size_t chan_idx = 0; chan_idx < get_num_output_ports(); chan_idx++) {
const fs_path rx_codec_path =
fs_path("rx_codec") / get_dboard_fe_from_chan(chan_idx, uhd::RX_DIRECTION);
const fs_path tx_codec_path =
fs_path("tx_codec") / get_dboard_fe_from_chan(chan_idx, uhd::TX_DIRECTION);
RFNOC_LOG_TRACE("Adding non-RFNoC block properties for channel "
<< chan_idx << " to prop tree paths " << rx_codec_path << " and "
<< tx_codec_path);
// ADC calibration state attributes
subtree->create<bool>(rx_codec_path / "calibration_frozen")
.add_coerced_subscriber([this, chan_idx](bool state) {
_rpcc->set_cal_frozen(state, get_block_id().get_block_count(), chan_idx);
})
.set_publisher([this, chan_idx]() {
const auto freeze_states =
_rpcc->get_cal_frozen(get_block_id().get_block_count(), chan_idx);
return freeze_states.at(0) == 1;
});
// RFDC NCO
// RX
subtree->create<double>(rx_codec_path / "rfdc" / "freq/value")
.add_desired_subscriber([this, chan_idx](double freq) {
_rpcc->rfdc_set_nco_freq(_get_trx_string(RX_DIRECTION),
get_block_id().get_block_count(),
chan_idx,
freq);
})
.set_publisher([this, chan_idx]() {
const auto nco_freq =
_rpcc->rfdc_get_nco_freq(_get_trx_string(RX_DIRECTION),
get_block_id().get_block_count(),
chan_idx);
return nco_freq;
});
// TX
subtree->create<double>(tx_codec_path / "rfdc" / "freq/value")
.add_desired_subscriber([this, chan_idx](double freq) {
_rpcc->rfdc_set_nco_freq(_get_trx_string(TX_DIRECTION),
get_block_id().get_block_count(),
chan_idx,
freq);
})
.set_publisher([this, chan_idx]() {
const auto nco_freq =
_rpcc->rfdc_get_nco_freq(_get_trx_string(TX_DIRECTION),
get_block_id().get_block_count(),
chan_idx);
return nco_freq;
});
}
}
void x400_radio_control_impl::_validate_master_clock_rate_args()
{
auto block_args = get_block_args();
// Note: MCR gets set during the init() call (prior to this), which takes
// in arguments from the device args. So if block_args contains a
// master_clock_rate key, then it should better be whatever the device is
// configured to do.
const double master_clock_rate = _rpcc->get_master_clock_rate();
if (!uhd::math::frequencies_are_equal(get_rate(), master_clock_rate)) {
throw uhd::runtime_error(
str(boost::format("Master clock rate mismatch. Device returns %f MHz, "
"but should have been %f MHz.")
% (master_clock_rate / 1e6) % (get_rate() / 1e6)));
}
RFNOC_LOG_DEBUG("Master Clock Rate is: " << (master_clock_rate / 1e6) << " MHz.");
}
void x400_radio_control_impl::_init_mpm()
{
// Init sensors
for (const auto& dir : std::vector<direction_t>{RX_DIRECTION, TX_DIRECTION}) {
// TODO: We should pull the number of channels from _daughterboard
for (size_t chan_idx = 0; chan_idx < uhd::usrp::zbx::ZBX_NUM_CHANS; chan_idx++) {
_init_mpm_sensors(dir, chan_idx);
}
}
}
// @TODO: This should be a method on direction_t
// (or otherwise not duplicated from the implementation in zbx)
std::string x400_radio_control_impl::_get_trx_string(const direction_t dir) const
{
if (dir == RX_DIRECTION) {
return "rx";
} else if (dir == TX_DIRECTION) {
return "tx";
} else {
UHD_THROW_INVALID_CODE_PATH();
}
}
void x400_radio_control_impl::_init_mpm_sensors(
const direction_t dir, const size_t chan_idx)
{
// TODO: We should pull the number of channels from _daughterboard
UHD_ASSERT_THROW(chan_idx < uhd::usrp::zbx::ZBX_NUM_CHANS);
const std::string trx = _get_trx_string(dir);
const fs_path fe_path = fs_path("dboard")
/ (dir == RX_DIRECTION ? "rx_frontends" : "tx_frontends")
/ chan_idx;
auto sensor_list = _db_rpcc->get_sensors(trx);
RFNOC_LOG_TRACE("Chan " << chan_idx << ": Found " << sensor_list.size() << " " << trx
<< " sensors.");
for (const auto& sensor_name : sensor_list) {
RFNOC_LOG_TRACE("Adding " << trx << " sensor " << sensor_name);
get_tree()
->create<sensor_value_t>(fe_path / "sensors" / sensor_name)
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this, trx, sensor_name, chan_idx]() {
return sensor_value_t(
this->_db_rpcc->get_sensor(trx, sensor_name, chan_idx));
});
}
}
fs_path x400_radio_control_impl::_get_db_fe_path(
const size_t chan, const direction_t dir) const
{
const std::string trx = _get_trx_string(dir);
return DB_PATH / (trx + "_frontends") / get_dboard_fe_from_chan(chan, dir);
}
double x400_radio_control_impl::set_rate(const double rate)
{
// X400 does not support runtime rate changes
if (!uhd::math::frequencies_are_equal(rate, get_rate())) {
RFNOC_LOG_WARNING("Requesting invalid sampling rate from device: "
<< (rate / 1e6)
<< " MHz. Actual rate is: " << (get_rate() / 1e6) << " MHz.");
}
return get_rate();
}
std::vector<std::string> x400_radio_control_impl::get_gpio_banks() const
{
if (!_gpios) {
return {};
}
return {x400::GPIO_BANK_NAME};
}
uint32_t x400_radio_control_impl::get_gpio_attr(
const std::string& bank, const std::string& attr)
{
if (!_gpios) {
throw uhd::runtime_error("X410 does not have sufficient GPIO support!");
}
std::lock_guard<std::recursive_mutex> l(_lock);
if (bank != x400::GPIO_BANK_NAME) {
throw uhd::key_error("Invalid GPIO bank " + bank);
}
if (usrp::gpio_atr::gpio_attr_rev_map.count(attr) == 0) {
throw uhd::key_error("Invalid GPIO attribute " + attr);
}
return _gpios->get_gpio_attr(usrp::gpio_atr::gpio_attr_rev_map.at(attr));
}
void x400_radio_control_impl::set_gpio_attr(
const std::string& bank, const std::string& attr, const uint32_t value)
{
if (!_gpios) {
throw uhd::runtime_error("X410 does not have sufficient GPIO support!");
}
std::lock_guard<std::recursive_mutex> l(_lock);
if (bank != x400::GPIO_BANK_NAME) {
throw uhd::key_error("Invalid GPIO bank " + bank);
}
if (usrp::gpio_atr::gpio_attr_rev_map.count(attr) == 0) {
throw uhd::key_error("Invalid GPIO attribute " + attr);
}
_gpios->set_gpio_attr(usrp::gpio_atr::gpio_attr_rev_map.at(attr), value);
}
eeprom_map_t x400_radio_control_impl::get_db_eeprom()
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_db_eeprom();
}
std::vector<uhd::usrp::pwr_cal_mgr::sptr> x400_radio_control_impl::get_pwr_mgr(
const uhd::direction_t trx)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_pwr_mgr(trx);
}
std::string x400_radio_control_impl::get_tx_antenna(const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_antenna(chan);
}
std::vector<std::string> x400_radio_control_impl::get_tx_antennas(const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_antennas(chan);
}
void x400_radio_control_impl::set_tx_antenna(const std::string& ant, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
_daughterboard->set_tx_antenna(ant, chan);
}
std::string x400_radio_control_impl::get_rx_antenna(const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_antenna(chan);
}
std::vector<std::string> x400_radio_control_impl::get_rx_antennas(const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_antennas(chan);
}
void x400_radio_control_impl::set_rx_antenna(const std::string& ant, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
_daughterboard->set_rx_antenna(ant, chan);
}
double x400_radio_control_impl::get_tx_frequency(const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_frequency(chan);
}
double x400_radio_control_impl::set_tx_frequency(const double freq, size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->set_tx_frequency(freq, chan);
}
void x400_radio_control_impl::set_tx_tune_args(
const uhd::device_addr_t& args, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
_daughterboard->set_tx_tune_args(args, chan);
}
uhd::freq_range_t x400_radio_control_impl::get_tx_frequency_range(const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_frequency_range(chan);
}
double x400_radio_control_impl::get_rx_frequency(const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_frequency(chan);
}
double x400_radio_control_impl::set_rx_frequency(const double freq, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->set_rx_frequency(freq, chan);
}
void x400_radio_control_impl::set_rx_tune_args(
const uhd::device_addr_t& args, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
_daughterboard->set_rx_tune_args(args, chan);
}
uhd::freq_range_t x400_radio_control_impl::get_rx_frequency_range(const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_frequency_range(chan);
}
std::vector<std::string> x400_radio_control_impl::get_tx_gain_names(
const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_gain_names(chan);
}
uhd::gain_range_t x400_radio_control_impl::get_tx_gain_range(const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_gain_range(chan);
}
uhd::gain_range_t x400_radio_control_impl::get_tx_gain_range(
const std::string& name, const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_gain_range(name, chan);
}
double x400_radio_control_impl::get_tx_gain(const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_gain(chan);
}
double x400_radio_control_impl::get_tx_gain(const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_gain(name, chan);
}
double x400_radio_control_impl::set_tx_gain(const double gain, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->set_tx_gain(gain, chan);
}
double x400_radio_control_impl::set_tx_gain(
const double gain, const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->set_tx_gain(gain, name, chan);
}
std::vector<std::string> x400_radio_control_impl::get_rx_gain_names(
const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_gain_names(chan);
}
uhd::gain_range_t x400_radio_control_impl::get_rx_gain_range(const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_gain_range(chan);
}
uhd::gain_range_t x400_radio_control_impl::get_rx_gain_range(
const std::string& name, const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_gain_range(name, chan);
}
double x400_radio_control_impl::get_rx_gain(const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_gain(chan);
}
double x400_radio_control_impl::get_rx_gain(const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_gain(name, chan);
}
double x400_radio_control_impl::set_rx_gain(const double gain, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->set_rx_gain(gain, chan);
}
double x400_radio_control_impl::set_rx_gain(
const double gain, const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->set_rx_gain(gain, name, chan);
}
void x400_radio_control_impl::set_rx_agc(const bool enable, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
_daughterboard->set_rx_agc(enable, chan);
}
meta_range_t x400_radio_control_impl::get_tx_bandwidth_range(size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_bandwidth_range(chan);
}
double x400_radio_control_impl::get_tx_bandwidth(const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_bandwidth(chan);
}
double x400_radio_control_impl::set_tx_bandwidth(
const double bandwidth, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->set_tx_bandwidth(bandwidth, chan);
}
meta_range_t x400_radio_control_impl::get_rx_bandwidth_range(size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_bandwidth_range(chan);
}
double x400_radio_control_impl::get_rx_bandwidth(const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_bandwidth(chan);
}
double x400_radio_control_impl::set_rx_bandwidth(
const double bandwidth, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->set_rx_bandwidth(bandwidth, chan);
}
std::vector<std::string> x400_radio_control_impl::get_rx_lo_names(const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_lo_names(chan);
}
std::vector<std::string> x400_radio_control_impl::get_rx_lo_sources(
const std::string& name, const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_lo_sources(name, chan);
}
freq_range_t x400_radio_control_impl::get_rx_lo_freq_range(
const std::string& name, const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_lo_freq_range(name, chan);
}
void x400_radio_control_impl::set_rx_lo_source(
const std::string& src, const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
_daughterboard->set_rx_lo_source(src, name, chan);
}
const std::string x400_radio_control_impl::get_rx_lo_source(
const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_lo_source(name, chan);
}
void x400_radio_control_impl::set_rx_lo_export_enabled(
bool enabled, const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
_daughterboard->set_rx_lo_export_enabled(enabled, name, chan);
}
bool x400_radio_control_impl::get_rx_lo_export_enabled(
const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_lo_export_enabled(name, chan);
}
double x400_radio_control_impl::set_rx_lo_freq(
double freq, const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->set_rx_lo_freq(freq, name, chan);
}
double x400_radio_control_impl::get_rx_lo_freq(const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_rx_lo_freq(name, chan);
}
std::vector<std::string> x400_radio_control_impl::get_tx_lo_names(const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_lo_names(chan);
}
std::vector<std::string> x400_radio_control_impl::get_tx_lo_sources(
const std::string& name, const size_t chan) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_lo_sources(name, chan);
}
freq_range_t x400_radio_control_impl::get_tx_lo_freq_range(
const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_lo_freq_range(name, chan);
}
void x400_radio_control_impl::set_tx_lo_source(
const std::string& src, const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
_daughterboard->set_tx_lo_source(src, name, chan);
}
const std::string x400_radio_control_impl::get_tx_lo_source(
const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_lo_source(name, chan);
}
void x400_radio_control_impl::set_tx_lo_export_enabled(
const bool enabled, const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
_daughterboard->set_tx_lo_export_enabled(enabled, name, chan);
}
bool x400_radio_control_impl::get_tx_lo_export_enabled(
const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_lo_export_enabled(name, chan);
}
double x400_radio_control_impl::set_tx_lo_freq(
const double freq, const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->set_tx_lo_freq(freq, name, chan);
}
double x400_radio_control_impl::get_tx_lo_freq(const std::string& name, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_tx_lo_freq(name, chan);
}
void x400_radio_control_impl::set_command_time(uhd::time_spec_t time, const size_t chan)
{
node_t::set_command_time(time, chan);
_daughterboard->set_command_time(time, chan);
}
/**************************************************************************
* Sensor API
*************************************************************************/
std::vector<std::string> x400_radio_control_impl::get_rx_sensor_names(
const size_t chan) const
{
const fs_path sensor_path = _get_db_fe_path(chan, RX_DIRECTION) / "sensors";
if (get_tree()->exists(sensor_path)) {
return get_tree()->list(sensor_path);
}
return {};
}
uhd::sensor_value_t x400_radio_control_impl::get_rx_sensor(
const std::string& name, const size_t chan)
{
return get_tree()
->access<uhd::sensor_value_t>(
_get_db_fe_path(chan, RX_DIRECTION) / "sensors" / name)
.get();
}
std::vector<std::string> x400_radio_control_impl::get_tx_sensor_names(
const size_t chan) const
{
const fs_path sensor_path = _get_db_fe_path(chan, TX_DIRECTION) / "sensors";
if (get_tree()->exists(sensor_path)) {
return get_tree()->list(sensor_path);
}
return {};
}
uhd::sensor_value_t x400_radio_control_impl::get_tx_sensor(
const std::string& name, const size_t chan)
{
return get_tree()
->access<uhd::sensor_value_t>(
_get_db_fe_path(chan, TX_DIRECTION) / "sensors" / name)
.get();
}
/**************************************************************************
* Radio Identification API Calls
*************************************************************************/
size_t x400_radio_control_impl::get_chan_from_dboard_fe(
const std::string& fe, const uhd::direction_t direction) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_chan_from_dboard_fe(fe, direction);
}
std::string x400_radio_control_impl::get_dboard_fe_from_chan(
const size_t chan, const uhd::direction_t direction) const
{
std::lock_guard<std::recursive_mutex> l(_lock);
return _daughterboard->get_dboard_fe_from_chan(chan, direction);
}
UHD_RFNOC_BLOCK_REGISTER_FOR_DEVICE_DIRECT(
x400_radio_control, RADIO_BLOCK, X400, "Radio", true, "radio_clk", "ctrl_clk")
}} // namespace uhd::rfnoc
|