aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/x300/x300_radio_ctrl_impl.cpp
blob: e11548703bb539b41874578f06cf7f16cabe8ed6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
//
// Copyright 2015-2016 Ettus Research
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include "x300_radio_ctrl_impl.hpp"

#include "x300_dboard_iface.hpp"
#include "wb_iface_adapter.hpp"
#include "gpio_atr_3000.hpp"
#include "apply_corrections.hpp"
#include <uhd/usrp/dboard_eeprom.hpp>
#include <uhd/utils/msg.hpp>
#include <uhd/usrp/dboard_iface.hpp>
#include <uhd/rfnoc/node_ctrl_base.hpp>
#include <uhd/transport/chdr.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/make_shared.hpp>
#include <boost/date_time/posix_time/posix_time_io.hpp>

using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::rfnoc;
using namespace uhd::usrp::x300;

static const size_t IO_MASTER_RADIO = 0;

/****************************************************************************
 * Structors
 ***************************************************************************/
UHD_RFNOC_RADIO_BLOCK_CONSTRUCTOR(x300_radio_ctrl)
    , _ignore_cal_file(false)
{
    UHD_RFNOC_BLOCK_TRACE() << "x300_radio_ctrl_impl::ctor() " << std::endl;

    ////////////////////////////////////////////////////////////////////
    // Set up basic info
    ////////////////////////////////////////////////////////////////////
    _radio_type = (get_block_id().get_block_count() == 0) ? PRIMARY : SECONDARY;
    _radio_slot = (get_block_id().get_block_count() == 0) ? "A" : "B";
    _radio_clk_rate = _tree->access<double>("master_clock_rate").get();

    ////////////////////////////////////////////////////////////////////
    // Set up peripherals
    ////////////////////////////////////////////////////////////////////
    wb_iface::sptr ctrl = _get_ctrl(IO_MASTER_RADIO);
    _regs = boost::make_shared<radio_regmap_t>(_radio_type==PRIMARY?0:1);
    _regs->initialize(*ctrl, true);

    //Only Radio0 has the ADC/DAC reset bits. Those bits are reserved for Radio1
    if (_radio_type==PRIMARY) {
        _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 1);
        _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 0);
        _regs->misc_outs_reg.flush();
        _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 0);
        _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 1);
        _regs->misc_outs_reg.flush();
    }
    _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::DAC_ENABLED, 1);

    ////////////////////////////////////////////////////////////////
    // Setup peripherals
    ////////////////////////////////////////////////////////////////
    _spi = spi_core_3000::make(ctrl,
        radio_ctrl_impl::regs::sr_addr(radio_ctrl_impl::regs::SPI),
        radio_ctrl_impl::regs::RB_SPI);
    _leds = gpio_atr::gpio_atr_3000::make_write_only(ctrl, regs::sr_addr(regs::LEDS));
    _leds->set_atr_mode(usrp::gpio_atr::MODE_ATR, usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL);
    _adc = x300_adc_ctrl::make(_spi, DB_ADC_SEN);
    _dac = x300_dac_ctrl::make(_spi, DB_DAC_SEN, _radio_clk_rate);

    if (_radio_type==PRIMARY) {
        _fp_gpio = gpio_atr::gpio_atr_3000::make(ctrl, regs::sr_addr(regs::FP_GPIO), regs::RB_FP_GPIO);
        BOOST_FOREACH(const gpio_atr::gpio_attr_map_t::value_type attr, gpio_atr::gpio_attr_map) {
            _tree->create<boost::uint32_t>(fs_path("gpio") / "FP0" / attr.second)
                .set(0)
                .add_coerced_subscriber(boost::bind(&gpio_atr::gpio_atr_3000::set_gpio_attr, _fp_gpio, attr.first, _1));
        }
        _tree->create<boost::uint32_t>(fs_path("gpio") / "FP0" / "READBACK")
            .set_publisher(boost::bind(&gpio_atr::gpio_atr_3000::read_gpio, _fp_gpio));
    }

    ////////////////////////////////////////////////////////////////
    // create legacy codec control objects
    ////////////////////////////////////////////////////////////////
    _tree->create<int>("rx_codecs" / _radio_slot / "gains"); //phony property so this dir exists
    _tree->create<int>("tx_codecs" / _radio_slot / "gains"); //phony property so this dir exists
    _tree->create<std::string>("rx_codecs" / _radio_slot / "name").set("ads62p48");
    _tree->create<std::string>("tx_codecs" / _radio_slot / "name").set("ad9146");

    _tree->create<meta_range_t>("rx_codecs" / _radio_slot / "gains" / "digital" / "range").set(meta_range_t(0, 6.0, 0.5));
    _tree->create<double>("rx_codecs" / _radio_slot / "gains" / "digital" / "value")
        .add_coerced_subscriber(boost::bind(&x300_adc_ctrl::set_gain, _adc, _1)).set(0)
    ;

    ////////////////////////////////////////////////////////////////
    // create front-end objects
    ////////////////////////////////////////////////////////////////
    for (size_t i = 0; i < _get_num_radios(); i++) {
        _rx_fe_map[i].core = rx_frontend_core_3000::make(_get_ctrl(i), regs::sr_addr(x300_regs::RX_FE_BASE));
        _rx_fe_map[i].core->set_adc_rate(_radio_clk_rate);
        _rx_fe_map[i].core->set_dc_offset(rx_frontend_core_3000::DEFAULT_DC_OFFSET_VALUE);
        _rx_fe_map[i].core->set_dc_offset_auto(rx_frontend_core_3000::DEFAULT_DC_OFFSET_ENABLE);
        _rx_fe_map[i].core->populate_subtree(_tree->subtree(_root_path / "rx_fe_corrections" / i));

        _tx_fe_map[i].core = tx_frontend_core_200::make(_get_ctrl(i), regs::sr_addr(x300_regs::TX_FE_BASE));
        _tx_fe_map[i].core->set_dc_offset(tx_frontend_core_200::DEFAULT_DC_OFFSET_VALUE);
        _tx_fe_map[i].core->set_iq_balance(tx_frontend_core_200::DEFAULT_IQ_BALANCE_VALUE);
        _tx_fe_map[i].core->populate_subtree(_tree->subtree(_root_path / "tx_fe_corrections" / i));
    }

    ////////////////////////////////////////////////////////////////
    // Update default SPP (overwrites the default value from the XML file)
    ////////////////////////////////////////////////////////////////
    const size_t max_bytes_header = uhd::transport::vrt::chdr::max_if_hdr_words64 * sizeof(uint64_t);
    const size_t default_spp = (_tree->access<size_t>("mtu/recv").get() - max_bytes_header)
                               / (2 * sizeof(int16_t));
    _tree->access<int>(get_arg_path("spp") / "value").set(default_spp);
}

x300_radio_ctrl_impl::~x300_radio_ctrl_impl()
{
    // Tear down our part of the tree:
    _tree->remove(fs_path("rx_codecs" / _radio_slot));
    _tree->remove(fs_path("tx_codecs" / _radio_slot));
    _tree->remove(_root_path / "rx_fe_corrections");
    _tree->remove(_root_path / "tx_fe_corrections");
    if (_radio_type==PRIMARY) {
        BOOST_FOREACH(const gpio_atr::gpio_attr_map_t::value_type attr, gpio_atr::gpio_attr_map) {
            _tree->remove(fs_path("gpio") / "FP0" / attr.second);
        }
        _tree->remove(fs_path("gpio") / "FP0" / "READBACK");
    }

    // Reset peripherals
    if (_radio_type==PRIMARY) {
        _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 1);
        _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 0);
    }
    _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::DAC_ENABLED, 0);
    _regs->misc_outs_reg.flush();
}

/****************************************************************************
 * API calls
 ***************************************************************************/
double x300_radio_ctrl_impl::set_rate(double /* rate */)
{
    // On X3x0, tick rate can't actually be changed at runtime
    return get_rate();
}

void x300_radio_ctrl_impl::set_tx_antenna(const std::string &ant, const size_t chan)
{
    _tree->access<std::string>(
        fs_path("dboards" / _radio_slot / "tx_frontends" / _tx_fe_map.at(chan).db_fe_name / "antenna" / "value")
    ).set(ant);
}

void x300_radio_ctrl_impl::set_rx_antenna(const std::string &ant, const size_t chan)
{
    _tree->access<std::string>(
        fs_path("dboards" / _radio_slot / "rx_frontends" / _rx_fe_map.at(chan).db_fe_name / "antenna" / "value")
    ).set(ant);
}

double x300_radio_ctrl_impl::set_tx_frequency(const double freq, const size_t chan)
{
    return _tree->access<double>(
        fs_path("dboards" / _radio_slot / "tx_frontends" / _tx_fe_map.at(chan).db_fe_name / "freq" / "value")
    ).set(freq).get();
}

double x300_radio_ctrl_impl::get_tx_frequency(const size_t chan)
{
    return _tree->access<double>(
        fs_path("dboards" / _radio_slot / "tx_frontends" / _tx_fe_map.at(chan).db_fe_name / "freq" / "value")
    ).get();
}

double x300_radio_ctrl_impl::set_rx_frequency(const double freq, const size_t chan)
{
    return _tree->access<double>(
        fs_path("dboards" / _radio_slot / "rx_frontends" / _rx_fe_map.at(chan).db_fe_name / "freq" / "value")
    ).set(freq).get();
}

double x300_radio_ctrl_impl::get_rx_frequency(const size_t chan)
{
    return _tree->access<double>(
        fs_path("dboards" / _radio_slot / "rx_frontends" / _rx_fe_map.at(chan).db_fe_name / "freq" / "value")
    ).get();
}

double x300_radio_ctrl_impl::set_tx_gain(const double gain, const size_t chan)
{
    //TODO: This is extremely hacky!
    fs_path path("dboards" / _radio_slot / "tx_frontends" / _tx_fe_map.at(chan).db_fe_name / "gains");
    std::vector<std::string> gain_stages = _tree->list(path);
    if (gain_stages.size() == 1) {
        const double actual_gain = _tree->access<double>(path / gain_stages[0] / "value").set(gain).get();
        radio_ctrl_impl::set_tx_gain(actual_gain, chan);
        return gain;
    } else {
        UHD_MSG(warning) << "set_tx_gain: could not apply gain for this daughterboard.";
        radio_ctrl_impl::set_tx_gain(0.0, chan);
        return 0.0;
    }
}

double x300_radio_ctrl_impl::set_rx_gain(const double gain, const size_t chan)
{
    //TODO: This is extremely hacky!
    fs_path path("dboards" / _radio_slot / "rx_frontends" / _rx_fe_map.at(chan).db_fe_name / "gains");
    std::vector<std::string> gain_stages = _tree->list(path);
    if (gain_stages.size() == 1) {
        const double actual_gain = _tree->access<double>(path / gain_stages[0] / "value").set(gain).get();
        radio_ctrl_impl::set_rx_gain(actual_gain, chan);
        return gain;
    } else {
        UHD_MSG(warning) << "set_rx_gain: could not apply gain for this daughterboard.";
        radio_ctrl_impl::set_tx_gain(0.0, chan);
        return 0.0;
    }
}


template <typename map_type>
static size_t _get_chan_from_map(std::map<size_t, map_type> map, const std::string &fe)
{
    // TODO replace with 'auto' when possible
    typedef typename std::map<size_t, map_type>::iterator chan_iterator;
    for (chan_iterator it = map.begin(); it != map.end(); ++it) {
        if (it->second.db_fe_name == fe) {
            return it->first;
        }

    }
    throw uhd::runtime_error(str(
        boost::format("Invalid daughterboard frontend name: %s")
        % fe
    ));
}

size_t x300_radio_ctrl_impl::get_chan_from_dboard_fe(const std::string &fe, const uhd::direction_t direction)
{
    switch (direction) {
        case uhd::TX_DIRECTION:
            return _get_chan_from_map(_tx_fe_map, fe);
        case uhd::RX_DIRECTION:
            return _get_chan_from_map(_rx_fe_map, fe);
        default:
            UHD_THROW_INVALID_CODE_PATH();
    }
}

std::string x300_radio_ctrl_impl::get_dboard_fe_from_chan(const size_t chan, const uhd::direction_t direction)
{
    switch (direction) {
        case uhd::TX_DIRECTION:
            return _tx_fe_map.at(chan).db_fe_name;
        case uhd::RX_DIRECTION:
            return _rx_fe_map.at(chan).db_fe_name;
        default:
            UHD_THROW_INVALID_CODE_PATH();
    }
}

double x300_radio_ctrl_impl::get_output_samp_rate(size_t chan)
{
    // TODO: chan should never be ANY_PORT, but due to our current graph search
    // method, this can actually happen:
    if (chan == ANY_PORT) {
        chan = 0;
        for (size_t i = 0; i < _get_num_radios(); i++) {
            if (_is_streamer_active(uhd::RX_DIRECTION, chan)) {
                chan = i;
                break;
            }
        }
    }
    return _rx_fe_map.at(chan).core->get_output_rate();
}

/****************************************************************************
 * Radio control and setup
 ***************************************************************************/
void x300_radio_ctrl_impl::setup_radio(
        uhd::i2c_iface::sptr zpu_i2c,
        x300_clock_ctrl::sptr clock,
        bool ignore_cal_file,
        bool verbose)
{
    _self_cal_adc_capture_delay(verbose);
    _ignore_cal_file = ignore_cal_file;

    ////////////////////////////////////////////////////////////////////
    // create RF frontend interfacing
    ////////////////////////////////////////////////////////////////////
    static const size_t BASE_ADDR       = 0x50;
    static const size_t RX_EEPROM_ADDR  = 0x5;
    static const size_t TX_EEPROM_ADDR  = 0x4;
    static const size_t GDB_EEPROM_ADDR = 0x1;
    const static std::vector<size_t> EEPROM_ADDRS =
        boost::assign::list_of(RX_EEPROM_ADDR)(TX_EEPROM_ADDR)(GDB_EEPROM_ADDR);
    const static std::vector<std::string> EEPROM_PATHS =
        boost::assign::list_of("rx_eeprom")("tx_eeprom")("gdb_eeprom");

    const size_t DB_OFFSET = (_radio_slot == "A") ? 0x0 : 0x2;
    const fs_path db_path = ("dboards" / _radio_slot);
    for (size_t i = 0; i < EEPROM_ADDRS.size(); i++) {
        const size_t addr = EEPROM_ADDRS[i] + DB_OFFSET;
        //Load EEPROM
        _db_eeproms[addr].load(*zpu_i2c, BASE_ADDR | addr);
        //Add to tree
        _tree->create<dboard_eeprom_t>(db_path / EEPROM_PATHS[i])
            .set(_db_eeproms[addr])
            .add_coerced_subscriber(boost::bind(&x300_radio_ctrl_impl::_set_db_eeprom,
                this, zpu_i2c, (BASE_ADDR | addr), _1));
    }

    //create a new dboard interface
    x300_dboard_iface_config_t db_config;
    db_config.gpio = gpio_atr::db_gpio_atr_3000::make(_get_ctrl(IO_MASTER_RADIO),
        radio_ctrl_impl::regs::sr_addr(radio_ctrl_impl::regs::GPIO), radio_ctrl_impl::regs::RB_DB_GPIO);
    db_config.spi = _spi;
    db_config.rx_spi_slaveno = DB_RX_SEN;
    db_config.tx_spi_slaveno = DB_TX_SEN;
    db_config.i2c = zpu_i2c;
    db_config.clock = clock;
    db_config.which_rx_clk = (_radio_slot == "A") ? X300_CLOCK_WHICH_DB0_RX : X300_CLOCK_WHICH_DB1_RX;
    db_config.which_tx_clk = (_radio_slot == "A") ? X300_CLOCK_WHICH_DB0_TX : X300_CLOCK_WHICH_DB1_TX;
    db_config.dboard_slot = (_radio_slot == "A")? 0 : 1;
    db_config.cmd_time_ctrl = _get_ctrl(IO_MASTER_RADIO);

    //create a new dboard manager
    boost::shared_ptr<x300_dboard_iface> db_iface = boost::make_shared<x300_dboard_iface>(db_config);
    _db_manager = dboard_manager::make(
        _db_eeproms[RX_EEPROM_ADDR + DB_OFFSET].id,
        _db_eeproms[TX_EEPROM_ADDR + DB_OFFSET].id,
        _db_eeproms[GDB_EEPROM_ADDR + DB_OFFSET].id,
        db_iface, _tree->subtree(db_path),
        true // defer daughterboard intitialization
    );

    size_t rx_chan = 0, tx_chan = 0;
    BOOST_FOREACH(const std::string& fe, _db_manager->get_rx_frontends()) {
        if (rx_chan >= _get_num_radios()) {
            break;
        }
        _rx_fe_map[rx_chan].db_fe_name = fe;
        db_iface->add_rx_fe(fe, _rx_fe_map[rx_chan].core);
        const fs_path fe_path(db_path / "rx_frontends" / fe);
        const std::string conn = _tree->access<std::string>(fe_path / "connection").get();
        const double if_freq = (_tree->exists(fe_path / "if_freq/value")) ?
                            _tree->access<double>(fe_path / "if_freq/value").get() : 0.0;
        _rx_fe_map[rx_chan].core->set_fe_connection(usrp::fe_connection_t(conn, if_freq));
        rx_chan++;
    }
    BOOST_FOREACH(const std::string& fe, _db_manager->get_tx_frontends()) {
        if (tx_chan >= _get_num_radios()) {
            break;
        }
        _tx_fe_map[tx_chan].db_fe_name = fe;
        const fs_path fe_path(db_path / "tx_frontends" / fe);
        const std::string conn = _tree->access<std::string>(fe_path / "connection").get();
        _tx_fe_map[tx_chan].core->set_mux(conn);
        tx_chan++;
    }
    UHD_ASSERT_THROW(rx_chan or tx_chan);

    // Initialize the daughterboards now that frontend cores and connections exist
    _db_manager->initialize_dboards();

    //now that dboard is created -- register into rx antenna event
    if (not _rx_fe_map.empty()
        and _tree->exists(db_path / "rx_frontends" / _rx_fe_map[0].db_fe_name / "antenna" / "value")) {
        _tree->access<std::string>(db_path / "rx_frontends" / _rx_fe_map[0].db_fe_name / "antenna" / "value")
            .add_coerced_subscriber(boost::bind(&x300_radio_ctrl_impl::_update_atr_leds, this, _1));
    }
    _update_atr_leds(""); //init anyway, even if never called

    //bind frontend corrections to the dboard freq props
    const fs_path db_tx_fe_path = db_path / "tx_frontends";
    BOOST_FOREACH(const std::string &name, _tree->list(db_tx_fe_path)) {
        _tree->access<double>(db_tx_fe_path / name / "freq" / "value")
            .add_coerced_subscriber(boost::bind(&x300_radio_ctrl_impl::set_tx_fe_corrections, this, db_path, _root_path / "tx_fe_corrections" / name, _1));
    }
    const fs_path db_rx_fe_path = db_path / "rx_frontends";
    BOOST_FOREACH(const std::string &name, _tree->list(db_rx_fe_path)) {
        _tree->access<double>(db_rx_fe_path / name / "freq" / "value")
            .add_coerced_subscriber(boost::bind(&x300_radio_ctrl_impl::set_rx_fe_corrections, this, db_path, _root_path / "rx_fe_corrections" / name,_1));
    }

    ////////////////////////////////////////////////////////////////
    // Set tick rate
    ////////////////////////////////////////////////////////////////
    const double tick_rate = get_output_samp_rate(0);
    if (_radio_type==PRIMARY) {
        // Slot A is the highlander timekeeper
        _tree->access<double>("tick_rate").set(tick_rate);
    }
    radio_ctrl_impl::set_rate(tick_rate);
}

void x300_radio_ctrl_impl::set_rx_fe_corrections(
        const fs_path &db_path,
        const fs_path &rx_fe_corr_path,
        const double lo_freq
) {
    if (not _ignore_cal_file) {
        apply_rx_fe_corrections(_tree, db_path, rx_fe_corr_path, lo_freq);
    }
}

void x300_radio_ctrl_impl::set_tx_fe_corrections(
        const fs_path &db_path,
        const fs_path &tx_fe_corr_path,
        const double lo_freq
) {
    if (not _ignore_cal_file) {
        apply_tx_fe_corrections(_tree, db_path, tx_fe_corr_path, lo_freq);
    }
}

void x300_radio_ctrl_impl::reset_codec()
{
    if (_radio_type==PRIMARY) {  //ADC/DAC reset lines only exist in Radio0
        _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 1);
        _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 0);
        _regs->misc_outs_reg.flush();
        _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 0);
        _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 1);
        _regs->misc_outs_reg.flush();
    }
    UHD_ASSERT_THROW(bool(_adc));
    UHD_ASSERT_THROW(bool(_dac));
    _adc->reset();
    _dac->reset();
}

void x300_radio_ctrl_impl::self_test_adc(boost::uint32_t ramp_time_ms)
{
    //Bypass all front-end corrections
    for (size_t i = 0; i < _get_num_radios(); i++) {
        _rx_fe_map[i].core->bypass_all(true);
    }

    //Test basic patterns
    _adc->set_test_word("ones", "ones");    _check_adc(0xfffcfffc);
    _adc->set_test_word("zeros", "zeros");  _check_adc(0x00000000);
    _adc->set_test_word("ones", "zeros");   _check_adc(0xfffc0000);
    _adc->set_test_word("zeros", "ones");   _check_adc(0x0000fffc);
    for (size_t k = 0; k < 14; k++) {
        _adc->set_test_word("zeros", "custom", 1 << k);
        _check_adc(1 << (k+2));
    }
    for (size_t k = 0; k < 14; k++) {
        _adc->set_test_word("custom", "zeros", 1 << k);
        _check_adc(1 << (k+18));
    }

    //Turn on ramp pattern test
    _adc->set_test_word("ramp", "ramp");
    _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
    //Sleep added for SPI transactions to finish and ramp to start before checker is enabled.
    boost::this_thread::sleep(boost::posix_time::microsec(1000));
    _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);

    boost::this_thread::sleep(boost::posix_time::milliseconds(ramp_time_ms));
    _regs->misc_ins_reg.refresh();

    std::string i_status, q_status;
    if (_regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_LOCKED))
        if (_regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_ERROR))
            i_status = "Bit Errors!";
        else
            i_status = "Good";
    else
        i_status = "Not Locked!";

    if (_regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_LOCKED))
        if (_regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_ERROR))
            q_status = "Bit Errors!";
        else
            q_status = "Good";
    else
        q_status = "Not Locked!";

    //Return to normal mode
    _adc->set_test_word("normal", "normal");

    if ((i_status != "Good") or (q_status != "Good")) {
        throw uhd::runtime_error(
            (boost::format("ADC self-test failed for %s. Ramp checker status: {ADC_A=%s, ADC_B=%s}")%unique_id()%i_status%q_status).str());
    }

    //Restore front-end corrections
    for (size_t i = 0; i < _get_num_radios(); i++) {
        _rx_fe_map[i].core->bypass_all(false);
    }
}

void x300_radio_ctrl_impl::extended_adc_test(const std::vector<x300_radio_ctrl_impl::sptr>& radios, double duration_s)
{
    static const size_t SECS_PER_ITER = 5;
    UHD_MSG(status) << boost::format("Running Extended ADC Self-Test (Duration=%.0fs, %ds/iteration)...\n")
        % duration_s % SECS_PER_ITER;

    size_t num_iters = static_cast<size_t>(ceil(duration_s/SECS_PER_ITER));
    size_t num_failures = 0;
    for (size_t iter = 0; iter < num_iters; iter++) {
        //Print date and time
        boost::posix_time::time_facet *facet = new boost::posix_time::time_facet("%d-%b-%Y %H:%M:%S");
        std::ostringstream time_strm;
        time_strm.imbue(std::locale(std::locale::classic(), facet));
        time_strm << boost::posix_time::second_clock::local_time();
        //Run self-test
        UHD_MSG(status) << boost::format("-- [%s] Iteration %06d... ") % time_strm.str() % (iter+1);
        try {
            for (size_t i = 0; i < radios.size(); i++) {
                radios[i]->self_test_adc((SECS_PER_ITER*1000)/radios.size());
            }
            UHD_MSG(status) << "passed" << std::endl;
        } catch(std::exception &e) {
            num_failures++;
            UHD_MSG(status) << e.what() << std::endl;
        }
    }
    if (num_failures == 0) {
        UHD_MSG(status) << "Extended ADC Self-Test PASSED\n";
    } else {
        throw uhd::runtime_error(
                (boost::format("Extended ADC Self-Test FAILED!!! (%d/%d failures)\n") % num_failures % num_iters).str());
    }
}

void x300_radio_ctrl_impl::synchronize_dacs(const std::vector<x300_radio_ctrl_impl::sptr>& radios)
{
    if (radios.size() < 2) return;  //Nothing to synchronize

    //**PRECONDITION**
    //This function assumes that all the VITA times in "radios" are synchronized
    //to a common reference. Currently, this function is called in get_tx_stream
    //which also has the same precondition.

    //Reinitialize and resync all DACs
    for (size_t i = 0; i < radios.size(); i++) {
        radios[i]->_dac->reset();
    }

    //Get a rough estimate of the cumulative command latency
    boost::posix_time::ptime t_start = boost::posix_time::microsec_clock::local_time();
    for (size_t i = 0; i < radios.size(); i++) {
        radios[i]->user_reg_read64(regs::RB_TIME_NOW); //Discard value. We are just timing the call
    }
    boost::posix_time::time_duration t_elapsed =
        boost::posix_time::microsec_clock::local_time() - t_start;

    //Add 100% of headroom + uncertaintly to the command time
    boost::uint64_t t_sync_us = (t_elapsed.total_microseconds() * 2) + 13000 /*Scheduler latency*/;

    //Pick radios[0] as the time reference.
    uhd::time_spec_t sync_time =
        radios[0]->_time64->get_time_now() + uhd::time_spec_t(((double)t_sync_us)/1e6);

    //Send the sync command
    for (size_t i = 0; i < radios.size(); i++) {
        radios[i]->set_command_tick_rate(radios[i]->_radio_clk_rate, IO_MASTER_RADIO);
        radios[i]->_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_SYNC, 0);
        radios[i]->set_command_time(sync_time, IO_MASTER_RADIO);
        //Arm FRAMEP/N sync pulse by asserting a rising edge
        radios[i]->_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_SYNC, 1);
        radios[i]->_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_SYNC, 0);
        radios[i]->set_command_time(uhd::time_spec_t(0.0), IO_MASTER_RADIO);
    }

    //Wait and check status
    boost::this_thread::sleep(boost::posix_time::microseconds(t_sync_us));
    for (size_t i = 0; i < radios.size(); i++) {
        radios[i]->_dac->verify_sync();
    }
}

double x300_radio_ctrl_impl::self_cal_adc_xfer_delay(
    const std::vector<x300_radio_ctrl_impl::sptr>& radios,
    x300_clock_ctrl::sptr clock,
    boost::function<void(double)> wait_for_clk_locked,
    bool apply_delay)
{
    UHD_MSG(status) << "Running ADC transfer delay self-cal: " << std::flush;

    //Effective resolution of the self-cal.
    static const size_t NUM_DELAY_STEPS = 100;

    double master_clk_period = (1.0e9 / clock->get_master_clock_rate()); //in ns
    double delay_start = 0.0;
    double delay_range = 2 * master_clk_period;
    double delay_incr = delay_range / NUM_DELAY_STEPS;

    UHD_MSG(status) << "Measuring..." << std::flush;
    double cached_clk_delay = clock->get_clock_delay(X300_CLOCK_WHICH_ADC0);
    double fpga_clk_delay = clock->get_clock_delay(X300_CLOCK_WHICH_FPGA);

    //Iterate through several values of delays and measure ADC data integrity
    std::vector< std::pair<double,bool> > results;
    for (size_t i = 0; i < NUM_DELAY_STEPS; i++) {
        //Delay the ADC clock (will set both Ch0 and Ch1 delays)
        double delay = clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, delay_incr*i + delay_start);
        wait_for_clk_locked(0.1);

        boost::uint32_t err_code = 0;
        for (size_t r = 0; r < radios.size(); r++) {
            //Test each channel (I and Q) individually so as to not accidentally trigger
            //on the data from the other channel if there is a swap

            // -- Test I Channel --
            //Put ADC in ramp test mode. Tie the other channel to all ones.
            radios[r]->_adc->set_test_word("ramp", "ones");
            //Turn on the pattern checker in the FPGA. It will lock when it sees a zero
            //and count deviations from the expected value
            radios[r]->_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
            radios[r]->_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);
            //50ms @ 200MHz = 10 million samples
            boost::this_thread::sleep(boost::posix_time::milliseconds(50));
            if (radios[r]->_regs->misc_ins_reg.read(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_LOCKED)) {
                err_code += radios[r]->_regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_ERROR);
            } else {
                err_code += 100;    //Increment error code by 100 to indicate no lock
            }

            // -- Test Q Channel --
            //Put ADC in ramp test mode. Tie the other channel to all ones.
            radios[r]->_adc->set_test_word("ones", "ramp");
            //Turn on the pattern checker in the FPGA. It will lock when it sees a zero
            //and count deviations from the expected value
            radios[r]->_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
            radios[r]->_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);
            //50ms @ 200MHz = 10 million samples
            boost::this_thread::sleep(boost::posix_time::milliseconds(50));
            if (radios[r]->_regs->misc_ins_reg.read(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_LOCKED)) {
                err_code += radios[r]->_regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_ERROR);
            } else {
                err_code += 100;    //Increment error code by 100 to indicate no lock
            }
        }
        //UHD_MSG(status) << (boost::format("XferDelay=%fns, Error=%d\n") % delay % err_code);
        results.push_back(std::pair<double,bool>(delay, err_code==0));
    }

    //Calculate the valid window
    int win_start_idx = -1, win_stop_idx = -1, cur_start_idx = -1, cur_stop_idx = -1;
    for (size_t i = 0; i < results.size(); i++) {
        std::pair<double,bool>& item = results[i];
        if (item.second) {  //If data is stable
            if (cur_start_idx == -1) {  //This is the first window
                cur_start_idx = i;
                cur_stop_idx = i;
            } else {                    //We are extending the window
                cur_stop_idx = i;
            }
        } else {
            if (cur_start_idx == -1) {  //We haven't yet seen valid data
                //Do nothing
            } else if (win_start_idx == -1) {   //We passed the first valid window
                win_start_idx = cur_start_idx;
                win_stop_idx = cur_stop_idx;
            } else {                    //Update cached window if current window is larger
                double cur_win_len = results[cur_stop_idx].first - results[cur_start_idx].first;
                double cached_win_len = results[win_stop_idx].first - results[win_start_idx].first;
                if (cur_win_len > cached_win_len) {
                    win_start_idx = cur_start_idx;
                    win_stop_idx = cur_stop_idx;
                }
            }
            //Reset current window
            cur_start_idx = -1;
            cur_stop_idx = -1;
        }
    }
    if (win_start_idx == -1) {
        throw uhd::runtime_error("self_cal_adc_xfer_delay: Self calibration failed. Convergence error.");
    }

    double win_center = (results[win_stop_idx].first + results[win_start_idx].first) / 2.0;
    double win_length = results[win_stop_idx].first - results[win_start_idx].first;
    if (win_length < master_clk_period/4) {
        throw uhd::runtime_error("self_cal_adc_xfer_delay: Self calibration failed. Valid window too narrow.");
    }

    //Cycle slip the relative delay by a clock cycle to prevent sample misalignment
    //fpga_clk_delay > 0 and 0 < win_center < 2*(1/MCR) so one cycle slip is all we need
    bool cycle_slip = (win_center-fpga_clk_delay >= master_clk_period);
    if (cycle_slip) {
        win_center -= master_clk_period;
    }

    if (apply_delay) {
        UHD_MSG(status) << "Validating..." << std::flush;
        //Apply delay
        win_center = clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, win_center);  //Sets ADC0 and ADC1
        wait_for_clk_locked(0.1);
        //Validate
        for (size_t r = 0; r < radios.size(); r++) {
            radios[r]->self_test_adc(2000);
        }
    } else {
        //Restore delay
        clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, cached_clk_delay);  //Sets ADC0 and ADC1
    }

    //Teardown
    for (size_t r = 0; r < radios.size(); r++) {
        radios[r]->_adc->set_test_word("normal", "normal");
        radios[r]->_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
    }
    UHD_MSG(status) << (boost::format(" done (FPGA->ADC=%.3fns%s, Window=%.3fns)\n") %
        (win_center-fpga_clk_delay) % (cycle_slip?" +cyc":"") % win_length);

    return win_center;
}
/****************************************************************************
 * Helpers
 ***************************************************************************/
void x300_radio_ctrl_impl::_update_atr_leds(const std::string &rx_ant)
{
    const bool is_txrx = (rx_ant == "TX/RX");
    const int rx_led = (1 << 2);
    const int tx_led = (1 << 1);
    const int txrx_led = (1 << 0);
    _leds->set_atr_reg(gpio_atr::ATR_REG_IDLE, 0);
    _leds->set_atr_reg(gpio_atr::ATR_REG_RX_ONLY, is_txrx? txrx_led : rx_led);
    _leds->set_atr_reg(gpio_atr::ATR_REG_TX_ONLY, tx_led);
    _leds->set_atr_reg(gpio_atr::ATR_REG_FULL_DUPLEX, rx_led | tx_led);
}

void x300_radio_ctrl_impl::_self_cal_adc_capture_delay(bool print_status)
{
    if (print_status) UHD_MSG(status) << "Running ADC capture delay self-cal..." << std::flush;

    static const boost::uint32_t NUM_DELAY_STEPS = 32;   //The IDELAYE2 element has 32 steps
    static const boost::uint32_t NUM_RETRIES     = 2;    //Retry self-cal if it fails in warmup situations
    static const boost::int32_t  MIN_WINDOW_LEN  = 4;

    boost::int32_t win_start = -1, win_stop = -1;
    boost::uint32_t iter = 0;
    while (iter++ < NUM_RETRIES) {
        for (boost::uint32_t dly_tap = 0; dly_tap < NUM_DELAY_STEPS; dly_tap++) {
            //Apply delay
            _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_VAL, dly_tap);
            _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 1);
            _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 0);

            boost::uint32_t err_code = 0;

            // -- Test I Channel --
            //Put ADC in ramp test mode. Tie the other channel to all ones.
            _adc->set_test_word("ramp", "ones");
            //Turn on the pattern checker in the FPGA. It will lock when it sees a zero
            //and count deviations from the expected value
            _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
            _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);
            //10ms @ 200MHz = 2 million samples
            boost::this_thread::sleep(boost::posix_time::milliseconds(10));
            if (_regs->misc_ins_reg.read(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_I_LOCKED)) {
                err_code += _regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_I_ERROR);
            } else {
                err_code += 100;    //Increment error code by 100 to indicate no lock
            }

            // -- Test Q Channel --
            //Put ADC in ramp test mode. Tie the other channel to all ones.
            _adc->set_test_word("ones", "ramp");
            //Turn on the pattern checker in the FPGA. It will lock when it sees a zero
            //and count deviations from the expected value
            _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
            _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);
            //10ms @ 200MHz = 2 million samples
            boost::this_thread::sleep(boost::posix_time::milliseconds(10));
            if (_regs->misc_ins_reg.read(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_Q_LOCKED)) {
                err_code += _regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_Q_ERROR);
            } else {
                err_code += 100;    //Increment error code by 100 to indicate no lock
            }

            if (err_code == 0) {
                if (win_start == -1) {      //This is the first window
                    win_start = dly_tap;
                    win_stop = dly_tap;
                } else {                    //We are extending the window
                    win_stop = dly_tap;
                }
            } else {
                if (win_start != -1) {      //A valid window turned invalid
                    if (win_stop - win_start >= MIN_WINDOW_LEN) {
                        break;              //Valid window found
                    } else {
                        win_start = -1;     //Reset window
                    }
                }
            }
            //UHD_MSG(status) << (boost::format("CapTap=%d, Error=%d\n") % dly_tap % err_code);
        }

        //Retry the self-cal if it fails
        if ((win_start == -1 || (win_stop - win_start) < MIN_WINDOW_LEN) && iter < NUM_RETRIES /*not last iteration*/) {
            win_start = -1;
            win_stop = -1;
            boost::this_thread::sleep(boost::posix_time::milliseconds(2000));
        } else {
            break;
        }
    }
    _adc->set_test_word("normal", "normal");
    _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);

    if (win_start == -1) {
        throw uhd::runtime_error("self_cal_adc_capture_delay: Self calibration failed. Convergence error.");
    }

    if (win_stop-win_start < MIN_WINDOW_LEN) {
        throw uhd::runtime_error("self_cal_adc_capture_delay: Self calibration failed. Valid window too narrow.");
    }

    boost::uint32_t ideal_tap = (win_stop + win_start) / 2;
    _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_VAL, ideal_tap);
    _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 1);
    _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 0);

    if (print_status) {
        double tap_delay = (1.0e12 / _radio_clk_rate) / (2*32); //in ps
        UHD_MSG(status) << boost::format(" done (Tap=%d, Window=%d, TapDelay=%.3fps, Iter=%d)\n") % ideal_tap % (win_stop-win_start) % tap_delay % iter;
    }
}

void x300_radio_ctrl_impl::_check_adc(const boost::uint32_t val)
{
    //Wait for previous control transaction to flush
    user_reg_read64(regs::RB_TEST);
    //Wait for ADC test pattern to propagate
    boost::this_thread::sleep(boost::posix_time::microsec(5));
    //Read value of RX readback register and verify
    boost::uint32_t adc_rb = static_cast<boost::uint32_t>(user_reg_read64(regs::RB_TEST)>>32);
    adc_rb ^= 0xfffc0000; //adapt for I inversion in FPGA
    if (val != adc_rb) {
        throw uhd::runtime_error(
            (boost::format("ADC self-test failed for %s. (Exp=0x%x, Got=0x%x)")%unique_id()%val%adc_rb).str());
    }
}

void x300_radio_ctrl_impl::_set_db_eeprom(i2c_iface::sptr i2c, const size_t addr, const uhd::usrp::dboard_eeprom_t &db_eeprom)
{
    db_eeprom.store(*i2c, addr);
    _db_eeproms[addr] = db_eeprom;
}

/****************************************************************************
 * Helpers
 ***************************************************************************/
bool x300_radio_ctrl_impl::check_radio_config()
{
    UHD_RFNOC_BLOCK_TRACE() << "x300_radio_ctrl_impl::check_radio_config() " << std::endl;
    const fs_path rx_fe_path = fs_path("dboards" / _radio_slot / "rx_frontends");
    for (size_t chan = 0; chan < _get_num_radios(); chan++) {
        if (_tree->exists(rx_fe_path / _rx_fe_map.at(chan).db_fe_name / "enabled")) {
            const bool chan_active = _is_streamer_active(uhd::RX_DIRECTION, chan);
            if (chan_active) {
                _tree->access<bool>(rx_fe_path / _rx_fe_map.at(chan).db_fe_name / "enabled")
                    .set(chan_active)
                ;
            }
        }
    }

    const fs_path tx_fe_path = fs_path("dboards" / _radio_slot / "tx_frontends");
    for (size_t chan = 0; chan < _get_num_radios(); chan++) {
        if (_tree->exists(tx_fe_path / _tx_fe_map.at(chan).db_fe_name / "enabled")) {
            const bool chan_active = _is_streamer_active(uhd::TX_DIRECTION, chan);
            if (chan_active) {
                _tree->access<bool>(tx_fe_path / _tx_fe_map.at(chan).db_fe_name / "enabled")
                    .set(chan_active)
                ;
            }
        }
    }

    return true;
}

/****************************************************************************
 * Register block
 ***************************************************************************/
UHD_RFNOC_BLOCK_REGISTER(x300_radio_ctrl, "X300Radio");