1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
|
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "x300_mb_controller.hpp"
#include "x300_fw_common.h"
#include "x300_regs.hpp"
#include <uhd/exception.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <chrono>
#include <thread>
uhd::uart_iface::sptr x300_make_uart_iface(uhd::wb_iface::sptr iface);
using namespace uhd;
using namespace uhd::rfnoc;
using namespace uhd::usrp::x300;
using namespace std::chrono_literals;
namespace {
constexpr uint32_t DONT_LOOK_FOR_GPSDO = 0x1234abcdul;
constexpr uint32_t ADC_SELF_TEST_DURATION = 100; // ms
// When these regs are fixed, there is another fixme below to actually init the
// timekeepers
constexpr uint32_t TK_NUM_TIMEKEEPERS = 12; //Read-only
constexpr uint32_t TK_REG_BASE = 100;
constexpr uint32_t TK_REG_OFFSET = 48;
constexpr uint32_t TK_REG_TICKS_NOW_LO = 0x00; // Read-only
constexpr uint32_t TK_REG_TICKS_NOW_HI = 0x04; // Read-only
constexpr uint32_t TK_REG_TICKS_EVENT_LO = 0x08; // Write-only
constexpr uint32_t TK_REG_TICKS_EVENT_HI = 0x0C; // Write-only
constexpr uint32_t TK_REG_TICKS_CTRL = 0x10; // Write-only
constexpr uint32_t TK_REG_TICKS_PPS_LO = 0x14; // Read-only
constexpr uint32_t TK_REG_TICKS_PPS_HI = 0x18; // Read-only
constexpr uint32_t TK_REG_TICKS_PERIOD_LO = 0x1C; // Read-Write
constexpr uint32_t TK_REG_TICKS_PERIOD_HI = 0x20; // Read-Write
constexpr char LOG_ID[] = "X300::MB_CTRL";
} // namespace
/******************************************************************************
* Structors
*****************************************************************************/
x300_mb_controller::x300_mb_controller(const size_t hw_rev,
const std::string product_name,
uhd::i2c_iface::sptr zpu_i2c,
uhd::wb_iface::sptr zpu_ctrl,
x300_clock_ctrl::sptr clock_ctrl,
uhd::usrp::mboard_eeprom_t mb_eeprom,
x300_device_args_t args)
: _hw_rev(hw_rev)
, _product_name(product_name)
, _zpu_i2c(zpu_i2c)
, _zpu_ctrl(zpu_ctrl)
, _clock_ctrl(clock_ctrl)
, _mb_eeprom(mb_eeprom)
, _args(args)
{
_fw_regmap = std::make_shared<fw_regmap_t>();
_fw_regmap->initialize(*_zpu_ctrl.get(), true);
_fw_regmap->ref_freq_reg.write(
fw_regmap_t::ref_freq_reg_t::REF_FREQ, uint32_t(args.get_system_ref_rate()));
// Initialize clock source to generate a valid radio clock. This may change
// after configuration is done.
// This will configure the LMK and wait for lock
x300_mb_controller::set_clock_source(args.get_clock_source());
x300_mb_controller::set_time_source(args.get_time_source());
const size_t num_tks = _zpu_ctrl->peek32(SR_ADDR(SET0_BASE, TK_NUM_TIMEKEEPERS));
for (size_t i = 0; i < num_tks; i++) {
register_timekeeper(i, std::make_shared<x300_timekeeper>(i, _zpu_ctrl, clock_ctrl->get_master_clock_rate()));
}
init_gps();
_radio_refs.reserve(2);
}
x300_mb_controller::~x300_mb_controller() {}
/******************************************************************************
* Timekeeper APIs
*****************************************************************************/
uint64_t x300_mb_controller::x300_timekeeper::get_ticks_now()
{
uint32_t ticks_lo = _zpu_ctrl->peek32(get_tk_addr(TK_REG_TICKS_NOW_LO));
uint32_t ticks_hi = _zpu_ctrl->peek32(get_tk_addr(TK_REG_TICKS_NOW_HI));
return uint64_t(ticks_lo) | (uint64_t(ticks_hi) << 32);
}
uint64_t x300_mb_controller::x300_timekeeper::get_ticks_last_pps()
{
uint32_t ticks_lo = _zpu_ctrl->peek32(get_tk_addr(TK_REG_TICKS_PPS_LO));
uint32_t ticks_hi = _zpu_ctrl->peek32(get_tk_addr(TK_REG_TICKS_PPS_HI));
return uint64_t(ticks_lo) | (uint64_t(ticks_hi) << 32);
}
void x300_mb_controller::x300_timekeeper::set_ticks_now(const uint64_t ticks)
{
_zpu_ctrl->poke32(
get_tk_addr(TK_REG_TICKS_EVENT_LO), narrow_cast<uint32_t>(ticks & 0xFFFFFFFF));
_zpu_ctrl->poke32(
get_tk_addr(TK_REG_TICKS_EVENT_HI), narrow_cast<uint32_t>(ticks >> 32));
_zpu_ctrl->poke32(
get_tk_addr(TK_REG_TICKS_CTRL), narrow_cast<uint32_t>(0x1));
}
void x300_mb_controller::x300_timekeeper::set_ticks_next_pps(const uint64_t ticks)
{
_zpu_ctrl->poke32(
get_tk_addr(TK_REG_TICKS_EVENT_LO), narrow_cast<uint32_t>(ticks & 0xFFFFFFFF));
_zpu_ctrl->poke32(
get_tk_addr(TK_REG_TICKS_EVENT_HI), narrow_cast<uint32_t>(ticks >> 32));
_zpu_ctrl->poke32(
get_tk_addr(TK_REG_TICKS_CTRL), narrow_cast<uint32_t>(0x2));
}
void x300_mb_controller::x300_timekeeper::set_period(const uint64_t period_ns)
{
_zpu_ctrl->poke32(get_tk_addr(TK_REG_TICKS_PERIOD_LO),
narrow_cast<uint32_t>(period_ns & 0xFFFFFFFF));
_zpu_ctrl->poke32(get_tk_addr(TK_REG_TICKS_PERIOD_HI),
narrow_cast<uint32_t>(period_ns >> 32));
}
uint32_t x300_mb_controller::x300_timekeeper::get_tk_addr(const uint32_t tk_addr)
{
return SR_ADDR(SET0_BASE, TK_REG_BASE + TK_REG_OFFSET * _tk_idx + tk_addr);
}
/******************************************************************************
* Motherboard Control API (see mb_controller.hpp)
*****************************************************************************/
void x300_mb_controller::init()
{
if (_radio_refs.empty()) {
UHD_LOG_WARNING(LOG_ID, "No radio registered! Skipping ADC checks.");
return;
}
// Check ADCs
if (_args.get_ext_adc_self_test()) {
extended_adc_test(_args.get_ext_adc_self_test_duration() / _radio_refs.size());
} else if (_args.get_self_cal_adc_delay()) {
constexpr bool apply_delay = true;
self_cal_adc_xfer_delay(apply_delay);
} else {
for (auto& radio : _radio_refs) {
radio->self_test_adc(ADC_SELF_TEST_DURATION);
}
}
}
std::string x300_mb_controller::get_mboard_name() const
{
return _product_name;
}
void x300_mb_controller::set_time_source(const std::string& source)
{
if (source == "internal") {
_fw_regmap->clock_ctrl_reg.write(fw_regmap_t::clk_ctrl_reg_t::PPS_SELECT,
fw_regmap_t::clk_ctrl_reg_t::SRC_INTERNAL);
} else if (source == "external") {
_fw_regmap->clock_ctrl_reg.write(fw_regmap_t::clk_ctrl_reg_t::PPS_SELECT,
fw_regmap_t::clk_ctrl_reg_t::SRC_EXTERNAL);
} else if (source == "gpsdo") {
_fw_regmap->clock_ctrl_reg.write(fw_regmap_t::clk_ctrl_reg_t::PPS_SELECT,
fw_regmap_t::clk_ctrl_reg_t::SRC_GPSDO);
} else {
throw uhd::key_error("update_time_source: unknown source: " + source);
}
/* TODO - Implement intelligent PPS detection
//check for valid pps
if (!is_pps_present(mb)) {
throw uhd::runtime_error((boost::format("The %d PPS was not detected. Please
check the PPS source and try again.") % source).str());
}
*/
}
std::string x300_mb_controller::get_time_source() const
{
return _current_time_src;
}
std::vector<std::string> x300_mb_controller::get_time_sources() const
{
return {"internal", "external", "gpsdo"};
}
void x300_mb_controller::set_clock_source(const std::string& source)
{
UHD_LOG_TRACE("X300::MB_CTRL", "Setting clock source to " << source);
// Optimize for the case when the current source is internal and we are trying
// to set it to internal. This is the only case where we are guaranteed that
// the clock has not gone away so we can skip setting the MUX and reseting the LMK.
const bool reconfigure_clks = (_current_refclk_src != "internal")
or (source != "internal");
if (reconfigure_clks) {
// Update the clock MUX on the motherboard to select the requested source
if (source == "internal") {
_fw_regmap->clock_ctrl_reg.set(fw_regmap_t::clk_ctrl_reg_t::CLK_SOURCE,
fw_regmap_t::clk_ctrl_reg_t::SRC_INTERNAL);
_fw_regmap->clock_ctrl_reg.set(fw_regmap_t::clk_ctrl_reg_t::TCXO_EN, 1);
} else if (source == "external") {
_fw_regmap->clock_ctrl_reg.set(fw_regmap_t::clk_ctrl_reg_t::CLK_SOURCE,
fw_regmap_t::clk_ctrl_reg_t::SRC_EXTERNAL);
_fw_regmap->clock_ctrl_reg.set(fw_regmap_t::clk_ctrl_reg_t::TCXO_EN, 0);
} else if (source == "gpsdo") {
_fw_regmap->clock_ctrl_reg.set(fw_regmap_t::clk_ctrl_reg_t::CLK_SOURCE,
fw_regmap_t::clk_ctrl_reg_t::SRC_GPSDO);
_fw_regmap->clock_ctrl_reg.set(fw_regmap_t::clk_ctrl_reg_t::TCXO_EN, 0);
} else {
throw uhd::key_error("set_clock_source: unknown source: " + source);
}
_fw_regmap->clock_ctrl_reg.flush();
// Reset the LMK to make sure it re-locks to the new reference
_clock_ctrl->reset_clocks();
}
// Wait for the LMK to lock (always, as a sanity check that the clock is useable)
//* Currently the LMK can take as long as 30 seconds to lock to a reference but we
// don't
//* want to wait that long during initialization.
// TODO: Need to verify timeout and settings to make sure lock can be achieved in
// < 1.0 seconds
double timeout = _initialization_done ? 30.0 : 1.0;
// The programming code in x300_clock_ctrl is not compatible with revs <= 4 and may
// lead to locking issues. So, disable the ref-locked check for older (unsupported)
// boards.
if (_hw_rev > 4) {
if (not wait_for_clk_locked(fw_regmap_t::clk_status_reg_t::LMK_LOCK, timeout)) {
// failed to lock on reference
if (_initialization_done) {
throw uhd::runtime_error(
(boost::format("Reference Clock PLL failed to lock to %s source.")
% source)
.str());
} else {
// TODO: Re-enable this warning when we figure out a reliable lock time
// UHD_LOGGER_WARNING("X300::MB_CTRL") << "Reference clock failed to lock to " +
// source + " during device initialization. " <<
// "Check for the lock before operation or ignore this warning if using
// another clock source." ;
}
}
}
if (reconfigure_clks) {
// Reset the radio clock PLL in the FPGA
_zpu_ctrl->poke32(SR_ADDR(SET0_BASE, ZPU_SR_SW_RST), ZPU_SR_SW_RST_RADIO_CLK_PLL);
_zpu_ctrl->poke32(SR_ADDR(SET0_BASE, ZPU_SR_SW_RST), 0);
// Wait for radio clock PLL to lock
if (not wait_for_clk_locked(
fw_regmap_t::clk_status_reg_t::RADIO_CLK_LOCK, 0.01)) {
throw uhd::runtime_error(
(boost::format("Reference Clock PLL in FPGA failed to lock to %s source.")
% source)
.str());
}
// Reset the IDELAYCTRL used to calibrate the data interface delays
_zpu_ctrl->poke32(
SR_ADDR(SET0_BASE, ZPU_SR_SW_RST), ZPU_SR_SW_RST_ADC_IDELAYCTRL);
_zpu_ctrl->poke32(SR_ADDR(SET0_BASE, ZPU_SR_SW_RST), 0);
// Wait for the ADC IDELAYCTRL to be ready
if (not wait_for_clk_locked(
fw_regmap_t::clk_status_reg_t::IDELAYCTRL_LOCK, 0.01)) {
throw uhd::runtime_error(
(boost::format(
"ADC Calibration Clock in FPGA failed to lock to %s source.")
% source)
.str());
}
// Reset ADCs and DACs
reset_codecs();
}
// Update cache value
_current_refclk_src = source;
}
std::string x300_mb_controller::get_clock_source() const
{
return _current_refclk_src;
}
std::vector<std::string> x300_mb_controller::get_clock_sources() const
{
return {"internal", "external", "gpsdo"};
}
void x300_mb_controller::set_sync_source(
const std::string& clock_source, const std::string& time_source)
{
device_addr_t sync_args;
sync_args["clock_source"] = clock_source;
sync_args["time_source"] = time_source;
set_sync_source(sync_args);
}
void x300_mb_controller::set_sync_source(const device_addr_t& sync_source) {
if (sync_source.has_key("clock_source")) {
set_clock_source(sync_source["clock_source"]);
}
if (sync_source.has_key("time_source")) {
set_time_source(sync_source["time_source"]);
}
}
device_addr_t x300_mb_controller::get_sync_source() const
{
const std::string clock_source = get_clock_source();
const std::string time_source = get_time_source();
device_addr_t sync_source;
sync_source["clock_source"] = clock_source;
sync_source["time_source"] = time_source;
return sync_source;
}
std::vector<device_addr_t> x300_mb_controller::get_sync_sources()
{
const std::vector<std::pair<std::string, std::string>> clock_time_src_pairs = {
// Clock source, Time source
{"internal", "internal"},
{"external", "internal"},
{"external", "external"},
{"gpsdo", "gpsdo"},
{"gpsdo", "internal"}
};
// Now convert to vector of device_addr_t
std::vector<device_addr_t> sync_sources;
for (const auto& ct_pair : clock_time_src_pairs) {
device_addr_t sync_source;
sync_source["clock_source"] = ct_pair.first;
sync_source["time_source"] = ct_pair.second;
sync_sources.push_back(sync_source);
}
return sync_sources;
}
void x300_mb_controller::set_clock_source_out(const bool enb)
{
_clock_ctrl->set_ref_out(enb);
}
void x300_mb_controller::set_time_source_out(const bool enb)
{
_fw_regmap->clock_ctrl_reg.write(
fw_regmap_t::clk_ctrl_reg_t::PPS_OUT_EN, enb ? 1 : 0);
}
sensor_value_t x300_mb_controller::get_sensor(const std::string& name)
{
if (name == "ref_locked") {
return sensor_value_t("Ref", get_ref_locked(), "locked", "unlocked");
}
// There are only GPS sensors and ref_locked, so we can take a shortcut here
// and directly ask the GPS for its sensor value:
if (_sensors.count(name)) {
return _gps->get_sensor(name);
}
throw uhd::key_error(std::string("Invalid sensor name: ") + name);
}
std::vector<std::string> x300_mb_controller::get_sensor_names()
{
return std::vector<std::string>(_sensors.cbegin(), _sensors.cend());
}
uhd::usrp::mboard_eeprom_t x300_mb_controller::get_eeprom()
{
return _mb_eeprom;
}
bool x300_mb_controller::synchronize(std::vector<mb_controller::sptr>& mb_controllers,
const uhd::time_spec_t& time_spec,
const bool quiet)
{
if (!mb_controller::synchronize(mb_controllers, time_spec, quiet)) {
return false;
}
std::vector<std::shared_ptr<x300_mb_controller>> mb_controller_copy;
mb_controller_copy.reserve(mb_controllers.size());
for (auto mb_controller : mb_controllers) {
if (std::dynamic_pointer_cast<x300_mb_controller>(mb_controller)) {
mb_controller_copy.push_back(
std::dynamic_pointer_cast<x300_mb_controller>(mb_controller));
}
}
// Now, mb_controller_copy contains only references of mb_controllers that
// are actually x300_mb_controllers
mb_controllers.clear();
for (auto mb_controller : mb_controller_copy) {
mb_controllers.push_back(mb_controller);
}
// Now we have the housekeeping out of the way, we can actually start
// synchronizing. The X300 needs to sync its DACs. First, we get a reference
// to all the radios (and thus to the DACs).
std::vector<uhd::usrp::x300::x300_radio_mbc_iface*> radios;
radios.reserve(2 * mb_controller_copy.size());
for (auto& mbc : mb_controller_copy) {
for (auto radio_ref : mbc->_radio_refs) {
radios.push_back(radio_ref);
}
}
UHD_LOG_TRACE(LOG_ID, "Running DAC sync on " << radios.size() << " radios.");
// **PRECONDITION**
// This function assumes that all the VITA times for "radios" are
// synchronized to a common reference, which we did earlier.
// Get a rough estimate of the cumulative command latency
auto t_start = std::chrono::steady_clock::now();
for (auto radio : radios) {
radio->get_adc_rx_word(); // Discard value. We are just timing the call
}
auto t_elapsed = std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::steady_clock::now() - t_start);
// Add 100% of headroom + uncertainty to the command time
uint64_t t_sync_us = (t_elapsed.count() * 2) + 16000 /* Scheduler latency */;
const double radio_clk_rate = _clock_ctrl->get_master_clock_rate();
std::string err_str;
// Try to sync 3 times before giving up
constexpr size_t MAX_ATTEMPTS = 3;
for (size_t attempt = 0; attempt < MAX_ATTEMPTS; attempt++) {
try {
// Reinitialize and resync all DACs
for (auto radio : radios) {
radio->sync_dac();
}
// Make sure FRAMEP/N is 0
for (auto radio : radios) {
radio->set_dac_sync(false);
}
// Pick radios[0] as the time reference.
uhd::time_spec_t sync_time =
mb_controller_copy.front()->get_timekeeper(0)->get_time_now()
+ uhd::time_spec_t(((double)t_sync_us) / 1e6);
// Send the sync command
for (auto radio : radios) {
// Arm FRAMEP/N sync pulse by asserting a rising edge
radio->set_dac_sync(true, sync_time);
}
// Reset FRAMEP/N to 0 after 2 clock cycles, and reset command time
for (auto radio : radios) {
radio->set_dac_sync(false, sync_time + (2.0 / radio_clk_rate));
}
// Wait and check status
std::this_thread::sleep_for(std::chrono::microseconds(t_sync_us));
for (auto radio : radios) {
radio->dac_verify_sync();
}
UHD_LOG_TRACE(LOG_ID, "DAC sync passed on attempt " << attempt);
return true;
} catch (const uhd::runtime_error& e) {
err_str = e.what();
RFNOC_LOG_DEBUG("Retrying DAC synchronization: " << err_str);
}
}
throw uhd::runtime_error(err_str);
}
/******************************************************************************
* Private Methods
*****************************************************************************/
std::string x300_mb_controller::get_unique_id()
{
return std::string("X300::MB_CTRL") + ""; // FIXME
}
void x300_mb_controller::init_gps()
{
// otherwise if not disabled, look for the internal GPSDO
if (_zpu_ctrl->peek32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_GPSDO_STATUS))
!= DONT_LOOK_FOR_GPSDO) {
UHD_LOG_TRACE("X300::MB_CTRL", "Detecting internal GPSDO....");
try {
// gps_ctrl will print its own log statements if a GPSDO was found
_gps = gps_ctrl::make(x300_make_uart_iface(_zpu_ctrl));
} catch (std::exception& e) {
UHD_LOGGER_WARNING("X300::MB_CTRL")
<< "An error occurred making GPSDO control: " << e.what()
<< " Continuing without GPS.";
}
if (_gps and _gps->gps_detected()) {
auto sensors = _gps->get_sensors();
_sensors.insert(sensors.cbegin(), sensors.cend());
} else {
UHD_LOG_TRACE("X300::MB_CTRL",
"No GPS found, setting register to save time on next run.");
_zpu_ctrl->poke32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_GPSDO_STATUS),
DONT_LOOK_FOR_GPSDO);
}
} else {
UHD_LOG_TRACE("X300::MB_CTRL",
"Not detecting internal GPSDO, previous run already failed to find it.");
}
}
void x300_mb_controller::reset_codecs()
{
for (auto& callback : _reset_cbs) {
UHD_LOG_TRACE("X300::MB_CTRL", "Calling DAC/ADC reset callback");
callback();
}
}
bool x300_mb_controller::wait_for_clk_locked(uint32_t which, double timeout)
{
const auto timeout_time = std::chrono::steady_clock::now()
+ std::chrono::milliseconds(int64_t(timeout * 1000));
do {
if (_fw_regmap->clock_status_reg.read(which) == 1) {
return true;
}
std::this_thread::sleep_for(5ms);
} while (std::chrono::steady_clock::now() < timeout_time);
// Check one last time
return (_fw_regmap->clock_status_reg.read(which) == 1);
}
bool x300_mb_controller::is_pps_present()
{
// The ZPU_RB_CLK_STATUS_PPS_DETECT bit toggles with each rising edge of the PPS.
// We monitor it for up to 1.5 seconds looking for it to toggle.
uint32_t pps_detect =
_fw_regmap->clock_status_reg.read(fw_regmap_t::clk_status_reg_t::PPS_DETECT);
const auto timeout_time = std::chrono::steady_clock::now() + 1500ms;
while (std::chrono::steady_clock::now() < timeout_time) {
std::this_thread::sleep_for(100ms);
if (pps_detect
!= _fw_regmap->clock_status_reg.read(
fw_regmap_t::clk_status_reg_t::PPS_DETECT))
return true;
}
return false;
}
bool x300_mb_controller::get_ref_locked()
{
_fw_regmap->clock_status_reg.refresh();
return (_fw_regmap->clock_status_reg.get(fw_regmap_t::clk_status_reg_t::LMK_LOCK)
== 1)
&& (_fw_regmap->clock_status_reg.get(
fw_regmap_t::clk_status_reg_t::RADIO_CLK_LOCK)
== 1)
&& (_fw_regmap->clock_status_reg.get(
fw_regmap_t::clk_status_reg_t::IDELAYCTRL_LOCK)
== 1);
}
void x300_mb_controller::self_cal_adc_xfer_delay(bool apply_delay)
{
UHD_LOG_INFO("X300", "Running ADC transfer delay self-cal: ");
// Effective resolution of the self-cal.
constexpr size_t NUM_DELAY_STEPS = 100;
double master_clk_period = (1.0e9 / _clock_ctrl->get_master_clock_rate()); // in ns
double delay_start = 0.0;
double delay_range = 2 * master_clk_period;
double delay_incr = delay_range / NUM_DELAY_STEPS;
double cached_clk_delay = _clock_ctrl->get_clock_delay(X300_CLOCK_WHICH_ADC0);
double fpga_clk_delay = _clock_ctrl->get_clock_delay(X300_CLOCK_WHICH_FPGA);
// Iterate through several values of delays and measure ADC data integrity
std::vector<std::pair<double, bool>> results;
for (size_t i = 0; i < NUM_DELAY_STEPS; i++) {
// Delay the ADC clock (will set both Ch0 and Ch1 delays)
double delay = _clock_ctrl->set_clock_delay(
X300_CLOCK_WHICH_ADC0, delay_incr * i + delay_start);
wait_for_clk_locked(fw_regmap_t::clk_status_reg_t::LMK_LOCK, 0.1);
uint32_t err_code = 0;
for (auto& radio : _radio_refs) {
// Test each channel (I and Q) individually so as to not accidentally
// trigger on the data from the other channel if there is a swap
// -- Test I Channel --
// Put ADC in ramp test mode. Tie the other channel to all ones.
radio->set_adc_test_word("ramp", "ones");
// Turn on the pattern checker in the FPGA. It will lock when it sees a
// zero and count deviations from the expected value
radio->set_adc_checker_enabled(false);
radio->set_adc_checker_enabled(true);
// 50ms @ 200MHz = 10 million samples
std::this_thread::sleep_for(std::chrono::milliseconds(50));
if (radio->get_adc_checker_locked(true /* I */)) {
err_code += radio->get_adc_checker_error_code(true /* I */);
} else {
err_code += 100; // Increment error code by 100 to indicate no lock
}
// -- Test Q Channel --
// Put ADC in ramp test mode. Tie the other channel to all ones.
radio->set_adc_test_word("ones", "ramp");
// Turn on the pattern checker in the FPGA. It will lock when it sees a
// zero and count deviations from the expected value
radio->set_adc_checker_enabled(false);
radio->set_adc_checker_enabled(true);
// 50ms @ 200MHz = 10 million samples
std::this_thread::sleep_for(std::chrono::milliseconds(50));
if (radio->get_adc_checker_locked(false /* Q */)) {
err_code += radio->get_adc_checker_error_code(false /* Q */);
} else {
err_code += 100; // Increment error code by 100 to indicate no lock
}
}
UHD_LOG_TRACE(
LOG_ID, boost::format("XferDelay=%fns, Error=%d") % delay % err_code);
results.push_back(std::pair<double, bool>(delay, err_code == 0));
}
// Calculate the valid window
// When done win_start_idx will have the first delay value index that caused
// no errors, and win_stop_idx will have the last valid delay value index
int win_start_idx = -1, win_stop_idx = -1, cur_start_idx = -1, cur_stop_idx = -1;
for (size_t i = 0; i < results.size(); i++) {
std::pair<double, bool>& item = results[i];
if (item.second) { // If data is stable
if (cur_start_idx == -1) { // This is the first window
cur_start_idx = i;
cur_stop_idx = i;
} else { // We are extending the window
cur_stop_idx = i;
}
} else {
if (cur_start_idx == -1) { // We haven't yet seen valid data
// Do nothing
} else if (win_start_idx == -1) { // We passed the first valid window
win_start_idx = cur_start_idx;
win_stop_idx = cur_stop_idx;
} else { // Update cached window if current window is larger
double cur_win_len =
results[cur_stop_idx].first - results[cur_start_idx].first;
double cached_win_len =
results[win_stop_idx].first - results[win_start_idx].first;
if (cur_win_len > cached_win_len) {
win_start_idx = cur_start_idx;
win_stop_idx = cur_stop_idx;
}
}
// Reset current window
cur_start_idx = -1;
cur_stop_idx = -1;
}
}
if (win_start_idx == -1) {
throw uhd::runtime_error(
"self_cal_adc_xfer_delay: Self calibration failed. Convergence error.");
}
double win_center =
(results[win_stop_idx].first + results[win_start_idx].first) / 2.0;
const double win_length = results[win_stop_idx].first - results[win_start_idx].first;
if (win_length < master_clk_period / 4) {
throw uhd::runtime_error("self_cal_adc_xfer_delay: Self calibration failed. "
"Valid window too narrow.");
}
// Cycle slip the relative delay by a clock cycle to prevent sample misalignment
// fpga_clk_delay > 0 and 0 < win_center < 2*(1/MCR) so one cycle slip is all we need
bool cycle_slip = (win_center - fpga_clk_delay >= master_clk_period);
if (cycle_slip) {
win_center -= master_clk_period;
}
if (apply_delay) {
// Apply delay
win_center = _clock_ctrl->set_clock_delay(
X300_CLOCK_WHICH_ADC0, win_center); // Sets ADC0 and ADC1
wait_for_clk_locked(fw_regmap_t::clk_status_reg_t::LMK_LOCK, 0.1);
// Validate
for (auto radio_ref : _radio_refs) {
radio_ref->self_test_adc(2000);
}
} else {
// Restore delay
_clock_ctrl->set_clock_delay(
X300_CLOCK_WHICH_ADC0, cached_clk_delay); // Sets ADC0 and ADC1
}
// Teardown
for (auto& radio : _radio_refs) {
radio->set_adc_test_word("normal", "normal");
radio->set_adc_checker_enabled(false);
}
UHD_LOGGER_INFO(LOG_ID)
<< (boost::format("ADC transfer delay self-cal done (FPGA->ADC=%.3fns%s, "
"Window=%.3fns)")
% (win_center - fpga_clk_delay) % (cycle_slip ? " +cyc" : "")
% win_length);
}
void x300_mb_controller::extended_adc_test(double duration_s)
{
static const size_t SECS_PER_ITER = 5;
RFNOC_LOG_INFO(
boost::format("Running Extended ADC Self-Test (Duration=%.0fs, %ds/iteration)...")
% duration_s % SECS_PER_ITER);
size_t num_iters = static_cast<size_t>(ceil(duration_s / SECS_PER_ITER));
size_t num_failures = 0;
for (size_t iter = 0; iter < num_iters; iter++) {
// Run self-test
RFNOC_LOG_INFO(
boost::format("Extended ADC Self-Test Iteration %06d... ") % (iter + 1));
try {
for (auto& radio : _radio_refs) {
radio->self_test_adc(SECS_PER_ITER * 1000);
}
RFNOC_LOG_INFO(boost::format("Extended ADC Self-Test Iteration %06d passed ")
% (iter + 1));
} catch (std::exception& e) {
num_failures++;
RFNOC_LOG_ERROR(e.what());
}
}
if (num_failures == 0) {
RFNOC_LOG_INFO("Extended ADC Self-Test PASSED");
} else {
const std::string err_msg =
(boost::format("Extended ADC Self-Test FAILED!!! (%d/%d failures)")
% num_failures % num_iters)
.str();
RFNOC_LOG_ERROR(err_msg);
throw uhd::runtime_error(err_msg);
}
}
|